
UC Irvine
ICS Technical Reports

Title
Software performance estimation for pipeline and superscalar processors

Permalink
https://escholarship.org/uc/item/7957t5mp

Authors
Huang, Chu-Yi
Gajski, Daniel D.

Publication Date
1995-06-16

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7957t5mp
https://escholarship.org
http://www.cdlib.org/

Software Performance Estimation for Pipeline and Superscalar Processors

Chu-Yi Huang and Daniel D. Gajski

Technical Report^ 95-20
June 16, 1995

Dept. of Information and Computer Science
University of California, Irvine

Irvine, CA 92717-3425
Phone: (714)824-8059
FAX: (714)824-4056

Email: chu-yih@ics.uci.edu

Abstract

s*-

When moving toward hardware/software codesign, software estimation provides impor
tant information in chosing hardware implementation (ASIC) or software implementation
(software running on processor). This report analizes the pipeline stall and superscalar in
terlockphenomenon and their influence on software performance. Simple processor profile
is proposed to count these two effects. Based on generic estimation model, our estimator
can produce accurate estimation without large com]^tation time and precious resource,
such as compilers or simulators for each processor. The accuracy and flexibility make our
approach suitable for design automation tools.

" '̂iitiliiiiifin'iifli %• • ii-itt'lr'"-

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Contents

1 Motivation

2 Problem Analysis
2.1 Software Estimation

2.2 Pipeline Stall and Superscalar Interlock

3 Estimation Model

3.1 Pipeline Processor
3.2 In-Order Issue Superscalar Processor . . .
3.3 Out-Of-Order Issue Superscalar Processor
3.4 Software Performance Estimator

4 Experiment

5 Conclusion and Future Work

6 Acknowledgements

A Technology File for SPARC (partial)

B Technology File for Intel Pentium

C Technology File for PowerPC

1 Motivation

In system level design, designers have to decide to implement the specification in hardware

(ASIC), software (running on processor), or combination of these two. Performance and
cost are the most important decision factors. To explore the space of hardware/software

codesign, design tools have to provide the performance and cost information.

To provide metrics for hardware/software codesign, both hardware and software esti

mator are needed. Hardware estimator provides performance and cost metrics for im

plementing the specification in ASIC. Software estimator provides performance and cost

metrics for implementing specification in software running on processor.

This paper discuss the software performance estimation, even though the tool can

produce the cost metrics (such as code size, data size), too. Please reference [4] for cost
estimation technique. For hardware estimation, please reference [5].

Approach Worf< Flow

In-Circuit
✓Specification

Simulation /Machine Code

Processor

✓Specification

Software "^achine Code
Simulation "Simulator

Software ✓Specification

Estimation f/ Processor Profile

Estimator

Flexibilitv Computation Accuracy
' Time

Table 1: Comparision of Software Estimation Approach.

Software performance can be measured in three ways; in-circuit simulation, software

simulation, and software estimation. The comparison of these three approaches are sum-

maried in Table 1. In hardware simulation, system specification was compiled into target

machine code and performance was measured by running the code on target processor.

This approach need one in-circuit simulator and one compiler for each processor. Though

the measured metrics is accurate but the flexibility of the tool is low due to the huge
resource requirement.

In software simulation, system specification was compiled into target machine code
and performance was measured by running the code in software simulator of the target
processor. This approach needs one compiler and one simulator for each processor. In
this approach, theestimation accuracy is high (the same as in-circuit simulation) and the
flexibility is higher because software simulator is more accessible than in-circuit simulator.

But software simulator is very time consuming.

In software estimation, the estimator calculates the performance of the system specifi
cation based on a profile of each processor. No compiler, software simulator, or in-circuit
simulator are needed. This approach only consume less computation time and need lessre
source, one technology file for each target processor and one estimator only. The accuracy
is lower than the previous two approaches.

From this comparison, we know the software estimator is more suitable for design
automation tools because its flexibility and speed allow design space exploration. In
this paper, we are trying to develop an estimation method for pipeline and superscalar
processors that can produce accurate enough metrics for system level design tools.

2 Problem Analysis

2.1 Software Estimation

Software estimation can be divided into two steps: flow analysis and basic block es
timation. In flow analysis, system specification was divided into several basic blocks, as
the example in Figure 1. Basic block is a straight-line code which has no branches. Every
branch among basic blocks is associated with a probability that this branch will be taken.
Theexecution frequency ofeach basic block can be calculated based on the graph ofbasic
block and branch probability [5].

After the execution time of each basic block was measured in the second step, the
execution time of the whole specification can be calculated by following equation:

execution(S) = ^ execution(bi) x freq{bi)
bies

where E is basic block.

A := A + 1:

fori in 1 to 10 loop
B:=B + 1:
C :=C-A;

If (D > A) then
D:=D + 2;

else
D := D + 3;

end If;

E :=D*2;
end loop;

B := B * A;
C;= 3;

A := A + 1;

B:=B + 1; ^
C:=C-A; ^

D>A D<=A

(p=0.5) V M (p=0.5)

D:=D + 2; D:=D + 3;

E := D * 2;
(p=0.9)

l>10
,(p=0.1)

B := B * A;
C:=3;

Figure 1: (a) VHDL program, (b) basic block graph.

This report takes the same approach and focus on the basic block estimation for pipeline

and superscalar processors. In basic block estimation, we adapt the generic estimation

model [4] which was shown in Figure 2. The system specification was compiled into

generic three address instructions. For each processor, there is a technology file providing

the timing and instruction size of each generic instruction. Then the execution time and

code size of basic block can be calculated as follows:

execution{B) = ^ time[Ij) (2)
ijeB

size{B) = ^ size{Ij) (3)
IjEB

where Ij is the generated generic instruction.

