
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Electronic and Optical Properties of Solids with Strong Spin-Orbit Coupling

Permalink
https://escholarship.org/uc/item/7948q4zw

Author
Barker, Bradford Alan

Publication Date
2018
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7948q4zw
https://escholarship.org
http://www.cdlib.org/


Electronic and Optical Properties of Solids with Strong Spin-Orbit
Coupling

by

Bradford Alan Barker

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Physics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Steven G. Louie, Chair
Professor Jeffrey B. Neaton

Professor Mark Asta

Spring 2018



Electronic and Optical Properties of Solids with Strong Spin-Orbit
Coupling

Copyright 2018
by

Bradford Alan Barker



1

Abstract

Electronic and Optical Properties of Solids with Strong Spin-Orbit Coupling

by

Bradford Alan Barker

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Steven G. Louie, Chair

The development of new technology for computing and renewable energy sources
requires new insight into the physics governing state-of-the-art materials for these
applications. To optimize the search for transistors and solar cells to supplant silicon,
it is desirable to have them investigated in advance of their large-scale manufacture.
One potentially fruitful avenue of investigation is the study of the electronic and
optical properties of materials containing heavy atoms. Such atoms have a large
spin-orbit coupling, which can be responsible for relatively exotic physics. Topolog-
ical insulator materials such as Bi2Se3 may have utility in the development of, for
example, spin-tronics, in which information may be conveyed without the need for
transporting electrical charge.

The details of charges moving through a material, as well as a material absorbing
light, require a suitable theoretical treatment. Within the purview of the quantum
theory of solids, the technique of many-body perturbation theory gives researchers
access to the means of calculating one-particle and two-particle excited states, the
exact scenario needed to understand charged excitations and optical absorption,
respectively.

In this work, we further extend the ability of the many-body perturbation the-
ory software package of BerkeleyGW to allow for more accurate description of solids
containing heavy atoms. Namely, we investigate the properties of materials with
large spin-orbit coupling by allowing for the treatment of two-component spinor
wavefunctions. In the introduction, we review the physics of one- and two-particle
excitations, entirely within a formalism allowing for the presence of spin-orbit cou-
pling. In Chapter 2, we further discuss the implementation of spinor wavefunction
functionality in BerkeleyGW and provide many test calculations using materials with
varying strengths of spin-orbit coupling, with varying geometries, and including the
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metallic system of bulk gold. In Chapter 3, we present a calculation of the quasi-
particle bandstructure of β-HgS as a further benchmark material, for which there
requires elucidation of the bandstructure topology. We find very close agreement
with experiment for both the effective mass and band gap. In Chapter 4, we present
the bandstructure of the prototypical topological insulator Bi2Se3, finding significant
qualitative differences in the bandstructure from a quasiparticle calculation and the
more readily available description from Density Functional Theory (DFT). Namely,
we find that, in agreement with experiment, the conduction and valence bands are
both nearly parabolic, in contrast to the well-known camel-back feature in the valence
band of previous DFT calculations. Finally, in Chapter 5, we use DFT calculations
to determine the ground-state geometry of Ir dimers adsorbed to graphene and con-
firm this geometry, that of a horizontal dimer across the so-called bridge sites, by
comparing the resulting density of states to that measured by experiment. We find
both have a strong central peak near the graphene Dirac point energy.
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Chapter 1

Introduction

1.1 Approximate methods for the calculation of

the electronic properties of real materials

The Electronic Hamiltonian

The calculation of the electronic properties of materials requires a quantum mechan-
ical description of the systems of interest, be they single molecules, quantum dots,
nanotubes, quasi-two dimensional sheets, or crystals. After having a sense of the
species of the constituent atoms and roughly their location in space, we might first
think to calculate the energy spectra and wavefunctions with the full Hamiltonian
of the system. It is a simple matter to define such a many-body Hamiltonian, with
n electrons and N ions interacting via the Coulomb potential:

H = −
N∑
I

∇2
I

2MI

−
n∑
i

∇2
i

2me

+
e2

2

N,N∑
I,J 6=I

ZIZJ

|RI −RJ|
+
e2

2

n,n∑
i,j 6=i

1

|ri − rj|
− e2

n,N∑
i,I

ZI
|ri −RI|

,

(1.1)
where the N ions have masses {MI} and charges {ZI}. Without the need to include
the physics of electron-phonon scattering or temperature effects, we may fix the
ionic coordinates {RI} in space and simplify the Hamiltonian for the electrons in the
Born-Oppenheimer approximation:

He = −
n∑
i

∇2
i

2me

− e2

n,N∑
i,I

ZI
|ri −RI|

+
e2

2

n,n∑
i,j 6=i

1

|ri − rj|
. (1.2)

We may even choose to include terms incorporating relativistic effects to order
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c−2 with the inclusion of the relativistic Hamiltonian(Ref. [106]):

Hrel = −
n,N∑
i,I

1

8m2
ec

2
∇2

i VI(ri)−
n∑
i

∇4
i

8m3
ec

2
−

n,N∑
i,I

e2

2m2
ec

2
S · pi ×∇i (VI(ri)) (1.3)

The terms on the right-hand side of Eq. 1.3 are the Darwin, relativistic mass cor-
rection, and spin-orbit coupling terms, respectively. We use VI(ri) to denote the
potential from ion I for electron i.

Even for a single helium atom in a vacuum, however, solving such a many-electron
Hamiltonian requires further approximations. A complete solution for larger systems
with interacting electrons is intractable, and the many-body wavefunction would
likely be inscrutable. If, however, we restrict the space of solutions in a manner that
allows us to capture much of the desired physics, we may recast this problem into
one more readily solved.

The Hartree theory proposes a ground-state wavefunction that is simply a product
of single-particle orbitals. The Hartree theory decomposes the many-body Hamilto-
nian into a single-body Hamiltonian for each orbital by minimizing the Hamiltonian
matrix elements, subject to the constraint that the orbitals are normalized[22]. This
gives us the single-particle Hamiltonian

hHφi(r) = ti(r)φi(r) + vH(r)φi(r),

ti(r) = −1

2
∇2 + vion(r),

vH(r) =

∫
dr′

n(r′)

|r− r′|
. (1.4)

The term vH is called the Hartree potential, which takes the electron-electron inter-
action to be merely the direct electrostatic interaction between a single particle and
a static charge density n(r) formed by the other electrons in the system. Since the
density is constructed from all occupied orbitals, the Hamiltonian must be solved in a
self-consistent manner, beginning with a trial set of orbitals with which to construct
the density. This is not the correct description of the full electron-electron interac-
tion, but it is a useful first attempt. (In fact, we will see in Sec. 1.3 that we are only
a “mass term” away from being able to truly calculate excited-state properties.)

The Hartree-Fock theory, in a similar procedure, requires the ground-state wave-
function to be an antisymmetrized product of orbitals, i.e., a single Slater determi-
nant. This additional requirement allows for the treatment of exchange, a non-local
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effective electron-electron interaction due to the electrons being indistinguishable.
The single-electron Hartree-Fock Hamiltonian is

hHFφi(r) = hHφi(r)−
∫

dr′
n(r, r′)

|r− r′|
φi(r

′)χi. (1.5)

The additional term on the right-hand side is the “bare exchange,” which is non-
local. The spinor χi describes the spin of the state i. The co-density in the bare
exchange is defined as n(r, r′) = e2

∑
j φ
∗
j (r′)φj(r)χ

†
j . We see, then, that the bare

exchange only gives a contribution when the spins of the states i and j are aligned.
The sign of the bare exchange is significant. Electrons with the same spin will

keep away from each other due to the need to enforce antisymmetry of the many-
body wavefunction, as in the anti-bonding state of molecular hydrogen. There is,
then, effectively a cloud of hole states surrounding the electron under consideration,
which itself acts positively charged. The interaction with this “exchange-hole” lowers
the single-particle energy.

As stated before, Hartree-Fock theory assumes that the ground-state wavefunc-
tion is a single Slater determinant. Such a wavefunction however is only an eigenstate
of a Hamiltonian neglecting electron-electron interactions. In the presence of inter-
actions, the eigenstate is an appropriate linear combination of Slater determinants.
These Slater determinants in principle include an arbitrary number of unoccupied
states. The difference in energy of the real system and its description within Hartree-
Fock is called the correlation energy. Some approaches in quantum chemistry attempt
to solve for the dominant contributions to the sum of Slater determinants comprising
the ground-state wavefunction (Ref. [107]); fortunately, there are other techniques
that do not require a direct calculation of the many-body wavefunction.

Density Functional Theory

An especially useful – and, in principle, exact – approach for ground-state proper-
tis is Density Functional Theory (“DFT”). Instead of proposing an ansatz for the
many-body wavefunction, Density Functional Theory treats the electronic density
at the ground state as the most meaningful quantity that describes the system of
interest. The Hohenberg-Kohn theorem[46] demonstrates that there exists a univer-
sal functional of the density that can be minimized to determine the ground state
energy. The Kohn-Sham theorem[60] constructs a fictitious non-interacting system
that happens to have the same ground-state density as in the interacting system.
Since this system is non-interacting, the many-body wavefunction is a single Slater
determinant, and the complicated exchange and correlation effects of the real system
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are taken into account by some unknown additional potential term, which is, in turn,
a functional of the actual density.

The Kohn-Sham equation (neglecting relativistic effects momentarily) is(
−1

2
∇2 + vKS[n](r)

)
ψKS

i (r) = εiψ
KS
i (r). (1.6)

In a self-consistent procedure, the eigenfunctions are used to construct the ground
state charge density:

n(r) =
∑

i

fi

∣∣ψKS
i (r)

∣∣ , (1.7)

where fi is the occupation number of the state i.
The Kohn-Sham potential is defined by

vKS[n](r) = vH[n](r) + vext(r) + vXC[n](r), (1.8)

with the Hartree potential as defined from Eq. 1.4 and the exchange-correlation
potential

vXC[n](r) =
δEXC

δn(r)
. (1.9)

If we had access to the exact exchange-correlation functional EXC, this procedure
would give exact ground state densities and total energies. In practice, we make due
with approximations.

The Local Density Approximation (“LDA”) approximates the system as a locally
homogeneous electron gas. The exchange energy density is taken to be the Slater
exchange[108] and the correlation energy density is parameterized from Monte Carlo
simulations of the homogeneous electron gas[18]. Multiple choices for this parameter-
ization exist, such as Perdew-Zunger[90] and Perdew-Wang[92]. It is well-known that
there is a cancellation of errors in the exchange and correlation terms[61] that fortu-
itously leads to a good estimation of binding in many systems. The LDA typically
over-binds, underestimating lattice parameters and bond lengths. (An acceptable
lattice constant computed within the LDA is within about two percent of that of ex-
periment.) We must note that Wigner constructed by hand a correlation function in
1934[129] that compares admirably to the Quantum Monte Carlo result for realistic
densities[22].

The Generalized Gradient Approximation (“GGA”) adds in a dependence on the
gradient of the density to the exchange-correlation energy density. The parameter-
ization developed by Perdew, Burke, and Ernzerhof (“PBE”)[91] is successful and
widely used, though it tends to underbind in solids. Some different parameteriza-
tions based on PBE attempt to improve the quality of results, such as revPBE[137]
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(“revised PBE”) and PBEsol[93] (“PBE for solids”). Meta-GGA functionals, such
as SCAN[112], also include a dependence on kinetic energy.

We must note that the single-particle energies εKS are merely Lagrange multipliers
with no intrinsic physical meaning. These energies and the corresponding orbitals φKS

are constructed to allow a practical means of calculating the ground state energy and
density. An accurate description of the excitations above the ground state requires
a different theory whose purpose is the description of such states.

Pseudopotentials

That said, DFT is still a powerful computational tool and merits further description.
Certain approaches to DFT explicitly treat all of the electrons in the system being
studied. These approaches are called “all-electron” and often require a separation
of the states into a core region near the ions, where states are localized, and an
interstitial region, where the states behave more like plane-waves.

Such a description would treat, say, 1s electrons near a bismuth ion on a similar
footing to the chemically active 6p electrons. Indeed, the recognition that the set of
completed shells isoelectronic with the neighboring noble gas form a hard “core” of
states near a bare ion allows they be treated as a single rigid object. This pseudo-ion
then has node-free valence states that interact with it via a pseudopotential. (Similar
reasoning inspired Hellman to develop the notion of pseudopotentials for chemistry
[43] and Enrico Fermi[30] in the context of nuclear matter. A solid understanding of
chemistry led J. C. Philips[94] and Marvin L. Cohen to reintroduce the concept to
materials science applications.)

This separation into core and valence electrons leads to an effictive potential
with a significantly weaker interaction between the valence electrons and the ion.
This insight is from the Philips-Kleinman Cancellation Theorem[95]. If we label the
single-particle orbitals with many nodes from an all-electron treatment as |ψi〉 and
the node-free pseudowavefunction as |φi〉, we have

|ψi〉 = |φi〉+
∑

c

|fc〉〈fc|φi, (1.10)

where |fc〉 is a core state. For a Schrödinger-like equation (say, the Kohn-Sham
equation) with the all-electron state, we have(

− ∇
2

2me

+ V (r)

)
ψi(r) = εiψi(r), (1.11)
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while the pseudo-orbital satisfies the modified equation(
−∇

2

2m
+ V (r) + VR(r)

)
φi(r) = εiφi(r). (1.12)

In principle, we solve for the same eigenvalue εi but with a node-free state, pro-
vided we first compute the pseudopotential Vps = V + VR, with

VR =
∑

c

(ε− εc)|fc〉〈fc|. (1.13)

The pseudopotential, then, is energy-dependent and non-local, as implied by the
outer-product of core states. The energy-dependence, however, is weak, as the core
energies are lower by orders of magnitude than the energy range in which we seek to
find the valence state eigenvalue εi, usually a range of tens of eV. As expected, this
term arising from the core-electron’s potential energy term contributes a repulsive
interaction on the same order as the interaction of the valence state with the bare
ion[70].

There are multiple approaches to pseudopotential construction. Semi-local pseu-
dopotentials are local in the radial coordinate but non-local in the angular coordi-
nates. The Kleinman-Bylander form of pseudopotentials[59] constructs pseudopo-
tentials as having some arbitrary local term vLoc and a sum of fully non-local terms:

vKB
PS (r) = vLoc(r) +

∑
i

|δV φi〉〈δV φi|
〈φi|δV |φi〉

, (1.14)

where δV =
(
εAE

i − T − vLoc

)
and φi is the wavefunction for state i within the core

region, and the energy εAE
i refers to that computed from an all-electron calculation.

The advantage to this form of pseudopotential is that it simplifies the computation
of matrix elements of the psuedopotential, with functions in an N -dimensional basis,
from having N2 non-local integrals involving the radial part of the functions ui within
the previous “semi-local” treatment, to having pairs of N local integrals where only
one of the pair requires explicit calculation[59].

The index i in Eq. 1.14 is usually taken to be the set of quantum numbers
{l,ml} for the atom-like pseudo-orbitals in the core region. The exact form of these
wavefunctions can be constructed in numerous ways, such as RRKJ[98], Troullier-
Martins[117], HGH[41], or Optimized Norm-Conserving Vanderbilt Pseudopotentials
(ONCVPSP)[40]. The latter scheme was devised to improve calculated lattice con-
stants and bulk modulii as well as reduce the plane-wave basis set size required to
construct the states[40], so we generally use it in the following chapters.
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Pseudopotential generation is in practice a bottleneck for DFT calculations, and
the use of pseudopotential databases, such as Pseudo-Dojo[67] is preferable when
given the option. However, the need for norm-conserving, fully-relativistic pseudopo-
tentials, often containing “semi-core” states, severely limits options for databases,
and pseudopotential generation then proceeds with varyingly sophisticated forms of
trial and error. A rigorous approach to determining the various cut-off parameters
to generate ONCV pseudopotentials has been developed to construct the “SG15”
database[105]. The difficulty in using this method for generating fully-relativistic
pseudopotentials, however, is displayed in the results from a similar databse in cal-
culating the DFT band gap of GaAs[104].

Planewaves

Ideal crystals are composed of a repeated unit cell. This discrete symmetry imposes
a condition on the wavefunctions in the crystal:

ψnk(r) = eik·runk(r), (1.15)

with unk being periodic within a unit cell[58], n its band number, and k its Bloch
wave-vector. In practical calculations, then, it follows that planewaves make a nat-
ural choice of basis set for the (“Bloch”) wavefunctions.

The periodic wavefunction u is expanded in this basis set as

unk(r) =
∑
G

cnk(G)eiG·r, (1.16)

where G is a reciprocal lattice vector. We require some value of cutoff, which we take
to be the number of G-vectors required to suitably describe the pseudopotentials used
in the calculation. Since the pseudopotentials are nodeless, this number is usually
moderate.

Our task in DFT calculations using plane-waves and pseudopotentials, then, is
to determine the plane-wave coefficients cnk and DFT eigenvalues εnk.

Spin-Orbit Coupling in DFT

In the presence of spin-orbit coupling, the use of the quantum numbers {l,ml} for the
pseudopotential is no longer the natural choice, and we instead use {l, j,mj}. This
simple substitution is only the beginning of the analysis of incorporating relativistic
effects into DFT, however.
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Let us first consider a Kohn-Sham equation for a crystalline solid, now incorpo-
rating relativistic effects up to order c−2:

HKS+rel. =− 1

2me

∇2 + vH[n](r) + vext(r) + vxc[n](r)

+ vDarwin(r) + vrel. mass(r) + vSOC(r). (1.17)

The Darwin and SOC terms depend on the form of the ionic potentials used, as we
are no longer considering interactions of valence states and bare ions, as in Eq. 1.3.

In one approach, we include only the Darwin and mass-correction terms and
solve a “scalar relativistic” Kohn-Sham equation. (This is a misnomer, as L ·S from
spin-orbit coupling is also a scalar; nevertheless, this nomenclature persists.) This
is adequate for materials containing atoms only from the first three rows (though
sometimes we are interested in, for example, spin-orbit in silicon).

