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2.1 Conceptual model of the wing disc Dpp patterning system. Arrows depict
biochemical interactions; lines ending in bars are regulatory inhibition, and
lines ending in circles regulatory activation. Dpp binds with its receptor Tkv
to form a complex DppTkv. DppTkv matures into a stabilized complex, Dpp-
Tkv* (DppTkv* may be considered an analog of a heteromeric ligand-type
I-type II receptor complex). DppTkv* may be formed either with catalytic
assistance from co-receptors Dally and Dlp [83], or via Dpp first binding to
co-receptor (Cr) (to form DppCr) and then transferring to receptors (regener-
ating Cr). DppTkv* induces phosphorylation of Mad to generate pMad. Dpp
receptor complexes undergo first order decay with recycling of Tkv. pMad sig-
naling inhibits the synthesis of both Pent and Brk. Brk inhibits one or more
transcription factors (TF, e.g. optomotor blind) that inhibit of the synthesis
of both Tkv and Cr. Pent also binds to Cr and drives its destruction. . . . . 14

2.2 Mathematical simulations of Dpp gradient scaling.(A) pMad apparent decay
lengths versus disc size for multiple genotypes including wildtype; pent+/−;
pent; ubi-tkv; uniform dally; ubi-tkv, unifrom dally; ubi-tkv, pent; and pent,
ubi-tkv, uniform dally. (B) The source-adjacent Dpp intrinsic decay length
(λintrinsic averaged over locations from x = 0 to x = 0.1xmax) for four geno-
types (wildtype, pent−/−, ubi-tkv and uniform-dally), was calculated and plot-
ted as a function of compartment size (xmax). λintrinsic captures the distance
over which boundary effects occur, so that source-adjacent λintrinsic/xmax pro-
vides a measure of the extent to which a gradient’s shape near the morphogen
source is strongly boundary-controlled. Transient rises in λintrinsic demon-
strate the effects of feedback downregulation of tkv and dally. . . . . . . . . 22
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2.3 Modeling Dpp gradient scaling in the posterior compartment of the wing disc.
(A-I) Time evolution of the Dpp morphogen gradient for different genotypes.
Graphs show distributions of free Dpp, Dpp-receptor and -coreceptor com-
plexes, and downstream signals and targets. x = 0 represents the antero-
posterior compartment boundary. The final graph in the simulation shows
the growth of the posterior compartment over time, and the legend shows
how time is represented by color in each of the graphs. (A) wildtype; (B)
pent+/−; (C) pent; (D) ubi-tkv; (E) uniform dally; (F) ubi-tkv, pent; (G) ubi-
tkv, unifrom dally; (H) pent, ubi-tkv, uniform dally; (I) pent with uniformly
expressed Pent. In (I), the two additional graphs in the bottom compare the
scaling and the pMad distribtuion at terminal time to show the uniformly
expressed Pent can rescue the scaling in pent mutant. . . . . . . . . . . . . . 23

2.4 The principle of pseudo-source-sink scaling illustrated with a simplified, steady-
state model, with only four free parameters, which includes only ligands,
receptors and ligand-receptor complexes; irreversible capture of ligands by
receptors; and downregulation of receptor synthesis. Values of LR (ligand-
receptor complexes) are normalized to Rmax (receptor concentration obtained
in the absence of ligand binding or feedback), and plotted against compart-
ment size normalized to the intrinsic decay length that would be observed in
the absence of ligand binding or feedback (λ0). (A) Distributions of ligand
([L]), receptor ([R]) and their complex ([LR]) are displayed under conditions
in which feedback regulation of receptor synthesis is present (”Feedback”) or
(”Absent”). The parameters used for these simulations were k = 1, φ = 1,
ξ = 1, γ = 0 (no feedback) or 40 (feedback). The parameter ν, which was
taken to be 0.05 for the no-feedback case, was adjusted to 0.15 for the feed-
back case in order to produce comparable [LR] amplitudes. (B) Summary
of the apparent decay lengths (λapp), relative to λ0, for the curves in A. (C)
Apparent decay lengths, scaled to λ0, versus wing disc size, also scaled to
λ0. Results are for 1000 random parameter sets. Parameters φ, ν and ξ were
sampled logarithmically between 0.01 and 100; xmax was sampled between 0.1
and 10. Data are as in C, except that points with high receptor saturation
(S > 0.5) have been excluded. . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 (E) Decay length augmentation due to feedback. The abscissa gives apparent
decay lengths in the absence of feedback, λnoFBapp , relative to the intrinsic decay
length λ0. The ordinate shows the ratio between λapp for each set of param-
eters with and without feedback (each dot is a single parameter set). Blue
denotes parameter sets where receptor saturation is below 50% at the origin
for both the feedback scenario and the no-feedback scenario; red indicates
that saturation is below 50% for the no-feedback case but not the no-feedback
case; yellow that the saturation if above 50% in both cases (there were no
parameter sets for which the feedback case was less than 50% saturated and
the no-feedback case was not). The shaded bars mark the parameter regimes
that produce source-sink and pseudo-source sink scaling. . . . . . . . . . . . 25
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2.5 Effect of Pent diffusivity on pMad apparent decay length. The left panel
reproduces Figure 2.2A and the right panel shows results when Pent diffusivity
was lowered by a factor of 2000, to 0.01 µm2 sec−1. . . . . . . . . . . . . . . 35

2.6 Influence of dimensionality on scaling. (A) pMad distributions observed in the
posterior compartments of 16 early wildtype discs (posterior compartment
sizes < 25µm). To compare relative shapes, data have been normalized to
start from the same initial amplitude, and scaled so that the abscissa values
of 0 and 1 represent the Dpp source and the edge of the posterior compartment.
Note that the data (left) can be fit by either exponential (middle) or linear
(right) forms, but the linear shapes so obtained do not extend to the free end
of the compartment. (B) A cross-sectional view of the wing disc, showing
the position of the Dpp source and paths for its diffusion within intercellular
spaces. The diagram is adapted from a micrograph reproduced from [51];
the posterior compartment is at right, the brinker domain is in blue, and a
thick red line marks the basement membrane under the columnar cells of the
posterior compartment. (C) Simplified geometric formulation of the posterior
compartment in panel B as a two-dimensional diffusion problem in which the
dimensions are anteroposterior (x) and apicobasal (z). (D) Mathematical
system that may be solved analytically, for which half the domain (from 0 to
zmax) corresponds exactly to the situation in panel C. . . . . . . . . . . . . . 49

3.1 A schematic diagram of a main cell lineage in epithelium. Stem cells and TA
cells proliferate with probabilities p0 and p1 and differentiate with probabilities
1− p0 and 1− p1. TD cells undergo cell death with rate d2. All three types of
cells can secrete molecule A that inhibits self-renewal probability p0. TD and
TA cells secrete molecule G that inhibits self-renewal probability p1. Molecules
A and G are diffusive in the epithelium. The apical surface is moving with
the dynamic position zmax and no-flux boundary condition is imposed. On
the other hand, leaky boundary condition is imposed at the basal lamina with
its position fixed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 A baseline simulation for the system containing all three kinds of noise. The
spatial distribution of three types of cells and different mophogens at four
different time points: (A) t = 0; (B) t = 330; (C) t = 860; (D) t = 1200.
(E) Layer thickness in one particular stochastic simulation. (F) Stratification
factor of stem cells (sf(C0)). (G) Stratification factor of TA cells (sf(C1)).
In (E-G), the black dash line is the steady-state value for corresponding quan-
tities in the deterministic system. The noise levels used are ε0 = ε1 = 0.6,
σ0 = σ1 = 10−4, and ω0 = ω1 = 0.58. . . . . . . . . . . . . . . . . . . . . . . 61
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3.3 Simulations with only cell-intrinsic noise. Dash lines represent the correspond-
ing quantities at homeostasis. (A) Layer thickness in three simulations with
ε = 0.2, 0.6 and 1. (B) The mean TH. The error bars show the standard
deviation. (C) The mean CV . The error bars show the standard deviation of
CV . The mean SF of (D) stem cells and (E) TA cells. The error bars show
the standard deviation. (F) Distribution of cells and morphogens in a specific
simulation with ε = 0.6 at time t = 400. In (B-E), all statistical quantities are
captured based on 20 simulations, and the standard deviations (error bars)
are negligible compared to the means. . . . . . . . . . . . . . . . . . . . . . . 65

3.4 Simulations with only cell-extrinsic noise. Dash lines represent the corre-
sponding quantities at homeostasis. (A) Layer thickness in three simulations
with σ = 1 × 10−3, 2 × 10−3 and 4 × 10−3. (B) The mean TH. The error
bars show the standard deviation. (C) The mean CV . The error bars show
the standard deviation of CV . The mean SF of (D). stem cells and (E). TA
cells. The error bars show the standard deviation. (F). Distribution of cells
and morphogens in a specific simulation with σ = 3 × 10−3 at time t = 400.
In (B-E), all statistical quantities are captured based on 20 simulations, and
the standard deviations (error bars) are negligible compared to the means. . 67

3.5 Simulations with only morphogens noise. Dash lines represent the correspond-
ing quantities at homeostasis. (A) Layer thickness in three simulations with
ω = 0.4, 0.6 and 1. (B) The mean TH. The error bars show the standard
deviation. (C) The mean CV . The error bars show the standard deviation
of CV . The mean SF of (D) stem cells and (E) TA cells. The error bars
show the standard deviation. (F). Distribution of cells and morphogens in
a specific simulation with ω = 0.6 at time t = 400. In (B-E), all statistical
quantities are captured based on 20 simulations, and the standard deviations
(error bars) are negligible compared to the means. . . . . . . . . . . . . . . . 68

3.6 Simulations with both cell-intrinsic noise and cell-extrinsic noise. Simulations
with different noise levels are shown in (A-I). In each subfigure, the panel
on the top shows the dynamics of layer thickness, the panel on the bottom
shows the dynamics of layer stratification of stem cells (sf(C0)). The dash
line represents for the corresponding quantity at homeostasis. Three different
levels are chosen for each type of noise. For cell-intrinsic noise level ε: 0.2
(Low), 0.6 (Medium), 1 (High). For cell-extrinsic noise level σ: 5 × 10−4

(Low), 1× 10−3 (Medium), 2× 10−3 (High). . . . . . . . . . . . . . . . . . . 71
3.7 Simulations with both cell-intrinsic noise and morphogen noise. Simulations

with different noise levels are shown in (A-I). In each subfigure, the panel
on the top shows the dynamics of layer thickness, the panel on the bottom
shows the dynamics of layer stratification of stem cells (sf(C0)). The dash
line represents for the corresponding quantity at homeostasis. Three different
levels are chosen for each type of noise. For cell-intrinsic noise level ε: 0.2
(Low), 0.6 (Medium), 1 (High). For morphogen noise level ω: 0.2 (Low), 0.6
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3.8 Simulations for maintaining homeostasis (SS=0.49mm) with different com-
binations of three types of noise. Points with the same color and the same
marker represent for simulations with the same cell-intrinsic noise level ε,
where ε = 0.2, 0.4, 0.6, 0.8 and 1 respectively. The strips, filled with color
gradient, roughly divide the plane into several regions. Data points located
in the region next to dark/light color of an individual strip have more/less
desirable properties. (A) The relation between the cell-extrinsic noise level σ
and the morphogen noise level ω. The blue strip sketches the green points
with maximal cell-intrinsic noise level ε = 1. It divides this plane into stabi-
lized region (region I-IV) and non-stabilized region (region V). The stabilized
region is divided into four parts (region I-IV) by a red strip and a green strip.
These regions will be introduced next. (B) The relation between layer thick-
ness variability (CV ) and layer stratification factor of stem cells (SF (C0)).
The red strip with CV = 20% divides this plane into two regions with low CV
or high CV . Also the green strip with SF (C0) = 0.4 divides the plane into
two regions with high SF or low SF . The red and the green strips together
divide the stabilized region into four regions (Region I: low CV and high SF ;
Region II: high CV and high SF ; Region III: low CV and low SF ; Region
IV: high CV and low SF ). (C) The relation between σ and CV . (D) The
relation between ω and CV . (E) The relation between σ and SF (C0). (F)
The relation between ω and SF (C0). . . . . . . . . . . . . . . . . . . . . . . 77
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4.1 Model schematic and morphology of hindbrain. (A) Stochastic gene regula-
tory network for the hindbrain patterning in r2-r6. Genes and morphogens
with black font were previously used for the model of r3-r5 pattern [190], genes
and morphogens that are first considered in this work use orange font. Pointed
arrows depict up-regulations and blunt arrows depict down-regulations. Noise
causes fluctuations in morphogens distributions. The morphogen retinoic acid
(RA) synthesized by posterior mesoderm and diffuses anteriorly to have a
graded distribution. RA activates hoxb1a in r4 and vhnf1 in r5-r6, respec-
tively. Vhnf1 and irx3 mutually inhibit each other to specify the early r4/r5
boundary. Vhnf1 inhibits hoxb1a to constrain it in r4. Hoxb1a up-regulates
the synthesis of the secondary morphogen Fibroblast Growth Factor (FGF) at
r4. FGF diffuses both anteriorly and posteriorly to induce krox20. Krox20 is
expressed in r3 and r5. The mutual inhibition also exists between hoxb1a and
krox20. Both krox20 and hoxb1a positively up-regulate their own expressions.
(B) The illustration for r2-r6 pattern and the selective cell-cell adhesion. The
expression of Hoxb1a and Krox20 determine the r3-r5 pattern, where cells in
r3 and r5 express Krox20 and cells in r4 express Hoxb1a. In r2 and r6 ex-
pressions of both Hoxb1a and Krox20 are low. Cells in r6 have high Vhnf1
expression. After cells determine their identities, the selective cell-cell adhe-
sion can improve the precision of gene expression boundary. Cells with the
same identity attract each other and cells with the different identities repulse
each other. (C) Whole mount in situ hybridization for otx2 (purple most
anterior region), krox20 (purple segments in the center) and aldh1a2 (red)
transcripts from 11 to 14 hpf. The midbrain-hindbrain boundary (MHB) is
marked by otx2, the r3 and r5 are marked by krox20 and the RA produc-
tion region is marked by aldh1a2. Embryos are flat-mounted with anterior to
the left. (D) The illustration of the convergent extension (i.e. growth) of the
hindbrain. The hindbrain shrinks in LR direction and elongates in AP direction. 92

4.2 A baseline simulation mimics the boundary sharpening process during ze-
brafish hindbrain patterning (11-14hpf). . . . . . . . . . . . . . . . . . . . . 96
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4.2 Dimensions of hindbrain in (A) AP and (B) LR axes. Experimental quantifi-
cations (n=9) provide data points at 11, 12, 13 and 14hpf. The error bars
represent the standard deviation. Cubic interpolation is used to obtain the
smooth curves and the growth curves are used in the model. (A) AP length
of the hindbrain is measured from the posterior end of MHB to the anterior
end of the RA production region. The AP length of the RA production region
is measured for the AP length of aldh1a2 region. (B) The LR width of the
hindbrain is measured at the position of r4 at AP axis. The hindbrain is taken
as a rectangle in the model for simplification. (C) The noisy distribution of
RA signaling ([RA]in) at 14hpf. (D) The noisy distributions of FGF signaling
([FGF ]in) at 14hpf. (E-G) Time series of gene expressions: (E) Hoxb1a (red)
and Krox20 (blue) expressions, (F) Vhnf1 (purple), (G) Irx3 (yellow). (H)
Quantifications of rhombomere sizes, number of dislocated cells and sharp-
ness index versus time. solid line: the quantities for the simulation shown in
(E). The statistics of rhombomere sizes (r3, r4 and r5), sharpness index for
four boundaries (SI(r2/r3), SI(r3/r4), SI(r4/r5), SI(r5/r6)) and the number
of dislocated cells (DC) (n=100) are displayed: brown dash line for the aver-
age and brown shade for the standard deviation. dash black line represents
for the rhombomere sizes from experimental measurement and the error bars
represent for the standard deviation (n=9). . . . . . . . . . . . . . . . . . . . 97

4.3 Comparisons between two-morphogens (RA and FGF) model and one-morphogen
(RA) model. (A-C) One dimensional simulations for the two-morphogens
model: (A) spatial distributions of RA, Krox20, Hoxb1a, Vhnf1, Irx3 and
FGF. (B) Phase diagram of Hoxb1a and Krox20 under different initial level
of Hoxb1a. (C) Rhombomere sizes under different initial level of Hoxb1a. (D-
F) One dimensional simulations for the one-morphogen model: (D) Spatial
distributions of RA, Krox20, Hoxba1, Vhnf1 and Irx3. (E) Phase diagram of
Hoxb1a and Krox20 under different initial level of Hoxb1a. (F) Rhombomere
sizes under different initial level of Hoxb1a. . . . . . . . . . . . . . . . . . . 98

xii
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4.10 In each plot, one dot represents for a simulation that generated from the
stochastic simulation with a random parameters set. A total of 513, 562
and 452 simulations out of 1000 simulations under fast, medium and slow
convergence successfully generated the r2-r6 pattern and they are displayed
in the plots. (A-A) Size of r3 versus SI(r2/r3) under (A) fast, (A) linear and
(A) slow convergence. (B-B) Size of r3 versus SI(r3/r4) under (B) fast, (B)
linear and (B) slow convergence. (C-C) Size of r4 versus SI(r3/r4) under (C)
fast, (C) linear and (C) slow convergence. (D-D) Size of r4 versus SI(r4/r5)
under (D) fast, (D) linear and (D) slow convergence. (E-E) Size of r5 versus
SI(r4/r5) under (E) fast, (E) linear and (E) slow convergence. (F-F) Size of
r5 versus SI(r5/r6) under (F) fast, (F) linear and (F) slow convergence. . . . 113

4.11 Morphogens distributions. (A) The distribution of [RA]out at 14hpf. (B) The
distribution of [Fgf]out at 14hpf. (C) The AP distribution of [RA]out in the
morphogen domain and the zoomed-in AP distribution of [RA]in for the AP
range present in the tissue domain. The curves show the average morphogen
level over LR axis. (D) The AP distribution of [Fgf ]out and [Fgf ]in. The
curves show the average morphogen level over LR axis. . . . . . . . . . . . . 114

4.12 Additional information for the model. (A). Cell representation in SCEM: Each
cell is represented by two layers of nodes and each layer has Nnode = 6 nodes
with a hexagon structure. The pairwise lengths used in Eq. (4.21) have three
possible constant values, lout, lin, linter. The length between two neighbor
nodes in the outer layer is lout. The length between two neighbor nodes in the
inner layer is lin. For two nodes in different layers with same angle, the length
is linter. (B). An illustration of the distance function between cell and the
boundary. For cell with identity belonging to the left side of the boundary (red
cells), the distal end is taken as the most right side of the cell. The distance
is the Euclidean distance from the distal end to the boundary if the distal
end is on the right of the boundary. Otherwise the distance is zero. Similarly,
for the cell with identity belonging to the right side of the boundary (blue
cells), the distal end is taken as the most left side of the cell. The distance
is the Euclidean distance from the distal end to the boundary if the distal
end is on the left of the boundary. Otherwise the distance is zero. For the
distance greater than 6 ∗ r, (r is the radius of the cell), the cell is identified as
a dislocated cell. (C) The probability distribution for generating the initial
distribution of cells in Figure 4.4B. There are five cell identities and each of
them is a Gaussian with respect to the AP position. . . . . . . . . . . . . . . 122

5.1 Plots of the numerical error at T = 1 after applying IIF2, iETD2, and hIFE2
to the scalar equation in (5.8) with u(0) = 1 for various ∆t. Plots are shown
for (A) f(u, t) = t2 with α = −101, −102, −103, −104, −105, and −106; (B)
f(u, t) = −u with α = −8, −16, −32, −64, and −128; and (C) f(u, t) =
−u+ t2 with α = −102, −103, −104, −105, and −106. The curves for iETD2
and hIFE2 are identical in (A), and those for IIF2 and hIFE2 are identical
in (B). We see that for the time-dependent reactions (A,C), the error in IIF2
increases as −α increases while the error in iETD2 and hIFE2 decreases. . . 142

xv



5.2 The temporal errors at T = 1 in the maximum norm when solving the semi-
discrete form (5.16) of (5.27) for different reactions with the IIF, iETD2, and
hIFE2 methods. In all simulations, the reaction coefficient d = 1. (A) IIF2 for
F (U, t) = t2; (B) iETD2 for F (U, t) = t2; (C) hIFE2 for F (U, t) = t2; (D) IIF2
for F (U, t) = −U ; (E) iETD2 for F (U, t) = −U ; (F) hIFE2 for F (U, t) = −U ;
(G) IIF2 for F (U, t) = −U + t2; (H) iETD2 for F (U, t) = −U + t2; (I) hIFE2
for F (U, t) = −U + t2. Different colors represent the number of points, N ,
in the spatial discretization, where N = 32, 64, 128, 256, 512, and 1024.
Subfigures in same row share the same y-axis while subfigures in same column
share the same x-axis. Panels (B) and (C) are identical because hIFE2 treats
time-dependent terms with iETD2, and panels (D) and (F) are identical since
hIFE2 treats autonomous terms with IIF2. . . . . . . . . . . . . . . . . . . . 149

5.3 Plots of the numerical error at T = 1 in maximum norm after applying hIFE2
to (5.27) with Neumann, Dirichlet, and mixed boundary conditions for various
∆t and fixed N . The hIFE2 is applied to both original and transformed (Sec-
tion 5.4.2) equations. Plots are shown for hIFE2 on: (A) the original equation
with Neumann boundary; (B) the original equation with Dirichlet boundary;
(C) the original equation with mixed boundary; (D) the transformed equa-
tion with Neumann boundary; (E) the transformed equation with Dirichlet
boundary; (F) the transformed equation with mixed boundary. Different col-
ors represent different spatial mesh sizes N , where N = 32, 64, 128, 256, 512,
and 1024. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

xvi



LIST OF TABLES

Page

2.1 Wildtype Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2 Parameter alterations in mutant genotypes. . . . . . . . . . . . . . . . . . . 43
2.3 Local sensitivity analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1 The statistics of TH, CV and SF (C0) with combined cell-intrinsic (ε) and
cell-extrinsic (σ) noise. All quantities are captured based on 20 simulations. . 73

3.2 The statistics of TH, CV and SF (C0) with combined cell-intrinsic (ε) and
morphogen (ω) noise. All quantities are captured based on 20 simulations. . 74

3.3 Parameters used in Eq. (3.2) to Eq. (3.7). . . . . . . . . . . . . . . . . . . . 82
3.4 Noise levels used in Eq. (3.7) and (3.8) in different figures. . . . . . . . . . . 82

4.1 Calculate m, SI and DC for cells in domain with AP range [r1L1(t), r2L1(t)]. 124
4.2 Parameters for the discrete cell model. . . . . . . . . . . . . . . . . . . . . . 128
4.3 Parameters for the equations of morphogens and intracellular genes. . . . . . 129
4.4 Parameters for Figure 4.7 and 4.10. If not specified, they are the same as that

in Table 4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.1 The truncation errors of IIF2, iETD2, and hIFE2 when applied to (5.8) with
different reactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.2 Eigenvalues of A, λj, under different spatial resolutions, where d = 1, a = 0,
b = π/2, j = 1, 5, N/2, N . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.3 Different boundary conditions in (5.27), and their corresponding A and B(t)
in the semi-discrete form (5.26). . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.4 Numerical errors in terms of the maximum norm and CPU time for the various
methods on the example in Section 5.6.1 at T = 1 with diffusion coefficient
d = 2. Here N is the number of grid points in the spatial discretization
(∆x = π/2N), and the time step ∆t = 0.1∆x. “CPU time 1” is the CPU
time for initializing the matrices (Section 5.9), “CPU time 2” is the CPU time
for the iterations, and “CPU time” is the sum of the two. . . . . . . . . . . . 162

xvii



5.5 Numerical errors and CPU time for the test in Section 5.6.2 at time T = 1. We
set the diffusion coefficient d = 0.1 and the coefficients of the reactions a = 500
and b = −2. For each simulation, we fix the number of grid points N = 1024
(∆x = π/2N), and run the simulation for K time steps (∆t = T/K). The
error e is measured in the maximum norm, and the relative error is defined by
e/max{‖UK‖∞, ‖VK‖∞}, where UK and VK are the numerical solutions after
K time steps. “CPU time 1” is the CPU time for initialization (Section 5.9),
“CPU time 2” is the CPU time for the iterations, and “CPU time” is the sum
of the two. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.6 Numerical a priori error in applying hIFE2 to a one-dimensional reaction–
diffusion system with (A) f(u, x, t) = cosu + t for the decomposition (5.48)
and (5.49) and (B) f(u, x, t) = (t + 1) cos(xu) + xet for the decomposition
(5.51) and (5.52). The a priori error is defined by ‖uN − uN/2‖∞, where N is
the number of grid points in the spatial discretization. The simulations are
run through time T = 1 with ∆x = π

2N
and ∆t = 0.1∆x. . . . . . . . . . . . 168

5.7 Numerical errors in the maximum norm for hIFE2 applied to the example in
Section 5.6.4. The spatial resolution is ∆x = π

2N
in all three dimensions, the

time step is ∆t = 0.1∆x, the ending time is T = 1, and the coefficients are
d1 = d2 = d3 = 1 and r = −1. . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.8 A comparison of the computational complexity between the IIF2, iETD2,
hIFE2, and fEIF2 methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

5.9 A summary of the four methods: for their A-stability, and the restriction
on ∆t to exhibit second order, with explicitly time-dependent reactions or
nonhomogeneous boundary conditions. . . . . . . . . . . . . . . . . . . . . . 176

xviii



List of Algorithms

Page
1 Generate L1(A∆t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

xix



ACKNOWLEDGMENTS

It is my fortune to have many people generously helping me out all the time. It is impossible
to complete my doctor of philosophy degree without their help and supports.