2.2 Pipeline Stall and Superscalar Interlock

Though generic estimation model has shown good results in estimation for non-pipelined

processor in [4], the previous two equations can not measure the performance of pipeline or

superscalar processor very well. The overlap time of pipeline instruction can be reflected

Program

Compile to
generic instructions

Generic
Instructions

Estimator

Performance

Technology
files for target
processors

I 8086
I instruction set

/| timing and size
[information

168000
4 instruction set
1timing and size
information

IMIPS I
J instruction set 1
]timing and size j
ijnformation j

Figure 2: Generic Estimation Model.

in following equation:

execution{B) = ^ {time{Ij) —pipe-depth + 1) + pipejdepth —1 (4)
/>€B

But the result is not accurate due to pipeline stall and superscalar interlock phenomenon.

-Idi b,r1

Id2 c.r2

add r1 ,r2,r3
sti r3,a

1 fetch j

2 decode

3 execute

4 write back

-Ida c.rl
stp r1,d

pipeline ^
stage 1 2 3 4 5 6 7 8

1 fetch SldgJ;
2 decode
3execute PsS
4writeback| I RldaSl

If fully overlap = 3+(13-3)+(8-3)=18

Real execution flow
Clock

pipeline
stage I ^ | 2 | 3 I 4 I 5 I 6 I 7 I 8 | 9 | 10| 11 | 12 lisl 14 I 15 I 16 I 17 I 18 I

Clock

3 I 4 I 5 I 6 8 9 10 11 12 13

Clock

3 I 4 I 6 7 8

1

I I I I

Figure 3: Pipeline Stall Example in SPARC.

Pipeline processor can issue one instruction per clock cycle in ideal situation. When

one instruction depend on the result or content a same resource, such as bus, of previous

instructions that are still in the pipe, this instruction can not be issued and pipeline was

stalled. Figure 3 shows an example of pipeline stall in SPARC processor. When executing

the second generic instruction, instruction st2 can not be fetched until clock cyle fifteen

because it content the bus with instruction sti and Id^. Two new pipeline stalls (marked

by black) happened in clock cycle 15 and 16. The execution time will be 20 clock cycle,

not the 18 clock cyle measured by Equation 4.

Superscalar processor can issue more than one instruction per clock. Processor check

a=b+c

pipeline
stage

liSil&llslilmovi r1,b

add r1 ,c
mov2 a,r1 ^SWJB

movg r1 ,c
mov4 d,r1 • ivnWMViravtA %.X^X.XVX' I

Utiiiiimi iuSP^ei
WXW-vV seresfey BBBBBH •

[Hi

iffully overlap = 5-1+(7-4)+(6-4)=9

Real execution flow

pipeline

iitw^iiirrTi
n

lliSi^ lUSiiE! jiuj^l

Figure 4: Execution sequence in Pentium.

lim^ lUSiiEiruu^i

the issue rule to decide a new instruction can be issued or not. Instructions depend on

the result or content same resources (such as bus or ALU) of previous instructions which

are not available yet can not be issued. This is called superscalar interlock and prevent

the processor achieving maximal performance. Figure 4 shows an execution sequence in

Pentium superscalar processor. In this example, instruction mov2 and mov^ (marked by

black) can be executed at the same time that save one execution clock cycle if the two
generic instruction are executed continuously.

3 Estimation Model

3.1 Pipeline Processor

H-FUn

Reqister/Cache

Technology File

• Timing for each generic instruction

• Resource Contention Stall Table (RCStall)

req

add

reg add 0 0

assign '' ''

• Data Dependency Stall Table (DDStall)

Figure 5: Pipeline Processor Model.

The hardware model of pipeline processor was depicted in Figure 5. Pipeline processor

was profiled as a sequence of function unit which can handle one instruction at a time.

In order to calculate the pipeline stall, two pipeline stall tables were included in addition

to the execution time of each generic instruction. As the example in Figure 3, pipeline
stalls in each generic instruction were already covered in the execution time of generic
instruction. Pipeline stalls between generic instructions were stored in pipeline stall table.
Pipeline stall table is a two dimension array. Both the x and y dimension are generic
instructions. And the array value is the number of pipeline stalls instroduced when

the instruction indexd by x is following the instruction indexed by y. The two pipeline
stall tables have the same format, but having different value. Data dependent pipeline
stall table, DDStall, is used when an instruction depend on the result of its previous one
instruction, while resource contention pipeline stall table is used for instructions that have

no data depedency. The execution time of a basic block can be formulated as follows:

execution{B) = + stall{Ij - 1, Ij) - pipejdepth + 1)+
piptjdepth —1 ^ ^

wkf-rp c/p/Z - / if Ij dose not depend on 7j_i~ \ DDStaU{Ij.-,,Ij) if Ij depend on /,_a

3.2 In-Order Issue Superscalar Processor

FU2 HFUn

Register/Cache

Technology File

Mapping of generic instruction to machine instruction

Timing information for machine instruction

• Dispatch Rule: 2 add, 1 mul, 1 load
1 add, 1 mul, 1 load, 1 branch

Figure 6: In-Order Issue Superscalar Processor Model.

The estimation model of in-order issue superscalar processor was shown in Figure 6.

This model adds a new feature: each function unit can handle more than one instruction.

generic
instruction

c=d[1]+e;
a=b;

machine instruction
execution sequence

mov r1 ,d
mov r2,e

clock I

addr2,1[r1] clock 1+1

movc,r2 . . . „
mov r1 ,b clock i+2

mov a,r1; clock 1+3

generic
instruction

c=d[1]+e;
a=c:

machine instruction
execution sequence

mov r1,d clock 1
mov r2,e

addr2,1[r1] clock 1+1

movc,r2 clock i+2

mov r1 ,c

mov a,r1;
clock i+3

clock i+4

Figure 7: Grouping machine instruction in Pentium.