We may use the above approach as a first step for a calculation incorporat-
ing spin-orbit coupling as a perturbation (see Sec. 1.2). This may be done in a
self-consistent procedure, updating the single-particle eigenvalues and eigenfunctions
through perturbation theory after completion of each step of a self-consistent cycle
(“second-variational method”), or the perturbation may be added at the comple-
tion of self-consistency (“non-self-consistent second-variational method”)[48]. The
second-variational procedure is widely used in DFT software.

The pseudopotential may also incorporate spin-orbit coupling explicitly. In this
case, the pseudopotential is parameterized by {l, j,mj}, as noted above. This necessi-
tates the Kohn-Sham equation to be solved for two-component spinor wavefunctions:

(
− 1

2me

∇2 + vH[n](r) + vxc[n](r)

)
δααφnkα(r) + vps

αβφnkβ(r) = εnkφnkα(r). (1.18)

The indices α and β indicate a component of the two-component spinor. That is, for
the spinors {χ↑, χ↓} diagonalizing the Pauli matrix σz,

φi,α(r) = φi,↑(r)χ↑ + φi,↓(r)χ↓. (1.19)

We are using Einstein summation notation when two quantities with a repeated spin
index are multiplied, unless otherwise specified by the use of explicit summation.

We note that we are neglecting spin-dependent interactions that break time-
reversal symmetry, such as a Zeeman field, otherwise the exchange correlation func-
tional would itself depend on the spinor indices α and β[78].

Additionally, there are techniques useful in quantum chemistry that incorporate
spin-orbit coupling in a different manner. Some quantum chemistry codes solve the
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Dirac-Kohn-Sham equation with four-component spinors[103]; this method has been
used to calculate (quasiparticle) bandstructures for solids containing Pu and Am[64].
Also, the Dirac Hamiltonian can be expanded to order c−2 through an expansion in
the term E/ (2mc2 − V ) instead of the usual (E − V )/2mc2; this approach is called
Zero-Order Regular Approximation[119], or “ZORA.”

1.2 Spin-Orbit Coupling via perturbation theory

Semi-local pseudopotentials

Correcting eigenvalues by including spin-orbit coupling via perturbation theory when
using semi-local pseudopotentials was first treated by Hybertsen and Louie[50]. We
assume the pseudopotential includes spin-orbit coupling in the {l,ml} basis, such
that

vps(r) =
∑
l

|l〉
[
vion
l (r) + vsocl (r)L · S

]
〈l|. (1.20)

With a set of Bloch states {|nk〉}, we affix a spinor χs = {χ↑, χ↓} to create the
now-doubled set of states {nks〉}. We then must calculate the matrix elements

〈n1ks1|Hsoc|nks〉 =
∑
G,G′

φ∗n1k
(r)Hsoc

k+G,k+G′φnk(r), (1.21)

with
Hsoc =

∑
l 6=0

|l〉vsoc
l (r)L · S〈l|. (1.22)

The matrix elements are

Hsoc
K1s1;Ks = 〈s1|S|s〉 ·

∑
l 6=0

Ml v
soc
l (K1,K)S(K−K1), (1.23)

with K = k + G, K1 = k + G1,

Ml = −i4π(2l + 1)
dPl(K̂1 · K̂)

dK̂1 · K̂
K̂1 × K̂, (1.24)

where Pl are Legendre polynomials, and

vsoc
l (K1,K) =

1

Ωcell

∫ ∞
0

dr r2 jl (K1r)V
SOC
l (r)jl (Kr) . (1.25)
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Kleinman-Bylander pseudopotentials

In order to reduce computation time of the necessary integrals as in the preceding
equation, as NG = 103 to 105, we make use of Kleinman-Bylander potentials. Fol-
lowing Hemstreet[45], we have the non-local pseudopotential in the usual Kleinman-
Bylander form, but with the pseudo-atom wavefunctions in the {ljmj〉} basis:

vps(r) = vLoc +
∑

l,s,j,mj

|vljΦlsjmj
〉〈vljΦlsjmj

|,

vlj = CljRljδvlj,

Clj = 〈Rlj|δvlj|Rlj〉−1/2,

δvlj = vlj(r)− vLoc(r), (1.26)

where Rlj is the radial part of the lj pseudo-atom wavefunction, and Φlsjmj
is the

spin-spherical harmonic. We also construct the functions φlj = RljΦlsjmj
.

Critically, we can remove the dependence on the quantum numbers {j,mj} by
constructing

vion
l = (2l + 1)−1

[
(l + 1)vlj=l+1/2 + lvlj=l−1/2

]
vsoc
l = 2(2l + 1)−1

[
vlj=l+1/2 − vlj=l−1/2

]
(1.27)

and expanding Φlsjmj
in terms of spherical harmonics and spinors. We now can write

the (fully-separable) pseudopotential much like in the semi-local case:

vps(r) = vLoc(r) +
∑
l

|l〉
[
U ion + U socL · S +W soc

]
〈l|,

U ion = |vion
l 〉〈vion

l |
U soc = |vsoc

l 〉〈vion
l |+ |vion

l 〉〈vsoc
l |

W soc = |vsoc
l 〉

[
1

4
(l (l + 1))− 1

2
L · S

]
〈vsoc
l |. (1.28)

The term W soc is second-order in L ·S, since vsoc
l already has a first-order dependence

on this term. We can therefore drop this term to remain at the order c−2.
Rewriting the above, we have

vps(r) = vion + vsoc,

vion = vLoc(r) +
∑
l

|l〉U ion〈l|,

vsoc =
∑
l 6=0

|l〉U socL · S〈l|. (1.29)
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We have now successfully recast the problem in an analogous form as Eq. 1.22. The
matrix elements for the four blocks in spin-space are given in Ref. [45]. We note
here the result of principal interest, that the analogous plane-wave matrix elements
lead to the computation of the integral

vsoc
l (K) =

1

Ωcell

∫ ∞
0

d r r2vsoc
l (r)jl (Kr) , (1.30)

for each K, instead of the pairs K,K1 as in Eq. 1.25.

1.3 Single-particle excitations in the presence of

spin-orbit coupling

As mentioned, (static) DFT does not lead to a meaningful treatment of excited
states. If we wish to calculate the properties of states formed by the addition or
removal of electrons to an already-present ground state, we must use the formalism
of many-body perturbation theory.

We begin with an interacting N -particle ground state, |N, 0〉. Single-particle
excited states can be obtained by adding an electron thereby promoting the system
to some m’th excited state with N+1 particles, |N + 1,m〉. We may also obtain
an excited state by removint an electron from (or “adding a hole into”) the system,
creating some n’th many-body state excited state with N-1 particles, |N − 1, n〉.

The probability amplitude describing placing an electron into the system at po-
sition r′ and time t′, and removing it at position r and time t is given by the Green’s
function

G>(r, t; r′, t′) = −i〈N, 0|ψ̂(r, t)ψ̂†(r′, t′)|N, 0〉θ(t− t′), (1.31)

with the fermion field operator operating via second quantization via the relation
ψ̂†m(r) =

∑
i φ
∗
i (r)a†i , where φi is the single-particle orbital with the label i, and a†i is

the fermionic creation operator that operates directly on the many-body wavefunc-
tion when represented in second quantization.

Similarly, we may consider the process of removing an electron at coordinates
{r, t} and then replacing it at coordinates {r′, t′}, which gives

G<(r, t; r′, t′) = i〈N, 0|ψ̂†(r′, t′)ψ̂(r, t)|N, 0〉θ(t′ − t). (1.32)

The “time-ordered” Green’s function is defined by G = G> +G<.
The Hedin-Lundqvist equations[42] relate the polarizability P , screened Coulomb

interaction W , and electronic self-energy Σ to each other via the single-particle
Green’s function G and the vertex function Γ.
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We seek to define the Hedin-Lundqvist equations in the presence of spin-orbit
coupling. This requires some care, as the end result is subtly distinct from that of
Ref. [111], and in Ref. [4], the authors allow for non-Coulombic electron-electron
interactions, which are unnecessary to capture the relevant physics. (The present
results reduce to the equations derived in [4] in the case when only the charge-
charge channel is allowed, but starting from a different unperturbed Hamiltonian, as
suggested in Ref. [101].)

We label the fermionic field operators with their (generally non-collinear) spin
states with Greek letters and condense space-time coordinates with numerals. The
time-ordered Green’s function is then

Gαβ(11′) = −i〈N, 0|T
[
ψ̂α(1)ψ̂†β(1′)

]
|N, 0〉, (1.33)

where the time-ordering function T gives the appropriate sum of both cases t > t′

and t < t′ through the use of θ functions:

Gαβ(11′) =− i〈N, 0|ψ̂α(1)ψ̂†β(1′)|N, 0〉θ(t1 − t1′)
+ i〈N, 0|ψ̂†β(1′)ψ̂α(1)|N, 0〉θ(t1′ − t1).

(1.34)

Similarly,the two-particle Green’s function is defined as

G
(2)
αβγη(11′, 22′) = (−i)2〈N, 0|T

[
ψ̂α(1)ψ̂β(1′)ψ̂†η(2

′)ψ̂†γ(2)
]
|N, 0〉. (1.35)

We may now define the quantities in terms of the G, v (the usual Coulomb
interaction), and some external potential V ext:

ρ(1) = −iGαα(11+)

vH(1) =

∫
d2 v(12)ρ(2)

V (1) = V ext(1) + vH(1), (1.36)

the charge density, Hartree potential, and total potential, respectively. Note that we
are using the Einstein summation convention over spin indices, unless when explicitly
stated.

Furthermore, we define the quantities that relate a response in the charge distri-
bution and interactions with the external or total potential from
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P red.(12) =
δρ(1)

δV ext(2)

P (12) =
δρ(1)

δV (2)

ε(12) =
δV ext(1)

δV (2)

W (12) =

∫
d3 ε−1(13)v(32)

Γαβ(12; 3) = −
δG−1

αβ(12)

δV (3)
, (1.37)

the reducible polarizability, irreducible polarizability, dielectric function, screened
Coulomb interaction, and vertex function, respectively.

We can use the above relations immediately to arrive at the relation between the
irreducible polarizability P , G, and Γ:

P (12) =
ρ(1)

V (2)
= −iδGαα(11)

δV (2)

= i

∫
d3 Gαβ(13)

δG−1
βγ (34)

δV (2)
Gγα(41)

= −i
∫

d3 Gαβ(13)Gγα(41)Γβγ(34; 2). (1.38)

Also, the inverse dielectric matrix ε−1 gives us a Dyson-like equation:

ε−1(12) =
δV (1)

δV ext(2)

=
δ
(
vH(1) + V ext(1)

)
δV ext(2)

= δ(12) +

∫
d3 v(13)

δρ(3)

δV ext(2)

= δ(12) +

∫
d34 v(13)

δρ(3)

δV (4)

δV (4)

δV ext(2)

= δ(12) +

∫
d34 v(13)P (34)ε−1(42) (1.39)
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This can be used for the Hedin-Lundqvist equation for the screened Coulomb
interaction, W = ε−1v:

W (12) = v(12) +

∫
d34 v(13)P (34)W (42). (1.40)

We now consider the derivation of the equation of motion for the Green’s function.
Since spin-orbit is a local, one-particle interaction arising from the spin moment
of electron experiencing an effective magnetic field from the electric field of the
(fixed) ions in the lattice, it and the other relativistic terms of the same order are
incorporated into the one-particle Hamiltonian h0:

h0(x) = hscal(x) + hsoc(x),

hscal(x) = −1

2
∇2 +

∑
~τi

vel-ion(x, ~τi) + vDarwin(x) + vrel. mass(x),

hsoc
αβ (x) = µI(x)σIαβ (1.41)

using notation consistent with Ref. [4], in which the capital letters I, J , and K refer
to Cartesian coordinates, the Greek letters refer to spin components, and µI(x) is the
I’th component of the position-dependent term from the spin-orbit coupling arising
from the (rigid) ionic lattice.

The many-body Hamiltonian in second quantized form is

Ĥ0 =

∫
dx1 ψ̂

†
α(x1)hscal(x1)ψ̂α(x1) +

∫
dx1ψ̂

†
α(x1)µI(x1)σIαβψ̂β(x1)

+
1

2

∫
dx1 dx2ψ̂

†
α(x1)ψ̂†β(x2)v(x1 − x2)ψ̂β(x2)ψ̂α(x1). (1.42)

The field operator ψ̂α(x1) acts at the spatial coordinate r1 and the time coordinate
t1, and h0(1) and v(12) are understood to mean h0(x1) and v(r1 − r2)δ(t1 − t2),
respectively. (Similarly in all instances where numbers are used as arguments.)

The equation of motion for the field operator is

i
∂

∂t1
ψ̂γ(1) = hscal(1)ψ̂γ(1) + µI(1)σIγαψ̂α(1) +

∫
d2 ψ̂†α(2)v(12)ψ̂α(2)ψ̂γ(1), (1.43)

from which it is straightforward but tedious to construct the equation of motion for
the Green’s function:
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(
i
∂

∂t1
− hscal(1)

)
Gαβ(11′)− µI(1)σIαγGγβ(11′)

+ i

∫
d2 v(12)G

(2)
αγβγ(12, 1′2) = δ(11′)δαβ. (1.44)

We replace the term involving G(2) in the above from the result derived in the
Appendix (Eq. A.8):

(
i
∂

∂t1
− hscal(1)

)
Gαβ(11′)− µI(1)σIαγGγβ(11′)− vH(1)Gαβ(11′)

− i
∫

d345 Gαη(13)W (15)Γηκ(34; 5)Gκβ(41′) = δ(11′)δαβ. (1.45)

We see that we have, as expected, gone beyond the Hartree approximation with
the inclusion of the so-called mass term of the electron-electron self-energy,

Σ̄αβ(11′) = i

∫
d234 Gαη(12)W (14)Γηκ(23; 4)Gκβ(31′), (1.46)

with the full self-energy

Σαβ(12) = vH(1)δ(12)δαβ + Σ̄αβ(12). (1.47)

The equation of motion for G now finally can be written as(
i
∂

∂t1
− hscal(1)

)
Gαβ(11′)− µI(1)σIαγGγβ(11′)

−
∫

d2 Σακ(12)Gκβ(21′) = δ(11′)δαβ, (1.48)

and its inverse G−1,

G−1
αβ(11′) =

[(
i
∂

∂t1
− hscal(1)

)
δαβ − µI(1)σIαβ

]
δ(11′)− Σαβ(11′). (1.49)

Neglecting electron-electron interactions, we have the equation of motion for the
non-interacting Green’s function G0 and its inverse G(0)−1
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(
i
∂

∂t1
− hscal(1)

)
G0
αβ(11′)− µI(1)σIαγG

0
γβ(11′) = δ(11′)δαβ,

G
(0)−1
αβ (11′) =

[(
i
∂

∂t1
− hscal(1)

)
δαβ − µI(1)σIαβ

]
δ(11′). (1.50)

By comparing Eq. 1.49 with Eq. 1.50, we see

G−1
αβ(11′) = G

(0)−1
αβ (11′) + Σαβ(11′). (1.51)

We use Eq. 1.49 to arrive at the Dyson-like equation for the vertex function Γ:

Γαβ(11′; 2) = −
δG−1

αβ(11′)

δV (2)

= δ(11′)δ(12)δαβ +
δΣ̄αβ(11′)

δV (2)

= δ(11′)δ(12)δαβ +

∫
d34

δΣ̄αβ(11′)

δGγη(34)

δGγη(34)

δV (2)

= δ(11′)δ(12)δαβ −
∫

d34
δΣ̄αβ(11′)

δGγη(34)
Gγκ(35)

δG−1
κζ (56)

δV (2)
Gζη(64)

= δ(11′)δ(12)δαβ +

∫
d3456

δΣ̄αβ(11′)

δGγη(34)
Gγκ(35)Gζη(64)Γγζ(56; 2). (1.52)

To summarize, we have the set of Hedin equations in the presence of spin-
orbit coupling when electrons interact with each other solely through the (spin-
independent) Coulomb interaction:

P (12) = −i
∫

d34 Gαβ(13)Gγα(41)Γβγ(34; 2)

W (12) = v(12) +

∫
d34 v(13)P (34)W (42)

Σ̄αβ(12) = i

∫
d34 Gαη(13)W (14)Γηβ(32; 4)

Γαβ(11′; 2) = δ(11′)δ(12)δαβ +

∫
d3456

δΣ̄αβ(11′)

δGγη(34)
Gγκ(35)Gζη(64)Γγζ(56; 2). (1.53)

The Dyson’s equation, from inverting Eq. 1.51, is

Gαβ(12) = G
(0)
αβ(12) +

∫
d34 G(0)

αγ (13)Σγη(34)Gηβ(42). (1.54)
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To lowest order, we ignore vertex corrections, taking Γαβ(11′; 2) = δ(11′)δ(12)δαβ,
and arriving at the GW Approximation, where

PRPA(12) = −iGαβ(12)Gβα(21)

W (12) = v(12) +

∫
d34 v(13)PRPA(34)W (42)

Σ̄GWA
αβ (12) = iGαβ(12)W (12). (1.55)

The polarizability is said to be computed within the “RPA” for historical reasons.
This amounts to disregarding interactions in the polarization bubble. Corrections
to this treatment require the treatment of two-particle excitations (Sec. 1.4). The
poles of G give

EQP = ε0 + ΣGWA(ω = EQP), (1.56)

where ε0 are the energies of the system without any interactions.
Dyson’s equation can be represented through Feynman diagrams, with irreducible

contributions from the Hartree term vH and the mass term Σ̄. It is common to
renormalize the G(0) by vH and then drop the bar over the mass term Σ̄. The
difference in the poles of G and G(0), then, gives the contribution to the quasiparticle
energy from electron-electron interactions beyond the level of the simple Hartree
term. Thought of in this manner, the self-energy naturally contains the physics of
both the exchange and correlation effects, within the RPA and GW approximations.