I would like to thank my advisor and my committee chair, Dr. Qing Nie, for being a
tremendous mentor for me. His visionary insights and enthusiasm for research inspire me to
continue my academic path. With his encouragement and guidance, I have learned how to
be an independent researcher. Without his support, I would not finish this thesis.

I would like to express my appreciation to Lander’s lab: Dr. Arthur Lander and Dr. Yilun
Zhu. Together, we published a fantastic paper for Drosophila imaginal wing disc patterning.
Most importantly, the knowledge, creativity, and persistence I have learned from them are
a precious treasure to me.

I am thankful to Schilling’s lab: Dr. Thomas Schilling and Lianna Fung. I learned so much
biological knowledge from them. The valuable discussions are critical to the success of our
interdisciplinary work. I also appreciate Lianna’s efforts for collecting experimental data.

I would like to express my gratitude to my committe members, Dr. Long Chen and Dr.
Xiaohui Xie, for their insightful comments and encouragement. I would like to thank the
Department of Mathematics, Center for Complex Biological System and Center for Multi-
scale Cell Fate Research for their help and cares for my lives and studies. Especially, many
thanks to Karen Martin, Naomi Carreon, Donna McConnell, Aubrey Rudd and Clare Cheng.

I would like to thank all my former and current members of Nie lab: Qixuan Wang, Tian
Hong, Chunhe Li, Adam Maclean, Lina Meinecke, Christian Guerrero-Juarez, Axel Almet,
Honglei Ren, Emmanuel Dollinger, Floyd Maseda, Matt Karikomi, Kevin Johnston, Daniel
Bergman, Lei Zhang, Jiajun Zhang, Chris Rackauckas, Seth Figueroa, Catherine Ta. Espe-
cially, many thanks to Weitao Chen for her generous help and it was awesome to publish
many nice papers with her. I appreciate the suggestions and support from many people for
helping me go through the tough time: Zixuan Cang, Peijie Zhou, Yangyang Wang, Shuxiong
Wang, Suoqin Jin and Lihua Zhang, Yutong Sha, Tao Peng and Huijing Du.

xx



CURRICULUM VITAE

Yuchi Qiu

EDUCATION

Doctor of Philosophy in Mathematics 2020
University of Califronia, Irvine Irvine, California, USA

Master of Science in Mathematics 2016
University of Califronia, Irvine Irvine, California, USA

Bachelor of Science in Mathematics 2014
Nanjing University Nanjing, China

EXPERIENCE

Teaching Assistant 2014–2020
University of Califronia, Irvine Irvine, California

Research Assistant 2015–2020
University of Califronia, Irvine Irvine, California

Awards

Center for multiscale cell fate research (CMCF) interdisciplinary opportunity award 2019

PUBLICATIONS

published

• Yuchi Qiu, Weitao Chen, and Qing Nie. A hybrid method for stiff reaction-diffusion
equations. Discrete & Continuous Dynamical Systems-B, pages 28-34, 2019

• Yangyang Wang, Christian F Guerrero-Juarez, Yuchi Qiu, Huijing Du, Weitao Chen,
Seth Figueroa, Maksim V Plikus, and Qing Nie. A multiscale hybrid mathematical
model of epidermal-dermal interactions during skin wound healing. Experimental der-
matology, 28(4): 493502, 2019

• Yuchi Qiu, Weitao Chen, and Qing Nie. Stochastic dynamics of cell lineage in tissue
homeostasis. Discrete & Continuous Dynamical Systems-B, pages 853865, 2019

• Qing Nie, Lingxia Qiao, Yuchi Qiu, Lei Zhang and Wei Zhao. Noise control and utility:
from gene regulatory network to spatial patterning. Science China Mathematics, 1-16,
2020

xxi



• Yilun Zhu, Yuchi Qiu, Weitao Chen, Qing Nie, and Arthur D Lander. Scaling a mor-
phogen gradient through feedback control of receptors and co-receptors. Developmental
Cell, 2020

in preparation

• Yuchi Qiu, Lianna Fung, Thomas Schilling and Qing Nie. Dissection of multiple mor-
phogens and morphogenesis in zebrafish hindbrain pattern formation.

xxii



ABSTRACT OF THE DISSERTATION

Multiscale Modeling for Tissue Patterning: Growth and Stochasticity

By

Yuchi Qiu

Doctor of Philosophy in Mathematics

University of California, Irvine, 2020

Professor Qing Nie, Chair

The spatial organization of tissues is often determined by long-range signals, morphogens,

through the concentration-dependent manner. The morphogen-mediated patterning is a

great foundation, but inadequate to explain the effects of tissue growth and stochasticity, the

two prevalent phenomena, in pattern formation. In this thesis, we use multi-scale models to

study those questions. In Chapter 2, we study how pattern scales to tissue size in Drosophila

wing disc and find the scaling is through the feedback control on receptors and co-receptors

of the morphogen. In Chapter 3, we study how different types of noise affect the dynamics of

spatial pattern in the epithelium and we find the balanced levels of different types of noise is

essential to the tissue homeostasis. In Chapter 4, we discuss both effects of growth and noise

in the zebrafish hindbrain pattern. Despite the noise causes variability, growth improves

the precision of the pattern. In Chapter 5, we develop a numerical method for solving stiff

reaction-diffusion equations which provides a necessary tool for solving modeling problems.
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Chapter 1

Introduction

In biology, the robust and precise spatial organization of tissues is critical to multi-cellular

organisms to execute their specific functions. It is challenging to understand how microscopic

intercellular interactions lead to the macroscopic pattern formation ubiquitous. In this thesis,

I will use the multi-scale modeling to tailor the mechanisms in molecular, cellular and tissue

scales to study pattern formation. A diffusive chemical, morphogen, having non-uniform

distribution in space, provides positional information, enabling cells to respond collectively

to form precise domains of target gene expression [182, 173]. Utilizing the theory of the

morphogen-mediated patterning, multi-scale modeling successfully mimicked the pattern

formation in extensive biological systems including vertebrate neural tube [9], vertebrate

hindbrain [190], vertebrate limb buds [136], the Drosophila embryo [70], the Drosophila

wing disc [13], and skin [172, 35]

During development, the role of tissue growth in the patterning process has been recently

highlighted [160]. One common phenomenon is scaling where the gradients expand as the

tissue grows to keep relative boundary positions approximately stationary. The source-sink

model noted that an absorbing sink boundary is able to adjust gradients as the tissue grows
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[182]. But it fails to explain the scaling under the large size of the tissue. Recently, the

Expansion-Repression (ER) model is identified where a morphogen represses the expression

of a secreted expander which, by diffusing back toward the morphogen source, promotes

morphogen spread [14, 12]. In Chapter 2, we reexamine the ER model proposed in the

Drosophila imaginal wing disc [11] where the expander needs to spread in a nearly uniform

manner over the morphogen field. Instead, Arthur Lander’s lab finds the expander only

acts locally which is against the assumption of the uniform expander. Through genetic

experiment and mathematical modeling, we propose an alternative model, in which the

morphogen mediated regulation on receptor and co-receptor to drive its scaling.

On the other hand, noise permeates in patterning systems on all levels, from molecular,

cellular to tissues, organs, causing fluctuations and variability to alter the precision of the

pattern. Usually, noise is believed to be detrimental to biological functions, but sometimes

the noise is found to be pivotal. In Chapter 3, we discuss the effects of different types of

noise in the stratified epithelium tissue. We find the interactions between intracellular and

extracellular noise are critical to the robust spatial organization.

In Chapter 4, we focus on the effects of both growth and stochasticity during the zebrafish

hindbrain pattern formation. By acting on both cell fate decisions and intercellular me-

chanical interactions, growth is found to be an essential strategy to reduce the variability

of the pattern caused by noise. In addition, we find an additional morphogen is helpful for

improving the robustness of the system.

In the pattern system, the morphogen gradients are modeled by a system of reaction-diffusion

equations. The classic numerical solvers are inefficient to solve such a system, especially,

when the system is stiff. A class of methods, semi-implicit integration factor (IIF) methods

[120], was able to solve the stiff system efficiently. However, the IIF behaves reduced order

of accuracy phenomenon in practice. In Chapter 5, we develop a hybrid method (hIFE) to

improve the practical accuracy of the IIF method.
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Chapter 2

Scaling a morphogen gradient through

feedback control of receptors and

co-receptors

This chapter is a reprint of the material as it appears in Developmental Cell [194]. The

co-authors listed in this publication directed and supervised research which forms the basis

for this chapter.

2.1 Background

Gradients of decapentaplegic (Dpp) pattern Drosophila wing imaginal discs, establishing

gene expression boundaries at specific locations. As discs grow, Dpp gradients expand,

keeping relative boundary positions approximately stationary. Such scaling fails in mutants

for Pentagone (pent), a gene repressed by Dpp that encodes a diffusible protein that expands

Dpp gradients. Although these properties fit a recent mathematical model of automatic
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gradient scaling, that model requires an expander that spreads with minimal loss throughout

a morphogen field. From our collaborators Arthur Lander’s lab, they show that Pent’s

actions are confined to within just a few cell diameters of its site of synthesis, and can be

phenocopied by manipulating non-diffusible Pent targets strictly within the Pent expression

domain. Using genetic experiment and the mathematical modeling we develop an alternative

model of scaling, driven by feedback down-regulation of Dpp receptors and co-receptors.

Among the model’s predictions is a size beyond which scaling failssomething we observe

directly in wing discs.

2.2 Introduction

During development, gradients of secreted morphogens convey positional information, en-

abling cells to behave and differentiate according to their locations. Over a century of

evidence suggests that positional information is often specified in relative coordinates, i.e.

scaled to the territory being patterned [25, 29, 34, 66, 68, 157]. Fifty years ago, Wolpert

argued that this implies that morphogen gradients adjust themselves to the fields on which

they act [182], a phenomenon that was eventually observed directly [13, 53, 55, 157, 174].

Wolpert noted that one type of gradient—a linear diffusion gradient from a source to an ab-

sorbing sink—scales naturally, automatically readjusting its slope whenever the sink moves

[182]. Over time, the idea that morphogens form simple source-sink gradients gave way to

the view—supported by observations [39, 42, 54, 157]—that gradients are shaped by contin-

ual decay throughout the morphogen field. Gradients shaped in this way should not scale

automatically, implying that other mechanisms must enable scaling. Progress toward iden-

tifying such mechanisms has been slow, but received a boost with the development of the

Expansion-Repression (ER) model [11], in which a morphogen represses the expression of a

secreted ”expander” which, by diffusing back toward the morphogen source, promotes mor-
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phogen spread. This mechanism is homeostatic—moving a distal field boundary away from a

morphogen source increases production of the expander, which spreads the morphogen gra-

dient toward the field boundary—and, if the expander is long-lived, approximates ”integral

negative feedback”, a control strategy that achieves perfect compensation [11].

So far, the ER model has been used to explain how gradients of bone morphogenetic proteins

(BMPs) scale in response to embryo manipulations [14] and during growth of larval wing

imaginal discs [12]. In the latter case, the relevant BMP is decapentaplegic (Dpp), which is

produced by a stripe of cells in the center of the disc and spreads bidirectionally through the

columnar epithelium to create gradients in the anterior and posterior compartments. During

the larval period, wing discs grow at least 60-fold in anteroposterior dimension, and the Dpp

gradient scales with it [55, 174]. Support for the ER model in this setting was provided

by the identification of a putative expander, the secreted protein Pentagone (Pent, also

known as Magu). Pent expression is repressed by Dpp, restricting pent to the most lateral

cells of the central wing pouch. Loss of pent dramatic shrinks the Dpp signaling gradient,

and pent overexpression expands it [165]. Moreover, in the absence of pent, developmental

scaling of the Dpp gradient is greatly impaired [12, 55]. Although Pent’s mechanism of

action is not fully understood, it binds heparan sulfate proteoglycans (HSPGs) and triggers

their removal from the cell surface. The same HSPGs act as co-receptors for BMPs [83],

including Dpp [44, 69], strongly suggesting that Pent expands Dpp gradients by inhibiting

receptor-mediated Dpp uptake.

Here we re-examine the role of Pent in the Drosophila wing disc, focusing on an important

requirement of the ER model, namely that the expander spread in a nearly uniform manner

over the morphogen field. Spreading uniformly is not the same as merely being diffusible,

as spread quantifies the balance between transport (e.g. diffusion) and decay, where decay

means all processes that remove a substance from a diffusing pool (i.e. destruction, uptake,

leakage out of the system). In a stable diffusion gradient, a common measure of spread is the
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”apparent decay length”, or λapp, the distance over which concentration falls by a factor of

1/e [90]. In the ER model, if an expander’s λapp is not greater than the size of the morphogen

field, the expander will affect the morphogen differently at different locations, and effective

scaling will not occur.

From experiment, Arthur Lander’s lab found λapp for Pent to be very small, strongly sug-

gesting that Dpp gradient scaling cannot rely on Pent to play the expander role required

by the ER model. Through their genetic experiment and the mathematical modeling, we

arrived at an alternative model, in which the feedback that drives scaling is not repression

of an expander, but morphogen-mediated regulation of receptor (and co-receptor) function,

a phenomenon that is fairly common in patterning systems (e.g. [20, 45, 78, 94]). A key

feature of this model is that it is dynamic, terminating scaling at a size that depends on the

parameters of the system. In view of evidence that a growing Dpp gradient itself partici-

pates in driving disc growth [174], this feature suggests ways in which bi-directional coupling

between patterning and growth could be achieved.

2.3 Quantifying morphogen gradient scaling

For discrete pattern elements, such as gene expression boundaries, one can define scaling as

the preservation of these elements’ relative positions. During development, however, sharp

gene expression boundaries may emerge only late [30, 123], or read out morphogen signals in

indirect (e.g. time-integrated) ways (e.g. [9, 31, 116]). To investigate developmental scaling

directly, it is thus important to monitor morphogen gradients themselves, or gradients of

immediate downstream signals (e.g. phosphorylated Mad [pMad], in the case of Dpp). As

smooth gradients lack landmarks with which to assess relative position, this means tracking

the locations of constant gradient amplitudes over time. It can be challenging, however, to

measure absolute concentration in tissues. Furthermore, absolute morphogen or signaling
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molecule concentration may not even be the best read-out of positional information across

developmental time, because changing characteristics of cells likely influence how they decode

morphogen signals. In wing discs, for example, changes in cell dimensions between first larval

instar and the end of disc growth [178] imply that cell volumes increase by at least 7-fold.

For these reasons, morphogen gradient scaling is often evaluated in terms of preservation of

relative gradient shape, typically quantified by the degree to which the apparent decay length

(λapp) of the morphogen (or its downstream signaling intermediates) changes proportionately

with size of the morphogen field (e.g. [174]). For gradients of exponential shape, λapp is

simply the constant λ in the formula C = C0e
x/l where C is concentration, x is distance from

the morphogen source, and C0 the value of C at x = 0. In practice, λapp is often measured

as the distance over which a gradient falls to 1/e of its starting value (or by extracting the

length constant from a best-fit exponential curve). Here we follow others in using λapp as a

first-line metric for assessing scaling, but also take care to visually analyze absolute gradient

shapes whenever possible. As we argue below, changes in both gradient amplitude and shape

may play an important role in enabling certain kinds of scaling mechanisms.

2.4 Pent acts locally at the edges of the Dpp mor-

phogen field on co-receptor

The ER model of scaling requires an expander to spread uniformly across a morphogen field,

i.e. traverse it without much decrement in concentration. Although Pent can be detected at

a distance from its site of synthesis [121, 165], and when overexpressed in the posterior half

of the disc can influence gradient shapes in the adjacent anterior [165], such observations

don’t speak to how steeply Pent concentrations decline over distance. To address this,

experimental results from Arthur Lander’s lab show Pent act relatively locally, rather than
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globally, undermining support for the ER model as an explanation for Dpp gradient scaling.

On the other hand, they show Pent does not need to spread by acting on co-receptor.

Current consensus is that Pent acts by reducing levels (and thereby function) of HSPG co-

receptors, in so doing decreasing Dpp uptake and increasing Dpp spread. Overexpressing

Pent or knocking down co-recetpors at the edges of the Dpp morphogen field lead to similar

expansion of Dpp gradient (pMad). But knocking down co-receptors throughout the entire

disc results in the shrink of Dpp gradient. These results indicate Pent only acts on the edges

of the disc by internalizing co-receptors.

2.5 Scaling of the Dpp signaling gradient is a transient

phenomenon

Before investigating alternative explanations for scaling, Arthur Lander’s lab more closely

examined scaling dynamics. They collected many wild type wing discs, spanning a range

of sizes, and calculated λapp for pMad, using the same measurement approaches taken by

other investigators, making an effort to avoid various pitfalls and artifacts (e.g. measuring

too close to the dorsoventral boundary [55].

The observations (Figure S3, Figure 4-5 in [194]) confirm that λapp grows roughly in pro-

portion to disc size, but also show that it does so only up to the time (part-way through

third larval instar) that posterior compartment sizes reach ∼50-60 µm—about a fourth to

a third of their final size, or about two cell cycles (approximately one day) prior to the end

of disc growth. After that, scaling seems to cease rather abruptly. Such behavior has not

been noted previously, possibly because other groups have focused more on documenting

the existence of scaling during most of disc growth, rather than on how it behaves during

the very last stages of growth. What this behavior suggests is that whatever mechanism
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accounts for scaling of the Dpp gradient, it is size- (or time-) limited, i.e. has a maximal

distance or duration over which it functions. Thus, the challenge in explaining scaling in the

wing disc is not only to understand how it happens, but why it stops when it does.

2.6 Feedback regulation of receptors and co-receptors

is required for scaling

One reason that λapp is widely used as a measure of morphogen gradient shape is that a simple

model, the ”uniform-decay” model, connects it to the biophysics of gradient formation:

If morphogen decay is uniform in space, and the morphogen field sufficiently large (and

sufficiently one-dimensional), then steady state gradient shape should have the form e−x/λ,

with λ = λapp =
√
D/k, where D is the morphogen diffusion coefficient, and k is a rate

constant of morphogen removal (e.g. uptake) [90].

In general, one cannot assume that morphogen decay is uniform in space, because mor-

phogens may influence their own uptake or destruction. Some (e.g. Wingless and Hedgehog

in Drosophila wing discs) upregulate their own removal; such ”self-enhanced decay” charac-

teristically alters gradient shape [39, 90]. In contrast, Dpp down-regulates both its receptor

Tkv (through indirect effects on tkv transcription [94]), and the HSPG co-receptor Dally

[45]. As Tkv appears to be the major determinant of Dpp uptake and, thereby removal

[4, 94], and Dally likely boosts this function of Tkv, and may even mediate some uptake

itself [45], we expect Dpp gradients to be shaped by ”self-repressed decay”.

Although the effects of self-enhanced and self-repressed decay on steady state gradient shape

are fairly subtle [90], these processes can have large effects on how gradients respond to

perturbations. For example, self-enhanced-decay gradients display increased robustness to

changes in amplitude (i.e. threshold locations do not move nearly as much as they do in
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uniform decay gradients [39]). Self-repressed-decay gradients, it turns out, display enhanced

sensitivity to changes in the size of the morphogen field, a phenomenon that—as we will see

shortly—can drive morphogen gradient scaling.

Before discussing the theory behind this assertion, Arthur Lander’s lab presents experimental

evidence in support of it: To test whether self-repression of decay is required for Dpp gradient

scaling in the wing disc, it was necessary to disable the feedback loops that allow Dpp to

down-regulate tkv and dally. For tkv, they used a transgenic allele in which a Ubiquitin

promoter drives ubiquitous, unregulated expression of HA-tagged tkv [122]. When combined

with null mutation of the endogenous tkv locus, viable flies are obtained, with late-third

larval instar wing discs that do not differ significantly in pattern from wildtype, except

for the fact that tkv expression is spatially uniform, rather than graded. We refer to this

genotype as ”Ubi-tkv”. To disable feedback on dally, we used an Act5C-Gal4 driver to drive

a UAS-dally transgene in a uniform pattern in a dally-mutant background (dally80/dally80).

We refer to this genotype as ”Uniform-dally”.

Figure 5 in [194] shows results for a large number of wildtype, pent, pent+/−, Ubi-tkv,

Uniform- dally ; Ubi-tkv/Uniform-dally ; and pent/Ubi-tkv and pent/Ubi-tkv/Uniform-dally

discs of a broad range of sizes. λapp was measured for pMad gradients and plotted against

posterior compartment sizes.

The results show that scaling is significantly impaired when either tkv or dally regulation is

bypassed, and nearly eliminated when both are bypassed. These differences emerge mainly

after posterior compartments grow beyond 30 µm. Above that size, Ubi-tkv and Uniform-

dally continue to scale, but much more slowly than wildtype gradients. Eventually, however,

such gradients do ”catch up” to wildtype gradients, as a result of the fact that wildtype

gradients cease scaling sooner. In contrast, doubly-mutant Ubi-tkv/Uniform-dally gradients

stop expanding altogether once posterior compartments grow beyond about 30 µm, reaching

a final λapp about half that of wildtype.
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The defect in Ubi-tkv/Uniform-dally gradients is almost, but not quite, as severe as that in

pent mutants, which cease scaling at a slightly earlier size. Interestingly, the phenotype of

pent/Ubi-tkv and pent/Ubi-tkv/Uniform-dally discs was only slightly more severe than for

pent alone. These results support the conclusion that both scaling, and the effect of Pent

on scaling, depend upon feedback regulation of tkv and dally by Dpp.

2.7 Modeling the dynamics and endpoints of scaling

To explain the behaviors in Figure 5 in [194], we turned to mathematical modeling. Account-

ing for all the cell biological phenomena that affect Dpp gradient shape requires modeling a

large number of molecular species and processes. As many of these processes are not quan-

titatively understood, they were represented as simply as possible, with model behaviors

explored over parameter ranges that were wide but plausible (given available data). The

goal was not so much to identify parameter values as to determine whether existing observa-

tions can be matched without invoking additional mechanisms. To the extent that inclusion

of new mechanisms is not required, models such as these can help identify which processes

potentially play the most important roles in morphogen gradient scaling.

2.7.1 The model with growing domain for the Dpp regulatory

network

The molecular species represented in the model are Dpp, Tkv, ”co-receptor” (to represent

both Dally and Dlp), Pent, Dpp-coreceptor complexes, and two types of Dpp-receptor com-

plexes (the more stable of which forms with the aid of coreceptor-mediated catalysis [83]),

plus pMad and Brk. An additional transcription factor is included downstream of the tran-

scriptional repressor Brk to enable it to activate Tkv and co-receptor synthesis indirectly
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(the role of this factor in the model resembles that of optomotor blind [30]). Dpp and Pent

are the only diffusing species, with Pent being assigned the same diffusivity as that measured

empirically for Dpp [192].