The technology file for this type of processor changes a lot. First, the mapping of generic

instruction to machine instruction should be included. When a processor executing the

machine instruction of a generic instruction, it fetches more than one machine instructions

and check against issue rule. If these instruction satisfy the issue rule, they are grouped

together and execute at the same time. The grouping of machine instruction of a same

generic instruction is not always the same in different execution instances. For example,

mov c, r2 is grouped with mov rl, b in Figure 7(a) while mov c, r2 in Figure 7(b)

consist a group by itself even though they belong to the same generic instruction, an

assignment statment. So the mapping of generic instruction to machine instruction should

be provided, that the estimator can check the issue rule at machine instruction level.

Second, the execution time of each machine instruction, not generic instruction, should

be included. After checking the issue rule, the estimator can determine the parallel in

struction group and calculate the performance as follows:

execution{B) = pipejdepth —1 -f
where MIGj is a parallel machine instruction group,

time{MIGj) = MAXMij^eMiGjti'm^{MIjk)
where Mljk is a machine instruction of group MIGj.

Of course, the issue rule is included in the technology file.

3.3 Out-Of-Order Issue Superscalar Processor

lbui; —'•itu.rL

Register/Cache

Technology File

« Mapping of generic instruction to machine instruction

« Timing information for machine instruction

• Dispatch Rule

• Number of FUs and buffers

Figure 8: Gut-Of-Order Issue Superscalar Processor Model.

Out-of-order issue processor can execute more than one instruction at one time and

rearrange the instruction order. When one instruction was stalled, the processor will look
ahead several instructions to find a free instruction that can be executed now. So a look

ahead buffer was inserted in front of each function unit, as shown in Figure 8.
In this model, each pipeline stage may has more than one function unit and each

function unit may handle multiple instructions at the same time. In most cases, there is
only one function unit that can handle multiple instructions in fetch and decode stage.
In execution stage, multiple function units exist and each can handle one or multiple
instructions. When one function unit is busy, other function units can execute instructions

from buffer.

The technology file for this type of processor has the number of function unit and

size of buffer in each pipeline stage in addition to the technology file of in-order issue
processor. In estimation, the estimator schedule and bind machine instructions to function

unit according to issue rule, data dependency, and function unit availability. Then the

Figure 9: Software Performance Estimation Flowchart.

Table Lookup/
Equation 7

Figure 9 shows the flowchart of software performance estimator. Specification was
divided into basic blocks, first. Then each basic block was compiled into generic instruc
tions. If it is a non-pipelined processor, look up the timing in technology file. Sum
up these timing to get the execution time. If it is a pipeline processor, check the data
dependency and look up pipeline stall table. Calculate execution time by Equation 5.
Otherwise the generic instructions were mapped to machine instruction. If it is a in-order

issue superscalar processor, check the data dependency and issue rule to determine paral
lel instructions. Then calculate execution time by Equation 6. If it is a out-of-order issue

superscalar processor, check data dependency and issue rule to schedule instruction into

different function units. Then Calculate execution time by Equation 7.

4 Experiment

To test the accuracy of the proposed estimation model, we have run three examples on
three processors. The three example are elliptical filter [10], medical system [9], and
MPEG decoder [3]. The three processors are SPARC [1] [2], Intel Pentium [8], and
PowerPC [7].

The elliptical filter contains a few basic blocks and most of its statements are inside

one basic block. The medical system contains many basic blocks (more than thirty) and
each basic block only contains a few statements. The MPEG decoder has large number
of basic blocks and statements.

SPARC is a pipeline processor with four pipeline stages. Intel Pentium is an in-order
issue superscalar processor with five pipeline stages. It can issue at most two instruction
perclock cycle. PowerPC 604 isa out-of-order issue superscalar processor with six pipeline
stages. Even though it has six executing function units, two single cycle integer unit, one
multiple cycle integer unit, one floating point unit, one load/store unit, and one branch
unit, it can only issue four instructions per cycle at most.

Table 2 shows the estimated performance and real performance ofthese three program
on three processors. The performance is measured by clock cycle. To get the real per
formance, we first translate the SpecCharts [6] specification of these three system into C
language. Then the C programs are compiled into machine instruction of each proces
sors without optimization. The real performance is calculated based on these machine

SPARC Pentium

est. actual error est. 1 actual
perf. perf. perf. 1 pert.

887 868 2.1% 187 171

PowerPC 604

est. actual | i
pert. perf.

Medical 792 754 5.0% 424 434 2.3% 574 571 0.5%
System

MPEG 428.5K 466.2K -8.0% 169.2K 165.3K 2.3% 139.8K 128.8K 8.5%
Decoder

Table 2: Experiment Results.

instructions assuming no cache miss.

From Table 2, we show that our estimation model can produce an accurate result on

different application types and different processors. All estimation error are less than 10

percent.

5 Conclusion and Future Work

In this report, we have shown the software performance estimation that can produce

accurate result with a few resource and computation time. This flexible approach was

very suitable for design tools of system level hardware/software codesign.

Compiler optimization and cache miss are two issues about software estimation that

are not counted in this estimation. When implementing the specification in software,

most program will be compiled with optimization option. The speedup of optimized

code depends on application, compiler, and processor. A simple solution is to find out

the statistic speedup ratio by running many examples. The estimated performance can

multiply this ratio to get the optimized performance metrics. This approach has been

used in [4]. But it is very hard to find a good ratio for wide range of applications.