1.4 Electron-hole excitations in the presence of

spin-orbit coupling

We now wish to apply a similar analysis to two-particle excited states where particle
number is conserved and the pair of one-particle excitations are created simultane-
ously. We are, then, concerned with solving for transitions from |N, 0〉 to |N,S〉. We
restrict our analysis to the case when such an excitation is the result of a process
in which the system absorbs a photon. In this case, the spin of the (quasiparticle)
electron is the inverse of that of the hole, simplifying the analysis of this process
when including spin-orbit coupling. Indeed, we may arrive at the correct solution by
noting that apart from this constraint, the process will be identical to the case when
neglecting spin, treated as in, e.g., Ref. [111], just with traces over spin in the matrix
elements defined in Ref. [99]. We proceed, however, to carry out the full analysis for
confirmation.
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We find that the full two-particle Green’s function G(2) is too general. The
analogous two-particle propagator where both particles operate simultaneously is
given by L. The relation between L and G(2) is

Lαβγζ(12′, 21′) ≡ Gαγ(12)Gβζ(2
′1′)−G(2)

αβγζ(12′, 21′). (1.57)

We can introduce the non-interacting propagator as

L0
αβγζ(12′, 21′) = Gαγ(12)Gβζ(2

′1′), (1.58)

which simply describes a pair of non-interacting particles.
To arrive at a Dyson-like equation for L, we eliminate G(2) using the variational

derivative technique of Schwinger, introducing a non-local electrostatic perturbing
potential φ. In the Appendix, we arrive at the result (Eq. A.5)

δGαβ(11′)

δφ(23)
= −G(2)

αγβγ(13, 1′2+) +Gαβ(11′)Gγγ(32+). (1.59)

We note that the repeated spinor index (“γ” in the above) is due to the spin-
independence of the non-local electrostatic perturbing potential. That is, the electron-
hole pair is created in the singlet state, though they may scatter into some arbitrary
spin configuration due to the loss of spin conservation in the presence of spin-orbit
coupling.

We now can arrive at a self-consistent equation for L:

Lαβγβ(12′, 21′) =
δGαγ(12)

δφ(1′2′)

= −
∫

d34 Gαζ(13)
δG−1

ζη (34)

δφ(1′2′)
Gηγ(42)

= Gαβ(12′)Gβγ(1
′2)

+

∫
d34 Gαζ(13)

δΣζη(34)

δφ(1′2′)
Gηγ(42)

= L
(0)
αβγβ(12′, 21′)

+

∫
d3456 Gαζ(13)

δΣζη(34)

δGµν(65)

δGµν(65)

δφ(1′2′)
Gηγ(42)

= L
(0)
αβγβ(12′, 21′)

+

∫
d3456 Gαζ(13)

δΣζη(34)

δGµν(65)
Lµβνβ(62′, 51′)Gηγ(42). (1.60)
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We define the Bethe-Salpeter Kernel as

Kζνηµ(35, 46) =
δΣζη(34)

δGµν(65)
=
δ (v(37)ρ(7)δ(34)δζη + iGζη(34)W (3+4))

δGµν(65)

= −iδ(34)δζηv(37)
δGρρ(77+)

δGµν(65)

+ iW (3+4)
δGζη(34)

δGµν(65)

= −iδ(34)δζηv(37)δ(67)δ(57+)δµρδνρ

+ iW (3+4)δ(36)δ(45)δζµδην

= −iv(36)δ(34)δ(56+)δζηδµν

+ iW (3+4)δ(36)δ(45)δζµδην . (1.61)

In the above, we make the approximation that

δGζη(34)W (3+4)

δGµν(65)
≈ W (3+4)

δGζη(34)

δGµν(65)
, (1.62)

which simplifies the Kernel and is seen to be adequate in practice[99]. We use this
to rewrite Eq. 1.60 as

Lαβγβ(12′, 21′)− L(0)
αβγβ(12′, 21′)

= −i
∫

d3456 L
(0)
αηζγ(14, 32)v(36)δ(34)δ(56+)δζηδµνLµβνβ(62′, 51′)

+ i

∫
d3456 L

(0)
αηζγ(14, 32)W (3+4)δ(36)δ(45)δκµδηνLµβνβ(62′, 51′)

= −i
∫

d35 L
(0)
αζζγ(13, 32)v(35)Lµβµβ(52′, 51′)

+ i

∫
d35 L

(0)
αηζγ(15, 32)W (3+5)Lζβηβ(32′, 51′). (1.63)

This Dyson-like equation for the propagator is more readily interpreted through
the corresponding diagrams (as in Ref. [111]), where we have the expected exchange
and direct terms, KX = −iv and KD = iW , respectively. Regardless of the details
of the ordering of the coordinates, we note that the interactions are the bare and
screened Coulomb interaction, which is spin-independent.

The inverted Bethe-Salpeter Equation is, from inspection,

L−1
αβγβ(12′, 21′) = L

(0)−1
αβγβ (12′, 21′)−Kαβγβ(12′, 21′). (1.64)
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We wish to solve for the poles in the inverted BSE, which requires us to decide
on a basis for our excited states. In the orbital basis, the two-particle excited-state
wavefunction for state S is

ΨS
αβ(11′) =

∑
vck

ASvckψckα(1)ψ∗vkβ(1′) +BS
vckψvkα(1)ψ∗ckβ(1′). (1.65)

In the Tamm-Dancoff approximation (TDA), we take BS = 0 and simplify the wave-
function:

Ψ
S,(TDA)
αβ (11′) =

∑
vck

ASvckψckα(1)ψ∗vkβ(1′). (1.66)

The following uses exclusively the TDA to simplify the construction of the results;
however the process may be generalized to include the off-diagonal blocks of the BSE
allowed by non-zero BS.

In the orbital basis, then, we have [99],

L
(0)−1
αβγβ (12′; 21′;ω) =

∑
vck

Mαβ
cvk(11′) (ω − Ecvk)Mβγ

cvk

∗
(2′2)−Mγβ

vck(22′) (ω + Ecvk)Mβα
vck

∗
(1′1)

L−1
αβγβ(12′, 21′;ω) =

∑
S

[
ΨS
αβ(11′)

(
ω − ΩS

)
ΨS
βγ

∗
(2′2))−ΨS

γβ(22′)
(
ω + ΩS

)
ΨS
βα

∗
(1′1)

]
,

(1.67)

with Mαβ
vck(11′) = ψckα(1)ψ∗vkβ(1′) and Ecvk = Eck − Evk.

We solve the inverted BSE, enforcing the solution ω = ΩS and using orthonor-
mality of the excited-state wavefunctions, to arrive at the eigenvalue equation for
the excited state S, with energy ΩS and envelope function ASvck:

(Eck − Evk)ASvck +
∑
v′c′k′

(
KX
vck,v′c′k′ +KD

vck,v′c′k′

)
ASv′c′k′ = ΩSASvck.

This is exactly the form of the eigenvalue equation from the BSE when neglecting
spin-orbit coupling, with the exception that we have twice as many valence and
conduction states. Further, the direct product of states |vk〉

⊗
|ck〉 no longer has an

irreducible representation as the sum of eigenstates of S2, as it no longer commutes
with the many-body Hamiltonian.

The matrix elements of KX and KD are

KX
vck,v′c′k′ = −i

∫
d12 ψ∗c′k′η(1)ψv′k′η(1)v(12)ψckµ(2)ψ∗vkµ(2),

KD
vck,v′c′k′ = i

∫
d12 ψ∗c′k′µ(1)ψckµ(1)W (34)ψv′k′ν(2)ψ∗vkν(2). (1.68)
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The spin-dependence of the Kernel, and thus the BSE, reduces as expected to a
trace over the spin coordinates in the computation of the relevant generalized charge
density matrix elements.
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Chapter 2

The Implementation of Spinor
Wavefunction Functionality in
BerkeleyGW

2.1 Introduction

Solid state physics and materials research is increasingly focusing its attention on
materials containing heavy elements. Such materials have large spin-orbit coupling,
exceeding 1 eV for atoms from the fifth and sixth rows of the periodic table. The stan-
dard approach to investigate the ground state electronic structure of these materials
is Density Functional Theory (DFT)[60, 46]. Despite its widespread use to compute
bandstructures, it is important to recall that the Kohn-Sham eigenvalues of DFT
do not have a rigorous physical meaning (apart from the highest occupied molecular
orbital), resulting in the well-known band gap problem of DFT. To compute excited-
state properties such as bandstructures and absorption spectra, we must go beyond
DFT and use many-body perturbation theory approaches, such as the GW [42, 49]
and GW -BSE methods[99].

For materials with weak spin-orbit coupling, quasiparticle bandstructures incor-
porating spin-orbit coupling can be computed from the change in eigenvalues through
conventional perturbation theory in which the spin-orbit Hamiltonian is constructed
using orbitals neglecting spin[50]. This approach, “GW+SOC,” has been success-
fully used in ab initio calculations of diamond- and zinc-blende-structure semicon-
ductors[73], and many other systems.

Despite the success of perturbation theory in computing the changes of eigen-
values for materials with weak spin-orbit coupling, there is a clear need for a non-
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perturbative first-principles treatment of materials with strong spin-orbit coupling.
For materials with weak spin-orbit coupling, the Kohn-Sham bandstructure obtained
neglecting spin-orbit coupling is qualitatively similar to the quasiparticle bandstruc-
ture including spin-orbit coupling, apart from a smaller band gap, absence of spin-
orbit splittings, and some differences in bandwidths. However, some materials con-
taining heavy elements, such as Bi2Se3[134] and β-HgS[8], have DFT bandstructures
that differ significantly when including or neglecting spin-orbit coupling. In cases
such as these, we use a fully-relativistic treatment from the outset, starting with the
calculation of two-component spinor Kohn-Sham states and then using them to cal-
culate excited-state properties. This first-principles method also allows for capturing
the effect of the renormalization of the spin-orbit coupling strength[101], along with
improved band gaps.

2.2 Spinors and the BerkeleyGW software

package

In the frequency domain, the one-partice Green’s function is

Gαβ (r1, r2;ω) =
∑
nk

φnkα(r1)φ∗nkβ(r2)

ω − Enk ± iη
, (2.1)

where φnkα is a quasiparticle wavefunction for band n at k-point k with z-axis spin
projection α and energy Enk.

In practice, we find that the Kohn-Sham wavefunctions φKS
nkα are usually good

approximations to the actual quasiparticle wavefunctions[49], so we approximate the
Green’s function as

GKS
αβ (r1, r2;ω) =

∑
nk

φKS
nkα(r1)φKS∗

nkβ(r2)

ω − εnk ± iη
(2.2)

We evaluate the quasiparticle energies with a one-shot “G0W0” procedure:

Enk = εnk +
∑
αβ

〈nkα| (Σαβ (Enk)− V xcδαβ) |nkβ〉. (2.3)

We note that V xc has only spin-diagonal components in the absence of time-reversal
symmetry-breaking fields. The Kohn-Sham eigenfunctions are written in a plane-
wave basis as

φKS
nkα(r) =

∑
G

cnkαe
i(k+G)·r. (2.4)
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Since the non-magnetic polarizability has its physical origins from density fluc-
tuations arising from the spin-independent Coulomb interaction, the form of the
polarizability is identical to the case in which spin-orbit is neglected, apart from
the traces in the computation of the matrix elements, the doubled number of both
valence and conduction bands, and any differences in eigenfunctions and eigenvalues.
In many cases, the latter can be taken to be small, in which case one may calculate
the polarizability using the Kohn-Sham eigenfunctions and eigenvalues from a non-
relativistic DFT calculation[101, 2]. However, in this work, we use the Kohn-Sham
eigenfunctions and eigenvalues from fully-relativistic DFT calculations.

The polarizability matrix for real frequencies may be constructed from the Kohn-
Sham eigenfunctions and eigenvalues as[1, 130, 110]

PGG′(q, ω) =
1

Nk

occ∑
n

emp∑
n′

∑
k

M∗
nn′(k,q,G)Mnn′(k,q,G

′)

× 1

2

[
1

εnk+q − εn′k − ω ∓ iη
+

1

εnk+q − εn′k + ω ± iη

]
. (2.5)

with η an infinitesimal positive number.
The matrix elements are

Mnn′(k,q,G) =
∑
α

〈nk + qα|ei(q+G)·r|n′kα〉, (2.6)

where the spin index α is explicitly traced over. We may compute these matrix
elements for all G by multiplying the Fourier transforms of the wavefunctions, for
a spin component common to both wavefunctions, computing the inverse Fourier
transform of this product[26, 31], and then tracing over spin index:

Mnn′(k,q, {G}) =
∑
αα′

FFT−1
(
φ∗nk+qα(r)φn′kα′(r)

)
δαα′ . (2.7)

We note that self-energy operator Σ = iGW inherits the spin-dependence from
the Green’s function[4], but the process of taking matrix elements reduces this spin-
dependence to taking traces over the spinor components of the wavefunction. This
is readily seen by considering the matrix elements Σ, which separate into two terms,
with the screened-exchange (“SX”) coming from the poles of G, and the coulomb-hole
(“COH”) coming from the poles of W [49]. The matrix elements of ΣSX:

〈nkα|ΣSX
αβ(ω)|nkβ〉 = −

occ∑
n′′

∑
qGG′

M∗
n′′n(k,−q,−G)Mn′′n(k,−q,−G′)

× ε−1
GG′(q;ω − En′′k−q)v(q + G′). (2.8)
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The Coulomb-hole term (“COH”) requires similar traces in the computation of the
matrix elements and is otherwise unaffected by spin-orbit coupling:

〈nkα|ΣCOH
αβ (ω)|nkβ〉 = −

∑
n′′

∑
qGG′

M∗
n′′n(k,−q,−G)Mn′′n(k,−q,−G′)

× 1

π

∫
dω′

Im ε−1
G,G′(q, ω

′)

ω − εn′′k − ω′ + iη
. (2.9)

The spin dependence of Σαβ(ω) merits further consideration. We may recast
the self-energy operator as sum of products of operators, Σαβ(ω) = A(ω) × Iαβ +
B(ω) × σxαβ + C(ω) × σyαβ + D(ω) × σzαβ, for some appropriate choice of operators
A, B, C, and D. We use this decomposition simply to illustrate that due to the
inclusion of spin-orbit coupling entirely as a one-electron interaction, the electron-
electron self-energy generally allows for spin scattering even when mediated solely by
the Coulomb interaction. This is in contrast to the argument proposed in Ref. [4],
which uses spin-dependent interactions that conserve spin. (The existence of further
symmetries of course may introduce relevant selection rules that forbid certain spin
scatterings.) This is a consequence of spin no longer being a good quantum number
when spin-orbit coupling is included into the Hamiltonian that propagates excited
states. This physics is absent in V xc, which is in a sense the DFT approximation to
the self-energy.

To simplify the calculation of matrix elements of ΣCOH, a generalized plasmon
pole model (GPP)[136, 49] treats the integrand in the integral over ω′ as sufficiently
sharply peaked that they may be replaced by delta functions. In this case, only
the static dielectric function needs to be explicitly computed. The Hybertsen-Louie
GPP[49] is justified through the use of a sum rule that is derived from a double-
commutator of a one-particle non-interacting Hamiltonian (as in the RPA) with
charge density operators, and is therefore independent of spin-orbit coupling.

To calculate the optical absorption spectrum of a material, we may first try
and evaluate the imaginary part of the macroscopic dielectric function within the
independent-particle approximation. Since the dipole operator is spin-independent,
we may readily determine, using the usual expression[132, 22], the dielectric function
to be

ε2(ω) =
8π2e2

ω2

∑
vck

∣∣∣∣∣λ ·∑
α

〈vkα|v|ckα〉

∣∣∣∣∣
2

δ (ω − (Eck − Evk)) , (2.10)

where λ is the direction of light polarization and
∑

α〈vkα|v|ckα〉 is the matrix
element of the velocity operator. Usually the numerator of the prefactor is “16π2e2,”
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but that is with the spin degree of freedom summed over. There is only a single
spin degree of freedom due to the spin-independence of the velocity operator giving
non-zero matrix elements only when the electron and hole have opposite spins.

More accurate calculations of the absorption spectrum require the inclusion of
excitonic effects, which we calculate by solving for the excitonic eigenfunctions and
eigenvalues of the Bethe-Salpeter Equation (BSE).

With the excitonic envelope functions ASvck and energies ΩS, we compute the
imaginary part of the macroscopic dielectric function:

ε2(ω) =
8π2e2

ω2

∑
S

∣∣∣∣∣∑
vckα

ASvckλ · 〈vkα|v|ckα〉

∣∣∣∣∣
2

δ
(
ω − ΩS

)
. (2.11)

The most concerning challenge is the increase in the number of matrix elements
we must calculate. Compared to a comparable calculation without spin, the number
of both valence and conduction states double. Taking the ratio of the scaling of the
matrix element calculation with system size[26], we find an increase in computation
time by

22N22 log(2N)

N2 logN
= 8(1 + logN 2), (2.12)

where the additional factor of 2 in the numerator comes from having to compute
the inverse-FFT of two-component spinors. Since, at best, we are increasing the
cost of matrix element calculations by roughly a factor of 8, we must make use of
symmetries of the Brillouin Zone to allow for converged calculations within reasonable
computational cost. Further, as we have assumed time-reversal symmetry, we may
consider how that may be exploited to ease computation time.

2.3 Spinor wavefunctions and symmetries

Symmetries, No spin

We first briefly review the use of symmetries for wavefunctions without spin, as this
is also necessary when using spinor wavefunctions. We use the symmetries of the
Brillouin Zone to store only the necessary wavefunction coefficients within the irre-
ducible wedge, a fraction of the full Brillouin Zone, provided that more symmetries
exist than the identity. When computing the polarizability and self-energy, we then
unfold to “little group of the q-vector” except when computing off-diagonal matrix
elements of the self-energy[26].
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A (three-dimensional) crystal structure belongs to one of 230 space groups, each
allowing some transformation {R|τ}, a combination of rotation followed by trans-
lation by a fraction of a lattice vector, that leaves the structure invariant. Trans-
formations for which τ are not zero are called non-symmorphic symmetries. Dia-
mond and zinc-blende structures contain non-symmorphic symmetries. The ionic
potential Vion(r), thus the Hamiltonian, inherits the symmetry of the lattice, so
we may consider the action of these transformations on the Bloch wavefunctions
ψnk(r) = unk(r)eik·r.