The system of partial differential equations used to model the Dpp gradient on a growing

wing disc is shown below as Eq. (2.1), and also diagrammed as a conceptual network

(Figure 2.1). The modeled domain consists of the intercellular (basolateral) spaces of the

posterior compartment of the wing disc, which is represented as a one-dimensional reaction-

diffusion system. The one-dimensional approximation assumes that morphogen flux in the

dorsoventral and apicobasal directions is negligible. This is probably a good assumption at

large disc sizes, but, as described later (Section 2.9.5), and in [86], may be less so at small

size. We model the basal rates of synthesis of gene products as constant in time and space, as

modified by pMad or Brk, except in the following cases: we lower Tkv production and raise

coreceptor production in the Dpp-production region, to capture known effects of Hedgehog

signaling in that region [156]. In addition, we model the basal rate of Brk synthesis as

continuously increasing during disc growth, in order to fit the data of [55], who show that

peak Brk levels rise more than 10-fold over the course of wing disc development (because peak

Brk expression occurs where Dpp signaling is essentially negligible, such changes cannot be

attributed to an effect of Dpp). We model growth of wildtype discs to fit our own observations

of disc growth rate (Figure S3 in [194]), which are similar to those published by [174]. For

some genotypes, including homozygous pent mutants, we adjusted the growth rate (described

further below) so that discs finish growing at a smaller size, in accordance with published

data on pent discs [12, 165], and our own observations (Figure 5 and Figure S6 in [194]).
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∂[Dpp]

∂t
+
∂ (V [Dpp])

∂x
=

vdpp

1 +
(

x
prod(t)

)20
+Ddpp∆[Dpp]− k1[Dpp][Tkv] + kr1[Dpp− Tkv]− k2[Dpp][Cr]

+ kr2[Dpp− Cr]−
ddpp

1 +
(

x
prod(t)

)20
[Dpp],

∂[Tkv]

∂t
+
∂ (V [Tkv])

∂x
= vtkv − k1[Dpp][Tkv] + kr1[Dpp− Tkv]− k4[Tkv][Dpp− Cr] + ddpptkv [Dpp− Tkv]

+ ddpptkv∗[Dpp− Tkv∗]− dtkv [Tkv],

∂[Cr]

∂t
+
∂ (V [Cr])

∂x
= vcr − k2[Dpp][Cr] + kr2[Dpp− Cr] + k4[Tkv][Dpp− Cr]− k3[Pent]in[Cr]− dcr[Cr],

∂[Dpp− Tkv]

∂t
+
∂ (V [Dpp− Tkv])

∂x
= k1[Dpp][Tkv]− kr1[Dpp− Tkv]− k5[Cr][Dpp− Tkv]− ddpptkv [Dpp− Tkv],
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∂t

+
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+
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∂[pMad]

∂t
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1 +
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∂t

+
∂
(
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)
∂x

=
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1 +
(
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)2
+Dpent∆[Pent]out − k6[Pent]out,

∂[Pent]in
∂t

+
∂
(
V [Pent]in

)
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= k6[Pent]out − dpent[Pent]in.

vtkv = tkv1 +
tkv2

1 +
(

[TF ]
ECtkv

)2
+

tkv3

1 +
(

x
prod(t)

)−20
, vcr = cr1 +

cr2

1 +
(

[TF ]
ECCr

)2
+

cr3

1 +
(

x
prod(t)

)20
.

(2.1)

In the above system of equations, [P ](x, t) denotes the concentration of species P at lo-

cation x and at time t. To represent the likely fact that Pent must first bind cells to

have effects on HSPGs, Pent has unbound and bound forms in the model, represented

by [Pent]out and [Pent]in, respectively. The spatial domain [0, xmax] represents the re-

gion of the posterior compartment. To represent disc growth, xmax increases according

to: xmax(t) = x0e
at2F1(1, 1

n
,1+ 1

n
,−btn) (see derivation below in Eq. (2.3)). Dpp and unbound

Pent ([Pent]out) are the only diffusive species in this model, and have diffusion coefficients

Ddpp and Dpent, respectively. The term ∂(V [P ])
∂x

can be split into two terms [P ]∂V
∂x

and V ∂[P ]
∂x

representing dilution and advection driven by disc growth, respectively. V (x, t) is the disc
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Figure 2.1: Conceptual model of the wing disc Dpp patterning system. Arrows depict bio-
chemical interactions; lines ending in bars are regulatory inhibition, and lines ending in
circles regulatory activation. Dpp binds with its receptor Tkv to form a complex DppTkv.
DppTkv matures into a stabilized complex, DppTkv* (DppTkv* may be considered an ana-
log of a heteromeric ligand-type I-type II receptor complex). DppTkv* may be formed either
with catalytic assistance from co-receptors Dally and Dlp [83], or via Dpp first binding to
co-receptor (Cr) (to form DppCr) and then transferring to receptors (regenerating Cr). Dpp-
Tkv* induces phosphorylation of Mad to generate pMad. Dpp receptor complexes undergo
first order decay with recycling of Tkv. pMad signaling inhibits the synthesis of both Pent
and Brk. Brk inhibits one or more transcription factors (TF, e.g. optomotor blind) that
inhibit of the synthesis of both Tkv and Cr. Pent also binds to Cr and drives its destruction.

growth velocity at location x and its value at xmax represents the growth rate of the entire

posterior compartment: V (xmax, t) = dxmax

dt
. We assume the disc grows homogeneously over

the entire space, and V (x, t) is a linear function of x:

V (x, t) =
x

xmax(t)
V (xmax, t). (2.2)

For any species P and Q, ki[P ][Q], (i = 1, 2, 3, 4, 5), are association rates between P and Q,

and kri[PQ] (i = 1, 2) are dissociation rates of the complex PQ formed by P and Q. For

any species P , dP [P ] represents a degradation rate for (free) P .
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The rate constant k6 describes first order association of Pentout with cells to produce the

bound species Pentin. We assume that Dpp is synthesized in a localized source (termed the

production region), and the size of Dpp production region grows at the same rate as the

rest of posterior compartment. Specifically, we take prod(t) = pxmax(t), with p = 0.12. Dpp

production is then modeled by vdpp/(1 + (x/prod(t))20). The high-exponent Hill function

essentially approximates a step function. A Dpp degradation term is also added in the

production region: ddpp/(1 + (x/prod(t))20).

The production rate of Tkv, vtkv, contains three terms: tkv1 is a base production rate in

the entire disc; tkv2/(1 + ([TF ]/ECtkv)
2) represents the production regulated by TF, which

stands for downstream transcription factors repressed by Brinker (Brk); Tkv synthesis is

low inside the Dpp production region due to the effect of Hedgehog [156] and tkv3/(1 +

(x/prod(t))−20) is used to model the additional Tkv production outside of the production

region. Dally and Dlp are lumped together as ”Co-receptor” (Cr) in this model. The

production rate of co-receptor, vcr, contains three terms: cr1 is base production rate; cr2/(1+

([TF ]/ECCr)
2) represents the production regulated by TF; and because co-receptor synthesis

is high inside Dpp production region, due to effect of Hedgehog [156], cr3/(1+(x/prod(t))20)

is used to model the addition Cr production in the Dpp production region. To represent

the fact that Pentin drives destruction of co-receptors, we introduce a decay term into the

equation for Cr that is proportional to the level of Pentin with proportionality constant k3.

To model the production of Brinker (Brk), which is repressed by pMad, we multiply a

basal production rate by 1/(1 + [pMad]/ECbrk)
2), however, because basal Brk production

appears to increase markedly with disc size [55], we take the basal production rate to be

a constant vbrk times xmax (disc diameter). To model the production of TF, we multiply a

basal production rate vtf by 1/(1 + [Brk]/ECTF )2). To model the production of Pent, we

multiply a basal production rate vPent by 1/(1 + [pMad]/ECPent)
2).

The biochemical steps in the assembly of the active form of the Dpp receptor are modeled to
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reflect that fact that TGF-beta family receptors assemble in a two-stage process which, for

the BMP branch of the TGF-beta family, usually involves initial binding to type I receptors

(e.g. Tkv) and subsequent recruitment of type II receptors. Thus, the species DppTkv may

be construed to represent complexes that lack type II receptors while the species DppTkv*

represents complexes containing both type I and II receptors.

We model co-receptor activity according to the results of [83], who showed that HSPGs

catalyze the conversion of BMP-type I receptor complexes into BMP-type I receptor-type

II receptor complexes. Rate constant k5 captures this behavior. At the same time, because

Dpp can bind HSPGs, we also model direct reversible binding, and allow for the possibility

that Dpp initially bound to HSPGs can also recruit type I and type II receptors; this latter

behavior is captured by k4, but as described later, the value of k4 may be set effectively to

zero without having significant effect on the model output.

In solving system (2.1) over time and space it is necessary to specify initial conditions for

all variables and boundary conditions for the diffusing species Dpp and Pent. The boundary

conditions are no-flux at x = 0, i.e. d[P ]
dx

∣∣∣
x=0

= 0, and absorbing at xmax, i.e. [P ]|x=xmax(t) = 0,

where P stands for either Dpp or Pent. The no-flux condition is justified by the symmetry

of the problem (anterior and posterior compartments are taken to be symmetric about the

A-P boundary), and the absorbing condition creates a generalized sink at x = xmax. The

initial posterior compartment size is taken to be 0.1 µm—smaller than the actual size of

discs—in order to provide sufficient simulation time for results to become independent of

initial conditions. The initial conditions are then obtained by running the simulation in the

fixed initial domain for 4 hours starting from zero values for all species. We verified that

these conditions produced results that were independent of initial condition choices.

The total simulation time is 120 hours. We take time=0 to correspond to 24 hours after

egg laying, which is consistent with the convention adopted by [174]. Because the rate at

which discs grow is not constant, but slows as larval development proceeds, it was necessary
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to use an empirically determined growth rate function in the model. To obtain this, we

measured compartment sizes experimentally (Figure S3 in [194]). To fit those data to a

simple equation we considered the following function which describes an arbitrary system

that is growing exponentially but slowing according to a declining Hill function of time.


dxmax

dt
=

axmax

1 + btn
= f(xmax, t)

xmax(0) = x0.

(2.3)

The general solution to Eq. (2.3) is xmax(t) = x0e
at2F1(1, 1

n
,1+ 1

n
,−btn), where 2F1 is the hyper-

geometric function:

2F1(a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
. (2.4)

Here (q)n is the Pochhammer symbol, defined by:

(q)n =


1, n = 0;

q(q + 1) · · · (q + n− 1), n > 0.

(2.5)

We used the built-in function NonlinearModelFit in Mathematica to fit the experimental

data (Figure S3 in [194]) to the above function. By testing various integers n, the best fit

was found to be given by n = 3. We then used this function to describe the growth of xmax

over time in the model. Although the mathematical form is different from that proposed by

[174] for the wing disc, the two functions are very similar in shape.

2.7.2 The model mimics scaling of gradient for multiple genotypes

Now, we use the model to examine the scaling for multiple genotypes. Summary results are

shown in Figure 2.2A, with dietailed simulations in Figure 2.3. The behaviors of the geno-
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types in Figure 5I from [194] are reasonably well replicated: Initially, all modeled genotypes

scale well, until posterior compartment sizes reach ∼10 µm. Up to this time, Dpp and pMad

gradient shapes produced by the model are essentially straight lines from source to the end

of the morphogen field (Figure 2.3A).

Automatically-adjusting straight line gradients call to mind the ”source-sink” scaling mecha-

nism of [182], which exemplifies what mathematicians call a ”boundary layer effect”, whereby

phenomena at a boundary influence gradient shape at a distance. For steady-state diffusion

gradients, the approximate distance over which boundary layer effects occur is the intrinsic

decay length, λintrinsic, defined as the square root of the ratio of the diffusion coefficient and

the (effective) removal rate constant.

As previously noted, for uniform-decay gradients on a sufficiently large one-dimensional

field, gradient shape is described by e−x/λ, with λ = λapp =
√
D/k; thus, for such gradients

λapp = λintrinsic. But ”sufficiently large field” here turns out to mean large compared with

λintrinsic. With fields smaller than λintrinsic, gradient shape becomes less exponential, and

more linear; the more linear the gradient, the farther into it boundary-layer effects will

occur. Wolpert’s source-sink gradients are merely the limiting case of λintrinsic = ∞, (no

decay within the morphogen field), yielding straight-line gradients that scale perfectly with

boundary movement. As long as morphogen gradients operate in a regime of large λintrinsic

(compared with morphogen field size), they too will scale automatically (this is also true in

higher dimensionssee section in Section 2.9.5). However, this can only go on for so long, as

field size should eventually catch up with λintrinsic—at which point gradients will become

more exponential and scaling will stop.

In the mathematical model, scaling initially displayed by all genotypes stops at different sizes

(in agreement with experimental observations; Fig. 5I in [194]), for reasons that depend on

the genotype. We consider first the wild type: In that situation, the initial value of λintrinsic

(∼5 µm everywhere) suggests that scaling should fail sooner than it does but, as the disc
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grows, the value of λintrinsic near the morphogen source rises Figure 2.2, extending the period

of scaling. The reason for the rise is that receptors and co-receptors become increasingly

downregulated (since they are the primary means of morphogen removal, their loss drives

λintrinsic up). Interestingly, to prolong scaling it is not necessary for λintrinsic to grow as fast

as the disc itself. This is because once strongly non-uniform expression of receptors and

co-receptors sets in—low near the morphogen source and high far away—the actual sink at

the far end of the morphogen field becomes less and less important. Instead, the territory

with high receptor/co-receptor expression itself acts like a sink, due to the high level of

morphogen uptake there. We call this behavior ”pseudo-source-sink” scaling, as it emulates

a boundary-layer effect without the need for a true tissue boundary Figure 2.4AB.

The phenomenon that drives pseudo-source-sink scaling is, fundamentally, amplitude growth:

In other words, it is because Dpp and pMad levels at the start of the gradient rise with

disc growth that receptor and co-receptor expression become increasingly repressed, and at

greater distance, over time. Whereas true source-sink scaling reflects a direct coupling of

field size to gradient scale, pseudo-source sink scaling depends on indirect feedback: changes

in field size first produce changes in gradient amplitude, and these then drive changes in

gradient scale.

Why should changes in field size cause changes in amplitude? In the model, several processes

contribute. The simplest is that the production region itself grows with the disc; as it does,

it feeds more Dpp into the gradient (the magnitude of the effect depending on the level mor-

phogen decay within the production region). A second reason arises from the laws of physics

and the fact that the gradient has already been scaling: According to Fick’s first law, net

diffusive flux at any point is proportional to the slope of the diffusion gradient. So, whenever

a gradient expands by becoming shallower, diffusive flux at the origin must decrease. That in

turn leaves more molecules available to contribute to the local concentration of morphogen,

raising free morphogen concentration.
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Two other mechanisms can also contribute to amplitude growth, but have minor effects in

the model: To the extent that Dpp molecules associated with or internalized within cells are

very long-lived, the Dpp signal that cells receive will lag significantly behind the free Dpp

concentration; this can cause pMad levels to rise even after Dpp levels have leveled off. And

to the extent that disc growth is not purely exponential, but rather slows as time goes on

[174], the loss of Dpp and pMad due to dilution will diminish, ultimately raising Dpp and

pMad concentration.

Does amplitude growth, as seen in the model, actually happen in vivo? Monitoring Dpp and

pMad amplitudes over time is challenging, not only because of individual variation among

discs, but because discs change dramatically in thickness as they grow, necessitating correc-

tions for systematic changes in the efficiency of immunostaining and/or imaging. Nonethe-

less, groups that have made such measurements consistently report amplitude growth in the

wing disc Dpp gradient, although the degree to which they observe it varies [55, 174]. The

model parameters used in Figure 2.3A predict an approximately 7-fold increase in Dpp and

12-fold increase in pMad over the time that posterior compartments lengthen ∼20-fold (from

10 to 195 µm), but the actual changes are likely less important than the degree to which

they decrease Tkv and co-receptor expression.

To investigate the dynamics of that decrease in vivo, we monitored expression of a tkv

enhancer trap line over a range of disc sizes. As shown in Figure S7F from [194], the

pattern of tkv expression in early, small discs is much more uniform than it is later, strongly

implying that Dpp-mediated repression is minimal early on and builds gradually. Similarly,

Widmann and Dahmann [178] find that brk expression is also fairly uniform in early discs,

only becoming strongly suppressed by Dpp later. We see much the same thing with pent

which like brk, is a direct target of Dpp signaling: early expression in the center of the wing

pouch, with the pattern of exclusively peripheral expression only emerging later (Fig. S7L in

[194]). These results are all consistent with a Dpp signaling gradient that grows in amplitude
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over time.

Given that feedback regulation of receptors and co-receptors plays an essential role in pro-

longing scaling in the mathematical model, it is not surprising that genotypes that eliminate

both feedback loops stop scaling much earlier (at a posterior compartment size of ∼20 µm).

In contrast, if only a single feedback loop is eliminated, gradients expand for a bit longer

(posterior compartment size ∼30 µm), then very gradually catch up to a final λapp almost

equal to wild type (this agrees with experimental observations in Figure 5 from [194]). Ex-

amination of the model suggests an explanation for this behavior: because a single feedback

loop capable of adjusting λintrinsic remains, pseudo-source-sink scaling persists (Figure 2.2B),

but the slower pace at which it happens means that one of the factors that contributes to am-

plitude growth (decreased diffusive flux due to shallower gradient slope) is less pronounced,

leading to slower scaling.

In the model, scaling also fails for pent mutant discs, but the reasons are somewhat different.

In the model, and as we observed experimentally (Figure S7 in [194]), pent is expressed

throughout the wing pouch at early times. Since Pent removes co-receptors, Pent loss means

increased co-receptor function, driving down λintrinsic in most or all of the disc, and causing

source-sink scaling to fail prematurely. Thus, whereas elimination of feedback control of

receptors and co-receptors impedes scaling by interfering with the process of scaling itself,

elimination of Pent further impedes scaling by changing the initial conditions of the disc.

Consistent with this view are the results of RNAi up- and down-shift experiments (Figure 7

in [194]), which suggest that the effects of Pent on gradient scale are, to a fairly substantial

degree, due to actions that occur during early disc growth (i.e. before mid-third instar).

In the model, the behaviors seen with other genotypes may be understood as combinations

of the effects discussed above. Interestingly, the model captures the observed fact that

pent mutant discs do not ”catch up” after scaling slows, unlike Ubi-tkv and Uniform-dally

discs. This difference only emerged in the model when we accounted for the fact that
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basal Brinker (brk) expression increases dramatically during disc growth [55]; without this,

modeled pent discs also displayed ”catch-up” behavior. In effect, Brinker’s rise seems to act

as a countervailing force to pseudo-source-sink scaling, pushing thresholds back toward the

Dpp source at the same time that increased Dpp signaling pushes them farther away. In

[55], highest brk expression occurs where there is essentially no Dpp signaling, so Dpp itself

cannot explain brk’s rise. In the model, we arbitrarily adjust brk amplitude to follow the

findings from [55], however, it is intriguing to speculate that there could be some coupling

between brk expression and disc size that would make such coupling automatic.
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Figure 2.2: Mathematical simulations of Dpp gradient scaling.(A) pMad apparent decay
lengths versus disc size for multiple genotypes including wildtype; pent+/−; pent; ubi-tkv;
uniform dally; ubi-tkv, unifrom dally; ubi-tkv, pent; and pent, ubi-tkv, uniform dally. (B)
The source-adjacent Dpp intrinsic decay length (λintrinsic averaged over locations from x = 0
to x = 0.1xmax) for four genotypes (wildtype, pent−/−, ubi-tkv and uniform-dally), was cal-
culated and plotted as a function of compartment size (xmax). λintrinsic captures the distance
over which boundary effects occur, so that source-adjacent λintrinsic/xmax provides a measure
of the extent to which a gradient’s shape near the morphogen source is strongly boundary-
controlled. Transient rises in λintrinsic demonstrate the effects of feedback downregulation of
tkv and dally.
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Figure 2.3: Modeling Dpp gradient scaling in the posterior compartment of the wing disc.
(A-I) Time evolution of the Dpp morphogen gradient for different genotypes. Graphs show
distributions of free Dpp, Dpp-receptor and -coreceptor complexes, and downstream signals
and targets. x = 0 represents the anteroposterior compartment boundary. The final graph
in the simulation shows the growth of the posterior compartment over time, and the legend
shows how time is represented by color in each of the graphs. (A) wildtype; (B) pent+/−;
(C) pent; (D) ubi-tkv; (E) uniform dally; (F) ubi-tkv, pent; (G) ubi-tkv, unifrom dally;
(H) pent, ubi-tkv, uniform dally; (I) pent with uniformly expressed Pent. In (I), the two
additional graphs in the bottom compare the scaling and the pMad distribtuion at terminal
time to show the uniformly expressed Pent can rescue the scaling in pent mutant.
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Figure 2.4: The principle of pseudo-source-sink scaling illustrated with a simplified, steady-
state model, with only four free parameters, which includes only ligands, receptors and
ligand-receptor complexes; irreversible capture of ligands by receptors; and downregulation
of receptor synthesis. Values of LR (ligand-receptor complexes) are normalized to Rmax

(receptor concentration obtained in the absence of ligand binding or feedback), and plotted
against compartment size normalized to the intrinsic decay length that would be observed
in the absence of ligand binding or feedback (λ0). (A) Distributions of ligand ([L]), receptor
([R]) and their complex ([LR]) are displayed under conditions in which feedback regulation
of receptor synthesis is present (”Feedback”) or (”Absent”). The parameters used for these
simulations were k = 1, φ = 1, ξ = 1, γ = 0 (no feedback) or 40 (feedback). The parameter ν,
which was taken to be 0.05 for the no-feedback case, was adjusted to 0.15 for the feedback case
in order to produce comparable [LR] amplitudes. (B) Summary of the apparent decay lengths
(λapp), relative to λ0, for the curves in A. (C) Apparent decay lengths, scaled to λ0, versus
wing disc size, also scaled to λ0. Results are for 1000 random parameter sets. Parameters φ,
ν and ξ were sampled logarithmically between 0.01 and 100; xmax was sampled between 0.1
and 10. Data are as in C, except that points with high receptor saturation (S > 0.5) have
been excluded.
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Figure 2.4 (continued): (E) Decay length augmentation due to feedback. The abscissa gives
apparent decay lengths in the absence of feedback, λnoFBapp , relative to the intrinsic decay
length λ0. The ordinate shows the ratio between λapp for each set of parameters with and
without feedback (each dot is a single parameter set). Blue denotes parameter sets where
receptor saturation is below 50% at the origin for both the feedback scenario and the no-
feedback scenario; red indicates that saturation is below 50% for the no-feedback case but
not the no-feedback case; yellow that the saturation if above 50% in both cases (there were no
parameter sets for which the feedback case was less than 50% saturated and the no-feedback
case was not). The shaded bars mark the parameter regimes that produce source-sink and
pseudo-source sink scaling.

2.7.3 The simiplified pseudo-source-sink model

In the section above, we show the scaling is mainly driven by the feedback regulation on

receptor and co-receptor with the pseudo-source-sink mechanism. Here we illustrate the

principle of pseudo-source-sink scaling using a much simpler model. In this model, shown

below, only three species are considered: ligand ([L]), receptor ([R]) and the complex between

ligand and receptor ([LR]).



d[L]

dt
= D∆[L] +


vL − dL[L], if x < 0.12xmax

− kon[L][R], if x ≥ 0.12xmax

d[R]

dt
=

vR

1 + (g[LR])2 − kon[L][R]− dR[R],

d[LR]

dt
= kon[L][R]− dLR[LR].

(2.6)

The spatial domain is [0, xmax]. The effects of dilution and advection are neglected, as their

impact on the full model turned out to be minimal (at least for the parameters chosen in

Figure 2.3. This enabled us to solve the system at steady state on a variety of fixed domain

sizes, rather than model continuous domain growth. As in the full model, ligand is produced

in a localized production region that grows proportionately with the rest of the disc. The

morphogen diffuses and binds receptors, but here, dissociation from receptors is neglected as
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it is thought to be slow; the binding event may be understood as representing the combination

of binding, uptake and destruction in a single step. Inside the morphogen production region,

where we know that receptor and co-receptor levels are handled differently than elsewhere,

we replace the usual receptor interaction term with a first order morphogen decay term

dL[L], meant to represent the aggregate of those interactions within the production region.

The production of receptor is subject to negative feedback from the amount of complex

[LR] (which is taken to be a proxy for ”signal” from the morphogen). Parameter g is the

reciprocal of an EC50, and it reflects the strength of feedback. Setting g = 0 is equivalent

to removing feedback.

We can non-dimensionalize this system to make both time and space unitless. The three

species in Eq. (2.6) are thus re-named according to:



µ =
kon
dR

[L],

ρ =
dR
vR

[R],

ω =
dR
vR

[LR].

(2.7)

For receptor [R] and the complex [LR], this transformation is equivalent to normalization

to the level of free receptor that would obtain in the absence of any feedback or ligand,

Rmax = vR/dR. We also nondimensionalize space by defining the unit of distance to be

λ0, the intrinsic decay length that would be observed in the absence of ligand binding or

feedback:

λ0 =

√
D

konRmax

=

√
DdR
konvR

. (2.8)

Finally, we may nondimensionalize time by scaling it to the inverse of the degradation rate of

receptor dR (although the time scale is not relevant to the steady state analysis of Eq. (2.6)

it simplifies numerical solution by time-evolution). Thus, the transformation from original
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coordinates (x, t) to the new coordinates (X, τ) is given by:


X =

x

λ0

,

τ = tdR.