Another possible approach is to profile the optimization in technology file. For the

most common optimization technique, put variables in register, the technology can has

another version that assumes variables are in registers. The optimization ratio can be

approximated by the ratio of register number and live variable number. This accuracy

and techniques for profiling other optimization method need further researches.

Cache miss has similar effect as optimization and can be approximated by a ratio. This

simple solution has the same problem as optimization's. To accurately estimate the cache

miss number, the systemshould have some sort of mappingbetween variable and memory
address. With this information, the memory address distance between instruction can be

calculated and cache miss can be predicted more precisely.

6 Acknowledgements

The authors would like to thank Jie Gong and Alfred Baehrenz Thordarson for providing
the specification of experiment applications. We also want to thank Jin-Her Lin and

Yirng-An Chen for compiling the specification into Pentium and PowerPC machine code.

References

[1] CMOS BiCMOS Data Book, Cypress Semiconductor, 1989

[2] M. Slater ed., A Guide to RISC Microprocessor, Academic Press, 1992

[3] A.B. Thordarson and D.D. Gajski, Comparison of Manual and Automatic
Behavioral Synthesis on MPEG Algorithm, Technical Report ICS-05-09, UC-

Irvine, 1995

[4] J. Gong, D.D. Gajski, and S. Narayan, Software Estimationfrom Executable
Specification, Technical Report ICS-93-5, UC-Irvine, 1993

[5] D.D. Gajski, F. Vahid, S. Narayan, and J. Gong, Specification and Design of
Embedded Systems, ch. 7.3, 1994

[6] D.D. Gajski, F. Vahid, S. Narayan, and J. Gong, Specification and Design of
Embedded Systems, ch. 3.5, 1994

[7] PowerPC 604, RISC Microprocessor User's Manual, Motorola Inc., 1994

[8] Pentium Family User's Manual, Intel Corporation, 1994

[9] A. Wu, A Microprocessor-based ultrasonic system for measuring bladder vol
umes, Master Thesis in Electrical and Computer Engineering at University

of Arizona, Tuscon, 1985.

[10] N. Dutt and C. Ramachandran, Benchmarks for the 1992 high level synthesis
workshop, UC Irvine, Dept. of ICS, Technical Report 92-107, 1992.

A Technology File for SPARC (partial)

Lines starting with '#' in the beginning of this file are comments.

#

The number in the first line after the comment is processor type aind pipeline

depth. The processor type is encode as;

1 for pipeline, 2 for in_order_issue superscaler and

3 for out_order_issue superscaler.

If this metric is for pipeline processor, the format after the

processor_type is as follows:

row_number, column_number

row_number x column.number matrix for data dependent stall

row_number x column_number matrix for resource conflict stall

All these number are separated by space or new_line.

If this metric file is for out_order_issue superscaler processor,

the format after the processor_type is as follows:

max_issue fu_type queue_size_typel num_ful

queue_size_typen num.fun

In this part, max_issue is the max of concurrently issued instructions,

fu_type is the number of function unit type.

queue_size_typel to queue.size_typen is the size of

the queue in front of the function unit executing

this type of machine instruction, num.fux is the number of copies

of this fu type.

exec.time type COMMENTS

exec_time type COMMENTS

exec.time type COMMENTS

XXXXXXXXXXXXXXXXXXXXXXX

Each line says the execution time cind instruction type of a

machine instruction. The first line is for the

machine instruction whose id is 1. Instruction type

is used for determine parallel issue instruction.

Typically, instructions are grouped ina same type

if they are executed by a sajne function unit.

Anything after the two numbers in a line are comments.

This part ends with a line starting with nonnumeric

symbol.

#

id_l depend_l.l depend_1.2 ... id_a depend_a.l depend_a.2 X

id_l depend_l.l depend_1.2 ... id_b depend_b.l depend_b.2 X

#

id_l depend.1.1 depend.1.2 ... id.n depend.n.l depend.n.2 X

Each line says the mapped machine instruction for a generic

instruction. The first line is for the first generic

instruction. Each generic instruction must be mapped to one

and only one line. 'depend.x.x' says dependency among these

machine instructions for a same generic instruction.

if 'depend.x.x' is -1, it means this machine instruction

depends on the previous machine instruction. Every

machine instruction can have two depedency at most.

If there is no depedency, set 'depend.x.x' greater or

equal to 0. EACH LINE MUST ENDS WITH A NONNUMERIC SYMBOL.

number.1 type.l number.a type.a XXX

number.1 type.l number.b type.b XXX

number.1 type.l number.n type.n XXX

Each line is a grouping rule. Up to the number of instructions

in the specified types cein be issued in parallel. Each

line ends with a nonnumeric symbol. This part is the end

of this metric file.

#

If this file is for an in_order_issue superscalar processor,

the format is the same as the one for out_order_issue

superscalar processor without the first part, that is

the following line:

f_queue_size instr.type queue_size_typel ... queue_size_typen

This file is for SPARC processor whose architecture is

in-order-issue superscalar.