We consider the action of a rotation R followed by a fractional translation τ .
A coordinate vector r is transformed as r′ = Rr + τ . A function is transformed
according to the convention

P{R|τ}f ({R|τ}r) = P{R|τ}f (Rr + τ ) = f(r),

P{R|τ}f (r) = f
(
R−1r− R−1τ

)
. (2.13)

Thus

P{R|τ}ψnk(r) = unk(R−1r− R−1τ )eik·(R−1r−R−1τ)

= unk(R−1r− R−1τ )eiRk·(r−τ ). (2.14)

where we use the property that scalars formed in dot products are invariant under
rotation of both vectors. We drop the phase factor e−iRk·τ , as this is common among
all bands at a given k-point.

We expand the periodic part of the Bloch function in plane-waves:

unk
(
R−1r− R−1τ

)
=
∑
G

cnk(G)eiG·(R−1r−R−1τ)

=
∑
G

cnk(G)eiRG·(r−τ )

=
∑

R−1G

cnk(R−1G)e−iG·τeiG·r. (2.15)

Substituting in to the previous equation and reordering the summation over G-
vectors, we have

P{R|τ}ψnk(r) = ũnRk(r)eiRk·r,

ũnRk(r) =
∑
G

c̃nRk(R−1G)e−iG·τeiG·r. (2.16)

(The use of the c̃ refers to the change in the function u when evaluated at r instead
of R−1r− R−1τ .)
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This allows us to use the usual relation when using symmetries to unfold the
Brillouin Zone from an irreducible wedge:

cnk(G)→ c̃nRk(R−1G)e−iGτ . (2.17)

Symmetries, with spin

We now extend the above discussion for the case of spinor wavefunctions, where

ψnk(r) = unk↑(r)e
ik·rχ↑ + unk↓(r)e

ik·rχ↓. (2.18)

The periodic functions unk↑ and unk↓ are spatial and thus transform according to the
above. However, the spinor itself rotates according to the rules of transformation for
elements of the group SU(2):

P{R|τ}ψnk(r) = unRk↑(r)e
iRk·re−in̂R·~σθR/2χ↑ + unRk↓(r)e

iRk·re−in̂R·~σθR/2χ↓, (2.19)

where n̂ and θ are the unit-axis and angle (about the axis n̂) that recreates the
action of the symmetry operation R. We readily arrive at the rule for transforming
two-component spinor Bloch functions:

P{R|τ}ψnk(r) =

(
cos
(
θ
2

)
− inz sin

(
θ
2

)
(−ny − inx) sin

(
θ
2

)
(−ny + inx) sin

(
θ
2

)
cos
(
θ
2

)
+ inz sin

(
θ
2

))(unRk↑(r)e
iRk·r

unRk↓(r)e
iRk·r

)
,

(2.20)
where ni is the i’th Cartesian component of n̂.

The task, then, is to determine n̂ and θ for each symmetry R used in unfolding
the Brillouin Zone.

2.4 Axis and Angle Extraction

The Euler axis/angle form of the matrix in the Cartesian basis that rotates a vector
(in R3) by some angle θ about a unit vector n̂ can be recreated by consideration of
the generators of the Lie group for SO(3). We simply restate the end result[77]:

R (n̂, θ) =

 c+ n2
x (1− c) −nzs+ nxny (1− c) nys+ nxnz (1− c)

nzs+ nynx (1− c) c+ n2
y (1− c) −nxs+ nynz (1− c)

−nys+ nznx (1− c) nxs+ nzny (1− c) c+ n2
z (1− c)


(2.21)

with c = cos θ and s = sin θ.
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A first attempt to extract the values of nx, ny, nz, and θ for any given rotation
matrix might make use of the following:

cos θ =
1

2
(Tr (R)− 1) ,

nk = εijk

(
− [R]ij + [R]ji

)
/2 sin θ. (2.22)

However, the division by sin θ is singular for rotations of θ = 0±η or θ = π±η, where
η is the machine precision for floating-point numbers. Further, if Tr (R) = 1 +η, the
use of arccos to find θ is also subject to failure, given sufficient round-off error.

More general extraction algorithms attempt to remove singularities by making
use of a reparameterization of the above rotation matrix in terms of a four-component
quaternion. A unit quaternion q, with transpose qT = (q1, q2, q3, q4), can be parame-
terized by n̂ and θ from

qT = (n1 sin
θ

2
, n2 sin

θ

2
, n3 sin

θ

2
, cos

θ

2
). (2.23)

We now rewrite the rotation matrix above as[77]

R =

q2
1 − q2

2 − q2
3 + q2

4 2 (q1q2 + q3q4) 2 (q1q3 − q2q4)
2 (q2q1 − q3q4) −q2

1 + q2 − q2
3 + q2

4 2 (q2q3 + q1q4)
2 (q3q1 + q2q4) 2 (q3q2 − q1q4) −q2

1 − q2
2 + q2

3 + q2
4

 . (2.24)

We extract the parameters n̂ and θ by using Markley’s[76] modification to Shep-
perd’s algorithm[124]. We first construct an auxiliary matrix X:

X =


1 + 2R11 − Tr (R) R21 + R12 R31 + R12 R23 − R32

R12 + R21 1 + 2R22 − Tr (R) R32 + R23 R31 − R13

R13 + R31 R23 + R32 1 + 2R33 − Tr (R) R12 − R21

R23 − R32 R31 − R13 R12 − R21 1 + Tr (R)

 .

(2.25)
Then we compute the norms of each column xi. We use the column with the largest
norm to compute the quaternion q, from

q = ±xi/
∣∣xi
∣∣ , (2.26)

by construction[76]. The positive and negative branches of solution come from the
double-cover of SO(3) by SU(2), the latter of which is parameterized by the four real
quaternion components qi instead of the usual two complex components for spin. We
arbitrarily choose to use the positive branch, which is adequate for materials science
applications.
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Markley demonstrated that this algorithm produces errors that are bounded to
the order of round-off error[76]. We note that methods of further optimizing quater-
nion extraction algorithms appears to be an active area of research; for instance, Ref.
[15]

The set of rotation matrices R for a crystalline system are usually stored in the
basis of lattice vectors in ab initio codes, as it allows these matrices (up to 48) to
be written with nine integers. In this case, we must transform the rotation matrices
in the lattice basis, Rlat, to the rotation matrix in the Cartesian basis. If we form a
matrix A out of the three lattice vectors a1, a2, and a3 as

A =

a1x a2x a3x

a1y a2y a3y

a1z a2z a3z

 , (2.27)

this transformation is
Rcart = ARlatA−1. (2.28)

If instead we decide to use the reciprocal lattice vectors b1, b2, b3 to construct the
matrix B in a fashion as in the above, we make use of the identity BTA = 2πI to
write

Rcart =
(
BT
)−1

RlatBT. (2.29)

This latter choice is beneficial if the matrices A and B are in fact stored as their
transposes, as some codes do.

Finally, we note that in the presence of inversion symmetries, each rotation R can
be followed by the inversion N to form an “improper rotation” S = NR. However, if
both spatial inversion and time-reversal commute with the Hamiltonian under consid-
eration, the (spinor) wavefunction is a simultaneous eigenstate of both symmetries.
Thus in the presence of only time-reversal symmetric terms in the Hamiltonian, the
wavefunctions are unaffected by inversion, apart from perhaps an overall phase fac-
tor. We identify improper rotations by the identity det (S) = −1, and if detected, use
only the rotation part R of S to transform the spinor components of the wavefunc-
tion. In the absence of time-reversal symmetry, however, we must use the appropriate
magnetic point group (indeed, for all symmetries), but such consideration is beyond
the scope of this work.

Time Reversal and Inversion symmetries

We may try to use time reversal symmetry to compress spinor wavefunctions, as can
be done in the case of single-component wavefunctions in the presence of inversion
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symmetry[26]. With spin, the Bloch function φnk(r) for a given band is generally a
non-collinear spinor

φnk(r) = φnk↑(r)χ↑ + φnk↓(r)χ↓. (2.30)

In the presence of inversion and time-reversal symmetries, we again have the eigen-
value equation

PTφnk = λφnk, (2.31)

but now the time-reversal symmetry operation is T = −iσyK, with K being the
complex conjugate operation. Operating explicitly on the left-hand side, we have

PTφnk↑(r)χ↑ + PTφnk↓(r)χ↓ = −φ∗nk↓(−r)χ↑ + φ∗nk↑(−r)χ↓. (2.32)

The term φ∗nk↑ in the planewave basis is

φ∗nk↑(−r) =
∑
G

c∗nk↑(G)ei(G+k)·r

=
∑
G

c̃nk↑(G)ei(G+k)·r

= φnk↑(r), (2.33)

within the phase factor relating the coefficients c̃ to c. A similar result holds for the
“down” component.

We are not able to reduce the amount of information needed to describe the wave-
functions, since we just have the result that the spinor components switch places,
apart from a sign difference. However, this result may be used to reduce the calcu-
lation of matrix elements in the following manner (Ref. [58]) :

〈nk ↓ |eiG·r|mk ↓〉 = 〈nk ↑ |e−iG·r|mk ↑〉. (2.34)

In this case,

Trα
(
〈nkα|eiG·r|mkα〉

)
= 2 (〈nk ↑ | cos (G · r) |nk ↑〉) . (2.35)

While this reduction in the number of terms reduces the prefactor in the additional
number of matrix element calculations the inclusion of spin necessitates, this property
is not used in BerkeleyGW at present.

2.5 Benchmarking with simple test systems

Introduction

We present results for seven different materials with a wide range of spin-orbit cou-
pling (SOC) strengths. The diamond and zincblende semiconductors Si, Ge, and
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Ecut (Ry) arelaxed
0 (Å) aexp.

0 (Å)
Si 120 5.48 5.47
Ge 120 5.63 5.66
GaAs 350 5.61 5.65
GaSb 350 6.09 6.10
CdSe 200 4.30 4.30
Au 72 4.08 4.08

Table 2.1: The kinetic energy cutoffs, calculated lattice parameters, and experimental
lattice parameters. The pseudopotentials for Ge, Sb, Cd, and Au contain the full
shell of the semicore states (e.g., 4s24p64d10 for Sb)[116].

The experimental lattice parameters are from Ref. [72].

GaAs are technologically important materials with weak SOC. GaSb has a strong
SOC, and the spin-orbit splitting is of similar magnitude to the band gap. CdSe
has a wurtzite structure and a significant SOC (approximately 30 times larger than
wurtzite GaN, for example). We also study Au, being a prototypical metal with
strong SOC.

Computational Details

We compute mean-field wavefunctions and eigenvalues from Density Functional The-
ory[60, 46]. For the exchange-correlation energy, we employ the Perdew-Zunger pa-
rameterization of the LDA[90]. We generate fully-relativistic pseudopotentials using
the Optimized Norm-Conserving Vanderbilt Pseudopotential (ONCVPSP) scheme[40]
with parameters from the Pseudo-Dojo pseudopotential database[67]. The pseudopo-
tentials for Au, Bi, Cd, Ga, Ge, and Sb contain the full shell of the semicore states
(e.g., 5s25p65d10 for Bi) for accurate calculation of the bare exchange[116]. All DFT
calculations are carried out with the Quantum ESPRESSO software package[35].

We first determine the equilibrium lattice constants and atom positions. Table 2.1
shows that all relaxed lattice constants are in very good agreement with experimental
measurements.

Next, the quasiparticle energies are computed with the one-shot “G0W0” ap-
proach, using the Hybertsen-Louie Generalized Plasmon Pole model[49, 136] for the
inverse dielectric matrix. For the case of bulk Au, we also calculated the quasiparticle
band structure in the Godby-Needs Plasmon Pole Model[36] and found differences
of 50 meV or smaller in the energy, in the range 6 eV above and below the Fermi
energy. Table 2.2 summarizes our parameters for the empty state summations, the
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k-grid εcut (Ry) Empty States
Si 8x8x8 20 800
Ge 8x8x8 25 600 Chi, 1000

COH
GaAs 8x8x8 20 1002
GaSb 8x8x8 20 1002
CdSe 6x6x4 20 996
Au 8x8x8 50 2018

Table 2.2: The values of the Brillouin Zone sampling, the screened Coulomb cutoff,
and the number of empty states used in the sums for both the polarizability (“Chi”)
and the Coulomb-hole (“COH”) term in the self-energy. For Si, Ge, GaAs, and
GaSb, we use the same parameters as from Ref. [73], and for Au, Ref. [86].

kfine grid Nv Nc Broadening
(meV)

GaAs 12x12x12 6 8 150
GaSb 12x12x12 6 8 100

Table 2.3: The values of the Brillouin Zone sampling of the fine grid, the number
of valence and conduction bands used as the basis for the BSE, and the Gaussian
broadening of the delta function.

k-point sampling, and the plane-wave cutoff for the dielectric matrix. We use the
static remainder method to improve convergence with the number of empty states in
the Coulomb-hole summation[27]. We verified that performing one-shot or “G0W0”
evaluation of the self energy in the band-diagonal approximation yields quantitatively
accurate bandstructures for these test systems.

The k-point sampling and number of bands used in constructing the GW -BSE
Hamiltonian are summarized in Table 2.3. All excited-state calculations are carried
out with the BerkeleyGW program adapted for use with spinor wavefunctions.

Si

Fig. 2.1 shows the bandstructure of Si calculated within fully-relativistic LDA (“FR-
LDA”)and fully-relativistic GW (“FR-GW”). We find the FR-LDA band gap to be
0.445 eV, with the valence band maximum at the Γ-point and the conduction band
minimum along the Γ − X line. The FR-GW gap has the value 1.22 eV, with the
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FR-LDA FR-GW Experiment
Eg (eV) 0.445 1.22 1.22a - 1.23b

E(Γ7c)-E(Γ8v)
(eV)

2.46 3.22 3.34c

∆SOC(Γ, v) (eV) 0.047 0.049 0.044d

∆SOC(Γ, c) (eV) 0.034 0.035 0.030 - 0.040c

∆SOC(L, v) (eV) 0.031 0.032 0.030c

∆SOC(L, c) (eV) 0.014 0.014 –

Table 2.4: The band gap and spin-orbit splitting for Si, computed at the FR-
LDA and FR-GW levels, compared to experiment. The fundamental band gap from
experiment is reported with Zero-Point Renormalization corrections. a Ref. [14], b

Ref. [13], c Ref. [80], d Ref. [72].

valence band maximum and conduction band minimum occuring at the same points
as in FR-LDA. The measured band gap is 1.17 eV at low temperature; correcting for
the zero-point electron-phonon renormzlization (“ZPR”) yields a gap of 1.22[14] to
1.23 eV[13], in excellent agreement with our FR-GW result. Table 2.4 shows that the
calculated spin-orbit splittings from FR-LDA and FR-GW have excellent agreement
with experiment.

In the absence of spin-orbit coupling, the band gaps increase slightly to 0.46 eV in
the LDA and 1.23 eV within (scalar-relativistic, or “SR”) GW . The SR-GW direct
gap at Γ is also slightly larger at 3.26 eV, compared to 3.22 eV within FR-GW . The
FR-GW and SR-GW quasiparticle bandstructures in Fig. 2.1 are nearly identical,
due to the SOC strength in Si.

Ge

Fig. 2.2 shows the bandstructure of Ge from FR-LDA and FR-GW . Previous DFT
calculations often found an incorrect negative band gap for Ge[6, 116, 62, 63]. With
the use of the fully-relativistic ONCVPSP pseudopotential with 3s3p3d semicore
states, however, we find a small but positive direct gap at the Γ-point of 0.15 eV
(Table 2.5).

The FR-LDA (indirect) band gap is computed to be 0.13 eV, with the top of
the valence band at Γ and the bottom of the conduction band at L. Self-energy
corrections at the FR-GW level increase this gap to 0.743 eV. The experimental
gap is 0.744 eV[72], increasing to 0.79 eV[13] when ZPR is taken into account, in
good agreement with the FR-GW result. Table 2.5 shows the calculated spin-orbit



CHAPTER 2. THE IMPLEMENTATION OF SPINOR WAVEFUNCTION
FUNCTIONALITY IN BERKELEYGW 35

FR-LDA FR-GW Experimenta

Eg (eV) 0.129 0.743 0.79
E(Γ6c) - E(Γ8v)
(eV)

0.154 0.960 0.90

∆SOC(Γ, v) (eV) 0.307 0.302 0.297
∆SOC(Γ, c) (eV) 0.221 0.208 0.200
∆SOC(L, v) (eV) 0.194 0.192 0.228
∆SOC(L, c) (eV) 0.095 0.082 0.09b

Table 2.5: The band gap and spin-orbit splittings for Ge, computed at the FR-LDA
and FR-GW levels,compared to experiment. a Ref. [72], b Ref. [20]

splittings. The splittings in FR-GW are smaller than in FR-LDA by few meV and
are in good agreement with experimental data.

The band gap in the SR-GW approach increases to 0.842 eV. The direct gap at Γ
in FR-GW is calculated to be 0.960 eV, smaller than the SR-GW result of 1.05 eV.
The increases in these gaps compared to FR-GW are due to the moderately strong
SOC in Ge. The difference in the direct band gaps between SR-GW and FR-GW
is well-approximated by the result from usual perturbation theory for the atomic
spin-orbit splitting, in which a p3/2 state shifts upward in energy by ∆SOC/3 and
p1/2 downward by 2∆SOC/3. We need only the SR-GW gap ESR

g and the FR-LDA
spin-orbit splitting ∆SOC(Γ, v) for the top of the valence band for the estimation

EFR
g = ESR

g −
1

3
∆SOC(Γ, v). (2.36)

This estimation yields 0.95 eV, which agrees with the calculated value within 10 meV.