(2.9)

The nondimensionalized equations are therefore given by



dµ(X, τ)

dτ
= k∆µ(X, τ) +


− kϕµ(X, τ) + kυ, if X < 0.12Xmax

− kµ(X, τ)ρ(X, τ), if X ≥ 0.12Xmax

,

dρ(X, τ)

dτ
=

1

1 + (γω(X, τ))2 − µ(X, τ)ρ(X, τ)− ρ(X, τ),

dω(X, τ)

dτ
= µ(X, τ)ρ(X, τ)− ξω(X, τ).

(2.10)

The five nondimensional free parameters in Eq. (2.10) are related to the parameters in Eq.

(2.6) according to: 

k =
konvR
d2
R

,

ϕ =
dLdR
konvR

υ =
vL
vR
,

ξ =
dLR
dR

,

γ = g
vR
dR
.

(2.11)

In addition, Xmax, the spatial size of the domain scaled to λ0, enters as a sixth parameter

that is required to specify the boundary condition opposite the production region. At the

start of the production region we impose a no-flux boundary condition, to reflect the spatial

symmetry of the system. At the end of the gradient region, x = xmax, we impose an absorbing

boundary condition.

The steady-state shapes of a series of eight gradients associated with increasing compartment

sizes are shown in Figure 2.4A. Curves are color-coded to represent increasing domain sizes
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(which, in this case were Xmax = 1, 2, 3, 4, 5, 6, 9, and 12). To obtain the results labeled ”No

Feedback”, we set the feedback strength γ to zero, and adjusted the morphogen production

rate to match so that the results for LR near the origin would be similar in the two cases.

The third panel of each of these cases shows how feedback enables gradients to remain quasi-

linear, and continue scaling, for much longer. Note also the growing suppression of receptor

expression in the Feedback case.

To more thoroughly understand the behavior of the reduced model, we explored a large

number of random parameters. It is clear, from Eq. (2.3) that the parameter k drops out

in the steady state, so that in any exploration of parameters in which we are only interested

in steady-state behavior we can simply fix k to be 1. We then randomly generated ϕ, υ, ξ

and Xmax using Latin hypercube sampling, initially running simulations with no feedback

(γ = 0). A total simulation time of T = 10, 000 allowed us to obtain a steady-state solution

numerically. The numerical steady-state solution of ligand-receptor complex is denoted by

ω(X)noFBSS . Next, we ran simulations with feedback. Rather than choose values of γ at

random, we selected them so as to exclude those that would provide only trivial amounts

of feedback, as well as those that would provide so much feedback that receptors would be

fully suppressed from the start. In particular, we chose γ as defined by

γ =
1

0.25 max
X∈[0,Xmax]

ω(X)noFBSS

. (2.12)

We compare the results of feedback and no-feedback scenarios for 1000 randomly generated

parameter sets in Figure 2.4C. Note the ability of feedback to produce values of λapp much

greater than observed without feedback. This effect is even more apparent if we eliminate

those cases in which receptor saturation S—defined as the fraction of total receptors that

are occupied (i.e. S = [LR]/([LR]+[R]))—exceeds 50% at the origin (the boundary between

the production region and the rest of the domain), shown in Figure 2.4.
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The reason for this is that morphogen decay is a function of free receptor level, and satura-

tion amounts to lowering free receptor level. Thus, a gradient can, in principle, extend its

apparent decay length simply by saturating receptors, but there are two reasons why this

regime is likely to be un-biological. First, in this regime gradients adopt sigmoidal shapes,

and such shapes are not observed in any known morphogen system. Second, a consequence

of operating in this regime is that gradient position becomes extremely sensitive to small

changes in the rate of morphogen production [90].

The plots in Figure 2.4CD do not permit individual parameter sets—considered with and

without feedback—to be compared against each other. We do this in Figure 2.4E, which

shows the extent to which λapp is increased by feedback. Notice that, when λnoFBapp is less

than half the value of λ0, the improvement in λapp that comes from feedback is always

modest. This is because, in this regime, gradient shape is close to linear even in the absence

of feedback, and thus both the feedback and non-feedback case display true source-sink

scaling. However, once λnoFBapp is on the order of λ0 or larger, the improvement in λapp due to

feedback is much greater for almost all parameter sets: this is the pseudo-source-sink scaling

regime, in which gradients remain quasilinear and scale automatically, even though the true

sink is located many values of λintrinsic away. In highly saturated regimes (red and yellow

symbols), however, some of the feedback cases perform no better than the no-feedback cases,

presumably because scaling due to saturation of receptors does not require feedback.

2.8 Discussion

Morphogen gradients play a central role in animal development, tying cell behavior to spatial

location. Whereas monotonic gradients of almost any sort can encode location, to encode

relative location on a domain of changeable size, gradients must scale. To do so, at least one

of three processes—morphogen production, transport or removal (decay)—must somehow
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be coupled to the size of the morphogen field.

There have been several proposals for making such coupling automatic [11, 22, 182], an

elegant example of which is the expansion-repression (ER) model. The present study began

as an attempt to test whether the secreted protein Pent, which has been implicated in scaling

of the Drosophila wing disc Dpp gradient, fits the requirements of the expander in this model.

We found that Pent lacks the necessary spatial range, and that its effects can be phenocopied

by disabling co-receptors in just the Pent expression domain (Figure 1-4 in [194]), suggesting

that Pent need not act at a distance. We then made the observation that feedback repression

of receptor and co-receptor synthesis is required for scaling (Figure 5 in [194]).

How exactly does scaling happen? Having a mathematical model that reproduces wildtype

and mutant phenotypes allowed us to develop a plausible explanation. Surprisingly, the

explanation does not attribute scaling to a single mechanism, but rather to a collection of

passive and active processes:

First, when discs are very small—with compartment sizes up to about 10 µm, as one observes

through early or mid-second larval instar—the model exhibits source-sink scaling because

λintrinsic is large enough that boundaries act as sinks. Although it is not possible to measure

λintrinsic directly, λapp sets a lower bound on λintrinsic and is well-known at later stages (for

both Dpp and pMad) to be on the order of 15-20 µm [42, 55, 157, 174]. It is thus reasonable

to think that, at early times, λintrinsic could indeed exceed morphogen field size.

Later, as discs grow beyond their initial values of λintrinsic, the model predicts a ”pseudo-

source-sink scaling” regime (Figure 2.2), where rising morphogen levels drive down receptor

and co-receptor expression, raising λintrinsic near the morphogen source. Far from the mor-

phogen source, however, λintrinsic remains small, effectively creating a ”pseudo-sink”. As

long as growth occurs in the amplitude of the morphogen gradient near the source, gradients

respond by becoming shallower near the source, which makes them expand further out-
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ward. Moreover, as discussed above, when gradients become shallower, that in itself drives

amplitudes up, effecting something of a positive feedback.

This process occurs until receptor and co-receptor expression can be downregulated no

further—their levels cannot fall to zero because their function is required to drive their

repression. After that, wildtype gradients outgrow their λintrinsic and cease scaling alto-

gether. Not surprisingly, genotypes that compromise the ability of the morphogen to repress

receptor and/or co-receptor synthesis result in gradients that cease scaling sooner.

In the output of the mathematical model, the transition from a regime in which gradients

scale to one in which they do not is marked by a shift in gradient shape from linear to

roughly exponential (Figure 2.3). To some extent this behavior is an artifact of using on a

one-dimensional formulation. Current evidence indicates that Dpp diffuses in the basolateral

space between columnar cells of the disc [56, 192]; as a result one should expect a continual

”leak” of Dpp through the adjacent basement membrane (such structures are not barriers

to diffusion [33]), producing, in effect, an additional sink. A more complete analysis of

source-sink scaling with sinks in multiple dimensions shows that, as long as cell height

and disc width increase in size proportionately (which is approximately what occurs during

larval growth), gradients will still scale automatically, but may display any shape between

linear and exponential. Furthermore, the necessary and sufficient condition for source-sink

scaling—that λintrinsic be larger than the anteroposterior field size—remains unchanged.

The idea that amplitude growth contributes substantially to morphogen gradient scaling is

not new (reviewed by [163]). For example, selection for larger or smaller Drosophila embryos

is accompanied by compensatory shifts in the locations at which Bicoid target genes are

turned on. These shifts occur not because of a change in λapp of the Bicoid gradient, but an

increase in gradient amplitude alone [22]. For exponential gradients (like the Bicoid gradient),

simple amplitude increase produces constant-distance shifts in threshold positions, making

thresholds near the morphogen source over-scale and those far away under-scale. Thus, like
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source-sink scaling, scaling due to pure-amplitude growth runs into spatial limits beyond

which it is not very effective. The pseudo-source-sink mechanism partially compensates for

this problem by displacing the effective sink away from the source as the amplitude near

the source grows. However, it should be noted that in this case, what is truly scaling is just

the relative shape of the morphogen gradient, as measured by its λapp, and not the locations

where absolute thresholds are crossed. At least some Dpp target genes (e.g. dad) do seem

to scale in just this way [55, 174].

In addition to the various mechanisms—source-sink scaling, amplitude growth, pseudo-

source-sink scaling—that drive Dpp gradient expansion in the model described here, other

processes may matter in vivo. Growth itself tends to propel forward the molecules within a

tissue—a process termed advection—and some growth-driven gradient expansion can occur

by that process alone, although under typical conditions the effect is likely to be small [43].

Automatic scaling of certain locations within morphogen gradients can also occur if gradients

operate far from steady state, i.e. if growth moves cells to new locations faster than the dy-

namic processes that determine gradient shape can adjust [43]. The model we present here,

at least over the parameter ranges explored, operates fairly close to steady state (i.e. gra-

dients are relatively independent of growth rate), meaning that such ”dynamics”-dependent

scaling is not a significant contributor.

Overall, the experiments and modeling presented here suggest a view of scaling as more

”kluge” than elegant control system. Small fields with leaky boundaries contribute source-

sink and amplitude-growth scaling effectively ”for free”, but not indefinitely, as both start

to fail at large field size. Pseudo-source-sink effects prolong scaling, but only for so long,

as receptor function can be suppressed only so much before signaling itself becomes too

compromised.

The present study suggests that the source-sink gradients of early theorists [182], which

fell strongly out of favor once it was observed that gradient shapes are quasi-exponential,
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may actually have much to offer in explaining the early behaviors of morphogen gradients.

Interestingly, recent work argues that source-sink behavior is also the primary determinant

of BMP gradient shape in early zebrafish embryos [196]. The behavior in that system would,

by our nomenclature, be more precisely termed pseudo-source sink, since the sink in that

system arises from the binding of BMP to chordin, and chordin is downregulated by BMP—a

feedback loop functionally analogous to the downregulation of Tkv and Dally by Dpp in the

wing disc. The parallels between that system and the work described here are intriguing

because the BMP gradient that patterns the early vertebrate embryo also exhibits scaling

behavior (in response to embryo bisection [14, 29] as well as other kinds of manipulations

[64].

The inherent limitations of pseudo-source-sink scaling that, in the model, cause scaling to

stop once a certain size is reached may seem like a drawback, but may actually be a feature.

Morphogens control not only pattern but also growth; in wing discs this is an essential

function of Dpp [3, 106]. Wartlick argue that the key signal that maintains disc growth is

a continually rising Dpp signal [174]. If gradient scaling is required to ensure that this rise

occurs proportionally at all locations, as is the case in the model, failure of scaling could

potentially play a causal role in terminating growth. What is intriguing about this idea is

that it predicts that the size at which growth stops should correlate with the size at which

scaling stops, which we in fact observe in the data: As shown in Figure 5 in [194], pent

and ubi-tkv/uniform-dally mutant discs stop growing at a substantially smaller size than

wildtype discs. These observations suggest that it may be better to view scaling and growth

as one coupled system, rather than a mechanism for adjusting pattern to size.

Although the present study provides a potential explanation for Dpp gradient scaling that

correctly predicts the larval phenotype of the pent mutant, it does not provide a satisfying

explanation for why Pent is used by wing discs in the first place. In the model, pent discs

fail to scale mainly because they start out with too small a λintrinsic, but since all Pent does
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(in the model) is inhibit receptor function, it is not clear why discs don’t just dispense with

Pent altogether, and simply express fewer receptors and co-receptors from the outset. The

situation suggests that there may be as-yet-unappreciated functions of Pent. For example,

even though the model argues that Pent diffusion is not necessary for scaling, it might still

be possible that Pent has a useful role as a repressible expander during very early stages,

when Pent’s λapp is not so small, relative to disc size. It may also be worth recalling the

characteristic adult phenotype displayed by pent mutants: loss of the fifth longitudinal

vein [165]. Whereas scaling abnormalities might explain mispositioning of a vein, vein loss

suggests that some Pent actions may be unrelated to Dpp gradient scaling.

2.9 Extended Information

2.9.1 Simulating rescue by compartment-wide Pent overexpres-

sion; evaluating the necessity for Pent diffusivity

The pent phenotype in adult wings can be rescued by overexpressing Pent uniformly through-

out the wing disc [165] or throughout the posterior compartment (Figure S1 in [194])). To

see whether the model and the parameters that were selected reproduce this behavior, we

modified equations Eq. (2.1) to replace the equation for [Pent]out with

∂[Pent]out
∂t

+
∂ (V [Pent]out)

∂x
= vpent +Dpent∆[Pent]out − k6[Pent]out, (2.13)

Here vpent is a uniform source term that was set to 1.71 × 10−10 M sec−1. The results of

numerical simulation are shown in Figure 2.3I. They show that, in the model, by the end

of disc growth, posterior compartment-wide overexpression of Pent almost fully rescues the

Pent phenotype.
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Some of the experiments in the manuscript raise the question of whether Pent needs to

diffuse at all to carry out its functions. To explore this question, we re-ran the results of the

wildtype case using a value of Dpent of 0.01 µm2 sec−1, a factor of 2000 times smaller than

had been used before. This change lowers λintrinsic for Pent from 8 µm to 0.18 µm, i.e. it

makes Pent effectively indiffusible. We compare the effect of this change on the time course

of pMad apparent decay lengths in all of the above mutant scenarios. As can be seen, there

is very little difference in the outcomes of these simulations whether Pent diffuses rapidly,

or hardly at all (Figure 2.5).
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Figure 2.5: Effect of Pent diffusivity on pMad apparent decay length. The left panel repro-
duces Figure 2.2A and the right panel shows results when Pent diffusivity was lowered by a
factor of 2000, to 0.01 µm2 sec−1.

2.9.2 Lagrangian framework for solving mathematical equations

The spatial domain of Eq. (2.1) is time-dependent, whereas PDEs solvers usually require

a fixed domain. We therefore use the following linear coordinate transformation to transfer

the dynamical spatial domain onto a fixed domain:


x = r(τ)X

t = τ

. (2.14)
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where r(τ) = xmax(τ)
x0

. The transferred spatial domain is X ∈ [0, x0], where x0 is the initial

posterior compartment size shown in Eq. (2.3). Derivatives in the Lagrangian coordinate

system (X, τ) have the following relationships to derivatives in the original coordinate system

(x, t): 

∂

∂X
= r

∂

∂x
∂2

∂X2
= r2 ∂

2

∂x2

∂

∂τ
=

∂

∂t
+

∂

∂x

∂x

∂τ
=

∂

∂t
+

1

r

dr

dτ

∂

∂X

(2.15)

The transformed growth velocity Ṽ (X, τ) has a similar relationship to Eq. (2.2).

Ṽ (X, τ) =
X

x0

Ṽ (x0, τ). (2.16)

Using Eq. (2.15) and Eq. (2.16), we have

∂V

∂x
=

1

r

∂Ṽ

∂X
=

1

r

1

x0

Ṽ (x0, τ) =
f(xmax(τ), τ)

xmax(τ)
. (2.17)

For any equation in Eq. (2.1) with the general form

∂[P ]

∂t
+
∂ (V [P ])

∂x
= F ([P ], x, t) +D∆[P ]. (2.18)

the transformed equation in Lagrangian coordinate is given by

∂[P ]

∂τ
= D

(
x0

xmax

)2
∂2[P ]

∂X2
+ F ([P ], r(τ)X, τ)− f(xmax(τ), τ)

xmax(τ)
[P ]. (2.19)

Since both boundary conditions are homogeneous, the transformed equation inherits the

boundary conditions from the original condition: absorbing boundary at one side and no-

flux boundary at the other. We solved the transformed equations using PDEs solver pdepe

in MATLAB 2015b.

36



2.9.3 Parameter selection

There are 36 potentially free parameters in Eq. (2.1). We fixed Ddpp and k1 to match values

in the literature (Table 2.1). In the absence of direct measurements of Pent diffusivity, we set

the value of Dpent to be the same as Ddpp, i.e. 20 µm2 sec−1. To match the observed apparent

decay length of Pent (∼8 µm), we fixed k6 at 0.313 sec−1. The remaining 32 parameters were

logarithmically sampled across intervals of several orders of magnitude. Deeply sampling a

32–dimensional space at random is, of course, prohibitive (covering as few as three points

in each dimension requires > 1015 parameter sets), so an iterative procedure was used to

converge on reasonable parameter values.

To begin with, parameter selection was subjected to certain constraints even prior to gener-

ating numerical solutions. These constraints reflected the requirement that values of λapp for

Dpp, when measured outside of the Dpp production region, should be no higher than about

30 µm for Dpp. In general, when field size� λapp so that boundaries play a minimal role in

determining gradient shapes (e.g. toward the end of disc growth), we expect λapp ' λintrinsic,

where

λintrinsic =

√
D

krem
. (2.20)

Here D is the diffusion coefficient and krem is an effective removal rate constant. For any

diffusing species, an explicit expression for krem, as a function of x and t, can be found by

taking the right-hand side of the equation for that species, dropping diffusion and production

terms, multiplying by -1, and dividing the remaining terms by the concentration of that

species. For example, for Dpp,

krem,Dpp(x, t) = k1[Tkv] + k2[Cr]− kr1[DppTkv]− kr2[DppCr]

[Dpp]
(2.21)

the last term of which may be neglected at locations far from the Dpp source. In contrast,
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for Pentout,

krem,Pent(x, t) = k6. (2.22)

As placing a ceiling on λintrinsic equates to placing a floor on krem, the required constraints on

λintrinsic for Pent and Dpp constrain k1[Tkv] +k2[Cr] and k6 respectively. As [Tkv] and [Cr]

have maximum possible values of tkv1/dtkv and cr1/dcr, the constraint that λintrinsic,Dpp ≤ 30,

implies k1tkv1/dtkv + k2cr1/dcr ≥ Ddpp/900.

To find parameter sets that fit experimental data, Latin Hypercube sampling [155] was used

as a high dimensional random number generator. Using a multi-step procedure (described

below), we selected parameter sets based on their ability to fit dynamic data for eight geno-

types: wildtype; pent+/−; pent−/−; ubi-tkv; uniform dally; ubi-tkv, uniform dally; ubi-tkv,

pent−/−; ubi-tkv, uniform dally, pent−/−. Numerical solutions for each of these conditions

were obtained by altering appropriate parameters from their wildtype values. For ubi-tkv

(Tkv uniformly expressed in the entire disc), we took tkv2 = tkv3 = 0, and tkv1 to be an

adjustable parameter. Similarly, for uniform dally, we took cr2 = cr3 = 0, and cr1 to be

an adjustable parameter. For pent+/−, we lowered the production rate of pent by half. To

model double and triple mutants, we combined several of these alterations.

STEP 1: First, we randomly sampled all parameters in a wide range to find sets that pro-

duced roughly good decay lengths for wildtype and pent−/− conditions. The k∗ parameters

(k1, k2, k3, k4, kr1, kr2) were sampled over seven orders of magnitude (10−8, 10−1). Produc-

tion rates (e.g. tkv1, cr1, vpent) were sampled over two orders of magnitude (10−5, 10−3).

Degradation rates (e.g. ddpp, dtkv) were sampled over two orders of magnitudes (10−6, 10−4).

EC50s (e.g. ECpent) were sampled over two orders of magnitude (10−3, 10−1). 500,000 in-

dependent parameter sets were explored. Parameters were selected based on their ability

to meet constraints on λintrinsic (as discussed above), plus the following constraints on the

observed λapp for pMad (where λapp was determined by identifying the location where pMad
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declines to 1/e of its maximum value outside of the production region):

For wildtype:

1. max
s∈(0,smax)

λapp ∈ [12, 20],

2. max
s∈(0,smax)

λapp − λapp(smax) ≤ 5.

For pent−/− :

1. max
s∈(0,smax)

λapp ≤ 12,

2. max
s∈(0,smax)

λapp − λapp(smax) ≤ 5.

Here λapp(s) is understood as the apparent decay length of pMad when the size of posterior

compartment is s µm. The maximum value of s is 196 µm.

STEP 2: Starting from one selected parameter set from STEP1, we randomly perturbed 11

parameters—k1, k2, k3, k4, k5, kr1, kr2, ECtf , ECbrk, ECtkv, and ECpent. The k∗ parameters

were varied over two orders of magnitude, and the ”EC” parameters varied between 0.25 and

4-fold (as before, random numbers were sampled logarithmically). 100,000 independent pa-

rameter sets were explored. Parameters were first tested for their ability to meet constraints

on λintrinsic (as discussed above), and results then tested for the ability to meet the following

constraints on λapp for pMad:

For wildtype:

1. max
s∈(0,smax)

λapp ∈ [14, 17],

2. max
s∈(0,smax)

λapp − λapp(smax) ≤ 2.
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For pent−/− :

1. max
s∈(0,smax)

λapp ∈ [3.5, 7],

2. max
s∈(0,smax)

λapp − λapp(smax) ≤ 2.

STEP 3: From 18 parameter sets passing the above tests, four were selected for further

exploration. we perturbed all parameters over a range from 0.5-2-fold, keeping those that met

the following constraints. 500,000 perturbations were carried out for each initial parameter

set.

For wildtype:

1. max
s∈(0,smax)

λapp ∈ [14.5, 16.5],

2. max
s∈(0,smax)

λapp − λapp(smax) ≤ 2.

For pent−/− :

1. max
s∈(0,smax)

λapp ∈ [4.5, 6.5],

2. max
s∈(0,smax)

λapp − λapp(smax) ≤ 2.

For ubi-tkv :

1. max
s∈(0,smax)

λapp ≤ 17,

2. max
s∈(0,smax)

λapp − λapp(smax) ≤ 1.

For uniform dally :

3. max
s∈(0,smax)

λapp ≤ 17,

4. max
s∈(0,smax)

λapp − λapp(smax) ≤ 1.

For ubi-tkv, uniform dally :

5. max
s∈(0,smax)

λapp ∈ [5, 8].
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Nine parameter sets passed all of the tests, and one was selected for further refinement.

We examined the dynamic behavior of selected parameter sets to identify ones that fit

observations reasonably well. We carefully inspected levels and distributions of all species,

manually adjustng some parameters to better match prior knowledge: e.g. scaling of λapp for

total Dpp; Dpp and pMad gradient shapes that are close to exponential at the end of larval

development; degrees of central-suppression of Tkv and Cr at the end of larval development

that are consistent with observations; spatial patterns for Tkv, Cr, Brk and Pent that are

consistent with observations; and levels of total Dpp inside cells that are much higher than

outside [80, 192].

The final parameter set that was selected is given in Tables 2.1 and 2.2. Also shown are the

parameters a, b and n that appear in growth rate equation Eq. (2.3). As shown in Figure S3

in [194], homozygous pent mutant discs grow more slowly than wild type discs, and therefore

are fit with a different value of parameter b. Although we did not produce full growth curves

for all genotypes, the distribution of posterior compartment sizes that we observed suggests

that all of the genotypes that scale poorly (ubi-tkv, pent−/−; uniform dally, pent−/−; ubi-tkv,

uniform dally; ubi-tkv, uniform dally, pent−/−) grow at a rate similar to pent−/−, whereas

the others grow at a rate similar to wildtype (i.e. pent+/−; ubi-tkv; uniform dally). The

value of b used in simulation was therefore selected accordingly from the wildtype and the

pent−/− values. The results of the numerical solutions for each genotype are shown in Figure

2.3.