1 4

138 138

0000000000 0000000000 0000000000 00

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 000000 DIVl

0000000000 0000000000 0000000000 00

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 000000 DIV2

0000000000 0000000000 0000000000 00

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 000000 DIV3

0000000000 0000000000 0000000000 00

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 000000 DIV4

0000000000 0000000000 0000000000 00

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 000000 DIV5

0000000000 0000000000 0000000000 00

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 000000 DIV6

0000000000 0000000000 0000000000 00

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 000000 DIV7

000 0 000000 0000000000 0000000000 00

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 000000 DIV8

0000000000 0000000000 0000000000 00

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 000000 DIV9

0000000000 0000000000 0000000000 00

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000 0 00 0000000000 0000000000

0000000000 000000 DIVIO

0000000000 0000000000 0000000000 00

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 000000 DIVll

0000000000 0 0 00000000 0000000000 00

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 000000 DIV12

0000000000 0000000000 0000000000 00

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 000000 DIV13

0000000000 0000000000 0000000000 00

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 000000 DIV14

0000000000 0000000000 0000000000 00

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 000000 DIV15

0000000000 0000000000 0000000000 00

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 0000000000 0000000000

0000000000 000000 DIV16

1111

10 0 1

10 0 1

1111

1111

1111

10 0 1

10 0 1

1111

1111111 1111111111 11

1111111 1111111111

1111111 1111111111

1001111 1111111100

110 DIV17

1111111 1111111111 11

1111111 1111111111

1111111 1111111111

1001111 1111111100

110 DIV18

B Technology File for Intel Pentium

1 1 id=l, Reg = Reg ALU Reg/Const, ALU means integer I

2 1 id=2, Reg = Reg ALU Mem, ALU means integer +, &, I

3 1 id=3, Mem = Reg/Const ALU Mem, ALU means integer

1 1 id=4, MOV, mov memory to/from register/const

10 1 id=5, Reg = Reg MUL Reg/Mem

46 1 id=6, Reg = Reg DIV Reg/Mem

1 1 id=7, Reg = Reg COMPARE Reg/Const

2 1 id=8, Reg = Mem COMPARE Reg/Const

1 1 id=9, NOP

1 1 id=10, conditional/unconditional JUMP

4 2 id=ll, RETURN plus pop, leave overhead

4 2 id=12, CALL plus push overhead

###End of information for instruction execution time emid instruction type ###

4 0 0

4 0 0

4 0 0

4 0 0

4 0 0

4 0 0

4 0 0

4 0 0

4 0 0

4 0 0

1-10 Reg = Const ALU Const

1-10 Reg = Const ALU Reg

1-10 Reg = Reg ALU Const

1-10 Reg = Reg ALU Reg

1-10 Reg = Mem ALU Const

1-10 Reg = Const ALU Mem

2-10 Reg = Mem ALU Reg

2-10 Reg = Reg ALU Mem

2-10 Reg = Mem ALU Mem

4-101-10 Reg = IndirectMem ALU Const

4004-101-10 Reg = Const ALU IndirectMem

400 4002-1-2 Reg = IndirectMem ALU Reg

400400 2-1-2 Reg = Reg ALU IndirectMem

4 0 0

4 0 0

4 0 0

4 0 0 2 -1 -2 Reg = IndirectMem ALU Mem •>

4002-1-2 Reg = Mem ALU IndirectMem

4004-202-1-2 Reg = IndirectMem ALU IndirectMem

4003-10 Mem = Const ALU Const

10 0

10 0

4 0 0

4-10 Mem = Const ALU Reg

4-10 Mem = Reg ALU Const

1 -1 0 4 -1 0 Mem = Reg ALU Reg

4001-104-10 Mem = Mem ALU Const

4 0 0 1 -1 0 4 -1 0 Mem = Const ALU Mem

4002-104-10 Mem = Mem ALU Reg

4 0 0 2 -1 0 4 -1 0 Mem = Reg ALU Mem

4004001-1-24-10 Mem = Mem + Mem

4004-101-104-10 Mem = IndirectMem ALU Const

4004-101-104-10 Mem = Const ALU IndirectMem

4 0 0

4 0 0

4 0 0

4002-1-24-10 Mem = IndirctMem ALU Reg

4002-1-24-10 Mem = Reg ALU IndirctMem

4002-1-24-10 Mem = IndirectMem ALU Mem