GaAs

Fig. 2.3 shows the bandstructure for GaAs calculated with FR-LDA and FR-GW .
We find an FR-LDA band gap of 0.55 eV and a FR-GW gap of 1.49 eV, compared
to the 0 K gap of 1.52 eV, from experiment[72]. (Correcting for ZPR, the experi-
mental band gap increases to 1.57 eV[65]). Table 2.6 shows the calculated spin-orbit
splittings. We find that the FR-GW splittings are in excellent agreement with ex-
periment.

We also calculate the bandstructure from SR-LDA and SR-GW . We find that
SR-LDA band gap is slightly larger than that of FR-LDA, at 0.652 eV. The SR-GW
band gap was found to be 1.599 eV. The atomic SOC perturbation theory estimation
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FR-LDA FR-GW Experiment
Eg (eV) 0.55 1.49 1.57a

∆SOC(Γ, v) (eV) 0.320 0.340 0.340
∆SOC(Γ, c) (eV) 0.189 0.171 0.171
∆SOC(L, v) (eV) 0.198 0.209 0.22
∆SOC(L, c) (eV) 0.08 0.07 0.05

Table 2.6: The band gap and spin-orbit splitting for GaAs, computed at the FR-
LDA and FR-GW levels, compared to experiment. Experimental data is from Ref.
[72] unless otherwise specified. a Ref. [65].

of the FR-GW (direct) band gap, 1.49 eV, agrees with the calculated value within
less than 10 meV.

Fig. 2.4 shows the absorption spectrum of GaAs from FR-GW -BSE and SR-GW -
BSE. Both methods yield similar spectra, apart from a small shift of 40 meV in the
absorption onset and a difference in amplitude of the absorption peak at 3 eV. The
shift in the absorption onset is due to the smaller direct band gap within FR-GW
as compared to the SR-GW result. The 3 eV peak has been measured to be split
into a pair of peaks due to SOC, but the splitting (200 meV) is on the order of the
resolution of the calculation (150 meV) and is thus obscured.

GaSb

Figure 2.5 shows the FR-LDA, FR-GW , SR-LDA, and SR-GW bandstructures. We
compute an FR-LDA band gap of 0.135 eV and a FR-GW direct gap of 0.819 eV,
compared to the low temperature gap of 0.822 eV from experiment[72]. Table 2.7
shows the calculated spin-orbit splittings, which are in good agreement with exper-
iment. However, at the FR-GW , as well as SR-GW , level, we find the conduction
band minimum to be located at the L point instead of the Γ point, despite experi-
mental evidence of a direct band gap at the Γ-point in GaSb[72].

In the SR-LDA, the direct band gap at Γ is larger than FR-LDA, at 0.358 eV, and
in the SR-GW , 1.065 eV. As in FR-GW , the fundamental band gap is predicted to
be indirect in SR-GW , from Γ to L, with a value of 1.024 eV. The over 200 meV dis-
agreement of the band gap between SR-GW and experiment indicates the necessity
of treating spin-orbit coupling for GaSb. The direct gap is again well-approximated
by applying the perturbation theory estimate, 0.818 eV.

Figure 2.6 shows the absorption spectrum for GaSb calculated with the SR-GW -
BSE and FR-GW -BSE methods. The absorption spectrum of GaSb has significant
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FR-LDA FR-GW Experiment1

E(Γ6c)-E(Γ8v)
(eV)

0.135 0.819 0.822

E(L6c)-E(Γ8v)
(eV)

0.245 0.779 0.907

∆SOC(Γ, v) (eV) 0.740 0.733 0.756
∆SOC(Γ, c) (eV) 0.225 0.203 0.213
∆SOC(L, v) (eV) 0.424 0.422 0.430
∆SOC(L, c) (eV) 0.12 0.09 0.13

Table 2.7: The band gap and spin-orbit splittings for GaSb, computed at the FR-
LDA and FR-GW levels, compared to experiment. Experimental data is from Ref.
[72]

differences when including SOC. First, the absorption onset is shifted by 190 meV
due to the large difference in the quasiparticle band gap when including (0.822 eV)
or neglecting SOC (1.065 eV). Also, we can clearly resolve the 2.3 eV peak splitting
into the so-called E1 and E1 + ∆ peaks with the inclusion of SOC. When split, the
pair of peaks have a reduced peak height. (See section 2.5.) The E1 and E1 +∆ peak
placements at 2.18 eV and 2.54 eV agree well with the experimental[139] spectrum
placements of 2.18 eV and 2.62 eV, respectively.

CdSe

Figure 2.7 shows the bandstructure of CdSe computed at the FR-LDA, FR-GW , SR-
LDA, and SR-GW levels. We compute the FR-LDA band gap of 0.58 eV and the
FR-GW gap of 1.85 eV, compared to the low temperature gap of 1.84 eV from ex-
periment[44]. Table 2.8 shows the spin-orbit and crystal field (“CF”) splittings, with
FR-GW showing excellent agreement with experiment and much improved compared
to FR-DFT.

The SR-GW gap is larger due to the neglect of the large spin-orbit splitting,
with a value of 1.986 eV. The change in the band gap due to the inclusion of spin-
orbit coupling is well-approximated by perturbation theory, though the spin-orbit
splitting differs by over 30 meV whether using the value computed in LDA or GW
(Table 2.8). The band gap is estimated within a few tens of meV when using the
FR-LDA value of the spin-orbit splitting, giving 1.862 eV. The bandstructure (Fig.
2.7) shows little change when including or neglecting SOC, apart from the moderate
spin-orbit splitting at the top of the valence band.
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FR-LDA FR-GW Experiment
Eg (eV) 0.584 1.845 1.84
∆SOC(Γ, v) (eV) 0.372 0.405 0.429
∆CF(Γ, v) (eV) 0.036 0.026 0.026

Table 2.8: The band gap and spin-orbit splitting for CdSe, computed at the FR-LDA
and FR-GW levels, compared to experiment. The spin-orbit (SOC) and crystal field
(CF) splitting refers to the states at the top of the valence band at Γ. Experimental
data is from Ref. [44]

Au

Figure 2.8 shows the bandstructure of Au computed from FR-LDA, FR-GW , SR-
LDA, and SR-GW . The inclusion of spin-orbit coupling changes the degeneracy of
the occupied s-d hybridized states. The bandstructures show slight changes upon
inclusion of the electronic self-energy. Notably, the valence states shift downward in
energy and the conduction states shift upward. Table 2.9 shows that the interband
gaps are generally improved with FR-GW , particularly near the Fermi level. The
quasiparticle energies are largely similar whether using the Hybertsen-Louie or the
Godby-Needs GPP model, within an energy range of 6 eV above or below the Fermi
level.

2.6 Performance

We give a comparison in the performance of BerkeleyGW for the representative case
of GaAs with and without spinor wavefunctions. We see in Table 2.10 that the calcu-
lation of the wavefunctions for the self-energy matrix elements (“DFT Coarse”) takes
four times longer, in accordance with expectation from having to double the number
of bands and double the size of each band, for the spin-up and spin-down compo-
nents. The calculation of the wavefunctions for the basis of the BSE Hamiltonian
(“DFT Fine”) is more rapid, since the bottleneck in generating these wavefunctions
is the number of k-points and not the number of bands. Calculation of the dielectric
matrix (“Epsilon”) sees an increase in cost of only 2.5, far less than the increase in
cost of generating the matrix elements alone. The size of the dielectric matrix is the
same when including or disregarding spin, so the matrix inversion step allows for an
overall retention of relative performance. The calculation of quasiparticle energies
(“Sigma”), however, is closer to the expected increase in cost, at a factor of 4.1. The
costs of constructing the BSE Kernel (“Kernel”) and solving the eigenvectors and
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FR-LDA FR-GW Experiment

Γ6+ -10.17 -10.22 –
Γ8+ -5.69 -6.05 -5.09a, -6b, -6.01c

Γ7+ -4.58 -4.89 -4.45a, -4.6b, -4.68c

Γ8+ -3.29 -3.67 -3.55a, -3.65b, -
3.71c

Γ7− 13.91 14.46 16c, 15.9d

Γ6− 17.26 17.81 18.8c

L6+ -7.84 -8.11 -7.8b

L4,5+ -5.80 -6.21 -6.23b, -6.2c

L6+ -4.69 -5.08 -4.88b, -5c

L6+ -2.56 -2.87 -3.2c

L4,5+ -1.90 -2.19 -2.3c, -2.5e

L6− -1.32 -1.26 -1e, -1f , -1.01g, -
1.1h

L6+ 3.09 3.44 3.6e, 3.65f , 3.56g,
3.4h

Table 2.9: The FR-LDA and FR-GW eigenvalues for Au, as compared to experiment.
a Ref. [82], b Ref. [5], c Ref. [23], d Ref. [51], e Ref. [115], f Ref. [52], g Ref. [21], h

Ref. [74].

Step No. CPUs CPU Hours
(no spin)

CPU Hours
(spinor)

Ratio

DFT Coarse 1024 162 650 4.0
DFT Fine 1728 173 490 2.8
Epsilon 864 864 2160 2.5
Sigma 864 2760 11232 4.1
Kernel 600 560 3600 6.4
Absorption 600 48 720 15.0

Table 2.10: Comparison of performance of BerkeleyGW when disregarding spin and
when using spinor wavefunctions, as seen in calculations of GaAs.
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Step Wall time, no spin
(s)

Wall time spinor
(s)

Ratio

I/O 138 560 4.0
Interp. WFN 57 240 4.2
Interp. Kernel 27 274 10.1
Diag. 53 3013 56.8

Table 2.11: Comparison of performance of Absorption executable in BerkeleyGW
when disregarding spin and when using spinor wavefunctions, as seen in calculations
of GaAs.

eigenvalues (“Absorption”) have the largest increases, at 6.4 and 15.0, respectively.
The Kernel code requires the calculation of three sets of matrix elements, an increase
in cost partially offset by time spent on the better-scaling routines such as I/O. We
discuss the Absorption code performance in more detail below.

The Absorption code has four main routines: I/O, interpolation of the wavefunc-
tions, interpolation of the kernel matrix elements, and diagonalization. We see the
performance of each when disregarding spin and when using spinor wavefunctions in
Table 2.11. The I/O necessarily has an increase in cost of a factor of 4, from the
increase in the size of the wavefunction files. Similarly, the interpolation of the wave-
functions is also nearly 4. The interpolation of the kernel matrix elements increases
by a factor of 10.1, less than an estimated increase of 16. The diagonalization sees
an increased cost by a factor of 56.8, close to the expected factor of 64.
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Figure 2.1: The electronic bandstructure of Si. Left-most figure: Fully-relativistic
(“FR”) LDA and GW in dashed and solid lines, respectively. Right-most figure:
Scalar-relativistic (“SR”) LDA and GW in dashed and solid lines, respectively; spin-
orbit coupling is neglected.

L Γ X U,K Γ

10

5

0

5

E
n
e
rg

y
 (

e
V

)

FR-LDA
FR-GW

L Γ X U,K Γ

SR-LDA
SR-GW

Figure 2.2: The electronic bandstructure of Ge. Left-most figure: Fully-relativistic
(“FR”) LDA and GW in dashed and solid lines, respectively. Right-most figure:
Scalar-relativistic (“SR”) LDA and GW in dashed and solid lines, respectively; spin-
orbit coupling is neglected.
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Figure 2.3: The electronic bandstructure of GaAs. Left-most figure: Fully-relativistic
(“FR”) LDA and GW in dashed and solid lines, respectively. Right-most figure:
Scalar-relativistic (“SR”) LDA and GW in dashed and solid lines, respectively; spin-
orbit coupling is neglected.
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Figure 2.4: The absorption spectra of GaAs, calculated at the (FR-)GW -BSE level.
Spin-orbit is neglected (included) in the blue (red) curve.
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Figure 2.5: The electronic bandstructure of GaSb. Left-most figure: Fully-relativistic
(“FR”) LDA and GW in dashed and solid lines, respectively. Right-most figure:
Scalar-relativistic (“SR”) LDA and GW in dashed and solid lines, respectively; spin-
orbit coupling is neglected.
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Figure 2.6: The absorption spectra of GaSb, calculated at the (FR-)GW -BSE level.
Spin-orbit is neglected (included) in the blue (red) curve.
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Figure 2.7: The electronic bandstructure of CdSe. Right-most figure: Fully-
relativistic (“FR”) LDA and GW in dashed and solid lines, respectively. Left-most
figure: Scalar-relativistic (“SR”) LDA and GW in dashed and solid lines, respec-
tively; spin-orbit coupling is neglected.
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Figure 2.8: The electronic bandstructure of Au. Left-most figure: Fully-relativistic
(“FR”) LDA and GW in dashed and solid lines, respectively. Right-most figure:
Scalar-relativistic (“SR”) LDA and GW in dashed and solid lines, respectively; spin-
orbit coupling is neglected.
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Chapter 3

The electronic structure of β-HgS
via GW calculations

3.1 Introduction

Metacinnabar, or β-HgS, has a zincblende structure with electrons near the band edge
experiencing large spin-orbit coupling. It is in the mercury chalcogenide family, along
with HgSe and HgTe. These latter two zincblende solids have been demonstrated
to have a semimetallic, α-Sn-like bandstructure, with parabolic electron and hole
bands joining at the Γ-point. For α-Sn, HgSe, and HgTe, the bands near the Fermi
level at the Γ-point have an inverted bandstructure: The usual order of states for
a zincblende system (from lowest to highest in energy) is Γ7v, Γ8v, Γ6c, while these
materials place Γ6 lowest in energy, then Γ7, then Γ8. Furthermore, the four-fold
degenerate Γ8 splits into a pair of parabolic electron and hole bands, degenerate at
the Γ-point. This behavior in the bandstructure is in agreement in the literature,
before[99, 114] and after[101] the implementation of the fully-relativistic treatment
of GW calculations.

The bandstructure for β-HgS, however, has seen considerable disagreement be-
tween different theoretical calculations and experiment. The α-Sn-like inverted
bandstructure was proposed to be consistent with measurements[133]. Reflectiv-
ity measurements indicated a plasma edge at 0.10 eV[133], suggesting a metallic
or semimetallic nature. Absorption measurements indicated an onset of interband
transitions at 0.25 eV (after free-carrier-like absorption), understood as the onset of
transitions to a partially occupied, zero-gap parabolic conduction band[133]. In the
absence of ARPES measurements, however, we do not definitively have a definitive
experimental description of the band structure and the true ordering of the states.
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Density functional theory calculations, however, indicated a small indirect band
gap and a “doubly inverted” ordering of the states, Γ6v, Γ8v, Γ7c[25]. Compared to
HgSe and HgTe, there is a further interchange of ordering between Γ8 and Γ7, with
Γ8 now being fully occupied even away from the Γ-point. The semimetallic state is
only recreated in DFT with the neglect of spin-orbit coupling (SOC). As the spin-
orbit strength within the Hg 5d subshell is 1.86 eV[84], this is not a physical result.
Based on the fully-relativistic DFT bandstructure, β-HgS has been predicted to be a
nontrivial Z2 insulator much like strained HgTe, with highly anisotropic topologically
protected Dirac surface states along the [001] direction[123, 122].

Topological properties based on the ordering of bands near the Fermi energy need
to be confirmed from calculations that are more accurate than DFT[121]. Many-body
perturbation theory, in the GW approximation, provides physically accurate excited
state properties such as the electronic bandstructure. GW calculations in which
the spin-orbit coupling Hamiltonian is applied as a perturbation to the quasiparticle
states (“GW+SOC”) indicated a band ordering of Γ8v, Γ7v, Γ6c[31, 114], which is
much like that of CdTe, but with the p-d-hybridized orbitals Γ8v and Γ7v switched,
due to the strength of SOC in the Hg d states. This ordering of states yields a
topologically trivial band gap, as the bandstructure can be adiabatically deformed
to that of the topologically trivial CdTe[7] without closing the bulk band gap by,
e.g., tuning the atomic spin-orbit parameters of Hg and S.

GW calculations in which fully-relativistic pseudopotentials and spinor wavefunc-
tions were used in the construction of the self-energy (“FR-GW”), thereby treat-
ing spin-orbit coupling non-perturbatively, yielded the same band ordering as in
DFT[101, 104], but with the energy difference between the Γ6 and Γ8 states much
reduced when using an LDA exchange-correlation functional as the starting point,
and a slightly larger energy difference when calculated with the GGA exchange-
correlation functional[104].

The disagreement in the various computed quasiparticle bandstructure topologies
is curious, since the fully-relativistic LDA (“FR-LDA”) bandstructures are all in
agreement despite the different choices of basis sets. In this work, we present the
FR-GW quasiparticle bandstructure using a plane-wave basis and approximating
the electron-ion interaction within the fully-relativistic Local Density Approximation
(LDA)[90] of the pseudopotential method. In Section 3.2 we review the method of
(one-shot) FR-GW in a plane-wave basis. In Section 3.3 we show that, contrary
to the results of the other FR-GW calculations in the literature, the states at the
Γ-point are ordered Γ8, Γ7, then Γ6, in increasing energy.
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3.2 Methods

In computing the quasiparticle eigenvalues, we solve for the poles of Dyson’s equation,

Enk = εnk + 〈nkα| (Σαβ (Enk)− V xcδαβ) |nkβ〉. (3.1)

We note that in this work, we evaluate the polarizability by explicitly calculating
non-zero imaginary frequencies, and the integration over frequency in the Coulomb-
hole self-energy is performed using the contour deformation method[37, 12, 39].

3.3 Calculations

We construct the Kohn-Sham energies and orbitals using Quantum ESPRESSO[35],
with fully-relativistic pseudopotentials for Hg and S generated from the Optimized
Norm-Conserving Vanderbilt Pseudopotential method[40] with parameters adapted
from the Pseudo-Dojo pseudopotential database[67]. The Hg pseudopotential in-
cludes the 5s25p65d10 semicore states as valence for accurate calculation of the bare
exchange matrix elements [116]. We use a plane-wave cutoff of 200 Ry and an 8x8x8
k-point grid in calculating the charge density and relaxed structural geometry. We
find that the relaxed lattice parameter to be identical to the experimental value of
5.85 Å.