2.9.4 Local sensitivity analysis

To determine whether the qualitative behaviors of the system are strongly dependent on the

choice of parameters values, we systematically varied all parameters up and down 10-fold,

and measured the effect on λapp of pMad. Specifically, we calculated the ratio between λapp at
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Parameter Value Units Reference
Ddpp 20 µm2 sec−1 [192]
Dpent 20 µm2 sec−1

k1 1.00× 105 M−1 sec−1 [91]
k2 9.69× 105 M−1 sec−1

k3 1.32× 102 M−1 sec−1

k4 2.39 M−1 sec−1

k5 4.05× 103 M−1 sec−1

k6 3.13× 10−1 sec−1

kr1 2.87× 10−5 sec−1

kr2 7.37× 10−3 sec−1

tkv1 4.27× 10−12 M sec−1

tkv2 1.99× 10−11 M sec−1

tkv3 1.42× 10−12 M sec−1

cr1 8.12× 10−11 M sec−1

cr2 1.06× 10−9 M sec−1

cr3 3.25× 10−11 M sec−1

vdpp 8.40× 10−12 M sec−1

vpmad 6.44× 10−11 M sec−1

vpent 6.22× 10−10 M sec−1

vtf 9.46× 10−13 M sec−1

vbrk 6.58× 10−14 M sec−1

dtkv 6.61× 10−4 sec−1

dcr 6.04× 10−5 sec−1

dpmad 1.00× 10−3 sec−1

dpent 5.59× 10−5 sec−1

dtf 3.38× 10−5 sec−1

dbrk 3.52x10−5 sec−1

ddpp 1.16× 10−4 sec−1

ddpptkv 5.59× 10−5 sec−1

ddpptkv∗ 3.95× 10−5 sec−1

ddppcr 2.57× 10−3 sec−1

ECbrk 2.24× 10−10 M
ECtkv 9.60× 10−9 M
ECcr 9.60× 10−9 M
ECtf 3.05× 10−10 M
ECpent 2.24× 10−9 M
p 0.12 –
x0 0.1 µm
a 0.1168 sec−1 Figure S3 in [194]
b 4.77× 10−6 – Figure S3 in [194]
n 3 – Figure S3 in [194]

Table 2.1: Wildtype Parameters.
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Parameter Value Units Reference

pent+/−

vpent 3.11× 10−10 M sec−1

pent+/−

k3 0 M−1 sec−1

vpent 0 M sec−1

b 6.02× 10−6 – Figure S3 in [194]
ubi-tkv

tkv1 3.42× 10−12 M sec−1

tkv2 0 M sec−1

tkv3 0 M sec−1

uniform dally
cr1 1.95× 10−9 M sec−1

cr2 0 M sec−1

cr3 0 M sec−1

ubi-tkv, uniform dally
tkv1 2.85× 10−12 M sec−1

tkv2 0 M sec−1

tkv3 0 M sec−1

cr1 1.95× 10−9 M sec−1

cr2 0 M sec−1

cr3 0 M sec−1

b 6.02× 10−6 – Figure S3 in [194]

ubi-tkv, pent−/−

tkv1 2.85× 10−12 M sec−1

tkv2 0 M sec−1

tkv3 0 M sec−1

k3 0 M−1 sec−1

vpent 0 M sec−1

b 6.02× 10−6 – Figure S3 in [194]

ubi-tkv, uniform dally, pent−/−

tkv1 2.85× 10−12 M sec−1

tkv2 0 M sec−1

tkv3 0 M sec−1

cr1 1.95× 10−9 M sec−1

cr2 0 M sec−1

cr3 0 M sec−1

k3 0 M−1 sec−1

vpent 0 M sec−1

b 6.02× 10−6 – Figure S3 in [194]

Table 2.2: Parameter alterations in mutant genotypes.
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the end of the simulation for the unperturbed case and the perturbed case. This was done for

four genotypes (wildtype; pent−/−; ubi-tkv; uniform dally) (Table 2.3). Most perturbations

produced relatively small changes. Specifically, the system is relatively insensitive to Dpent,

k4, k5, k6, kr1, kr3, tkv3, cr3, ddpp and ddpptkv, whereas it is relatively sensitive to Ddpp, k1, k3,

vpent, dpmad, dpent, vdpp and ECpent. Sensitivity to Ddpp is to be expected, of course, because

at the end of the simulation, λapp for pMad mirrors λintrinsic for Dpp which, by definition

varies with the square root of Ddpp. By the same token, almost any change in Ddpp can

be compensated for by a commensurate change in association rate constants k1 or k2 that

preserves λintrinsic for Dpp. In other words, even though parameters were selected using a

model in which the value of Ddpp was fixed, the ability of the model to fit the data does not

place constraints on the choice of Ddpp.

2.9.5 The influence of dimensionality on source-sink scaling

Morphogen gradients often provide positional information along a single direction; in the

wing disc, for example, the Dpp gradient patterns the anterioposterior (AP) axis. Even

though biology happens in three dimensions, it is common to model morphogen gradients

as reaction-diffusion systems in just this one dimension. This greatly simplifies analysis, but

can introduce artifacts. Here we discuss one type of artifact that arises when wing discs are

small, and can affect the shapes of gradients produced by the mathematical model described

above. In multiple dimensions, the steady state form of a reaction-diffusion equation within

a morphogen domain in which morphogen is not produced is:

0 = D∇2C − f(C), (2.23)

where C is morphogen concentration, the first term describes diffusion, and the second term

stands for any intrinsic decay processes. We focus on the steady state here because, as
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Ratio of perturbed λapp to unperturbed λapp.

wildtype pent−/− ubi-tkv uniform dally
Fold perturbation: ×0.1 ×10 ×0.1 ×10 ×0.1 ×10 ×0.1 ×10

Ddpp 0.4 3.0 0.4 2.4 0.4 2.4 0.4 3.0
Ddpp, k1, k2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Dpent 1.0 1.1 – – 1.0 1.0 1.0 0.9
Dpent, k6 1.0 1.0 – – 0.98 1.0 1.0 1.0

k1 1.4 0.6 0.5 1.0 0.8 0.8 0.7 0.5
k2 1.6 0.5 2.8 0.3 2.2 0.3 1.2 0.3
k3 0.6 1.5 – – 0.4 1.9 0.4 1.2
k4 1.0 1.0 1.0 1.1 1.0 1.0 1.0 1.0
k5 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0
k6 1.1 1.0 – – 1.0 1.0 0.9 1.0
kr1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
kr2 0.8 1.5 0.4 2.5 0.5 2.0 0.6 1.1
tkv1 1.3 0.7 0.8 0.9 0.8 0.8 1.1 0.5
tkv2 1.1 0.7 0.5 0.9 – – 0.7 0.5
tkv3 1.0 1.0 1.0 1.1 – – 1.0 0.7
cr1 1.1 0.9 1.1 0.5 1.1 0.6 1.1 0.3
cr2 1.2 0.6 1.5 0.3 1.5 0.3 – –
cr3 1.0 1.0 1.0 0.8 1.0 0.9 – –
vdpp 0.4 3.1 0.4 2.4 0.4 2.4 0.4 3.0
vpmad 1.2 0.7 0.5 1.0 0.8 0.8 0.7 0.5
vpent 0.6 1.5 – – 0.4 1.9 0.4 1.2
vbrk 1.1 1.0 1.0 0.5 1.2 0.7 0.6 0.6
dtkv 0.7 1.4 1.0 0.5 0.9 0.8 0.5 0.7
dcr 1.0 1.3 0.3 2.7 1.0 1.3 1.0 0.9
dpmad 0.7 1.2 1.0 0.5 0.8 0.8 0.5 0.7
dpent 1.0 1.1 – – 1.0 1.0 1.0 0.9
dtf 0.7 1.0 0.6 1.1 0.8 1.0 0.6 1.0
dbrk 1.0 1.1 0.6 1.0 0.7 1.2 0.8 0.6
ddpp 1.2 0.7 0.5 1.1 0.8 0.8 0.7 0.5
ddpptkv 1.0 0.9 1.0 1.0 1.0 1.0 1.0 1.0
ddpptkv∗ 1.0 1.2 1.2 0.5 1.2 0.7 0.7 0.7
ddppcr 1.5 0.8 2.5 0.4 2.0 0.5 1.1 0.6
ECbrk 1.1 0.5 1.0 0.5 1.3 0.7 0.6 0.5
ECtkv 1.1 0.8 0.8 0.9 – – 1.1 0.5
ECcr 1.3 1.0 1.6 0.6 1.6 0.7 – –
ECtf 1.0 1.1 0.5 1.0 0.7 1.2 0.6 0.6
ECpent 0.7 1.4 – – 0.5 1.5 0.5 0.8

Table 2.3: Local sensitivity analysis.
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described elsewhere, the dynamic results of the model developed here are quasi-steady state

(e.g. increasing or decreasing all rate constants proportionately has little effect on the model

output).

If decay is linear, i.e. uniform in space and proportional to morphogen concentration, then

this steady state equation becomes

0 = D∇2C − kC, (2.24)

which may be written as

0 = λ2
intrinsic∇2C − C, (2.25)

where λintrinsic has its usual definition. This may be simplified further, if k is very small, i.e.

if λintrinsic is very large, to

0 = ∇2C, (2.26)

which is simply Fick’s second law. This approximation is a good one whenever λintrinsic is

large compared with the size of the morphogen domain, a size that we will denote as xmax.

In the model developed here, that condition applies to the very smallest disks, i.e. during

the earliest simulation times.

In one dimension, Eq. (2.26) becomes 0 = C ′′(x), which solves to a straight line. If the

boundary conditions are such that there is a source at one end (x = 0) and a sink at the

other (x = xmax), then the equation of the line is

C = C0

(
1− x

xmax

)
(2.27)

where C0 means concentration at x = 0. We can see that such a gradient scales perfectly

because the effects of multiplying xmax by any factor are exactly canceled by multiplying x

by the same factor. This is the basis for the statement that purely ”source-sink” gradients
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scale ”automatically”.

The more general one-dimensional form, Eq. (2.25) also has an exact solution for the same

boundary conditions, which is

C = C0 csch
xmax

λintrinsic

sinh
xmax − x
λintrinsic

. (2.28)

When λintrinsic � xmax, Eq. (2.28) reduces to Eq. (2.27). In contrast, when λintrinsic � xmax,

Eq. (2.28) reduces to

C = C0e
− x
λintrinsic . (2.29)

This form does not scale at all, because C is completely independent of xmax. These observa-

tions tell us that, in a one-dimensional system with source-sink boundary conditions, linear

shape always means automatic scaling (and vice versa), whereas exponential shape always

means no scaling (and vice versa).

In the mathematical model described above, we see linear Dpp gradient shapes during the

earliest stages of disc growth (until posterior compartment sizes reach about 20 µm), consis-

tent with simple source-sink scaling due to the relatively small size of xmax. As required by

Eq. (2.27), these shapes are not only linear, but also extend all the way from source to the

location of the sink (xmax), which in the model is taken to be the edge of the posterior com-

partment (the justification for this will become clear shortly). The model therefore makes

the prediction that Dpp gradient shapes in the posterior compartments of the very smallest

discs should be linear and extend from the Dpp source to the posterior disc edge.

In practice, assessing whether pMad gradient shapes are better fit by lines or exponential

is not possible when discs are small, due to the noisiness of measurements, the rather small

dynamic range over which pMad can be quantified by immunofluorescence, and the need to

subtract unknown amounts of background fluorescence. Consider, for example, the pMad
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intensity data shown in the left panel of Figure 2.6A. Depending on the amount of background

fluorescence one subtracts, one could fit the data reasonably well with a declining exponential

shape (middle panel) or a straight line (right panel). However, if one does fit the data with

a line, that line will not extend to the compartment edge (in the panel at right, that line

intersects the background at a location only about a third of the way to the end of the

domain.

On the face of it, this would appear to be an example of a strong disagreement between the

model and the data: observed gradient shapes in small discs are either not linear, or do not

extend far enough toward the compartment edge to fit the model. On closer examination,

however, it turns out that this disagreement is most likely an artifact of the fact that the

model is one dimensional, and thus ignores the dorsoventral (DV) and apicobasal (AB, i.e.

cross-sectional) dimensions. Neglect of the DV direction is usually justified by the fact

that the Dpp source is a long rectangle oriented parallel to the DV axis; if the rectangle is

sufficiently long, and one keeps one’s observations far enough away from its edges, then it is

reasonable to expect that Dpp concentrations along the AP direction should be independent

of DV position.

The greater problem arises with the AB dimension (for simplicity we will call this the z

dimension, to contrast it with the x that we have been using to represent the AP axis).

The impact of ignoring z is not widely discussed in the literature, possibly because there

has been some uncertainty about the actual cell biological space in which Dpp diffuses and

acts: the luminal space above columnar cells, or the basolateral space between columnar

cells. If Dpp diffuses in the lumen, a thin space bounded on both sides by tight junctions,

then it is probably safe to ignore z. But recent evidence strongly supports the view that, in

the wing disc, Dpp’s function is mediated almost exclusively by molecules diffusing in the

basolateral space [56], a result also in agreement with observations that freely diffusing Dpp

can be observed directly in that space by fluorescence correlation spectroscopy [192]. The
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Figure 2.6: Influence of dimensionality on scaling. (A) pMad distributions observed in the
posterior compartments of 16 early wildtype discs (posterior compartment sizes < 25µm). To
compare relative shapes, data have been normalized to start from the same initial amplitude,
and scaled so that the abscissa values of 0 and 1 represent the Dpp source and the edge of the
posterior compartment. Note that the data (left) can be fit by either exponential (middle)
or linear (right) forms, but the linear shapes so obtained do not extend to the free end of
the compartment. (B) A cross-sectional view of the wing disc, showing the position of the
Dpp source and paths for its diffusion within intercellular spaces. The diagram is adapted
from a micrograph reproduced from [51]; the posterior compartment is at right, the brinker
domain is in blue, and a thick red line marks the basement membrane under the columnar
cells of the posterior compartment. (C) Simplified geometric formulation of the posterior
compartment in panel B as a two-dimensional diffusion problem in which the dimensions
are anteroposterior (x) and apicobasal (z). (D) Mathematical system that may be solved
analytically, for which half the domain (from 0 to zmax) corresponds exactly to the situation
in panel C.
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basolateral space is bounded by tight junctions at one end (the apical surface), but only

by a basement membrane at other end. Basement membranes are structures that pose no

barrier to diffusion [33]. As diagrammed in Figure 2.6B (in which the basement membrane

of the posterior columnar cells is highlighted in red), a continual ”leakage” of Dpp out of

discs through the basement membrane into the surrounding hemolymph is to be expected.

In fact, recent evidence argues that delivery of Dpp from discs, via the hemolymph, to the

rest of the larva is considerable during larval development [147].

How might such leakage alter morphogen gradient shapes when measured in the AP dimen-

sion? A general treatment of this problem can be found in [86], but more useful here is a

discussion of the specific case when λintrinsic is large (the scenario that, in the model, applies

to the smallest discs). In that case, steady state shapes are determined by Eq. (2.26). Be-

cause C is now a function of two dimensions, x and z, that equation no longer always solves

to a straight line. As usual, the solution depends on the boundary conditions, which now

must be specified in both x and z direction. In the x-direction, we choose a constant-value

condition at x = 0 simply to represent that the morphogen domain abuts a source at that

location. We choose a zero-value (sink) condition at x = xmax, the posterior edge of the disc

because, as we see in the Figure 2.6B, the basement membrane curves around at the edge of

the disc, so that Dpp reaching that location is free to exit into the hemolymph (which, being

a well-stirred compartment, quickly carries the Dpp away). In the z-direction, we also place

a zero-value (sink) condition at z = 0 (the basal surface of the disc), for the same reason.

At the apical surface (z = zmax), we place a ”zero-flux” boundary condition, to capture the

presence of tight junctions that block the escape of molecules diffusing in basolateral space.

Together, these conditions specify the two-dimensional model diagrammed in Figure 2.6C.

Due to symmetry considerations, this problem can be seen as simply the lower half of the

problem in Figure 2.6D, which has only value (Dirichlet) boundary conditions, and for which

a solution is well known [15]. Specifically, the steady state solution can be represented as
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the infinite sum:

C(x, z) = C0

∞∑
n=1

(
2
(
1 + (−1)n+1)

nπ
sin

(
nπz

2zmax

)
csch

(
nπxmax

2zmax

)
sinh

(
nπ (xmax − x)

2zmax

))
.

(2.30)

To see how this shape would appear to an observer focusing only on the AP plane, we may

average over all z from z = 0 to z = zmax, to get the following form

C(x) = C0

∞∑
n=1

(
sin
((
n− 1

2

)
π
2

)(
n− 1

2

)
π
2

csch

((
n− 1

2

)
πxmax

zmax

)
sinh

((
n− 1

2

)
π (xmax − x)

zmax

))
.

(2.31)

The result here is a sum of terms each of which has the form

1

2
√

2a(n)
csch

xmax

λ(n)
sinh

xmax − x
λ(n)

. (2.32)

With a(n) = π, 3π,−5π,−7π, 11π, 13π,−15π... and λ(n) = 2zmax

π
, 2zmax

3π
, 2zmax

5π
, 2zmax

7π
... Except

for x near 0, the result is reasonably well approximated by the first term of the sum, i.e.

C0

2
√

2
csch

xmax

2
π
zmax

sinh
(xmax − x)

2
π
zmax

. (2.33)

Except for the leading constant, this form exactly matches Eq. (2.28), with 2
π
zmax replacing

λintrinsic. Thus, the shape of the morphogen gradient in the AP direction will be governed

by the relationship between 2
π
zmax and xmax. At one extreme, where 2

π
zmax � xmax, it will

be a straight line from source to xmax. At the other extreme, 2
π
zmax � xmax, it will approach

a declining exponential. Strikingly, however, regardless of the shape of the gradient, it will

scale automatically in response to changes in xmax, provided that changes in xmax are always

accompanied by proportional changes in zmax, i.e. if disc growth is isotropic. This can be

seen directly from Eq. (2.33): the effects of multiplying both xmax and zmax by any factor

are exactly canceled by multiplying x by the same factor.
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In summary, when morphogen gradients form under conditions of low intrinsic decay ( 2
π
zmax �

xmax), and the morphogen domain is growing isotropically, we should expect to observe the

same kind of automatic scaling that one-dimensional models predict, but we should not ex-

pect to see linear gradient shapes, especially if zmax is small compared with xmax. Measure-

ments from confocal images indicate that, during disc growth, zmax is always small compared

with xmax, implying that observed gradient shapes during automatic, source-sink scaling

should actually be quasi-exponential, and not linear. As can be seen from Figure 2.6, this

prediction is consistent with our observations. Does this mean the one-dimensional model

needs to be discarded in favor of a more complicated two (or even three)-dimensional one?

Not necessarily. Although the model predicts incorrect shapes during the earliest phases of

disc growth, it does capture scaling behavior correctly, including the loss of scaling that takes

place when discs grow large enough that the condition λintrinsic � xmax starts to fail. In the

two-dimensional model, the analytical solution for gradient shape under these conditions is

more complicated (see [86]), but scaling eventually fails in the same way, at the same time,

and for the same reasons. Moreover, it is straightforward to show that when discs grow suf-

ficiently big that λintrinsic � zmax, shape in the AP direction becomes effectively uncoupled

from AB shape (i.e. the z-direction), meaning that the results of the one-dimensional model

eventually closely approximate the two-dimensional one in all respects. Overall, then, ac-

counting for the AB direction imposes a relatively modest correction on the one-dimensional

model, which is limited to early periods of disc growth.
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Chapter 3

Stochastic dynamics of cell lineage in

tissue homeostasis

This chapter is a reprint of the material as it appears in Discrete and Continuous Dynamical

Systems - Series B [133]. The co-authors listed in this publication directed and supervised

research which forms the basis for this chapter.

3.1 Background

During epithelium tissue maintenance, lineages of cells differentiate and proliferate in a coor-

dinated way to provide the desirable size and spatial organization of different types of cells.

While mathematical models through deterministic description have been used to dissect role

of feedback regulations on tissue layer size and stratification, how the stochastic effects influ-

ence tissue maintenance remains largely unknown. Here we present a stochastic continuum

model for cell lineages to investigate how both layer thickness and layer stratification are

affected by noise. We find that the cell-intrinsic noise often causes reduction and oscillation
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of layer size whereas the cell-extrinsic noise increases the thickness, and sometimes, leads to

uncontrollable growth of the tissue layer. The layer stratification usually deteriorates as the

noise level increases in the cell lineage systems. Interestingly, the morphogen noise, which

mixes both cell-intrinsic noise and cell-extrinsic noise, can lead to larger size of layer with

little impact on the layer stratification. By investigating different combinations of the three

types of noise, we find the layer thickness variability is reduced when cell-extrinsic noise

level is high or morphogen noise level is low. Interestingly, there exists a tradeoff between

low thickness variability and strong layer stratification due to competition among the three

types of noise, suggesting robust layer homeostasis requires balanced levels of different types

of noise in the cell lineage systems.

3.2 Introduction

In multicellular organisms, homeostasis is critical to tissues and organs for their functions.

Multistage cell lineages, generally consisting of stem cells, transit-amplifying (TA) cells and

terminally differentiated (TD) cells, serve as fundamental units for tissue and organ devel-

opment, maintenance and regeneration.

Growth factors, one type of diffusive morphogen that is secreted by cells, play an important

role by regulating multiple cellular processes to control the cell populations in the lineage [87].

Growth factors are often found to be important in regulating organ regeneration, as observed

in liver [114], mouse olfactory epithelium [183], muscles [110], and hematopoietic system

[188]. In such systems, different types of cells are located at spatial locations in the tissues for

different functions. For examples, the stem cell niche, a spatial region with concentrated level

of stem cells, often provides protective support for environmental variability [115, 96, 89], as

seen in intestinal epithelia [185], neurons [32] and tumors [18]. In particular, the epithelium

tissue is a great system to study the stratified layers of different types of cells that contain
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the stem cell niche [161].

Several mathematical modeling approaches have been employed to study the tissue growth

and patterning, for example, on digits of limb [136], melanoblast [102], feather [95, 97] and

stripe in mammalian palate [38]. Regarding the tissue size, analysis and computation of non-

spatial cell lineage models suggest that the negative feedback is critical to regulating growth

in epithelium [88, 99] and blood [81, 105]. For spatial models, continuum and discrete models

have been used to study formation of stratified structure and stem cell niche in tissue. A one-

dimensional continuum model [24] shows that the spatial morphogen gradient contributes

to the tissue stratification. Studies of two-dimensional models suggest sources for distorted

tissue morphologies [125, 124]. Through studying a discrete cell model, the selective cell

adhesion is found to be a key factor for layer formation and tissue stratification [35].

Recently, stochastic effects, such as noise in gene expressions [41, 109, 77, 57], stochastic

gene-state switching [1, 50], noise in cell divisions [65] and cell migration [152], are found

to be important in biological functions [135, 149]. In many cases, noise is detrimental to

biological functions, and noise attenuation mechanisms are critical in signal transduction

[10, 7, 169]. Interestingly, noise is also found to be beneficial, such as improved signal trans-

mission facilitated by stochastic resonance [47, 111], enhanced fitness to the environmental

fluctuations by gene expression noise [17, 8, 158], and sharpening patterning boundaries

through gene expression noise [190, 170, 134].

While noise effect and tissue maintenance have been extensively studied individually, how

noise affects tissue growth and maintenance remains elusive. Based on the one-dimensional

deterministic cell lineage model for epithelium growth [24], here we develop a stochastic cell

lineage model that include growth and three different types of noise. In particular, we use

the multiplicative noise in the cell lineage equations to model the cell-intrinsic noise, the

additive noise in the same equations for the cell-extrinsic noise, and multiplicative noise in

the equation of diffusive molecules for morphogen noise. First, we study the effects of those

55



three types of noise individually on layer thickness and stratification. Then we look into

some specific combinations according to the opposite individual effects, more particularly,

the combination of cell-intrinsic noise and cell-extrinsic noise, and the combination of cell-

intrinsic noise and morphogen noise. Finally we combine all three types of noise to investigate

the range of noise levels under which the homeostatic thickness and stratification can be

maintained.

3.3 A stochastic spatial cell lineage model and quan-

tifications of layer thickness and stratification

3.3.1 A deterministic model

Previously a one-dimensional deterministic model was developed to study the stratification

of epithelium development and maintenance [24]. In the model there are three cell stages

in the main lineage consisting of stem cells, transient amplifying (TA) cells, and terminally

differentiated (TD) cells, with each cell type densities represented by C0, C1 and C2 (Figure

3.1), respectively. The cell lineage equations are given by:

∂C0

∂t
+
∂ (V C0)

∂z
= ν0 (2p0 − 1)C0,

∂C1

∂t
+
∂ (V C1)

∂z
= ν0 [2 (1− p0)C0] + ν1 (2p1 − 1)C1,

∂C2

∂t
+
∂ (V C2)

∂z
= ν1 [2 (1− p1)C1]− d2C2.