4004002-1-24-10 Mem = IndirectMem ALU Mem

4004-104002-1-24-10 Mem = IndirectMem ALU IndirectMem

4001-10 Reg = Empty ALU Const

4001-10 Reg = Empty ALU Reg

4001-10 Reg = Empty ALU Mem

4004-101-10 Reg = Empty ALU IndirectMem

4001-104-10 Mem = Empty ALU Const

1004-10 Mem = Empty ALU Reg

4001-104-10 Mem = Empty ALU Mem

4004-101-104-10 Mem = Empty ALU IndirectMem

4 0 0 4 0 0 1 -1 -2 4 -1 0 Reg = Const MUL Const

4 0 0 1 -1 0 4 -1 0 Reg = Const MUL Reg

4 0 0 1 -1 0 4 -1 0 Reg = Reg MUL Const

4 0 0 5 -1 0 4 -1 0 Reg = Reg MUL Reg

4 0 0 1 -1 0 4 -1 0 Reg = Mem MUL Const

4001-104

4005-104

4005-104

4005-104

4004001-

4004001-

4004005-

4004005-

4004005-

4004005-

4004-104

-10 Reg = Const MUL Mem

-1 0 Reg = Mem MUL Reg

-1 0 Reg = Reg MUL Mem

-1 0 Reg = Mem MUL Mem

1-24-10 Reg = IndirectMem MUL Const

1-24-10 Reg = Const MUL IndirectMem

1-24-10 Reg = IndirectMem MUL Reg

1 -24-1 0 Reg = Reg MUL IndirectMem

1-24-10 Reg = IndirectMem MUL Mem

1 -24-1 0 Reg = Mem MUL IndirectMem

005-1-24-10 Reg = IndirectMem MUL IndirectMem

4 0 0 4 0 0 1 -1 -2 4 -1 0 Mem = COnst MUL Const

4001-104

4001-104

4005-104

-1 0 Mem = CDnst MUL Reg

-1 0 Mem = Reg MUL Const

-1 0 Mem = Reg MUL Reg

4 0 0 1 -1 0 4 -1 0 Mem = Mem MUL Const

4 0 0 1 -1 0 4 -1 0 Mem = COnst MUL Mem

4 0 0 5 -1 0 4 -1 0 Mem = Mem MUL Reg

4 0 0 5 -1 0 4 -1 0 Mem = Reg MUL Mem

4 0 0 5 -1 0 4 -1 0 Mem = Mem MUL Mem

4004001-1-24-10 Mem = IndirectMem MUL Const

4004001-1-24-10 Mem = Const MUL IndirectMem

400 4005-1-24-10 Mem = IndirectMem MUL Reg

400 4005-1-24-10 Mem = Reg MUL IndirectMem

4004005-1-24-10 Mem = IndirectMem MUL Mem

4004005-1-24-10 Mem = Mem MUL IndirectMem

4004004-205-1-24-10 Mem = IndirectMem MUL IndirectMem

4 0 0 4 0 0 1

4 0 0 6 -1 0 4

4 0 0 1 -1 0 4

4006-104

4 0 0 1 -1 0 4

-1-24-10 Reg = Const DIV Const

-1 0 Reg = Const DIV Reg

-1 0 Reg = Reg DIV Const

-10 Reg = Reg DIV Reg

-10 Reg = Mem DIV Const

4 0 0

4 0 0

4 0 0

4 0 0

4 0 0

4 0 0

4 0 0

4 0 0

4 0 0

4 0 0

4 0 0

4 0 0

4 0 0

4 0 0

4 0 0

4 0 0

6-104-10 Reg = Const DIV Mem

6 -1 0 4 -1 0 Reg = Mem DIV Reg

6 -1 0 4 -1 0 Reg = Reg DIV Mem

6 -1 0 4 -1 0 Reg = Mem DIV Mem

4001-1-24-10 Reg = IndirectMem DIV Const

4006-1-24-10 Reg = Const DIV IndirectMem

4006-1-24-10 Reg = IndirectMem DIV Reg

4006-1-24-10 Reg = Reg DIV IndirectMem

4006-1-24-10 Reg = IndirectMem DIV Mem

4006-1-24-10 Reg = Mem DIV IndirectMem

4 -1 0 4 0 0 6 -1 -2 4 -1 0 Reg = IndirectMem DIV IndirectMem

4001-1-24-10 Mem = CDnst DIV Const

6-104-10 Mem = COnst DIV Reg

1 -1 0 4 -1 0 Mem = Reg DIV Const

6 -1 0 4 -1 0 Mem = Reg DIV Reg

1 -1 0 4 -1 0 Mem = Mem DIV Const

4006-104-10 Mem = COnst DIV Mem

4006-104-10 Mem = Mem DIV Reg

4006-104-10 Mem = Reg DIV Mem

4006-104-10 Mem = Mem DIV Mem

4004001-1-24-10 Mem = IndirectMem DIV Const

4004006-1-24-10 Mem = Const DIV IndirectMem

4 0 0

4 0 0

4 0 0

4006-1-24-10 Mem = IndirectMem DIV Reg

4006-1-24-10 Mem = Reg DIV IndirectMem

4006-1-24-10 Mem = IndirectMem DIV Mem

4004006-1-24-10 Mem = Mem DIV IndirectMem

4004004-206-1-24-10 Mem = IndirectMem DIV IndirectMem

4 0 0 7 -1 0 4 -1 0 Reg = Const CMP Const7-1 04-10 Reg = Const CMP Const

4-10 Reg = Const CMP Reg

4-10 Reg = Reg CMP Const

4-10 Reg = Reg CMP Reg

4-10 Reg = Mem CMP Const

7 0 0

7 0 0

7 0 0

8 0 0

8 0 0

8 0 0

8 0 0

4 0 0

4 0 0

4 0 0

4 0 0

4 0 0

4 0 0

4 0 0

4 0 0

4-10 Reg = COnst CMP Mem

4-10 Reg = Mem CMP Reg

4-10 Reg = Reg CMP Mem

8 -1 0 4 -1 0 Reg = Mem CMP Mem

8-104-10 Reg = IndirectMem CMP Const

8-104-10 Reg = Const CMP IndirectMem

8-104-10 Reg = IndirectMem CMP Reg

8-104-10 Reg = Reg CMP IndirectMem

400 8-1-24-10 Reg = IndirectMem CMP Mem

400 8-1-24-10 Reg = Mem CMP IndirectMem