The conventional band gap is defined to be E0 = E(Γ6) − E(Γ8), which is posi-
tive for usual zincblende materials but negative for inverted systems. For the usual
zincblende materials (e.g. GaAs or CdTe), this is equal to the true band gap. Like-
wise, the spin-orbit splitting ∆SOC = E(Γ8)−E(Γ7) is also defined to be positive for
the usual zincblende materials. However, the Hg 5d orbitals contribute to these states
significantly, as p-d orbital hybridization is allowed for tetrahedral symmetries[127].
The spin-orbit coupling of these states, then, is dominated by the contribution of
the Hg 5d atomic states. Since the 5d5/2 state contributes to the Γ7 and the 5d3/2,
to Γ8, ∆SOC will be negative, as the spin-orbit splitting in these states (1.86 eV[84])
dominates that of the S 6p3/2 and 6p1/2 states (< 0.10 eV[83]).

The fully-relativistic LDA bandstructure is shown in Fig. 3.1. At Γ, spin-orbit
coupling breaks the degeneracy at the Fermi level and opens a small spin-orbit gap,
with the Γ7 states unoccupied and the four-fold Γ8 states occupied. The small indirect
gap is 0.10 eV.

We then use the LDA bands to calculate the dielectric function and quasiparticle
eigenvalues with the BerkeleyGW[26] excited-state code adapted for compatibility
with spinor wavefunctions. We use a dielectric matrix cutoff of 35 Ry and use 2000
empty states for both the polarizability and Coulomb-hole sums. The error in the
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band gap due to the use of 2000 empty states in the Coulomb-hole sum is estimated
to be 7 meV. We use an 8x8x8 q-point grid for the dielectric function, as this grid
has been shown to be sufficient for accurate calculations of the band gap for the
similarly sized Ge (Sec. 2.5).

The gap at Γ has also been calculated with the frequency dependence of the
self-energy treated by the COHSEX and GPP[136] approximations, in addition to
explicit calculation of the frequency dependence. We treat the q → 0 limit with
the dual grid technique, appropriate for a semiconductor even with a small gap[26].
The results from the GPP and the explicit calculation of the frequency dependence
include the contributions from the static-remainder method[27] to more accurately
simulate an infinite sum in the COH term.

We calculate the quasiparticle energies within FR-GW approach at discrete points
along the Γ-L and Γ-X lines, with explicit treatment of the frequency dependence.
In units of the length of these paths in the Brillouin Zone, the points are 1/8, 1/4,
1/2, and 3/4, along with the Γ, L, and X points. The bandstructure is then plotted
with cubic splines, as the usual approach in which the LDA bandstructure is used
for a linear interpolation based on the Bloch states relies on the LDA bandstructure
being qualitatively similar to the quasiparticle bandstructure[26]. These calculations
are expedited by the use of the “static subspace” method[12], in which we find the
eigenvectors of εGG′(q, ω = 0) for each q-point and use a fraction of that basis in
the calculation of the self-energy matrix elements. We find that using the lowest 10
percent of the static dielectric matrix eigenvectors (Nbasis = 117) gives a converged
fundamental band gap within 6 meV. We use 15 imaginary frequencies for contour
deformation method, which is converged within 3 meV as compared to the use of 25
frequencies.

We find that the states near the Fermi energy are ordered Γ8, Γ7, then Γ6, with
the latter forming the conduction band minimum. This is in contrast to the other re-
ported FR-GW calculations in the literature[101, 104], where the states are ordered,
as in DFT, Γ6v, Γ8v, then Γ7c. We find our ordering in agreement with other GW
calculations in which spin-orbit coupling is added perturbatively[31, 114]. We note
that the authors in Ref. [101] constructed their polarizability by using the states and
eigenvalues from a DFT calculation ignoring spin-orbit coupling. The bandstructure
in this case has a vanishing energy gap at Γ, in contrast to the small gap when in-
cluding SOC. The vanishing gap will yield a divergence in the dielectric function for
q → 0, giving an overestimation of screening and a smaller correction to the band
gap than would be otherwise given.

Moreover, our calculation of the band gap and electron effective mass were found
to agree well with the literature. The band gap was estimated to be -0.11 eV from a
Shubnikov-de Haas measurement of transition metal-doped samples of β-HgS, with
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E0 (eV) ∆SOC (eV) Eg (eV)

DFT -0.54 -0.10 0.10
COHSEX 0.92 -0.12 0.80
GPP 0.37 -0.15 0.22
Explicit Frequency 0.23 -0.13 0.10

Table 3.1: Interband gaps near the Fermi energy for β-HgS. At the DFT level (in
the LDA), The four-fold Γ8 states are higher in energy than the two-fold s-like Γ6

states. With the inclusion of self-energy effects at any level (Hartree-Fock, static-
COHSEX, GPP, or Explicit Frequency), the Γ8 states are lower in energy than the
now-unoccupied Γ6 states.

the carrier concentration extrapolated to zero.[29]. The model used to interpret the
experiment, however, depends only on the absolute value of the band gap. With
the view that the band gap is in fact positive, our computed value of 0.10 eV is
in almost perfect agreement. Similarly, we compute the electron effective mass to
be 0.07me. This is in the range of values cited for the transition metal-doped β-
HgS samples, 0.04me to 0.07me[29]. The electron effective mass estimated from
reflectivity measurements gives the value 0.07me[133].

We confirmed that the topologically trivial ordering of bands was reproduced
within static-COHSEX and GPP FR-GW . The ordering of states was indeed the
same in all cases. The band gaps of interest are summarized in Table 3.1.

We also sought to confirm the ordering of the states by performing an off-diagonal
static-COHSEX calculation to determine if the assumption that the LDA orbitals are
nearly identical to the quasiparticle wavefunctions breaks down, apart from a mere
reordering of states. Care must be taken for small gap semiconductors with large
spin-orbit coupling that the self-energy is calculated with the appropriate basis set,
especially when the ordering of the quasiparticle energies changes relative to LDA.

The static-COHSEX approximation is a static approximation to the self-energy
operator. The frequency-independence of the static-COHSEX operator allows us to
use a completion relation to remove the sum over empty states in the Coulom-hole
term in the self-energy:

〈nkα|ΣCOH
αβ (ω = 0)|mkβ〉 =

1

2

∑
qGG′

〈nkα|ei(G′−G)·rδαβ|mkβ〉
[
ε−1
GG′(q;ω = 0)− δGG′

]
v(q + G′).

(3.2)
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E0 (eV) ∆SOC (eV) Eg (eV) Basis set
Present Work (FR-G0W0) 0.23 -0.13 0.10 Plane-wave (PW)
G0W0+SOCa 0.18 -0.12 0.06 Gaussian+PW
hybrid-QSGWb 0.37 -0.07 0.31 LMTO
FR-G0W0

c -0.02 -0.19 0.02 FLAPW
FR-G0W0

d -0.02 -0.10 0.02 Plane-wave

Table 3.2: Comparison of results for interband gaps near the Fermi energy from the
literature. a Ref. [31], b Ref. [114], c Ref. [101], d Ref. [104].

Thus static-COHSEX allows for rapid calculation of matrix elements of an approx-
imate form of the self-energy operator. We estimate the m’th LDA wavefunction’s
contribution to the first-order correction to the static-COHSEX wavefunctions from

ψ
(1)
nk (r) =

∑
m6=n

U
(1)
nmkφ

LDA
mk (r), (3.3)

with

U
(1)
nmk =

〈nkα|ΣCOHSEX
αβ − V xcδαβ|mkβ〉

εn − εm
. (3.4)

Nonzero values of |U (1)
nmk| indicate a contribution from the m’th LDA band to the

n’th static-COHSEX band and we must fully diagonalize Dyson’s equation to arrive
at the true static-COHSEX wavefunctions. In a rather extreme case, the values of
U may be distributed in such a manner that the quasiparticle states are re-ordered
LDA states. We look, then, for any possible further reordering of the Γ-point states
after the inclusion of off-diagonals.

We plot in Fig. 3.3 the values of |U (1)
nmk|, with the rows n and columns m. We

see that only the Γ6 and Γ7 states show non-zero contribution to the others’ quasi-
particle wavefunctions to first order. However, this contribution is at most still less
than 0.1 percent of the zero-order contribution, so the LDA bands are indeed good
approximations to the quasiparticle states.

To gain further physical insight, we calculate the bandstructure in DFT but now
with non-relativistic and scalar-relativistic pseudopotetials. Scalar-relativistic pseu-
dopotentials neglect spin-orbit coupling but include the physics of the Darwin term
and the relativistic mass correction, which are both significant for s-states. The
non-relativistic pseudopotentials neglect even these. In Fig. 3.4 we show that the
non-relativistic pseudopotentials give a bandstructure typical for a II-VI or III-V
zincblende material with light atoms, where an s-like Γ1 state is placed Eg above oc-
cupied Γ15 states. Incorporating the Darwin and relativistic mass-correction terms,
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however, lower the Γ1 below the previous band gap, and it then becomes occupied
(Fig. 3.5). The Γ15 states then split in a manner to form parabolic conduction and
valence bands that are degenerate at Γ, predicting a zero-gap semimetallic state.
Incorporating spin-orbit coupling breaks this degeneracy, and the states can be iden-
tified as belonging to either the Γ7 or Γ8 representations.

We may now imgagine tuning first the band gap Eg and then the relativistic
corrections ∆rel, in analogy to Ref. [131], starting from a DFT-like calculation ne-
glecting first all relativistic effects. A sufficient increase in Eg places the Γ1 state
high enough so that tuning ∆rel lowers it but not by an amount sufficient to place
it among the occupied states. Tuning ∆rel further turns on spin-orbit coupling and
splits the occupied Γ15 states into the Γ7 and Γ8 states, leading to the appropriate
value of the band gap. We note that in practice, by beginning with states and eigen-
values from FR-DFT, we have in this framework tuned ∆rel first and then opened
the gap with the use of FR-GW , with the physics of the final bandstructure being
insensitive to the ordering of which parameters were employed.

3.4 Conclusion

We calculate the bandstructure of β-HgS near the Fermi energy with the FR-GW
method and find that the order of the states differs from that predicted by DFT
calculations. While DFT gives an ordering of the bands Γ6v, Γ8v, Γ7c, we find the
quasiparticle bandstructure is ordered Γ8v, Γ7v, Γ6c. The difference in the ordering
changes the prediction of the topological phase of the material, with DFT giving a
false-positive identification of the material as a Z2 insulator.

Our calculated value of the band gap is 0.10 eV, which compares favorably to the
value of 0.11 eV from experiment[29], and our calculated value of the electron effective
mass is 0.07me, which agrees well with the range of values cited in experiment of
0.04-0.07me[133, 29]. This close agreement with experiment supports the conclusion
that our presented calculation is sufficiently accurate. We then confirmed that the
ordering is reproducible via other approaches of computing GW , the COHSEX and
GPP methods. Our calculation of the possible deviation of the LDA basis from
the true quasiparticle states indicated that the use of the LDA states is accurate to
within 0.1 percent, so self-consistency in the wavefunctions would not appreciably
change our results.

The reversal of the band inversion predicted in DFT can be understood in terms
of the band gap problem. The underestimation of the band gap places the s-like
Γ6 state too low in energy, such that it becomes occupied due to the strength of its
change in energy upon incorporation of the relativistic mass correction and Darwin
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Figure 3.1: The fully-relativistic LDA bandstructure of β-HgS. The states, from low
energy to high, are Γ6, Γ8, Γ7.

terms captured in scalar- and fully-relativistic pseudopotentials. GW calculations
raise its energy sufficiently to place it above the Fermi level.
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Figure 3.2: The quasiparticle bandstructure of β-HgS, computed at the FR-GW level
using the contour deformation method. The bands at the Γ point are labelled by
their irreducible representation.
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Figure 3.3: U
(1)
nmk, the first-order correction to each COHSEX wavefunction, within

the LDA basis. The n’th COHSEX state (columns) is the n’th LDA state, plus
the sum of each contribution of the remaining LDA states (rows), the magnitude of
which is indicated by the heat-map. The maximum off-diagonal contribution is less
than 0.1 percent.
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Figure 3.4: The non-relativistic LDA bandstructure of β-HgS. The states at the
Γ point are ordered Γ15, Γ1, from occupied to unoccupied, as in a conventional
zincblende structure.
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Figure 3.5: The scalar-relativistic LDA bandstructure of β-HgS. The degenerate
states at EF = 0 belong to the Γ15 representation, and the lower occupied state
belongs to Γ1.
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Chapter 4

The Quasiparticle Bandstructure
of Bi2Se3

4.1 Introduction

The narrow bandgap semiconductor Bi2Se3 is a prototypical topological insulator,
where the surface states are protected against scattering by time-reversal symme-
try[3]. While Bi2Se3 has a small bandgap compared to other semiconductors, its
value of 0.2 to 0.3 eV is large relative to the set of experimentally verified topological
insulators, which range from under 10 meV to 0.3 eV[3], though some systems are
predicted to have non-trivial topology and a bandgap on the order of 1 eV[53, 109].

The large spin-orbit splitting of the Bi 6p electrons inverts the positive and neg-
ative parity p-like states (from the Bi 6p and Se 4p orbitals) near the band gap,
creating a nontrivial value of the Z2 topological index[134]. The band gap is caused
by the level-repulsion of the now-inverted states at the Γ-point, mixing the character
of the conduction and valence states within a neighborhood of Γ[131].

4.2 Summary of previous experimental results

The electronic structure of materials can be determined experimentally by various
means. Angle-resolved photoemission spectroscopy (ARPES) gives direct access to
the excited quasiparticle states emitted from a particular surface, allowing for the
experimental determination of the quasiparticle bandstructure for a two-dimensional
projection of some path in the Brillouin zone. Scanning tunneling spectroscopy (STS)
allows for the measurement of the density of states, which can give insight into the van
Hove singularities and band edges of a material. Optical transmission passes infrared
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or optical beams through a bulk sample of the material of interest, sweeping through
frequencies until the beams reach the absorption edge. Magneto-optics can further
resolve details of the structure of the band edges. We note that ARPES and STS are
measurements of surfaces, while optical transmission measures the optical gap. The
optical gap is approximately the quasiparticle gap when the excitonic binding energy
is sufficiently small, as is often the case for three-dimensional semiconductors.

ARPES measurements of n-doped Bi2Se3 indicate a “camel-backed” or “M”-
shaped bulk valence band and a parabolic bulk conduction band, along with a Dirac
cone from the topologically non-trivial surface states. The presence of band-bending,
highly doped samples via Se vacancies, and access only to surface bandstructures
makes interpreting ARPES results for bulk properties difficult. However, with a
wide range of photon energies and surfaces, Necheav, et al. found a direct gap of
0.33 eV through multiple ARPES measurements[87]. Further, STS measurements
by Kim, et al, estimate a band gap of 0.3 eV.

Optical transmission from Black, et al. [9] indicate a room-temperature optical
gap of 0.36 eV for Bi2Se3. This group also measured optical gaps (also at room
temperature) for the similar materials As2Te3, Sb2S3, Sb2Se3, Sb2Te3, Bi2S3, and
Bi2Te3, with all values agreeing well with reported results through present: 1, 1.7,
1.2, 0.3, 1.3, and 0.15 eV, respectively. We note that contemporaries often measured
an optical gap in the range of 0.15 - 0.2 for Bi2Se3[72].

Magneto-optic measurements from Piot, et al.[88] and Martinez[79] confirm the
nearly parabolic features of the valence and conduction bands near the bulk band
gap, as suggested by ARPES[87]. However, these measurements find a small band
gap of 0.2 eV.

4.3 Summary of previous theoretical calculations

DFT bandstructure

While a difference of 0.1 eV in reported energy gaps for most systems would not be
significant, this error is on the order of the gap of Bi2Se3, and is either 50 percent or
33 percent of the value. This scale of discrepancy is also within the usual systematic
error of the GW method, as well. We will now discuss that there is significant
difficulty in the calculation of the DFT bandstructure when using pseudopotentials,
as well.

Bi2Se3 has been found to have a fully-relativistic DFT band gap value that is
extremely sensitive to the choice of functional and the use of relaxed or experimen-
tal geometries[100], with a plane-wave basis pseudopotential code, Abinit[38]. The
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position of the conduction band minimum was found to vary in the LDA depending
on the use of experimental or relaxed coordinates. The gap at Γ, which in DFT is
not the fundamental gap, for the relaxed structure is about 100 meV larger in the
LDA than the experimental structure. The gap at Γ has the opposite behavior in
the PBE, where relaxation reduces the gap by approximately the same amount [100].
The LDA and PBE bandstructures with the experimental coordinates also disagree
somewhat, with LDA having a more deeply camel-backed valence band and thus a
larger gap at Γ by roughly 100 meV.

With an all-electron approach to DFT, there is still some sensitivity. Nechaev,
et al. found band gaps at Γ for unrelaxed LDA (0.5 eV), relaxed LDA (0.4 eV),
unrelaxed GGA (0.4 eV), and relaxed GGA (0.3 eV). In either case of LDA or GGA,
relaxing reduces the band gap, unlike in the pseudopotential method. The other
trends are similar, though with a systematically smaller value of the gap by about
100 meV.

GW quasiparticle bandstructure

The first approach to calculating the quasiparticle bandstructure used the “GW+SOC”
method, where calculations were first performed by ignoring spin-orbit coupling. Af-
ter the quasiparticle energies are calculated in this manner, the spin-orbit coupling
is added as a perturbation, which can be solved to arbitrary order in perturbation
theory through exact diagonalization. Yazyev et al. performed such a calculation
with BerkeleyGW, beginning from an LDA-based plane-wave pseudopotential mean-
field calculation, and found a direct gap of 0.33 eV, with the valence and conduction
bands being parabolic[131].

An additional calculation using the GW+SOC approach, using the all-electron
code SPEX[33], though, found a vanishing band gap. Further, the bands appeared
to become linear, which is unexpected for the bulk. The FR-GW calculation in this
work, however, gave the reasonable values of 0.2 eV. Interestingly, the GW+SOC
calculation of Bi2Te3 was within 10 meV of the FR-GW result[2].