(3.1)

Here V (z, t) is the layer growth velocity driven by cell proliferation and differentiation of

cells. For ith cell type, pi denotes self-renewal probability, 1 − pi is then the differentiated

probability, di is the death rate, and νi is ln 2 over cell cycle length. With the assumption

that the total cell density remains as a constant, we then normalize the constant with
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Stem Cells

TA cells

TD cells

Apical surface 
(no-�ux boudary)

Basal lamina
(leaky boundary)

z=zmax

z=0

p0

p1

[A]

[G]

Morphogen
Concentration

death

d2

Figure 3.1: A schematic diagram of a main cell lineage in epithelium. Stem cells and TA
cells proliferate with probabilities p0 and p1 and differentiate with probabilities 1 − p0 and
1−p1. TD cells undergo cell death with rate d2. All three types of cells can secrete molecule
A that inhibits self-renewal probability p0. TD and TA cells secrete molecule G that inhibits
self-renewal probability p1. Molecules A and G are diffusive in the epithelium. The apical
surface is moving with the dynamic position zmax and no-flux boundary condition is imposed.
On the other hand, leaky boundary condition is imposed at the basal lamina with its position
fixed.
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C0 + C1 + C2 = 1. Adding all equations in Eq. (3.1) leads to

∂V

∂z
= ν0C0 + ν1C1 − d2C2. (3.2)

The dynamic layer thickness zmax is governed by

dzmax (t)

dt
= V (zmax, t) . (3.3)

The molecules secreted by cells inhibit the cell self-renewal rates (Figure 3.1). Two types of

morphogen A and G are considered in this system. The proliferative probabilities p0 and p1

are modeled by the Hill functions:

p0 =
p̄0

1 + (γA[A])m
,

p1 =
p̄1

1 + (γG[G])n
,

(3.4)

where p̄0 and p̄1 are the maximal self-renewal probabilities, respectively; γA and γG are the

reciprocal of EC50, and m and n are the Hill coefficients.

The diffusive morphogens are modeled by the advection-diffusion equations,

∂[A]

∂t
+
∂ (V [A])

∂z
= DA

∂2[A]

∂z2
+

2∑
i=0

µiCi − adeg[A],

∂[G]

∂t
+
∂ (V [G])

∂z
= DG

∂2[G]

∂z2
+

2∑
i=0

ηiCi − gdeg[G],

(3.5)

where DA and DG are diffusion coefficients, adeg and gdeg are degradation rates of A and G, A

and G are produced by the cell type Ci at rates µi and ηi, respectively. The permeable basal

lamina and a closed boundary at apical surface could give rise to heterogeneous distribution

of A and G, contributing to the formation of layer stratification. We take the leaky boundary

conditions at z = 0 basal lamina and no-flux boundary conditions at z = zmax (t) for apical
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surface:

∂[A]

∂z
(0, t) = αA[A],

∂[A]

∂z
(zmax, t) = 0,

∂[G]

∂z
(0, t) = αG[G],

∂[G]

∂z
(zmax, t) = 0,

(3.6)

where αA and αG are the corresponding coefficients of permeability.

3.3.2 A stochastic model on cell lineages and morphogens

Next we add stochastic fluctuations to both equations of cell distributions and mophogens.

For simplicity, we model three kinds of noise in the system: cell-intrinsic noise, cell-extrinsic

noise, and morphogen noise. The cell-intrinsic noise is modeled by multiplicative noise in the

cell lineage equations to mimic fluctuations on the cell density that arise due to stochastic

effects associated with cell cycle, cell proliferation, or cell differentiation and so on. The

cell-extrinsic noise is modeled by additive noise to mimic environmental fluctuations that

may affect the overall dynamics of cell lineages, which is usually independent of the cell

density level. To avoid solving stochastic differential equations for the morphogen, which

is at a fast time scale, we add a multiplicative noise term to the deterministic quasi-steady

state solution of the morphgens to model the noisy morphogen dynamics.

We model the cell-intrinsic and cell-extrinsic noise by adding both a term for multiplicative

noise and a term for additive noise to the deterministic Eq. (3.1):

∂C0

∂t
+
∂ (V C0)

∂z
= ν0 (2p0 − 1)C0

+

(
σ0
dW a

0

dt
+ ε0C0

dWm
0

dt

)
,

∂C1

∂t
+
∂ (V C1)

∂z
= ν0 [2 (1− p0)C0] + ν1 (2p1 − 1)C1

+

(
σ1
dW a

1

dt
+ ε1C1

dWm
1

dt

)
.

(3.7)
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The density C2 is obtained by the normalized equation C0 +C1 +C2 = 1. The multiplicative

white noise, εiCi
dWm

i

dt
, (i = 0, 1), mimics cell-intrinsic noise. The additive white noise, σi

dWa
i

dt
,

(i = 0, 1), mimics cell-extrinsic noise.

Because the time scale of molecular diffusion is much faster than the time scale of cells

divisions, we solve quasi-steady state (see Method) for Eq. (3.5) to obtain [A]ss (z, t) and

[G]ss (z, t) [24]. To model the morphogen noise in the stochastic model, we add fluctuations

to the quasi-steady-state at time t:

[A] (z, t) = [A]ss (z, t) ∗ (1 + ω0ζ0 (z, t)) ,

[G] (z, t) = [G]ss (z, t) ∗ (1 + ω1ζ1 (z, t)) ,

(3.8)

where ζi (z, t) is a standard normally-distributed random variable at space z and time t, and

independent of both spatial and temporal variables. Such multiplicative noise can maintain

mean concentrations on morphogens.

3.3.3 Quantification of layer thickness, variability, and stratifica-

tion

To systematically explore the three major properties of the tissue layer, we quantify each

of them using one measurement. Due to stochastic effect, the tissue layer may not reach a

constant thickness, and we define its average thickness by

TH =
1

T

∫ T

0

zmax (t) dt, (3.9)

where T is the final time of the simulation. With a large T , TH will have a limiting behavior

and can describe the long-term behavior of the thickness.

To measure the variability of the layer thickness, we use the coefficient of variation (CV )
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Figure 3.2: A baseline simulation for the system containing all three kinds of noise. The
spatial distribution of three types of cells and different mophogens at four different time
points: (A) t = 0; (B) t = 330; (C) t = 860; (D) t = 1200. (E) Layer thickness in
one particular stochastic simulation. (F) Stratification factor of stem cells (sf(C0)). (G)
Stratification factor of TA cells (sf(C1)). In (E-G), the black dash line is the steady-state
value for corresponding quantities in the deterministic system. The noise levels used are
ε0 = ε1 = 0.6, σ0 = σ1 = 10−4, and ω0 = ω1 = 0.58.
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relative to its mean thickness:

CV =

√
1
T

∫ T
0

(zmax (t)− TH)2 dt

TH
× 100%. (3.10)

A large CV can reflect either strong oscillations or rapid growth. One case with oscillations

will be shown in Section 3.4.1, and the other case with rapid growth will be shown in Section

3.4.2

A stratification factor [24] was defined to measure the level of stratification for cell type i at

time t:

sf (Ci, t) = 1− θ (t)

0.8zmax (t)
, (3.11)

where θ (t) is defined by the following equation:

∫ θ(t)

0

Ci (z, t) dz = 0.8

∫ zmax

0

Ci (z, t) dz. (3.12)

To measure the long-time average level of the tissue stratification, we define the stratification

factor for cell type i as the following:

SF (Ci) =
1

T

∫ T

0

sf (Ci, t) dt. (3.13)

The value of sf and SF are between 0 and 1. The value 0 corresponds to homogeneous

distribution of cell type i and the value 1 corresponds to the extreme polarization at the

basal lamina.

3.3.4 A baseline simulation

First we present a simulation for the model in which all the three types of noise are involved by

setting ε0 = ε1 = ε, σ0 = σ1 = σ and ω0 = ω1 = ω. We show the spatial distributions of cells
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and morphogens at different time points, and dynamics of layer thickness and stratification

(Figure 3.2).

To study the layer maintenance, it is natural to take the steady state in the deterministic

system as the initial condition for this stochastic simulation. We use the same initial condi-

tion in simulations presented in this work. To investigate the long-time behavior of the layer

regarding its thickness, variability and stratification, we test different final time T in one

simulation until the TH, CV and SF have no significant relative change in time. We find

T = 2000 cell cycles allows a consistent long time behavior of the layer for all simulations

presented below.

Initially, the stem cells are mainly located near the basal lamina and the morphogen concen-

tration are higher in the region close to the apical surface, leading to a well-stratified layer

which is similar to the deterministic case (Figure 3.2A). With the noise, the layer first shrinks

and the morphogen gradient becomes less obvious at t = 330 (Figure 3.2B). As the time

increases, the layer becomes thicker (Figure 3.2C) and, interestingly, later the layer shrinks

again (Figure 3.2D). Clearly, by looking at the thickness as a function of time (Figure 3.2E),

one observes an oscillatory behavior. The mean thickness of this layer, TH, is identical to

the homeostatic thickness SS = 0.49mm. The variability of the layer thickness is quantified

by CV = 26%.

On the other hand, noise affects the stratified structure of tissues. At t = 330, the distribu-

tion of stem cells is nearly uniform everywhere and the extremely low stratification factor

is consistent with our observation (Figure 3.2B). At t = 930, stem cells mainly locate in a

small region next to the basal lamina (Figure 3.2C). This region with high stem cell density

is slightly wider than the one at initial stage, leading to a minor reduction of stratification

factor. At t = 1840, while the distribution of stem cells looks uniform, the stem cells highly

concentrate in a very narrow region close to the basal lamina and the stratification factor is

larger than the initial one (Figure 3.2D). Overall, the stratification factor is able to capture

63



stratified level appropriately (Figure 3.2A-D). As time increases, we observe four drops in the

stratification factor and, interestingly it always returns to the average level quickly (Figure

3.2F). Overall, the layer has well-stratified stem cells in average with SF = 0.83 while the

TA cells have an average SF = 0.80 (Figure 3.2G).

Together, this simulation suggests that noise affect both thickness and stratification, leading

to an oscillation of the tissue thickness during tissue maintenance. To dissect the role of

each type of noise, we next scrutinize each noise type one by one.

3.4 The effects of single type of noise

In the stochastic model, there are three types of noise: cell-intrinsic noise, cell-extrinsic noise

and morphogen noise. In this section, we discuss the effects of each type of noise individually.

For example, for the cell-intrinsic noise, we set σ = ω = 0 and discuss the layer behaviors

with different cell-intrinsic noise levels ε. We show the statistical quantities TH, CV and

SF . The number of simulations has been chosen such that all these quantities become stable

in the mean sense. In particular, in this study, we run 20 simulations for each scenario.

3.4.1 Cell-intrinsic noise causes reduction and oscillations of tissue

layer size

For the system containing only cell-intrinsic noise (σ = ω = 0), we first present the layer

thickness as a function of time for three different noise levels (Figure 3.3A). The layer fluc-

tuates around the homeostasis when the noise level is small such as ε = 0.2. As the noise

level increases, such as ε = 0.6 or 1, the layer oscillates below its thickness at homeostasis.

Especially, the oscillation exhibits a clear pattern with a period around 400 cell cycles at
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ε = 1 (Figure 3.3A).

Next we look into the statistical behaviors of the mean and variability of the layer thickness

TH and CV , respectively (Figure 3.3B and 3C). As ε increases, TH decreases and a 50%

reduction can be observed at ε = 0.6 with TH = 0.24mm. The thickness variability (CV )

increases as ε increases. At ε = 0.2, CV = 7% and a 3-fold increase on CV can be observed

at ε = 0.6. Interestingly, when the thickness variability is high, the high value quantity CV

seems to reflect the oscillation amplitude of the layer. Especially, at ε = 1, the strongly

oscillatory layer (Figure 3.3A) results in a high variability with CV = 89% (Figure 3.3C).

Then we look into the tissue stratification for both stem cells and TA cells (Figure 3.3D and

3E). Although the SF s have minor reduction when noise is induced, any SF above 0.8 still

indicates a well-stratified structure for both stem cells and TA cells. One specific example

of the cells distribution displays the well-stratified tissue structure (Figure 3.3F).

Therefore, the cell-intrinsic noise usually causes reduction of layer thickness and leads to

oscillations on the thickness. The oscillations exhibit a periodic pattern when the noise level

is high. While the noise may cause a minor reduction in stratification, the layers remain well

stratified when the cell-intrinsic noise is presented only.

3.4.2 Cell-extrinsic noise causes rapid growth, and deteriorates

layer stratification

For the system containing only cell-extrinsic noise (ε = ω = 0), we first study the layer

thickness as a function of time for three different noise levels (Figure 3.4A). All layers grow

monotonically in time and their growth rates have positive correlation with the level of noise

σ. The layer grows slowly at early time and then stops growing when the noise level is low

such as σ = 1× 10−3 and σ = 2× 10−3. The unbounded growth can be observed when the
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noise level is large such as σ = 4× 10−3 (Figure 3.4A).

Next we look into statistical behaviors of the mean and variability of the layer thickness

TH and CV , respectively (Figure 3.4 B and C). As σ increases, the average TH shows an

exponential growth. A 6-fold increase (2.90mm) can be observed at σ = 4× 10−3, the TH is

even over 10mm at σ = 5×10−3 (Figure 3.4B). Also the layer thickness variability quantified

by CV grows exponentially as a function of σ. When σ < 3 × 10−3, CV is still lower than

10%. At σ = 4× 10−3, we observe CV = 42%, and at σ = 5× 10−3 CV is as high as 106%

(Figure 3.4C).

On the tissue stratification (Figure 3.4D and 4E), the SF s decrease quickly as a function of

σ. The stratification level of stem cells is already small at σ = 2× 10−3 with SF = 0.4. The

stem cells distribute nearly uniformly at σ = 4 × 10−3 with SF = 0.08 (Figure 3.4D). The

stratification of TA cells behaves similarly as the stem cells (Figure 3.4E). As also seen in a

typical simulation of the cell distribution (Figure 3.4F), the stem cells and TA cells locate

in narrow regions close to the basal lamina with highest densities. Outside of those regions,

the distribution of cells is nearly uniform, with a low stratification level near SF = 0.2.

It is clear from the simulations that the cell-extrinsic noise increases layer thickness and

hinders the stratification. Such noise can lead to unbounded growth of the layer when the

noise level is high.

3.4.3 Noise in morphogens increases layer size without affecting

tissue stratification

For the system containing only noise on morphogen (ε = σ = 0), we first present layer thick-

ness as a function of time for three different noise levels (Figure 3.5A). The layer thickness

is increased within a short time and the layer fluctuates slightly later. As the noise level ω
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increases, the layer fluctuates around a higher size.

Interestingly, the average TH has an inverted U-shape with a maximum 1.36mm at ω = 1.2

(Figure 3.5B). Unlike the unbounded growth caused by cell-extrinsic noise, the morphogen

noise can only induce an increase up to 3-fold (Figure 3.5B). The layer thickness variability

is low with CV < 12% (Figure 3.5C), neither strong oscillation nor rapid growth is observed.

By looking at the average SF of stem cells or TA cells (Figure 3.5D and 5E), we see the

average SF decreases slowly as the noise level ω increases. The minimums of SF s are larger

than 0.8, indicating the layers remain well stratified. An example of the simulation shows

the layer has a clear stratification despite morphogens are very noisy (Figure 3.5F).

We observe that the morphogen noise can increase the layer thickness up to a limited level and

the thickness remains bounded. The tissue stratification is preserved when the morphogen

noise is present only. Although such noise often causes minor reduction of stratification, the

layers remain well stratified.

3.5 The effects of two different combinations of two

types of noise

We have studied the effects of single noise in Section 3.4. Here we combine two types of

noise that have shown opposite effects on layer thickness individually, and investigate the

layer thickness and stratification under such noise combination. For convenience, from now

on, the stratification factor presented below is only for stem cells as the similar stratification

pattern are observed for the stem cells and TA cells.
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Figure 3.6: Simulations with both cell-intrinsic noise and cell-extrinsic noise. Simulations
with different noise levels are shown in (A-I). In each subfigure, the panel on the top shows
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ification of stem cells (sf(C0)). The dash line represents for the corresponding quantity at
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with different noise levels are shown in (A-I). In each subfigure, the panel on the top shows
the dynamics of layer thickness, the panel on the bottom shows the dynamics of layer strat-
ification of stem cells (sf(C0)). The dash line represents for the corresponding quantity at
homeostasis. Three different levels are chosen for each type of noise. For cell-intrinsic noise
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3.5.1 Cell-extrinsic noise reduces the variability of the layer thick-

ness caused by cell-intrinsic noise but with less stratified

layer

ε
σ

0 5× 10−4 1× 10−3 2× 10−3

0
TH 0.49mm 0.53mm 0.58mm 0.75mm
CV 0% 1% 3% 7%
SF 0.91 0.90 0.88 0.40

0.2
TH 0.45mm 0.49mm 0.54mm 0.69mm
CV 7% 7% 7% 8%
SF 0.91 0.90 0.82 0.39

0.6
TH 0.24mm 0.28mm 0.30mm 0.44mm
CV 30% 25% 23% 17%
SF 0.84 0.69 0.52 0.27

1
TH 0.12mm 0.19mm 0.22mm 0.38mm
CV 89% 36% 32% 19%
SF 0.88 0.42 0.32 0.18

Table 3.1: The statistics of TH, CV and SF (C0) with combined cell-intrinsic (ε) and cell-
extrinsic (σ) noise. All quantities are captured based on 20 simulations.

For the system containing both cell-intrinsic noise and cell-extrinsic noise (ω = 0), we first

plot layer thickness and stratification factor as functions of time in several stochastic sim-

ulations (Figure 3.6). With small noise levels, the layer thickness and stratification both

fluctuates slightly around homeostasis (Figure 3.6A). As the cell-extrinsic noise level σ in-

creases, the mean thickness increases regardless of the levels of cell-intrinsic noise ε (Figure

3.6A-C, Figure 3.6D-F, and Figure 3.6G-I). For the thickness variability, it has little changes

when the cell-intrinsic noise is small, but interestingly, with a larger cell-intrinsic noise level,

the thickness variability actually decreases as σ increases (Figure 3.6D-F, and Figure 3.6G-I).

On the other hand, the mean thickness decreases as the cell-intrinsic noise level ε increases

(Figure 3.6ADG, Figure 3.6BEH, Figure 3.6CFI). For the thickness variability, there are

little changes as ε increases, except a clear increase when the noise is small (Figure 3.6AD).

For the stratification, the mean of stratification factor decreases as either a function of the
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ε
ω

0 0.2 0.6 1

0
TH 0.49mm 0.58mm 1.06mm 1.33mm
CV 0% 3% 9% 11%
SF 0.91 0.92 0.92 0.91

0.2
TH 0.45mm 0.54mm 0.98mm 1.23mm
CV 7% 7% 11% 13%
SF 0.91 0.91 0.92 0.90

0.6
TH 0.24mm 0.26mm 0.43mm 0.52mm
CV 30% 29% 30% 33%
SF 0.84 0.83 0.84 0.81

1
TH 0.12mm 0.13mm 0.15mm 0.16mm
CV 89% 87% 97% 108%
SF 0.88 0.88 0.87 0.84

Table 3.2: The statistics of TH, CV and SF (C0) with combined cell-intrinsic (ε) and mor-
phogen (ω) noise. All quantities are captured based on 20 simulations.

cell-intrinsic noise level ε or cell-extrinsic noise level σ.

The statistical quantities of TH, CV and SF (Table 3.1) show the behaviors of the layer

thickness and stratification are consistent with the individual stochastic simulations (Figure

3.6). With low cell-intrinsic noise levels, such as ε = 0.2, CV is an increasing function of the

cell-extrinsic noise level σ but the values of CV are always small (CV < 10%). With high

cell-intrinsic noise levels, such as ε = 0.6 and 1, CV is a decreasing function of σ. Especially,

the decreasing rate is high when the cell-extrinsic noise is near zero. For example, CV

decreases from 89% to 36% as σ increases from 0 to 5× 10−4 at ε = 1. Interestingly, CV is

always below 20% when σ = 2× 10−3 regardless of the value of ε. On the other hand, as a

function of ε, CV is an increasing function with small increasing rate.

In summary, with the combination of cell-intrinsic noise and cell-extrinsic noise, the cell-

intrinsic noise causes reduction of layer thickness and the cell-extrinsic noise causes increase

of layer thickness. These observations are similar to the observations when each of the two

types of noise appears individually. For the thickness variability, we surprisingly observe

that the cell-extrinsic noise can actually suppress thickness variability below a low level
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(CV < 20%). For the stratification factor, these two types of noise have accumulative effects

on reducing stratification.

3.5.2 Combination of cell-intrinsic noise and morphogen noise

For the system containing the cell-intrinsic noise and the morphogen noise (σ = 0), we

first study the layer thickness and the stratification factor as functions of time in several

stochastic simulations (Figure 3.7). With small noise, the layer thickness and stratification

both fluctuates slightly around homeostasis (Figure 3.7A). As the morphogen noise level ω

increases, both the mean thickness and the thickness variability increase regardless of the

levels of cell-intrinsic noise ε (Figure 3.7A-C, Figure 3.7D-F, and Figure 3.7G-I). The mean

stratification factor changes little as ω increases. On the other hand, as the cell-intrinsic

noise level ε increases, the mean of the layer thickness decreases. Also oscillation becomes

more obvious and the thickness variability increases as ε increases. For the stratification, as

ε increases, the stratification factor (sf (C0)) shows short-time corruption in its long-time

dynamics but its mean seldom changes (Figure 3.7ADG, Figure 3.7BEH, and Figure 3.7CFI).

As seen through the statistical quantities of TH, CV and SF (Table 3.2), the behaviors of

layer thickness, variability and stratification are all consistent with the individual stochastic

simulations (Figure 3.7). In particular, CV increases as a function of both cell-intrinsic noise

level ε and morphogen noise level ω. Its increasing rate with respect to ε is higher than that

regarding ω. The layers always have well-stratified structure where SF is always above 0.80.

In summary, with the combination of the cell-intrinsic noise and the morphogen noise, the

cell-intrinsic noise causes reduction of layer thickness and the morphogen noise causes in-

crease of layer thickness. These observations are similar to the observations when each of

the two types of noise appears individually. With a higher level of cell-intrinsic noise level,

the layers show higher thickness variability. The variability becomes even higher when the
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morphogen noise level increases. On the other hand, such combination of noise has little

impact on the stratification.

3.6 The combination of three types of noise during

homeostasis: tradeoff between low layer thickness

variability and strong layer stratification

From the above study, either the cell-extrinsic noise or the morphogen noise alone results in

an increase of layer size away from the homeostasis. However, by adding the cell-intrinsic

noise to either one of them, the layer thickness decreases compared to the case with only

cell-extrinsic noise or morphogen noise. Next we include all three types of noise to explore

the conditions under which the homeostasis is maintained.

With the homeostasis maintained, the cell-extrinsic noise level σ and the morphogen noise

level ω exhibit a negative correlation when the cell-intrinsic noise level ε is fixed (Figure

3.8A). The σ-ω plane is divided into stabilized (region I-IV) and non-stabilized region (region

V). As long as the levels of cell-extrinsic noise and morphogen noise are located in the

stabilized region, the homeostasis can be maintained with a proper cell-intrinsic noise level

ε. Particularly, the curves with ε = 0.6, 0.8 and 1 are located in a region with narrow width

at σ direction. This indicates even a small change in the cell-extrinsic noise level σ requires

a large change in the cell-intrinsic noise level ε to maintain the homeostasis. Therefore, it

suggests that the balance between the cell-intrinsic noise and cell-extrinsic noise plays a key

role during the homeostasis maintenance regardless of the morphogen noise. On the other

hand, inside non-stabilized region, the layer is unable to maintain homeostasis for any value

of ε.
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The stabilized region can be divided into two parts either with respect to CV by a red strip

with CV = 20% (Figure 3.8A-D), or with respect to SF by a green strip with SF = 0.4

(Figure 3.8 A-B and E-F). Together, the stabilized region can be divided into four regions

based on the thickness variability and the stratification level (Figure 3.8A-B): low-CV and

high-SF region (region I); high-CV and high-SF region (region II); low-CV and low-SF

region (region III) and high-CV and low-SF region (region IV).

The CV can be considered as a three-variable function in terms of noise levels (ε, σ, ω). With

fixed cell-intrinsic noise level ε, the CV is a decreasing function of the cell-extrinsic noise level

σ (Figure 3.8C) and an increasing function of the morphogen noise level ω (Figure 3.8D).

It increases slowly when ω < 0.4 and then increases linearly. Interestingly, as a function of

ω, CV looks independent of ε and σ where all data points are located in a narrow region in

the ω-CV plane (Figure 3.8D), which suggests that the layer thickness variability is mainly

adjusted by morphogen noise.

The SF can also be considered as a three-variable function in terms of noise levels (ε, σ, ω).