4004-208-1-24-10 Reg = IndirectMem CMP IndirectMem

4007-10 Mem = Const CMP Const

700 Mem = Const CMP Reg

700 Mem = Reg CMP Const

700 Mem = Reg CMP Reg

800 Mem = Mem CMP Const

800 Mem = Const CMP Mem

800 Mem = Mem CMP Reg

800 Mem = Reg CMP Mem

4008-10 Mem = Mem CMP Mem

4008-10 Mem = IndirectMem CMP Const

4008-10 Mem = Const CMP IndirectMem

4008-10 Mem = IndirectMem CMP Reg

4008-10 Mem = Reg CMP IndirectMem

4004008-1-2 Mem = IndirectMem CMP Mem

4004008-1-2 Mem = Mem CMP IndirectMem

4004004-208-1-2 Mem = IndirectMem CMP IndirectMem

4 0 0

4 0 0

4 0 0

4 0 0

Reg = Const

Reg = Reg

Reg = Mem

4-10 Reg = IndirectMem

400 Mem = Const

400 Mem = Reg

4004-10 Mem = Mem

4004-104-10 Mem = IndirectMem

4004-10 IndirectMem = Const

4004-10 IndirectMem = Reg

4004004-10 IndirectMem = Mem

4004004-204-10 IndirecMem = IndirectMem

9 0 0 NOP

10 0 0 CJUMP

10 0 0 JUMP

11 0 0 RET

12 0 0 CALL

900 DEFAULT; End of Mapping; follows are issue rules

2 1 Less or equal to Two type 1 instrcutions

1 2 One type 2 instruction

C Technology File for PowerPC

452221212121

1 1 id=l, Reg = Reg ALU Reg/Const, ALU means integer

1 4 1(1=2, CALL plus push overhead

1 1 id=3, NOP

2 2 id=4, load

4 3 id=5, Reg = Reg MUL Reg/Mem

20 3 id=6, Reg = Reg DIV Reg/Mem

1 1 id=7, Reg = Reg COMPARE Reg/Const

1 4 id=8, conditional/unconditional JUMP

3 2 id=9, store

1 4 id=10, RETURN plus pop, leave overhead

###End of information for instruction execution time and instruction type ###

4 0 0

10 0

4 0 0

10 0

4 0 0

4 0 0

4 0 0

4 0 0

4 0 0

4 0 0

4 0 0

4 0 0

4001-1-2 Reg = Const ALU Const

Reg = Const ALU Reg

1-10 Reg = Reg ALU Const

Reg = Reg ALU Reg

4 0 0 4 -2 0 1 -1 -2 Reg = Mem ALU Const

4004-201-1-2 Reg = Const ALU Mem

4-101-10 Reg = Mem ALU Reg

4 -1 0 1 -1 0 Reg = Reg ALU Mem

400 4-2 0 4 -2 0 1 -1 -2 Reg = Mem ALU Mem

4001-201-1-2 Reg = IndirectMem ALU Const

4001-201-1-2 Reg = Const ALU IndirectMem

1-101-10 Reg = IndirectMem ALU Reg

1-101-10 Reg = Reg ALU IndirectMem

4001-20 4 -2 0 1 -1 -2 Reg = IndirectMem ALU Mem

4004001-20 4-201-1-2 Reg = Mem ALU IndirectMem

4004001-201-201-1-2 Reg = IndirectMem ALU IndirectMem

4004004001-2-39-1-2 Mem = Const ALU Const

4004001-209-1-2 Mem = Const ALU Reg

4004001-209-1-2 Mem = Reg ALU Const

4001009-1-2 Mem = Reg ALU Reg

4004004-204001-2-39-1-2 Mem = Mem ALU Const

4004004-204001-2-39-1-2 Mem = Const ALU Mem

4004004-201-1-29-1-3 Mem = Mem ALU Reg

4004004-201-1-29-1-3 Mem = Reg ALU Mem

4004004-204-204001-2-39-1-2 Mem - Mem + Mem

4004004001-301-1-39-1-3 Mem = IndirectMem ALU Const

4004004001-301-1-39-1-3 Mem = Const ALU IndirectMem

4004001-201-1-39-1-3 Mem = IndirctMem ALU Reg

4004001-201-1-39-1-3 Mem = Reg ALU IndirctMem

4004004-201-204001-2-39-1-2 Mem = IndirectMem ALU Mem

4004004-201-204001-2-39-1-2 Mem = IndirectMem ALU Mem

4004001-201-204001-2-39-1-2 Mem = IndirectMem ALU IndirectMem

4001-10 Reg = Empty ALU Const

1-10 Reg = Empty ALU Reg

4004-101-10 Reg = Empty ALU Mem

4001-101-10 Reg = Empty ALU IndirectMem

4004001-209-1-2 Mem = Empty ALU Const

4001009-1-2 Mem = Empty ALU Reg

4004004-201-109-1-3 Mem = Empty ALU Mem

4004001-201-109-1-3 Mem = Empty ALU IndirectMem

4001-10 Reg = Const MUL Const

100 Reg = Const MUL Reg

100 Reg = Reg MUL Const

500 Reg = Reg MUL Reg

4 0 0 4 -1 0 1 -1 0 Reg = Mem MUL Const

4 0 0 4 -1 0 1 -1 0 Reg = Const MUL Mem

4 0 0 4 -1 0 5

4004-105

4 0 0 4 0 0 4 -

4 0 0 1 -1 0 1

4 0 0 1 -1 0 1

4001-105

4001-105

4004004-

4004004-

4004001-

-1 0 Reg = Mem MUL Reg

-1 0 Reg = Reg MUL Mem

2 0 4 -2 0 5 -1 -2 Reg = Mem MUL Mem

-10 Reg = IndirectMem MUL Const

-1 0 Reg = Const MUL IndirectMem

-1 0 Reg = IndirectMem MUL Reg

-1 0 Reg = Reg MUL IndirectMem

201-205-1-2 Reg = IndirectMem MUL Mem

201-20 5-1-2 Reg = Mem MUL IndirectMem