The FR-GW calculation from Fœrster et al. begins with a Gaussian basis and
an LDA exchange-correlation functional and arrives at a direct bulk band gap at Γ,
of 0.2 eV[32].

A plane-wave pseudopotential calculation with a PBE functional arrives at a FR-
GW gap of 0.36 eV[66] using the YAMBO code[75]. The quasiparticle bandstructure
in this work suggests a direct gap at Γ, though the resolution is not fine enough to
determine if the bands have a parabolic dispersion.
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4.4 Quasiparticle bandstructure as computed

within BerkeleyGW with spinor functionality

Due to the sensitivity of this system on the functional and the geometry, in our study
of the bulk band gap of Bi2Se3, we use the experimental geometry. For consistency
with the majority of previous calculations in the literature, we use the LDA func-
tional. We use a Brillouin zone sampling of 8x8x8 in constructing the charge density
as well as the dielectric function. We use a 160 Ry cutoff for the planewave basis for
our wavefunctions and a 25 Ry cutoff for the dielectric function. The polarizability
(“Chi”) summation uses 1000 unoccupied bands, and the Coulomb-hole (“COH”)
summation, 1254 bands.

We compute the bandstructure in the neighborhood of the Γ-point by computing
quasiparticle energies at the Γ-point and at particular points along the Γ-to-L and
the Γ-to-Z high-symmetry lines. The Γ-to-L direction has energies computed at 1

16
L,

1
8
L, 3

16
L, and 1

4
L. The Γ-to-Z direction has energies computed at 1

16
Z, 1

8
Z, 3

16
Z, 1

4
Z,

1
2
Z, and Z. The whole Γ-to-Z line is represented as it is a much shorter path in the

Brillouin zone than the Γ-to-L line. We then plot interpolated curves as estimates to
the quasiparticle bandstructure. The LDA bandstructure interpolated in a similar
fashion shows a high agreement with the bandstructure calculated explicitly at each
k-point. The FR-GW bandstructure along the Γ-to-Z line suggests that the band-
diagonal approximation is not generally sufficient, as is apparent from the appearance
of small dimples in both the conduction and valence bands in a very narrow region
about Γ (Fig. 4.1).

We find a direct bulk band gap of 0.38 eV in the band-diagonal approximation,
which is in good agreement with values reported by ARPES[87] (0.332 eV) as well as
STS[57] (0.3 eV). Optical measurements of the gap, however, report a smaller value
of 0.2 eV[88] but confirm a direct band gap at Γ.

We further investigate the effect of including band-offdiagonals in the calculation
of the self-energy matrix elements:

Enk = εlkδlm + eig (〈lkα| (Σαβ (Epk)− V xcδαβ) |mkβ〉) , (4.1)

where “eig” denotes the eigenvalues of the matrix constructed from the self-energy
in the Kohn-Sham orbital basis, the band n is a member of the set of bands spanned
by the indices l and m, and the energy Epk at which the self-energy operator is
either the row or column, as the difference in eigenvalues from this choice and a
truly Hermitian construction is found to be well under 1 meV.

We find that the choice of the four valence bands and two conduction bands
near the Fermi energy is sufficient to correct the deficiencies in the bandstructure
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when using the LDA eigenfunctions as the quasiparticle wavefunctions (Fig. 4.2).
The necessity of calculating a matrix for the self-energy can be seen by noting the
strength of the level repulsion – and character of the wavefunctions – depends on
the band gap value[131]. When changing the gap, as in a GW calculation, the
wavefunctions in the region where the character is inverted necessarily change along
with the extent of the region in the bandstructure with inverted orbital character.

We note that in evaluating the effects of expanding the basis for the quasiparticle
wavefunctions, we evaluate the self-energy at the frequencies consistent with the
previous basis. That is, the first correction to the basis diagonalizes the self-energy
evaluated at the Kohn-Sham eigenvalues. The matrix elements in the diagonal basis,
then, are not strictly quasiparticle energy eigenvalues. However, since there are no
off-diagonal terms for the self-energy at the Γ-point, the self-consistently calculated
quasiparticle energies must match exactly at the Γ-point. Assuming that the off-
diagonal matrix elements of the self-energy for the states away from the Γ point are
weakly sensitive to corrections to the Kohn-Sham eigenvalues, we may simply take
the eigenvalues E0 calculated from diagonalizing Σ(ω = εKS) and rigidly shift them
such that EQP

nk ≈ E0
nk + (E1

nΓ − E0
nΓ). The eigenvalues E1

nk are the corrections to E0

by way of Newton’s method, which itself is the lowest-order correction to evaluating
the self-energy operator at the Kohn-Sham eigenvalues. Equivalently, we may keep
the valence bands fixed and just correct the conduction bands with E1

ck ≈ E0
ck + ∆,

where ∆ is the increase of the band gap from using values E0
Γ to E1

Γ.
Since the conduction and valence bands are now unambiguously parabolic, we

compute the effective mass. We calculate an effective mass of 0.19me for the holes
and 0.14me for the electrons. This compares favorably with the experimentally
determined effective masses, from magneto-optics, of 0.14me for electrons and holes,
in Ref. [88]. We note that our determination of effective masses agree despite the
discrepancy in the value of the band gap.

Finally, we also calculate the band gap at the Γ-point through the use of the full-
frequency treatment of the dielectric function, via the contour deformation method[37]
and a low rank approximation[12]. We used 15 imaginary frequencies, 200 eigen-
vectors in a reduced basis scheme, corresponding to roughly 10 percent of the full
spectrum, a frequency spacing of 0.25 Ry, with frequencies calculated out to 10 Ry.
The dielectric cutoff was again 25 Ry, with 1000 empty bands in the Chi summation,
and the Coulomb-hole summation had 1254 empty bands. We found a larger gap
than in the Hybertsen-Louie GPP, with a value of 0.408 eV. Usually, redistribution
of the weight of the screening from a single frequency gives a lower gap. This increase
of the gap relative to GPP is understood as a consequence of the inverted nature of
the bandstructure.
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Figure 4.1: The electronic bandstructure of Bi2Se3 along the Γ to L and Γ to Z
directions, including spin-orbit coupling. The quasiparticle bandstructure, computed
from FR-GW , is in solid lines, and the FR-LDA bandstructure is in dashed lines.
The bandstructure is strongly camel-backed in the FR-LDA but becomes parabolic
in the FR-GW .
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Figure 4.2: The electronic bandstructure of Bi2Se3 along the Γ to L and Γ to Z
directions, including spin-orbit coupling. The quasiparticle bandstructure computed
from FR-GW with off-diagonal entries in the self-energy is in dark magenta, and the
quasiparticle bandstructure without off-diagionals is in lighter magenta and arbitrar-
ily shifted downward by 0.05 eV for clarity. Besides the change in band curvature,
note that the small, spurious dimples present in the diagonal calculation along the
Γ to Z direction are eliminated when including off-diagonal matrix elements in the
self-energy.
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Chapter 5

The Geometry and Electronic
Structure of Iridium adsorbed on
Graphene

5.1 Introduction

The sublattice symmetry of graphene results in a Dirac-like low-energy Hamilto-
nian about the K and K’ points in its Brillouin Zone, which gives it the remarkable
electronic properties of ultrarelativistic chiral Dirac fermions, such as ballistic trans-
port and the anomalous Integer Quantum Hall Effect[17]. Much experimental and
theoretical work has been devoted to the manipulation of graphene to modify its
electronic structure in novel ways.

A subset of this work is to investigate how adatoms and other adsorbates modify
various electronic properties of graphene. The electronic structure of graphene with a
dozen different adatoms were calculated in Ref. [19], finding slight modification to the
electronic density of states (DOS) with alkali adatoms and considerable modification
to the DOS with transition metal adatoms. In particular, the linear DOS in the
vicinity of the Dirac point was largely obscured by the d-like atomic states from
transition metal adatoms Ti, Fe, Pd, and Au[19].

Theoretical studies of Pd dimers adsorbed onto graphene have shown potential
for hydrogen storage, as well. Pairs of hydrogen atoms prefer to dissociate and bond
with the Pd dimers instead of forming a hydrogen bond[69]. Similar results have
been reported for larger Pd clusters[11].

Further theoretical work[16, 71, 135, 68, 28, 96] has focused on enhancing the
weak spin-orbit coupling of graphene by using adatoms to break symmetries, as well
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as the intrinsic contribution of the atomic spin-orbit coupling from sufficiently heavy
metallic adatoms. In particular, calculations with Au[71], W[135], Os[47], Ir[47],
and In[126] adatoms suggested relatively large spin-orbit gaps with non-trivial band
topologies.

Attempts at realizing these exotic electronic phases with In adatoms[54] and W
adatoms[102] have shown null results, however. Initial theoretical work suggested
that the adsorption of In onto the hollow site of graphene allows for a fortuitous can-
cellation of the Rashba spin-orbit coupling[126], thus allowing an induced quantum
spin Hall effect. However, enhancement of the Coulomb scattering from the de-
fect rendered any possible non-trivial topology unobservable. Refined first-principles
scattering calculations using the quasiparticle band structure with spin-orbit cou-
pling treated non-perturbatively[102] have supported this interpretation.

Additionally, the work with Os and Ir adatoms noted that monomers form spin
moments of 0.45 µB and 0.30 µB, respectively[47], breaking the time-reversal in-
variance required for the quantum spin Hall effect. Dimerizing the transition metal
atoms with Cu was proposed to eliminate magnetic moments in the system and thus
preserve time-reversal symmetry[47].

Our experimental colleagues, Aaron J. Bradley and Miguel Ugeda-Moreno in
the Michael F. Crommie group at UC Berkeley, used vapor deposition to adsorb
Ir atoms onto graphene and analyzed the electronic features through STS measure-
ments. They found a tendency of the Ir atoms to form small clusters with an average
size of two atoms per cluster, and a large peak in the LDOS at the Dirac point.
Based on these experimental results, we perform density functional calculations to
further understand the geometry of the adsorbed Ir atoms as well as their electronic
structure. We present evidence that these Ir dimer adsorbates bind in a horizontal
configuration along the carbon-carbon bond sites, in contrast with the prediction of
vertical dimers binding to the hollow site in a ring of carbon atoms[47]. We find that
the 5d states from the Ir atoms contribute to the peak in the LDOS.

5.2 Experimental results

We briefly summarize the experimental results by our collaborators. All STM and
STS measurements were carried out at T = 7K in an ultra-high vacuum (UHV) envi-
ronment using a homebuilt scanning tunneling microscope. Graphene was grown on
Pt(111), and Ir was deposited on cold samples using an Omicron e-beam evaporator.
The maximum temperature of the sample during Ir evaporations ranged between 8K
and 12K, with different temperatures leading to qualitatively similar coverages.
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Fig. 5.2 (upper left) shows a typical STM image of Ir clusters on bare Pt(111)
and graphene / Pt(111). The graphene patch is outlined with a dotted green line.
The Ir clusters appear as orange protrusions, with the clusters on the graphene patch
appearing significantly larger than those on the bare Pt(111) surface.

Unlike on Pt(111), the size of the clusters on the graphene surface is not homo-
geneous, likely indicating a varying number of atoms per cluster. STS curves from
three different Ir clusters on graphene are shown in Fig. 5.2, upper right. On each
of these clusters, there is a feature which occurs at around +0.33 V, which is similar
in energy to the Dirac point of graphene on Pt(111)[113, 118], as well as the onset
of an unoccupied Pt(111) surface state[128]. The STS curves also exhibit a feature
at higher energy, centered at +1.2 V.

A conductance map taken at Vbias = +0.33 V, the energy of the large STS feature,
is shown in Fig. 5.2, lower left. As can be seen, a number of clusters exhibit the
spectral feature at +0.33 V.

To better understand the distribution of clusters on the surface, we estimate the
atom density (Fig. 5.2, lower right), which plots the number of clusters as a function
of the area of a graphene island for a given set of evaporation parameters. The black
dashed line is the expected number of clusters if all were indeed single Ir atoms,
equal to the density of Ir atoms on the bare Pt(111) surface. The red dashed line is
the expected number of clusters if all were dimers. The majority of our data points
fall closer to the dimer line, leading us to believe that Ir adatoms are mobile on
graphene at temperatures as low as 8K and cluster with a small number of atoms,
likely forming dimers and trimers. The mobility of Ir adatoms on graphene may also
be affected by the superlattice formed between graphene and the Pt(111).

5.3 Calculation methods

We perform ab initio calculations using Quantum ESPRESSO [35]. We construct
a 4x4 supercell for the single adatom and vertically-oriented dimer systems, and a
5x5 supercell for the horizontally-oriented dimer, with a vacuum of 15 Å in all cases,
as measured from the topmost Ir atom in the system. We use Vanderbilt ultrasoft
fully relativistic pseudopotentials[120][24], a 40 Ry planewave kinetic energy cutoff,
and a 381 Ry charge density planewave cutoff. We use LDA pseudopotentials for C
and Ir, which in the context of graphene adsorbed on a Ir (111) surface gives similar
results as compared with van der Waals functionals [10], and is the choice consistent
with Ref. [47]. The metallic bonding of Ir to graphene is adequately described in
the LDA, despite the systematic overestimation of binding. We use the Methfessel-
Paxton smearing, appropriate for metals, of width 0.005 Ry. The Monkhorst-Pack
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grid for sampling the Brillouin zone was 9x9x1 when constructing the charge density.
For details on the DOS calculations, see section 5.5.

We find a theoretical carbon-carbon distance of 1.417 Å, which agrees well with
the experimental value of 1.42 Å, by relaxing the primitive unit cell for graphene.
We then calculate the binding energy of a single adatom according to ∆E = Etot −
Egr − EIr, where Etot is the energy of the Ir adatom-on-graphene system, Egr is
the energy of an isolated graphene supercell, and EIr is the energy of an isolated Ir
atom. For the adsorbed dimer systems , we calculate the binding energy per Ir atom:
∆E = 1

2
(Etot −Egr − 2EIr), with the Etot now referring to the Ir dimer-on-graphene

system. The value of Egr is scaled appropriately for the size of the supercell under
consideration.

We note that we are ignoring the Pt(111) substrate. We expect that the graphene-
Pt substrate interaction will not by itself introduce a gap in the graphene Dirac
cone[138], with the substrate merely introducing hybridization effects that obscure
the usual linear dispersion and also raising the Fermi level. We implicitly take
into consideration the dominant physical effect of the substrate, which is to fix the
positions of the carbon atoms in the graphene sheet. We therefore do not relax
the carbon atoms when determining the relaxed coordinates of the Ir atoms. In
comparing our theoretical calculations to experiment, we have different values of
Fermi energy due to the neglect of the Pt substrate, so we instead choose to compare
theoretical and experimental spectra near the estimated Dirac point energy.

Hopping matrix elements between Ir atoms in neighboring supercells, computed
in Wannier90[85], were found to be at most 2 meV, indicating that the wavefunctions
are well-contained in a single 4x4 supercell. The small intercellular interaction was
confirmed by a 6x6 supercell calculation for the H1 −H2 system, as the adsorption
energy per Ir atom changes by only 7 meV, relative to the 5x5 supercell.

5.4 Theoretical geometry

Single adatom

We relaxed the Ir adatom in the bridge (“B”), hollow (“H”), and top (“T”) sites
(shown in Fig. 5.1). We find that the Ir atom favors the bridge site, in agreement
with previous calculations using PBE and van der Waals functionals[89], in addition
to calculations of single-adatom Pd.[19]. Ref [47] finds a preference for the H site
using LDA and not including corrections to the dipole interaction with periodic
images in the out-of-plane direction. We reproduce this result when we perform the
single atom relaxation neglecting the correction to the dipole interaction. Table 5.1
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Figure 5.1: The adsorption sites considered. Bridge (B1, B2), Hollow (H1, H2), and
Top (T 1, T 2). In the monomer and vertical dimer cases, only B1, H1, and T 1 are
considered and are referred to as B, H, and T , respectively.

summarizes the binding heights h, adsorption energies ∆E, diffusion barries EDiff,
magnetic moment per supercell m, and effective charge Q for the single Ir adsorption.
The estimate of the effective charge indicates a donation of electrons from Ir to the
graphene sheet, while the magnetic moment per supercell of nearly 1 µB is consistent
with an effective charge of five, indicating an uncompensated additional spin at the
Ir atom.

We approximate the diffusion barrier across a high-symmetry point as EDiff =
Emax

a −∆E, the difference in energy from the lowest-energy geometry to the energy
of the site under consideration[19]. The most appropriate approximation of the
diffusion path would be one that is calculated by the nudged elastic band method to
explore the full energy surface for all possible directions. However, we assume that
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Config. h (Å) ∆E (eV) EDiff (eV) m(µB) Q(e)
Bridge 1.95 1.86 – 0.95 4.88
Hollow 1.70 1.13 0.73 0.61 5.32
Top 1.93 1.37 0.49 0.99 4.55

Table 5.1: For the Hollow, Bridge, and Top configurations, we calculate the heights
h, the binding energy ∆E of the single Ir atom adsorbed to graphene in the LDA,
the diffusion barrier, the magnetic moment in the supercell, and the estimation of
the local charge of the Ir atom.

diffusion is likely to occur nearly along high-symmetry directions, and approximate
the barrier to diffusion along a direction simply to be the difference in energy of
the initial and final configurations. The estimated diffusion barriers of 0.73 eV and
0.49 eV for the top and hollow sites, respectively, are well-above room temperature
and are on the order of that of Fe adsorbed on graphene[19].

We can qualitatively determine whether adatoms on graphene tend to form single
adatoms or clusters by comparing the binding energy per atom ∆E to the bulk
cohesive energy per atom Ec. A ratio of ∆E/Ec ∼ 1 indicates a strong adsorption
energy of the adatom and hence a tendency to bind to graphene as an adatom;
the opposite limit indicates a tendency to cluster. However, the LDA overestimates
cohesive energies for solids, particularly 5d transition metals[125], so we instead use
the experimental value of Ec = 6.94 eV[125]. With the adsorption energy at
the bridge site ∆E = 1.86 eV, we estimate the ratio to be 0.268. Though this
ratio may still be overestimated due to the use of the LDA for the calculation of
the binding energy, we compare this result to the value of 0.307 reported for Al[19],
which is also known experimentally to form clusters with three atoms when adsorbed
to graphite[34][81]. Based on this, we would propose that Ir tends to cluster on
graphene, which, as shown in Section 5.2 is seen in experiment.