With fixed cell-intrinsic noise level ε, the SF is a decreasing function of σ (Figure 3.8E) and

an increasing function of ω (Figure 3.8F). Its value also highly depends on ε. Therefore, all

three types of noise play important roles in layer stratification.

There exists a clear tradeoff between low variability and strong stratification (Figure 3.8AB).

With low cell-intrinsic noise levels (ε ≤ 0.4), all data points are contained in region I. But

a high morphogen noise level ω improves layer stratification without affecting the thickness

variability. With medium cell-intrinsic noise levels (0.6 ≤ ε ≤ 0.8), data points move

from region III to region II as the morphogen noise level ω increases. The layer can only

have either low thickness variability or high stratification. The morphogen noise improves

stratification but increases variability. In the other word, the cell-extrinsic noise improves

thickness variability but deteriorate stratification. With high cell-intrinsic noise level, such

as ε = 1, the data points move from region III to region IV as ω increases. In this case, the
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low morphogen noise level ω results in low thickness variability. Although the stratification

factor is still an increasing function of ω, the layer stratification is always in the undesirable

range due to the high value of ε, regardless of the value of ω.

For the homeostasis maintenance, the balance between cell-intrinsic noise and cell-extrinsic

noise is dominant in the combination of three types of noise. The morphogen noise can adjust

the layer thickness variability, and plays a complementary role by adjusting the balance

between layer thickness variability and stratification.

3.7 Method

All simulations are conducted in MATLAB 2015b. The numerical methods are described as

below.

3.7.1 Solving morphogen gradient equations by using quasi-steady

state

The time scale of cell cycle lengths is days, whereas the time scale of molecule interactions is

hours. The morphogen system can reach the steady state quickly compared to the cell cycle.

Therefore, in the deterministic system, we calculate the quasi-steady state of Eq. (3.5) at

each computational time step:

0 = DA
∂2[A]

∂z2
+

2∑
i=0

µiCi − adeg[A],

0 = DG
∂2[G]

∂z2
+

2∑
i=0

ηiCi − gdeg[G],

(3.14)

A second order central difference method is carried out to approximate Laplacian operators
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in Eq. (3.14). The resulting linear systems are solved by the MATLAB’s built-in backslash

function ”/”.

In the stochastic system, we also acquire the same quasi-steady state and then add fluctua-

tions according to Eq. (3.8).

3.7.2 Solving stochastic cell lineage equations

To solve the cell lineage equations Eq. (3.2, 3.3, 3.4, 3.7), we first transform the spatial

domain [0, zmax (t)] to a unit domain [0, 1] by a transformation [125]:

z = F (X, τ) = zmax (τ)X,

t = τ.

(3.15)

By applying Eq. (3.3), we have the transformed derivatives:

∂

∂t
=

∂

∂τ
− Fτ
FX

∂

∂X
=

∂

∂τ
− V (zmax, τ)

zmax

∂

∂X
,

∂

∂z
=

1

FX

∂

∂X
=

1

zmax

∂

∂X
,

∂2

∂z2
=

1

FX

∂

∂X

(
1

FX

∂

∂X

)
=

1

z2
max

∂

∂X
.

(3.16)
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Using Eq. (3.2), we obtain the transformed equations of Eq. (3.7) in the new coordinate

system (X, τ) ∈ [0, 1]× [0,∞):

∂C0

∂τ
+

[
V (X, τ)− V (1, τ)

zmax

]
∂C0

∂X
= ν0 (2p0 − 1)C0

− (ν0C0 + ν1C1 − d2C2)C0 +

(
σ0
dW a

0

dτ
+ ε0C0

dWm
0

dτ

)
,

∂C1

∂τ
+

[
V (X, τ)− V (1, τ)

zmax

]
∂C1

∂X
= ν0 [2 (1− p0)C0] + ν1 (2p1 − 1)C1

− (ν0C0 + ν1C1 − d2C2)C1 +

(
σ1
dW a

1

dτ
+ ε1C1

dWm
1

dτ

)
,

C2 = 1− C0 − C1.

(3.17)

The transformed Eq. (3.2) and (3.3) are given as the following:

∂V

∂X
= zmax (ν0C0 + ν1C1 − d2C2) ,

dzmax

dτ
= V (1, τ) .

(3.18)

All equations in the new coordinate are included in Eq. (3.17) and Eq. (3.18). To discretize

them in space, we use a uniform grid with N + 1 grid points x(j) = j
N
, j = 0, 1, . . . , N . In

Eq. (3.17), the advection term ∂Ci
∂X

is discretized by the second order upwind method. The

infinite-dimensional noise term dw(j)

dt
at x = x(j) [72], where w(j) are independent of different

j. The trapezoidal rule is used to discretize V (X, τ) in Eq. (3.18).

For temporal discretization, we apply Euler-Maruyama method [82] with time step ∆t. To

ensure Ci ∈ [0, 1], we make the following adjustments to the numerical solution at each

computational time step:

1. C0 = max {C0, 0} , C1 = max {C1, 0} ;

2. C0 =
C0

C0 + C1

, C1 =
C1

C0 + C1

, if C0 + C1 > 1.
(3.19)
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Parameters Values Units
ν0, ν1 1 ln 2∗(cell cycle)−1

d2 0.01 ln 2∗(cell cycle)−1

DA, DG 10−5 mm2s−1

µ0, µ1, µ2, η1, η2 10−3 s−1µM
adeg, gdeg 10−3 s−1

αA, αG 10 mm−1

p̄0 0.95 –
p̄1 0.5 –
γA 1.6 µM−1

γG 2 µM−1

Table 3.3: Parameters used in Eq. (3.2) to Eq. (3.7).

ε0, ε1 σ0, σ1 ω0, ω1

Figure 3.2 0.6 10−4 0.58
Figure 3.3F 0.6 0 0
Figure 3.4F 0 3× 10−3 0
Figure 3.5F 0 0 0.6

Figure
3.6

Low; 0.2 Low: 5× 10−4

0Medium: 0.6 Medium: 1× 10−3

High: 1 High: 2× 10−3

Figure
3.7

Low: 0.2
0

Low: 0.2
Medium: 0.6 Medium: 0.6

High: 1 High: 1

Table 3.4: Noise levels used in Eq. (3.7) and (3.8) in different figures.

3.7.3 Noise combination during tissue homeostasis

In Section 3.6, we search for the combination of all three types of noise where the homeostasis

is maintained. We solve the equation TH (ε, σ, ω) = SS in the average sense for noise levels

(ε, σ, ω). By fixed ε and σ, we solve ω by using bisection method with tolerance 3% of the

homeostasis (SS). The mean TH is captured based on 20 simulations. The noise level ε and

σ are chosen to satisfy ε = 0.2k1, (k1 = 1, . . . , 5) and σ = 10−4k2, (k2 ∈ Z+).
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3.7.4 Parameters and computational setup

In this study, only noise levels ε, σ and ω are varied. The parameters used in Eq. (3.2) to

Eq. (3.7) are listed in Table 3.3. The noise levels in Eq. (3.7) and (3.8) used in different

figures are listed in Table 3.4.

For the initial conditions in the stochastic simulations, we take the steady state solutions of

the deterministic system, with its initial thickness being SS = 0.49mm.

In all simulations, we choose N = 128 as the number of grid points and the time step

∆t = 0.002. Numerical tests have been performed with different grid sizes and time steps to

assure the convergence of the numerical solutions.

3.8 Discussion and Conclusions

Here we have explored noise effects on the epithelium layer maintenance on its thickness

and stratification. We have found that the cell-intrinsic noise causes reduction and oscil-

lation of layer on its thickness. The cell-extrinsic noise or the morphogen noise introduces

an increase in the layer thickness. The cell-extrinsic noise can reduce the layer thickness

variability introduced by the cell-intrinsic noise, but resulting in weaker stratification. To

study layer homeostasis, we explore different combinations of three types of noise. The cell-

extrinsic noise level and morphogen noise level display a negative correlation under a fixed

cell-intrinsic noise level. With the low cell-intrinsic noise levels, the high morphogen noise

levels actually improve layer stratification. With the medium cell-intrinsic noise levels, there

exists a tradeoff between low layer thickness variability and strong stratification, and the

high morphogen noise levels lead to better stratification whereas the low morphogen noise

levels lead to lower thickness variability. However, with the high cell-intrinsic noise level,

the layer stratification becomes weaker, but the layer thickness variability can be reduced
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through low morphogen noise levels.

The randomness in morphogen dynamics can come from multiple biological processes with

both cell-intrinsic and cell-extrinsic sources: noise in the downstream gene expression, ran-

domness in diffusion, and stochastic bindings between morphogen and their receptors. It is

not surprising that our study finds the morphogen noise has both effects similar to the cell-

extrinsic noise on increasing layer thickness, and to the cell-intrinsic noise on increasing layer

thickness variability without damaging stratification. Morphogen noise exhibits properties

of a mixture of cell-intrinsic noise and cell-extrinsic noise.

In this study, the stochastic simulations have been performed on a very long time scale with

2000 cell cycles in order to study noise effects on homeostasis. The biological relevant span

for regeneration or development is much shorter in a range of 50 cell cycles, corresponding

to a few weeks in real time. During the homeostasis study, one layer oscillates with a

time window shorter than 50 cell cycles (e.g. Figure 3.2E). The long time dynamics in the

simulation allows us to check if the layer really approaches to a stable state or only exhibits

short time transient properties.

To the best of our knowledge, our study is the first work to include noise dynamics to the cell

lineage models. In stochastic gene expression modeling, the internal (or intrinsic) noise and

external (or extrinsic) noise in stochastic gene expression systems are modeled in a similar

way, respectively [57]. In particular, the internal noise alters the transcription rate, and is

modeled by multiplicative noise, and the external noise alters the background production of

gene expressions, and is then modeled by additive noise [57].

In our model, different types of noise in cell lineage equations affect the layer growth velocity

through cell densities. Such stochastic effects consequently affect the layer thickness. It

would be interesting to explore how other types of stochastic effects may also affect layer

growth by adding noise directly to the equations for growth velocity or/and layer thickness.
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Biological identities in the environment not included in our current model, such as cells in the

dermal, may be modeled through the boundary conditions. Study the stochastic dynamics

of those quantities requires new approaches of including noise in the boundary conditions,

which is computationally challenging.

Rather than using the generic noise considered in this model, one may include more specific

types of noise in the system. For example, noise on cell cycle, noise on cell death and noise on

morphogen synthesis rate may be modeled in an explicit way. Complex tissue morphology in

two or three dimensions may also have synergistic effect with noise. Simulations for noise in

PDEs (e.g. through the two-dimensional model [124]) in two or three dimensions are usually

much more challenging than the one-dimensional system studied in this work.

The morphogen is the only factor considered for regulation of stratification in our work.

There are many other important factors that may also affect stratification. The selective

cell-adhesion, one type of intercellular mechanical force, is another mechanism that can

improve the stratification [35]. In order for the tissue to control the layer thickness variability,

mechanical forces may play important role [141], for which discrete cell model may provide a

convenient framework [35]. Gene regulatory networks in the downstream of the morphogens

are neglected in this work. In many cases, the network structure and dynamics are critical

to attenuate noise [169] and sometimes, noise in gene expression actually benefits spatial

organization of cells [190, 170].

In summary, our study suggests the cell-intrinsic noise can battle the stochastic uncertainty in

cell population size caused by cell-extrinsic noise. While the morphogen noise has properties

of both types of noise, it can be utilized through its regulation of the downstream gene

expressions to adjust the cell-intrinsic component of the stochastic effects to regulate the

variability and stratification, consequently improving tissue homeostasis.

85



Chapter 4

Dissection of multiple morphogens

and morphogenesis in zebrafish

hindbrain pattern formation

This chapter is an ongoing project in collaboration with Lianna Fung, Thomas Schilling and

Qing Nie.

4.1 Background

The early zebrafish hindbrain is segmented into rhombomeres (r) with distinct domains of

gene expression. The boundaries between these gene expression domains are initially rough

and sharpen over time by a combination of gene regulation and cell sorting. Previous compu-

tational works have revealed the synergy of gene regulation and cell sorting in contributing

to the boundary sharpening process. However, it remains unclear how multiple morphogens

and changes in tissue shape, morphogenesis, contribute to rhombomere formation. We de-
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velop a two-dimensional stochastic multi-scale model, including gene regulation, cell sorting

and tissue growth, to mimic the formation of r2-r6. We find the secondary morphogen Fi-

broblast Growth Factor (FGF) synthesized at r4 can significantly improve the robustness

of rhombomere size. The experimental quantifications of hindbrain size during development

reveal the hindbrain has a fast convergence in the left-right (LR) axis at earlier stages. We

computationally compare the patterns resulting from different early convergent rates. The

fast convergence rate based on experimental data was found to improve the efficiency of cell

sorting during early hindbrain development. Moreover, the fast convergence rate is optimal

for the synergy between gene regulation and cell sorting because cells commit their fates

at the early stage and sequentially cell sorting can sharpen the boundary at the late stage

without the disruption of cell identity switching. From our simulations, a trade-off between

size and boundary sharpness is identified and that can be reduced through the early fast

convergence rate. Altogether, The fast convergence rate provides a strategy to maintain

both precise patterns along with the tight control of rhombomere sizes.

4.2 Introduction

Pattern formation is a fundamental question in developmental biology to understand how

the basic architectures of tissues and organs are determined during embryogenesis. Cell

fate decisions, together with tissue growth, reveal the dynamics of pattern formation [87].

Through complex gene regulation and molecular interactions, cells convert the concentration-

dependent positional information from a diffusive chemical, morphogen, to coordinate their

fate decisions [139]. The dynamics of pattern formation during growth have been widely

studied but vary in different systems [160]. Mathematical models have successfully integrated

growth and spatial signaling to reveal the patterning process in various systems including

embryo segmentation [71, 70], the Drosophila imaginal wing disc [43, 13, 194], vertebrate
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limb buds [136], vertebrate neural tube [9, 187], vertebrate hindbrain [170, 190, 19, 127],

vertebrate craniofacial [112], skin [35] and hair follicles [171].

Recently, more attention has been paid to understand the stochastic effects in patterning

system, raising the question of how precision is achieved in spite of the biological noise in

gene expression and spatial signals. Noise attenuation mechanisms have been widely ex-

plored in diverse cellular networks [118, 131]. In morphogen gradients, the variations of

spatial signaling can be reduced through many mechanisms, such as regulation on the steep-

ness of gradient [148, 90] and self-regulated uptakes [177, 40]. The interpretation of noisy

spatial signals into cell fate decisions can reduce the patterning errors through antiparallel

morphogens [187] and gene regulatory networks [150, 134]. Instead of controlling the noise,

the utilization of the gene expression noise to battle the noise in morphogen levels provides

another strategy to achieve precise patterns [190, 133]. In addition to the strategies at the

molecular levels, the precision of the pattern can also be improved through strategies at the

cellular level through cell sorting driven by mechanical forces [170, 35].

The development of the embryonic zebrafish hindbrain serves as a great model system to

study the role of gene regulation, stochasticity and cell sorting in pattern formation. The

hindbrain is a complex coordination center of the vertebrate brain. The embryonic hindbrain

is subdivided into transversal segments, called rhombomeres (r), along the anterior-posterior

(A-P) axis [103]. The initial expression domains of the hindbrain have fuzzy borders and

a precise pattern subsequently forms in which all cells within each region have the same

identity [190, 181]. Several signaling pathways provide positional information for transcrip-

tional networks, such as Fibroblast Growth Factor (FGF) [23, 166, 180, 84, 107] and retinoic

acid (RA) [177, 143, 137, 108, 151]. Numerous transcriptional factors, including hox genes,

krox20, val, vhnf1 and irx, with specific regional expression domains are involved in com-

plex gene regulatory networks to specify rhombomeres [5, 126, 93]. Through complex gene

regulatory networks, cells commit their fates and switch their identity by interpreting the
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spatial signals [2, 144]. In addition, the complementary segmental expression of Eph recep-

tors and ephrins drives boundary sharpening by regulating the cell sorting with differential

adhesion/repulsion [26, 184, 58, 130]. Despite extensive reporting of rhombomere specific

gene regulation, how these gene interactions coordinate and contribute to the hindbrain pat-

terning remains unclear. Meanwhile during embryonic development the hindbrain undergoes

growth and cell migration, resulting in a morphological process called convergent extension.

During convergent extension, the hindbrain narrows along the left-right (LR) axis and elon-

gates along the anterior-posterior (AP) axis [154]. The effects of convergent extension on

the boundary sharpening process remain elusive.

By considering one morphogen RA and two transcriptional factors hoxb1a and krox20, pre-

vious computational works have mimicked the boundary sharpening process in r3-r5 with

mechanisms involving gene regulation and cell sorting. Here we further extend these ap-

proaches to study the hindbrain patterning process from 11 to 14 hours post fertilization

(hpf) and expand our model to include r2-r6. We incorporate a second morphogen FGF and

two additional transcriptional factors, vhnf1 and irx3 into our new model. We found the sec-

ondary morphogen FGF synthesized at r4 is able to improve the robustness of rhombomere

size. Moreover, we quantify the morphological changes experimentally and adopt it to the

model. The convergence is fast at the early stage then it slows down. We compare hindbrain

pattern formation under different convergent rates computationally. With a fast convergence

rate at early stages, we show that the cell sorting becomes more efficient at segregating cells

to their territories resulting in sharper segmental boundaries. The fast convergence also

forces cells to commit their fates at earlier stages allowing the cell sorting better improves

the precision of the pattern at later stages. By discovering a trade-off between boundary

sharpness and rhombomere sizes, we found the fast convergence rate is able to reduce this

trade-off by acting on both cell sorting and cell fate commitment. The fast convergence at

the early stage provides a strategy to achieve precise and accurate pattern by regulating

both the boundary sharpness and rhombomere sizes.
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4.3 A stochastic multi-scale model reveals rhombomere

formation under growth

Rhombomere formation involves many complex processes including cell fate commitment

through stochastic gene regulation, cell sorting through selective cell-cell mechanical adhe-

sion/repulsion and growth (i.e. convergent extension). They play essential roles from pattern

initiation to pattern refinement. With rough r2-r6 pattern at 11hpf, the pattern is refined

over time and a precise five-segment pattern with four sharp boundaries displays at 14hpf

(Figure 4.1C). To dissect the roles of each mechanism, we first build a stochastic multi-scale

model to mimic the process of r2-r6 pattern formation from 11 to 14hpf.

4.3.1 Modeling stochastic gene regulations in r2-r6 with multiple

morphogens

Morphogen Retinoic Acid (RA), synthesized in r7, diffuses anteriorly over the entire hind-

brain for initial rhombomere formations [143, 137, 108]. RA activates vhnf1 in r5 and r6

[108]. Through a mutual inhibition between vhnf1 and irx3, the pre-rhombomeric r4/r5

boundary (∼95% epiboly) is specified by the border between these two genes [93]. RA then

activates hoxb1a, another RA-dependent transcriptional factor, at the tailbud stage. Hoxb1a

is repressed by Vhnf1 and its expression is restricted in r4 at the 2-somites stage [108]. With

Hoxb1a expression at r4, r4 becomes the secondary signaling center where Hoxb1a activates

the synthesis of FGF at r4 [23, 107, 175]. The secondary morphogen FGF diffuses both ante-

riorly and posteriorly to induce krox20 at r3 and r5 [166, 180, 84]. Through auto-regulation,

krox20 expression is bimodal depending on the concentration of FGF [19, 84]. The r2/r3 and

r5/r6 boundaries are specified by the expression of krox20. The auto-regulations and mutual

inhibition between hoxb1a and krox20 establish a toggle switch that specifies and refines the
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r3/r4 and r4/r5 boundaries [190]. When the pattern is established, hoxb1a marks r4, krox20

marks r3 and r5, and low expression of both hoxb1a and krox20 mark r2 and r6. We use

the complex gene regulatory network discussed above to build our model, in addition, we

consider the stochastic effects on the dynamics of both morphogen and downstream genes

by adding the noise terms (Figure 4.1A). See Supplement for mathematical equations.

4.3.2 Modeling mechanical interactions between individual cells

We consider the cell movement driven by mechanical interactions. The subcellular element

method (SCEM) is used to model the individual cells and their mechanical interactions

[117]. In the zebrafish hindbrain, Eph4a receptor is expressed at odd rhombomeres (r3 and

r5) and Ephrin-B2 ligand is expressed in even rhombomeres (r2, r4 and r6). This receptor-

ligand binding leads to the selectivity in cell sorting where cells with same identity have

attraction and cells with different identity have repulsion to each other [26]. Since eph4a is

a direct transcriptional target of Krox20 [58], we model the selective cell sorting based on

the Krox20 expression level (Figure 4.1B). The morphology of hindbrain changes along with

the convergent extension. For cells in the hindbrain, we consider the chemoattractant where

cells move along with the growth [146, 140].

4.3.3 Experimental quantifications of growth and the computa-

tional domains

The embryonic convergent extension drives the morphology changes of the zebrafish hind-

brain. The hindbrain narrows along the LR axis and elongates along the AP axis during

11-14hpf (Figure 4.1CD). Schilling’s lab perform whole mount in situ hybridization of ze-

braifsh embryos to visualize the midbrain-hindbrain boundary (MHB) by otx2, r3 and r5 by
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Figure 4.1: Model schematic and morphology of hindbrain. (A) Stochastic gene regulatory
network for the hindbrain patterning in r2-r6. Genes and morphogens with black font were
previously used for the model of r3-r5 pattern [190], genes and morphogens that are first
considered in this work use orange font. Pointed arrows depict up-regulations and blunt
arrows depict down-regulations. Noise causes fluctuations in morphogens distributions. The
morphogen retinoic acid (RA) synthesized by posterior mesoderm and diffuses anteriorly to
have a graded distribution. RA activates hoxb1a in r4 and vhnf1 in r5-r6, respectively. Vhnf1
and irx3 mutually inhibit each other to specify the early r4/r5 boundary. Vhnf1 inhibits
hoxb1a to constrain it in r4. Hoxb1a up-regulates the synthesis of the secondary morphogen
Fibroblast Growth Factor (FGF) at r4. FGF diffuses both anteriorly and posteriorly to
induce krox20. Krox20 is expressed in r3 and r5. The mutual inhibition also exists between
hoxb1a and krox20. Both krox20 and hoxb1a positively up-regulate their own expressions.
(B) The illustration for r2-r6 pattern and the selective cell-cell adhesion. The expression of
Hoxb1a and Krox20 determine the r3-r5 pattern, where cells in r3 and r5 express Krox20 and
cells in r4 express Hoxb1a. In r2 and r6 expressions of both Hoxb1a and Krox20 are low. Cells
in r6 have high Vhnf1 expression. After cells determine their identities, the selective cell-
cell adhesion can improve the precision of gene expression boundary. Cells with the same
identity attract each other and cells with the different identities repulse each other. (C)
Whole mount in situ hybridization for otx2 (purple most anterior region), krox20 (purple
segments in the center) and aldh1a2 (red) transcripts from 11 to 14 hpf. The midbrain-
hindbrain boundary (MHB) is marked by otx2, the r3 and r5 are marked by krox20 and the
RA production region is marked by aldh1a2. Embryos are flat-mounted with anterior to the
left. (D) The illustration of the convergent extension (i.e. growth) of the hindbrain. The
hindbrain shrinks in LR direction and elongates in AP direction.
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krox20 and RA production region by aldh1a2. At each hour, we measure the LR width of

hindbrain at the location of r4, the AP length of hindbrain and production region at the

center of LR axis. Total n=9 samples are taken for each time point and the statistics of the

hindbrain dimensions are shown in Figure 4.2AB.

In the model, we simply take the hindbrain shape as a rectangle by utilizing the dimensions

from the experimental quantifications (Figure 4.1D). We consider two domains in the com-

putational framework: morphogen domain and tissue domain. In morphogen domain, we

model the morphogens in a continuum description. In tissue domain, we model the discrete

cells along with the intracellular gene expressions in a discrete description. The hindbrain

(r1-r7) and RA production region are taken as the morphogen domain to model dynamics of

morphogens. Two morphogens, RA and FGF, are modeled by stochastic reaction-diffusion

equations and the morphogen domain with regular rectangular mesh is used for their spa-

tial domain with the finite difference spatial discretization. One part of the morphogen

domain, r2-r6 region, is taken as the tissue domain to model the dynamics of individual

cells. In tissue domain, the sub-cellular element method (SCEM) is used to describe the

morphology, mechanical interactions and movement of cells. All discrete cells considered by

the model are contained in the tissue domain and a group of elements (nodes) is used to

represent the cell. The gene regulation of all intracellular genes, including krox20, val, vhnf1

and irx3, are defined within each individual cell. The morphogens diffuse in extracellular

environment (morphogen domain) and associate with the individual cells (tissue domain).