20 1-205-1-2 Reg = IndirectMem MUL IndirectMem

4004001-209-1-2 Mem = COnst MUL Const

4001009-

4001009-

4005009-

1 -2 Mem = COnst MUL Reg

1 -2 Mem = Reg MUL Const

1 -2 Mem = Reg MUL Reg

4004004-201-109-1-3 Mem = Mem MUL Const

4004004-201-109-1-3 Mem = COnst MUL Mem

4004004-205-109-1-3 Mem = Mem MUL Reg

4004004-205-109-1-3 Mem = Reg MUL Mem

4004004-204-204005-2-39-1-2 Mem = Mem MUL Mem

4004001-201-109-1-3 Mem = IndirectMem MUL Const

4004001-201-109-1-3 Mem = Const MUL IndirectMem

400 4001-205-10 9-1-3 Mem = IndirectMem MUL Reg

400 4001-205-10 9-1-3 Mem = Reg MUL IndirectMem

4 0 0 4 0 0 4 -2 0 1 -2 0 4 0 0 5 -2 -3 9 -1 -2 Mem = IndirectMem MUL Mem

4004004-201-204005-2-39-1-2 Mem = Mem MUL IndirectMem

4004001-20 1-204005-2-39-1-2 Mem = IndirectMem MUL IndirectMem

4 0 0

4 0 0

10 0

6 0 0

4 0 0

1-10 Reg = Const DIV Const

6-10 Reg = Const DIV Reg

Reg = Reg DIV Const

Reg = Reg DIV Reg

1-10 Reg = Mem DIV Const

4 0 0

4 0 0

4 0 0

4 0 0

4 0 0

4 0 0

4 0 0

4 0 0

4 0 0

4 0 0

4 0 0

4 0 0

4 0 0

10 0

6 0 0

4 0 0

4006-1-2 Reg = Const DIV Mem

6-10 Reg = Mem DIV Reg

6-10 Reg = Reg DIV Mem

4006-1-2 Reg = Mem DIV Mem

1-101-10 Reg = IndirectMem DIV Const

4001-206-1-2 Reg = Const DIV IndirectMem

1-106-10 Reg = IndirectMem DIV Reg

1-106-10 Reg = Reg DIV IndirectMem

4001-206-1-2 Reg = IndirectMem DIV Mem

4001-206-1-2 Reg = Mem DIV IndirectMem

4001-20 1-206-1-2 Reg = IndirectMem DIV IndirectMem

1-109-10 Mem = COnst DIV Const

6-109-10 Mem = COnst DIV Reg

9-10 Mem = Reg DIV Const

9-10 Mem = Reg DIV Reg

1-109-10 Mem = Mem DIV Const

4004006-1-29-10 Mem = COnst DIV Mem

4 0 0

4 0 0

4 0 0

6 -1 0 9 -1 0 Mem = Mem DIV Reg

6 -1 0 9 -1 0 Mem = Reg DIV Mem

4006-1-29-10 Mem = Mem DIV Mem

1-101-109-10 Mem = IndirectMem DIV Const

4001-206-1-29-10 Mem = Const DIV IndirectMem

1-106-10 9-10 Mem = IndirectMem DIV Reg

1-106-10 9-10 Mem = Reg DIV IndirectMem

4001-206-1-29-10 Mem = IndirectMem DIV Mem4 0 0

4004001-206-1-29-10 Mem = Mem DIV IndirectMem

4 0 0

7 0 0

4001-20 1-206-1-29-10 Mem = IndirectMem DIV IndirectMem

7-10 Reg = Const CMP Const

700 Reg = Const CMP Reg

Reg = Reg CMP Const

Reg = Reg CMP Reg

7 -1 0 Reg = Mem CMP Const

4 0 0

4 0 0

4 0 0

4 0 0

4 0 0

4 0 0

4 0 0

4 0 0

4 0 0

4 0 0

4 0 0

4007-1-2 Reg = COnst CMP Mem

7-10 Reg = Mem CMP Reg

7-10 Reg = Reg CMP Mem

4007-1-2 Reg = Mem CMP Mem

1-107-10 Reg = IndirectMem CMP Const

4001-207-1-2 Reg = Const CMP IndirectMem

1-107-10 Reg = IndirectMem CMP Reg

1-107-10 Reg = Reg CMP IndirectMem

400 1-207-1-2 Reg = IndirectMem CMP Mem

400 1-207-1-2 Reg = Mem CMP IndirectMem

4001-201-207-1-2 Reg = IndirectMem CMP IndirectMem

4007-10 Mem = Const CMP Const

400700 Mem = Const CMP Reg

700 Mem = Reg CMP Const

700 Mem = Reg CMP Reg

4007-10 Mem = Mem CMP Const

4 0 0 4 0 0 7 -1 -2 Mem = COnst CMP Mem

4 0 0 7 -1 0 Mem = Mem CMP Reg

4007-10 Mem = Reg CMP Mem

4004007-1-2 Mem = Mem CMP Mem

4001-107-10 Mem = IndirectMem CMP Const

400400 1 -207-1-2 Mem = Const CMP IndirectMem

4 0 0

4 0 0

4 0 0

1-107-10 Mem = IndirectMem CMP Reg

1-107-10 Mem = Reg CMP IndirectMem

400 1-207-1-2 Mem = IndirectMem CMP Mem

400400 1-207-1-2 Mem = Mem CMP IndirectMem

4004001-201-207-1-2 Mem = IndirectMem CMP IndirectMem

4 0 0

4 0 0

4 0 0

4 0 0

Reg = Const

Reg = Reg

Reg = Mem

1-10 Reg = IndirectMem

4009-10 Mem = Const

900 Mem = Reg \

4009-10 Mem = Mem

4001-109-10 Mem = IndirectMem

4001-109-10 IndirectMem = Const

4001-109-10 IndirectMem = Reg

4004001-209-1-2 IndirectMem = Mem

4004001-201-209-1-2 IndirecMem = IndirectMem

3 0 0 NOP

800 CJUMP

800 JUMP

10 0 0 RET

200 CALL

900 DEFAULT; End of Mapping; floowing are issue rule

i 1

12 13 type 1

12 14 type 2

13 14 type 3

12 13 14 type 4