Dimer

The horizontal dimer at the bridge sites B1 and B2 (see Fig. 5.1) has the largest
binding energy for any of the considered dimer configurations, so it is the most likely
orientation for the observed two-atom clusters at low temperature. The bonding
distances for the horizontal dimers are longer than in isolation, 2.23 Å[55], and are
on the order of the C-C bond length (2.46 Å). Indeed, we see that the bridge-site
dimer has the shortest Ir-Ir distance, explaining its favorable adsorption energy, as
it is stretched from its free value the least.
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Config. h1=2

(Å)
dIr-Ir

(Å)
∆E
(eV)

EDiff

(eV)
µx(µB) µy(µB) µz(µB) Q1=2(e)

B1 −
B2

2.05 2.32 3.36 – 0.00 1.06 1.29 4.99

H1 −
H2

1.88 2.46 2.85 1.02 0.00 0.00 1.32 5.68

T 1 −
T 2

2.10 2.45 3.19 0.34 0.23 0.23 1.28 5.04

Table 5.2: For the Hollow, Bridge, and Top configurations in which the Ir atoms are
placed at the B/H/T 1 and B/H/T 2 sites, we calculate the relaxed z-coordinates
of each Ir atom, the adsorption energy ∆E of the horizontally-oriented Ir dimer
adsorbed to graphene in the LDA, the estimate of the diffusion energy, the cartesian
components of the magnetic moment in the supercell, and the local charge for each
Ir atom.

The estimated diffusion barrier is computed for the dimer as a whole, defined
from EDiff = 2 (Emax

a −∆E). The hollow site has an estimated diffusion barrier
of 1.02 eV, indicates a strong preference to diffuse through the top site, with an
estimated diffusion barrier of 0.34 eV, which may allow a pathway to form larger
clusters. The estimated charge per Ir atom, 4.99, is slightly larger than its single-
adatom value, 4.88, indicating that less charge is transferred to the graphene sheet
due to the presence of the dimer bond. The magnetic moment per unit-cell is conse-
quently increased to over 1 µB per Ir atom. The magnetic moment now has a large
in-plane component in addition to the out-of-plane component, due to the in-plane
dimer bond defining an additional axis for the magnetic moment.

The binding energies per Ir atom in the vertical configuration are nearly identical
for the B, H, and T positions, with 3.11 eV for B and T , and 3.14 eV for H, giving
small diffusion barriers of 0.06 eV, comparable to room temperature. The dimer
bond lengths are nearly the same as the isolated dimer bonding length of 2.17 Å.
The distances from the bottom-most Ir atom in the dimer from the graphene sheet
(hb in Table 5.3) are larger than the single Ir adatom case.
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Config. hb
(Å)

dIr-Ir

(Å)
∆E
(eV)

EDiff

(eV)
mb(µB) mt(µB) m(µB) Qb(e) Qt(e)

Bridge 2.41 2.19 3.11 0.06 0.58 0.67 2.07 5.08 5.11
Hollow 2.29 2.19 3.14 – 0.54 0.77 2.00 5.03 5.13
Top 2.40 2.18 3.11 0.06 0.58 0.68 2.05 5.05 5.08

Table 5.3: For the Hollow, Bridge, and Top configurations, we calculate the relaxed
z-coordinates, the adsorption energy ∆E of the vertically-oriented Ir dimer adsorbed
to graphene in the LDA, the estimate of the diffusion energy, the (out-of-plane)
magnetic moments for each Ir atom, the total magnetic moment in the supercell,
and the local charge for each Ir atom.

5.5 Electronic Structure

Single adatom

We calculate the DOS of pristine graphene in a primitive unit cell, with a 96x96x1
Monkhorst-Pack grid, which is dense enough to resolve the zero DOS at the Dirac
point energy. We then calculate the DOS for the single adatom atop a 4x4 supercell
of graphene with a 24x24x1 grid, giving an overall sampling density equivalent to
that of pristine graphene. We use the peaks in the DOS from the weakly-hybridized,
low-lying sp2 states to match with that of pristine graphene (Fig. 5.3) and thereby
provide an estimate to the Dirac point.

For comparison with the experimental STS spectra, we calculate the LDOS by
integrating the charge density 4 Å above the Ir atoms. We use Gaussian functions
with a smearing of 75 meV as an approximation to the delta function in energy. The
actual tip to atom distance is estimated at 5 to 10 AA.

The LDOS (Fig. 5.4) shows a significant peak placed about 1 eV above the Dirac
point energy, with a much weaker peak at the Dirac point. This indicates that the
experimentally observed peaks (Fig. 5.2) do not come from single adatoms. By
comparing the LDOS with the partial density of states resolving the s, p, and d Ir
states (Fig. 5.5), we see that the Ir s- and p-states give the most significant contri-
bution to the large peak, with the d-states being localized below the 4 Å simulated
tip placement.
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Dimer

We similarly compute the DOS, LDOS, and PDOS for the adsorbed dimer system.
Again, we see in the DOS (Fig. 5.6) that the low-lying sp2 states from graphene
are only weakly hybridized with the Ir states and therefore allow us to estimate the
Dirac point energy.

The LDOS places a large peak near the estimated Dirac point energy (Fig. 5.7),
as observed in experiment. We are therefore confident that the structure of the Ir
clusters are indeed a pair of bridge-site Ir adatoms in the horizontal configuration.
Comparing the LDOS with the PDOS (Fig. 5.8), we see that the features of the
LDOS appear to arise from both the s- and p-states. (Though the d-states contribute
the most states, they do not extend out appreciably to 4 Å.)

Fig. 5.9 directly compares the measured dI/dV spectrum with the calculated
LDOS, plotted in arbitrary units. We see good agreement with the placement of the
central peak, which we understand to be the Ir s- and p-states. The higher-energy
feature also seems to be reproduced, though within a significantly red-shifted energy
range, likely due to DFT underestimating such excited-state features. The peaks
below the estimated Dirac point energy that are present in the calculated LDOS are
suppressed in the measured spectrum. Otherwise, we generally have a satisfactory
agreement between experiment and theory.

5.6 Conclusion

We find that Ir atoms deposited on graphene on Pt(111) tend to form clusters, even
at low temperatures. By calcuting the areal density of the observed clusters on the
graphene flake, we estimate the typical size of the clusters to be composed of two
Ir atoms. Through ab initio density functional calculations, we predict that the Ir
dimer is oriented horizontally, at the “Bridge” sites of the graphene lattice. We
find peaks in the experimental and theoretical LDOS near the estimated energies
of the Dirac points and attribute them to the Ir dimer s- and p-states. We further
computed the LDOS for the single adatom and found it to have significantly different
peak locations and amplitudes than that of the clusters. In either the dimer or single
adatom case, each contributes nearly 1 µB per Ir atom per supercell, though the spin
density is highly localized around the Ir atoms.
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Figure 5.2: Top left: The STM topography of Ir clusters on bare Pt(111) and
graphene on Pt(111). Top right: The conductance map of the same region as the
top light. Bottom left: The conductance maps for the indicated Ir clusters in the
inset. Bottom right: The number of clusters as a function of the area of the graphene
island. Measurements and figures by Aaron J. Bradley, Miguel Moreno Ugeda, and
Michael F. Crommie.
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Figure 5.3: The comparison between the DOS for pristine graphene and for the single
Ir adatom on graphene. The peaks from about -10 to -15 eV are matched to provide
an estimate for the Dirac point energy.
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Figure 5.4: The LDOS for the single Ir adatom on graphene, measured 4 Å from the
Ir atom.
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Figure 5.5: The PDOS for the single Ir adatom on graphene. We see large peaks
from the localized Ir d-states, and the large peaks from the s- and p-states above the
estimated Dirac point energy.
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Figure 5.6: The comparison of the DOS for a pristine sheet of graphene and an Ir
dimer adsorbed on graphene, in a 5x5 supercell. The peaks from -10 to -15 eV are
matched to determine an estimate for the Dirac point energy.
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Figure 5.7: The LDOS for the Ir dimer on graphene, with the zero of energy as the
estimated Dirac point energy. The states are 4 Å above the Ir atoms.
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Figure 5.8: The PDOS for the Ir dimer on graphene, with the zero of energy as the
estimated Dirac point energy.
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Figure 5.9: Experimentally determined dI/dV for an Iridium cluster on graphene
on a Pt(111) substrate (left). Calculated LDOS, 4 Å above a horizontally-oriented
Ir dimer across the graphene B sites. The energy is plotted relative to the estimated
energy of the Dirac point.
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Appendix A

Variational Derivative of G

In Many-Body Perturbation Theory, we arrive at the need to relate the two-particle
Green’s Function to the one-particle Green’s Function. This can be done through
Feynman diagrams or the Schwinger approach; we choose the latter option, which
simply requires taking a few derivatives.

In the Schwinger approach, we introduce a perturbing potential, φ, to the system.
We take this potential to be spatially non-local so that we can use the final result in
both the derivation of the Hedin equations as well as the Bethe-Salpeter equation.
The potential also is entirely electrostatic in nature. It thus introduces the perturbing
term in our Hamiltonian,

H1(t) =

∫
d2d3 ψ̂†γ(2

+)φ(23)δ(t− t2)δ(t− t3)δγζψ̂ζ(3). (A.1)

We now need to take the Green’s Function to the interaction picture picture,
where the ground state is now |ΦN

0 〉, by introducing the time development operator

Ŝ = exp

{
−i
(∫ +∞

−∞
dt H1(t)

)}
. (A.2)

The Green’s Function now is

Gαβ(11′) = −i
〈ΦN

0 |T
[
Ŝψ̂α(1)ψ̂†β(1′)

]
|ΦN

0 〉

〈ΦN
0 |T

[
Ŝ
]
|ΦN

0 〉
. (A.3)

A variation in the perturbing potential, δφ, will create a variation in the Green’s
Function
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δGαβ(11′) = (−i)2

∫
d23 δφ(23)

〈ΦN
0 |T

[
Ŝψ̂†γ(2

+)ψ̂γ(3)ψ̂α(1)ψ̂†β(1′)
]
|ΦN

0 〉

〈ΦN
0 |T

[
Ŝ
]
|ΦN

0 〉

− (−i)Gαβ(11′)

∫
d23 δφ(23)

〈ΦN
0 |T

[
Ŝψ̂†γ(2

+)ψ̂γ(3)
]
|ΦN

0 〉

〈ΦN
0 |T

[
Ŝ
]
|ΦN

0 〉
. (A.4)

Recognizing that the first term on the right-hand side in Eq. A.4 is a two-particle
Green’s Function G(2), apart from the multiplication by the δφ and the integration
over its coordinates, we have the variational derivative

δGαβ(11′)

δφ(23)
= −G(2)

αγβγ(13, 1′2+) +Gαβ(11′)Gγγ(32+). (A.5)

In deriving the self-energy, we introduce a local perturbing potential φ(2), so we
just enforce φ(2) = φ(23)δ(23), and arrive at

δGαβ(11′)

δφ(2)
= −G(2)

αγβγ(12, 1′2+) +Gαβ(11′)Gγγ(22+). (A.6)

By recognizing Gγγ(22+) as the density we see clearly that the variational deriva-
tive with respect to the local perturbing potential is some additional term beyond
the Hartree approximation. We note that in the context of non-collinear spins, this
result was first derived in Ref. [4], though now generalized to include non-local per-
turbations. (We note that time-reversal symmetry-breaking magnetic perturbations
can be included in the previous derivation; this is done in [56].

We may eliminate φ altogether (thereby implicitly taking the φ→ 0 limit) in Eq.
A.6 by using the total potential V = φ+ vH, Eqs. 1.36, 1.4, and 1.37:

δGαβ(11′)

δφ(2)
= −

∫
d34 Gαη(13)

δG−1
ηκ (34)

δφ(2)
Gκβ(41′)

= −
∫

d345 Gαη(13)
δV (5)

δφ(2)

δG−1
ηκ (34)

δV (5)
Gκβ(41′)

= −
∫

d345 Gαη(13)ε−1(25)Γηκ(34; 5)Gκβ(41′). (A.7)
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This result is critical in the derivation of the Hedin-Lundqvist equations, where
we may now make the replacement∫

d2 v(12)G
(2)
αγβγ(12, 1′2)

= i

∫
d2 v(12)ρ(2)Gαβ(11′) +

∫
d2345 v(12)ε−1(25)Gαη(13)Γηκ(34; 5)Gκβ(41′)

= ivH(1)Gαβ(11′) +

∫
d345 Gαη(13)W (15)Γηκ(34; 5)Gκβ(41′). (A.8)
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Appendix B

Excitons with spin-orbit coupling
as a perturbation

The considerable increase in cost when using spinor wavefunctions in the Kernel and
Absorption executables in the BerkeleyGW software motivates us to determine the
inclusion of spin-orbit coupling in the excitonic states as a perturbation. This has
already been applied to the system MoS2 to tremendous success in Ref. [97], where
the derivation is first outlined. We consider the derivation in more detail and in a
more general context in the following.

We start with a set of N spinless orbitals φnk(r) and affix a two-component spinor
χ. As the full wavefunction must now be orthogonal to the others, we must use both
χ1 and χ2 for any of the original orbitals. The states φnk(r)χ1 and φnk(r)χ2 are now
considered to be two distinct states belonging to a set of 2N spin-orbitals. (The
pair χ1 and χ2 are any orthogonal pair of spinors, e.g., the up and down spinors.)
We use the convention in which each band index for the set of the 2N orbitals
is unique and the spin indices α, β, etc., refer to the α’th component of a single
two-component spin-orbital. With this convention, the aforementioned spin-orbitals
would be denoted φmkα(r) and φpkβ(r), and the energies Emk and Epk would be
degenerate and equal to the previous Enk.

In second quantized form, the single-particle electronic state φmkαe(re) is gener-
ated from

φmk(r)χαe = φmkαe(re) = 〈re|b†mkαe
|N, 0〉, (B.1)

with |N, 0〉 being the many-body ground state.
For completeness, we define hole states from

φ∗mk(r)χαh
= φ∗mkαh

(rh) = 〈rh|a†mkαh
|N, 0〉. (B.2)
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We treat the hole’s spin to be a coordinate independent from the electron, although
the two can technically be related through the application of the time-reversal sym-
metry.

We assume that we have already used the set of N spinless orbitals to construct
the BSE Hamiltonian and have found the NS = Nv × Nc × Nk eigenvectors ASvck
that diagonalize it. (The Nv and Nc states are the valence and conduction subsets
of the original N spinless orbitals, respectively. Afterward, however, we consider all
states to be in the doubled, spin-degenerate set.) We now consider the excitonic
wavefunction constructed from single-particle spin-orbitals.

In the Tamm-Dancoff approximation, the wavefunction for an exciton in state S
is written as

|S〉χαeχαh
=
∑
vck

ASvcka
†
vkαh

b†ckαe
|N, 0〉. (B.3)

In real-space, the wavefunction is

ΨS
αeαh

(re, rh) =
∑
vck

ASvckφ
∗
vkαh

(rh)φckαe(re). (B.4)

Note that the wavefunction has the same value throughout the (four-dimensional)
αe
⊗

αh space. The spinor is decoupled from the orbital coordinates, so we may
recreate the usual singlet and triplet states from the irreducible representations of the
total spin. Indeed, so far we are only re-enacting the process in Rohlfing-Louie[99],
without the added benefit of simplifying the form of the BSE Kernel. However, we
wish to preserve the basis of the product of single-particle spinors to consider matrix
elements of the spin-orbit coupling Hamiltonian.

The spin-orbit coupling Hamiltonian acts on a single-particle state locally, so
when we operate on the excitonic states, we consider

HSOC
αeβe;αhβh

(re, rh) =
∑

I 6=J=(e,h)

HSOC
αIβI

(rI)δαJβJ . (B.5)

In second quantized form, we operate with

ĤSOC
γeκe;γhκh

=
∑
nq;n′q′

HSOC
nq;n′q′

(
δγeκeanqγha

†
n′q′κh

+ δγhκhb
†
nqγebn′q′κe

)
HSOC
nq;n′q′ =

∫
d3rφ∗n′q′α(r)HSOC

αβ (r)φnqβ(r). (B.6)

In the basis of excitonic states, the matrix elements of ĤSOC are

〈S ′|χ†αe
χ†αh

ĤSOC
γeκe; γhκh

χβhχβe|S〉. (B.7)
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Expanding the excitonic states of an arbitrary matrix element gives

〈S ′|HSOC|S〉 =
∑

vck;v′c′k′

AS
′∗
v′c′k′A

S
vckH

SOC
nq;n′q′〈0|bc′k′αeav′k′αh

b†nqγebn′q′κea
†
vkβh

b†ckβe|0〉δγhκh

+
∑

vck;v′c′k′

AS
′∗
v′c′k′A

S
vckH

SOC
nq;n′q′〈0|bc′k′αeav′k′αh

anqγha
†
n′q′κh

a†vkβhb
†
ckβe
|0〉δγeκe .

(B.8)

By inspection, we have

〈S ′|HSOC|S〉 =

(∑
vcc′k

AS
′∗
vc′kA

S
vckH

SOC
c′k;ck

)
−

(∑
vv′ck

AS
′∗
v′ckA

S
vckH

SOC
vk;v′k

)
. (B.9)

This expression reduces to that used in Ref. [97] when considering only diagonal
matrix elements (S = S ′) and additionally imposing v′ = v and c′ = c:

〈S|HSOC|S〉 =
∑
vck

∣∣ASvck∣∣2 (HSOC
ck;ck −HSOC

vk;vk

)
. (B.10)

Thus the matrix may be constructed and subsequently diagonalized as in 1.2,
once one solves for the excitonic eigenstates from the BSE.
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