The exchanges between extracellular environment and individual cells are carried out by

interpolation methods (Supplement).
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4.3.4 A stochastic simulation captures the r2-r6 pattern formation

With the consideration of the multiple mechanisms discussed above, the stochastic multi-

scale model successfully mimics the dynamics of r2-r6 formation. In this section, we show

one stochastic simulation with spatial distributions of multiple genes.

First, we show the spatial distributions of morphogens. Both RA and FGF signals have noisy

distributions over the space (Figure 4.2CD). The RA gradient is decreasing from posterior to

anterior while FGF level is high at r4 and decreases in both anterior and posterior directions.

Next, we show a time series of the spatial patterns of the intracellular genes (Figure 4.2E-G).

The expression patterns of hoxb1a and krox20 provide a good description of the boundary

sharpening process. The distinct cell identities present in r2-r6 can be observed via the

expressions of these two genes, where hoxb1a is expressed at r4, krox20 is expressed at r3

and r5, and low expressions of both hoxb1a and krox20 is observed at r2 and r6 (Figure

4.2E). Initially at 11hpf, hoxb1a is observed at r4 alongside weak krox20 expression in r3

and r5. Notably, krox20 expression is stronger in r3 than r5 (Figure 4.2C). At 12hpf, krox20

expression is clear at both r3 and r5 but boundaries of these two rhombomeres are still

rough. One cell with hoxb1a identity intermingles with r3 cells. A few cells close to the

r4/r5 boundary are undergoing identity switching as they co-express low levels of krox20

and hoxb1a. At 13hpf, the intermingling hoxb1a cell segregates closer to the r3/r4 boundary

and most of the krox20 and hoxb1a co-expressing cells commit to a specific cell identity.

Boundaries at this stage are also sharper compared to 12hpf. At 14hpf, all cells segregate

to their territories and the boundaries are fully sharpened. A precise five-segments pattern

can be observed.

The time series of vhnf1 and irx3 expression is shown in Figure 4.2FG. At 11hpf, the boarder

between vhnf1 and irx3 determines the position of the pre-rhombomeric r4/r5 boundary.

At later stages, the border between vhnf1 and irx3 shifts posteriorly and is located in r5
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[93]. Unlike hoxb1a and krox20, there is no auto-regulation for vhnf1. Vhnf1 is not able to

maintain its own expression without RA signals. Consequently, the decreasing level of RA

over time (Figure 4.11C) leads to the posterior shift of vhnf1 expression.

To quantitatively study the size and boundary sharpness of the system, we define three

quantities for the simulation result: the rhombomeres size, boundary sharpness index (SI)

and number of dislocated cells (DC). The SI describes the sharpness level of each boundary

where a lower value indicates a sharper boundary. For a cell located too far away from its

region, we identify it as the dislocated cells and DC gives the counts of all dislocated cells in

the simulation. The SI and DC can describe the precision of the pattern. See Supplement

for details.

The stochastic simulations are repeated (n=100) independently under different random seeds

and the statistics of the quantities are shown in Figure 4.2K. The results at the end of the

simulations show a good fit with experimental measurements of the rhombomere sizes at

14hpf. From 11-12hpf, identity switching affects the sharpness of boundaries and we observe

DC and SI(r5/r6) increase in this period. From 12-14hpf, the boundary sharpness process

can also be observed by the quantifications, DC and SIs, where they gradually fall down to

the minimum.

4.4 The cooperation between RA and FGF contributes

to the robust segmental pattern

Since two morphogens are involved in this model, here we discuss how these two morphogens

cooperate and contribute to the pattern. A previous work took RA as the only morphogen

and it successfully simulated the formation of r2-r5 pattern [190]. For simplification, hoxb1a

and krox20 were taken as the direct downstream targets of RA, despite krox20 indirectly
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Figure 4.2: A baseline simulation mimics the boundary sharpening process during zebrafish
hindbrain patterning (11-14hpf).
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Figure 4.2 (continued): Dimensions of hindbrain in (A) AP and (B) LR axes. Experimental
quantifications (n=9) provide data points at 11, 12, 13 and 14hpf. The error bars represent
the standard deviation. Cubic interpolation is used to obtain the smooth curves and the
growth curves are used in the model. (A) AP length of the hindbrain is measured from the
posterior end of MHB to the anterior end of the RA production region. The AP length of
the RA production region is measured for the AP length of aldh1a2 region. (B) The LR
width of the hindbrain is measured at the position of r4 at AP axis. The hindbrain is taken
as a rectangle in the model for simplification. (C) The noisy distribution of RA signaling
([RA]in) at 14hpf. (D) The noisy distributions of FGF signaling ([FGF ]in) at 14hpf. (E-G)
Time series of gene expressions: (E) Hoxb1a (red) and Krox20 (blue) expressions, (F) Vhnf1
(purple), (G) Irx3 (yellow). (H) Quantifications of rhombomere sizes, number of dislocated
cells and sharpness index versus time. solid line: the quantities for the simulation shown in
(E). The statistics of rhombomere sizes (r3, r4 and r5), sharpness index for four boundaries
(SI(r2/r3), SI(r3/r4), SI(r4/r5), SI(r5/r6)) and the number of dislocated cells (DC) (n=100)
are displayed: brown dash line for the average and brown shade for the standard deviation.
dash black line represents for the rhombomere sizes from experimental measurement and the
error bars represent for the standard deviation (n=9).

induced by RA through Hoxb1a and FGF. Here we compare our model with the previous

model to discuss the significance of the secondary morphogen FGF on the pattern formation.

To focus on the effects of gene regulation on the final pattern, we only look into steady

state solutions of the gene regulation model in a one-dimensional fixed spatial domain with

deterministic description.

Distributions of genes and morphogens for the two-morphogen model and one-morphogen

model are shown in Figure 4.3A and 4.3D, respectively. In both models, the borders between

hoxb1a and krox20 specify the r3/r4 and r4/r5 boundaries. The border between vhnf1 and

irx3 locates posterior to the r4/r5 boundary. With the auto-regulation, krox20 behaves as a

bi-stable switch to the morphogen level (either RA or FGF). In the two-morphogen model,

FGF has high expression level at r4 and decreases at both anterior and posterior directions.

FGF can reach the threshold of krox20 expression at two positions located anterior and

posterior to r4. Indeed, the two-morphogen model is able to specify the r2/r3 and r5/r6

boundary. However, in the one-morphogen model, the RA gradient decreases monotonically

from posterior to anterior. RA can reach the threshold of krox20 expression at only one
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position that located anterior to r4. The one-morphogen model fails to specify the r5/r6

boundary.
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Figure 4.3: Comparisons between two-morphogens (RA and FGF) model and one-morphogen
(RA) model. (A-C) One dimensional simulations for the two-morphogens model: (A) spatial
distributions of RA, Krox20, Hoxb1a, Vhnf1, Irx3 and FGF. (B) Phase diagram of Hoxb1a
and Krox20 under different initial level of Hoxb1a. (C) Rhombomere sizes under different
initial level of Hoxb1a. (D-F) One dimensional simulations for the one-morphogen model:
(D) Spatial distributions of RA, Krox20, Hoxba1, Vhnf1 and Irx3. (E) Phase diagram of
Hoxb1a and Krox20 under different initial level of Hoxb1a. (F) Rhombomere sizes under
different initial level of Hoxb1a.

Next, we test the robustness of the systems in terms of their initial hoxb1a levels. Because

RA, vhnf1 and irx3 expression appear before rhombomere formation, we pick their steady

state as the initial conditions. We use an initial condition of zero for both krox20 and FGF

since they emerge later after hoxb1a. The initial condition of Hoxb1a is picked as a constant

over the space since hoxb1a has low expression level at the early stage. Then we compute

this system until all species reach steady states. By varying the initial Hoxb1a level, we

obtain the phase diagrams and the rhombomeres AP sizes for both two-morphogen and one-

morphogen model (Figure 4.3BCEF). For the two-morphogen model, locations of all gene

expression boundaries and sizes of three rhombomeres are relatively fixed for different initial
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Hoxb1a levels. Only a slight expansion is observed when the initial hoxb1a exceedes 0.3. For

the one-morphogen model, its rhombomere sizes are more sensitive to initial Hoxb1a levels.

In simulations with low initial Hoxb1a levels (< 0.2), no Hoxb1a expression is observed.

The r4 region expands and r3 region reduces quickly as initial Hoxb1a level increases from

0.2 to 0.4. A 15% increase of initial Hoxb1a level (0.2-0.23) simply leads to an over two-

folds expansion of r4 (21-44 µm). The r3 even vanishes when initial Hoxb1a level is close

to 0.4. The two-morphogen model outperforms the one-morphogen model in robustness of

rhombomere size. Indeed, the secondary FGF signaling can reduce the variation caused by

the initial gene expression.

In the morphogen-mediated patterning system, the steepness of the gradient leads to a

trade-off between accuracy of pattern positioning and precision of boundary [87, 90]. A

shallow gradient more accurately locates the position of pattern under perturbation on its

synthesis, but becomes less noise resistant to allow cells to specify the precise location in-

formation. A steeper gradient transmits less noisy location signals to cells but is less robust

to perturbations on synthesis. Since RA is responsible for initial patterning, its accuracy in

specifying pattern location is more important. The shallow distribution of RA [151] and its

self-enhanced degradation [177] are beneficial for achieving better accuracy. For RA synthe-

sis, the expression region of Aldh1a2 which converts retinaldehyde to RA, has high variability

and the intensity of aldh1a2 is highly fluctuated. But the synthesis of FGF has less varia-

tion since its upstream regulator Hoxb1a is tightly controlled by a complex network and the

bi-stability of hoxb1a can reduce the fluctuations on its intensity. Indeed, the robustness to

synthesis is less desirable for FGF. Synthesized at the stage where initial pattern has already

been established, a steep FGF gradient is helpful in improving the precision of boundaries

adjacent to its source.

Overall, the cooperation between the long-range shallow RA and the short-range steep FGF

provides a strategy for achieving both accurate and precise rhombomere pattern.
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4.5 Boundary sharpness and size of rhombomeres un-

der growth

In this section, we explore the effects of growth on boundary sharpness and rhombomere size.

From 11 to 14hpf, the morphology of the hindbrain changes in both LR and AP axis. The

AP length changes slowly during this period, but the LR width shrinks dramatically from

280 µm to 160 µm at the first hour (11-12hpf) and shrinks slowly to 103 µm during the last

two hours (12-14hpf). We aim to figure out why it is necessary to have a fast convergence

rate at the early hindbrain development. We modeled two additional types of convergence

rates, called medium and slow convergence based on their rate relative to the experimental

convergent rate, to compare with the fast convergence from our measurement. All three

types of convergence have the same initial and terminal LR width. The curve of the medium

convergence is taken as a linear function. The curve of the slow convergence and the curve

of the fast convergence are symmetric to the linear curve (Figure 4.4A).

4.5.1 Fast convergence makes cell sorting more effective in achiev-

ing sharper boundaries

First, we look into the effects of cell sorting alone by excluding the gene regulation from the

model. We only consider three cell identities in the five segments (r2-r6). Cells with the same

identities are assigned the same level of gene expression of hoxb1a and krox20 : white cells

have zeros expression of hoxb1a and krox20, blue cells have zero expression of hoxb1a and

maximum level of krox20 and red cells have maximum level of hoxb1a and zero expression of

krox20. The initial ”salt-and-pepper” cell distribution (Figure 4.4B) is sampled by mixture

Gaussian distribution based on cell AP position (Supplement).

Starting from the same ”salt-and-pepper” cell distribution, we run the simulations with
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Figure 4.4: Simulations with only selective cell-cell adhesion under different types of con-
vergence. (A) Three types of convergence considered in the model start and terminate with
the same LR width. We call them fast convergence, medium convergence and slow conver-
gence based on their convergence rates at the early stage. The fast convergence is measured
from experimental measurement (adopted from Figure 2B). The curve of slow convergence
is symmetric to the curve of fast convergence with respect to the curve of linear function.
The curve of medium convergence is taken as a linear function. (B-E) The time series of
cell distributions under different types of convergence from 11 to 14hpf. Cell identities are
denoted by the expression of Hoxb1a (red) and Krox20 (blue). The dislocated cells are high-
lighted by yellow edges. (B) Three simulations start with the same initial cell distribution
(11hpf). The initial cell distribution is generated by a Gaussian mixture distribution. Cell
distributions with (C) fast, (D) medium and (E) slow convergence from 12 to 14hpf. (F)
The sharpness index for four boundaries (SI(r2/r3), SI(r3/r4), SI(r4/r5) and SI(r5/r6)) and
number of dislocated cells (DC) versus time. Statistics of three types of convergence for their
(G) rhombomere sizes of r3, r4 and r5, (H) SI and (I) DC. Total 100 independent stochastic
simulations for each type of convergence are computed under the same parameters set. Error
bars represent the standard deviation.
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only cell sorting under different types of convergence. The boundary sharpening process

can be observed for all three types of convergence (Figure 4C-E). Most of the intermingling

cells segregate to their correct corresponding territories and the final patterns display sharp

boundaries between rhombomeres. By comparing different types of convergence, the case

with fast convergence achieves the sharpest boundaries and the fewest number of dislocated

cells while the case with slow convergence results in the roughest boundaries and the greatest

number of dislocated cells (Figure 4.4F). The statistics of sharpness index and number of

dislocated cells at the final time in over 100 independent simulations show the consistent

conclusions as we observed in the single simulation (Figure 4.4H and 4.4I). For the final

rhombomere sizes, different types of convergence have minor effects on it (Figure 4.4G).

In this cell-sorting model, an early fast convergence results in better precision in the final

patterns. Intuitively, a faster convergence squeezes the hindbrain to have smaller LR width

resulting in shorter distances between cells. Since the cell sorting acts through the cell-cell

contact, with the shorter distances between cells, the intercellular mechanical forces can be

stronger. Consequently, the faster convergence makes the cell sorting more effective leading

to the more precise pattern.

4.5.2 Fast convergence regulates boundary sharpness and rhom-

bomere sizes

Now, we turn our attention to the full model including both gene regulation and cell sorting.

Similar to the observations above, the faster convergence results in more precise patterns

with sharper boundaries and fewer dislocated cells in almost all boundaries examined. The

exception is that the fast convergence and the medium convergence have similar sharpness

level and the number of dislocated cells at the r5/r6 boundary (Figure 4.5A-E and G). For

the rhombomere sizes, they vary greatly under different types of convergence (Figure 4.5F).
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The simulations with slow convergence reach the largest sizes for all rhombomeres (r3, r4

and r5). The simulations with the fast convergence have similar r3 size, but smaller r4

size and larger r5 size compared to the simulations with the medium convergence. Based

on the experimental measurement of the hindbrain at 14hpf, all three rhombomeres should

be roughly similar in size. With a small r5 size, the medium convergence fails to produce

balanced rhombomeres of similar size. Taken together, the fast convergence is optimal in

achieving both sharp boundaries and balanced rhombomere sizes.

Next, we investigate how the convergence influences the pattern at the gene expression level.

We look into the spatio-temporal dynamics of cell fate commitment and morphogens. For

the fast convergence, RA signal increases quickly at the early stage from 11-12 hpf, then

it falls down gradually. Vhnf1 displays a similar behavior as RA (Figure 4.6AB). Near the

r4/r5 boundary, hoxb1a is repressed by the increasing Vhnf1. FGF then activates krox20

leading to identity switching for cells near the r4/r5 boundary with low Hoxb1a expression.

The identity switching leads to a smaller r4 (Figure 4.5B). Similar to RA, FGF increases

and hits its maximum levels at an early stage (∼12hpf). The majority of cells commit their

fates before 12hpf since they have received the maximum spatial signals during this period

(Figure 4.5D). For the slow convergence, both RA and FGF levels increase at later stages and

reach maximum at 14hpf. Indeed, besides cells that commit their fates before 11hpf, most

cells make their fate decisions at later stages (Figure 4.6G). For the medium convergence,

both RA and FGF levels are relatively unchanged and increase slowly comparing to other

cases. Indeed, comparing to other cases, we observe more cells commit their fates before

11hpf, especially, for cells in r5 (Figure 4.6D). In fast convergence, cells switch from r4 to r5

identities due to the increasing RA and Vhnf1, and in slow convergence, cells switch from r6

to r5 identities due to the increasing FGF. Unlike these two cases, the medium convergence

has less cells committing to r5 identities leading to the smaller r5 size (Figure 4.5G).

In the hindbrain pattern formation, gene regulation and cell sorting synergize where gene
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Figure 4.5: Simulations for the full model combining gene regulation and cell sorting under
different types of convergence. (A-D) The time series of cell distributions under different
types of convergence from 11 to 14hpf. Cell identities are denoted by the expressions of
Hoxb1a (red) and Krox20 (blue). The dislocated cells are highlighted by yellow edges.
(A) Three simulations start with the same initial cell distribution (11hpf). The initial is
generated by gene expression model (see supplement). Cell distributions with (B) fast, (C)
medium and (D) slow convergence from 12 to 14hpf. (E) The sharpness index for four
boundaries (SI(r2/r3), SI(r3/r4), SI(r4/r5) and SI(r5/r6)) and number of dislocated cells
(DC) versus time. Statistics of three types of convergence for their (F) rhombomere sizes of
r3, r4 and r5, (G) SI and (H) DC. Total of 100 independent stochastic simulations for each
type of convergence are computed under the same parameters set. Error bars represent the
standard deviation.
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Figure 4.6: Dynamics of morphogens and cell commitment time under different types of
convergence. The statistics of the dynamics of (A) RA signaling ([RA]in), (B) FGF signaling
([Fgf ]in) and (C) Vhnf1 near r2/r3, r3/r4, r4/r5 and r5/r6 boundaries. For each boundary,
500 cells are used to calculate the statistics where five cells that are closest to this boundary
are pick in each simulation and total n=100 simulations are used. The lines represent the
average values and the width of the shades represent the standard deviation. (D-G) Statistics
of cell commitment time in different spatial regions. (D) Percentage of cells that make their
commitment before 11hpf (initial) at different locations from r2 to r6. Percentage of cells
that make their commitment from 11 to 14hpf under (E) fast convergence, (F) medium
convergence and (G) slow convergence. The data is the same with the data used in Figure
4.5.
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regulation is responsible for the pattern initialization at earlier stages and cell sorting is

responsible for the pattern refinement at later stages [170]. We verify this conclusion in

our model by perturbing the periods of gene regulation and the selectivity in cell sorting.

When gene regulation is turned off at later stages, there are only minor effects on boundary

sharpness in the pattern (Figure 4.8). We also turn on the selectivity in cell sorting for only

one hour, letting cells sort each other equally in the rest of the time. The worse patterns

were observed when the selectivity is turned on at the early stage (11-12hpf) (Figure 4.9).

Taken together, the fast convergence is optimal for regulating both precise patterning and

balanced rhombomere size by acting on both cell sorting and gene regulation. With the small

r5 size, the medium convergence fails to maintain the balanced rhombomere size, and the

boundaries are slightly rougher than that in the fast convergence. In the slow convergence,

more cells commit at the late stage which disrupts the synergy between cell sorting and gene

expressions resulting in the rough boundaries (Figure 4.5GH).

4.5.3 Fast convergence regulates the trade-off between size and

boundary sharpness

The fast convergence provides advantages in regulating both rhombomere size and boundary

sharpness. Here we look into the relationship between size and boundary sharpness by

showing simulations (n=1000) with random parameters (Figure 4.7 and 4.10). The size

and boundary sharpness exhibit a trade-off where smaller size usually results in rougher

boundaries. With smaller rhombomere size, the cell sorting is less effective since fewer cells

with the same identity are able to sort for each other. Consequently, the boundary is more

difficult to sharpen. We observe that the fast convergence can significantly reduce the trade-

off for the posterior rhombomeres (r4 and r5) (Figure 4.7). For r3, the fast convergence

reduces the trade-off slightly (Figure 4.10).
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We also count the number of simulations with balanced rhombomere sizes. From the exper-

imental measurement, the average and the standard deviation of r3, r4 and r5 sizes at 14hpf

are 42±5 µm, 35±5 µm and 37±4 µm, respectively (Figure 4.2H). We search for the simu-

lations where the sizes of all rhombomeres are inside the ranges given by the experimental

quantifications. In total, we find 15, 5 and 5 out of 1000 simulations for fast, medium and

slow convergence, respectively. The fast convergence generates more easily patterns with

balanced rhombomere sizes.
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Figure 4.7: The relationship between rhombomere size and the level of boundary sharpness
(SI). Simulations are generated with randomly perturbed parameters. A total of 513 and 452
simulations out of 1000 simulations under fast convergence and slow convergence successfully
generated the r2-r6 pattern. Each dot represent the corresponding quantities of each simu-
lation. (A-C) Size of r4 versus sharpness index of r4/r5 boundary: (A) fast convergence, (B)
slow convergence and (C) the comparison between fast and slow convergence. (D-F) Size
of r5 versus sharpness index of r5/r6 boundary: (D) fast convergence, (E) slow convergence
and (F) the comparison between fast and slow convergence

The actual size of each rhombomere is in the order of 3-5 cell-diameters which is relatively

small. It is challenging to sharpen the boundaries of small segments, and even more so to

regulate all rhombomeres to be similarly sized. Surprisingly, we find that the fast convergence

rate during the hindbrain development coordinates both size and boundary sharpness to

facilitate the patterning process.
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4.6 Discussion

Our modeling results show that the robustness of segment size in the hindbrain pattern

can be significantly improved by adding a short-range morphogen to the system alongside

a long-range morphogen. This cooperation between two morphogens may be a strategy for

maintaining both accuracy and precision in pattern formation. Despite the elongation in

AP axis possibly hindering the boundary sharpening process [190], fast convergence in the

LR axis can improve regulation of the rhombomere size and boundary sharpness leading to

a precise pattern.

RA level increases during early stages of hindbrain development due to its synthesis and

accumulation [108], then decreases due to the source of RA associated with axial elongation

and the addition of new somites [5, 126]. The abnormal pattern appears if the RA synthesis is

knocked down before 6hpf and the normal pattern can be observed if RA synthesis is knocked

down after 6hpf. This indicates the degradation of RA is slow and its signal remains in cells

for a while. This slow degradation is necessary for our model to have different morphogen

dynamics under different types of convergence. In particular, in the current parameters set,

the time scale of RA degradation is slower than the convergence: the half-life of RA is about

1.7 hour and the LR width is almost halved in 1 hour.

In the simulations, intermingling cells are found in r2 and r6 due to randomness in gene ex-

pression. Especially, sometimes, hoxb1a cells can be observed in r2 because RA is increasing

at the early time and it is possible to induce the hoxb1a at r2. The model can’t predict how

those intermingling cells switch to the correct identities. The ”community effect” may cause

intermingling cells to switch to the identity of its surrounding cells although the underlying

mechanisms havent been fully identified [2, 144]. Other inhibitors of hoxb1a or krox20 may

exist to prevent the intermingling cells.

During the developemnt of hindbrain, cells are dividing and migrating along the dorsal-
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ventral (DV) axis. Cells are also migrating from r5 to the neural crest which may cause the

reduction of r5 size observed in the experimental measurements (Figure 4.2K). Our simplified

two-dimensional model omits the DV axis and the complicated dynamics of cell migrations

and divisions. Indeed, the simulated dynamics of rhombomere sizes cannot fit perfectly to

the experimental quantifications, but those factors won’t affect the behaviors of morphogens

predicted in this work. Indeed, this simplification can still provide the insight for the impacts

of growth on the pattern formations.

4.7 Supplement

4.7.1 Modeling the growing domains

The morphogen domain describes the region for the entire hindbrain for modeling the dif-

fusive morphogens. In the two-dimensional model, we consider AP and LR axes. In AP

direction, we take the posterior end of the midbrain-hindbrain boundary (MHB) as x1 = 0

and the posterior end of RA production region as x1 = L1(t). We assume the LR length of

the hindbrain, L2(t), is a constant in AP direction for simplification. Then, the morphogen

domain has a rectangular structure with dynamical sizes:

M(t) =

{(
x(1), x(2)

)
∈ H : H = [0, L1(t)]×

[
−1

2
L2(t),

1

2
L2(t)

]}
. (4.1)

The RA production region is taken as:

P (t) =

{(
x(1), x(2)

)
:
(
x(1), x(2)

)
∈ [p(t), L1(t)]×

[
−1

2
L2(t),

1

2
L2(t)

]}
. (4.2)

The data of L1(t), L2(t) and p(t) are from the experimental quantifications at 11, 12, 13 and

14hpf. We use the cubic interpolation to obtain the smooth curves in Figure 4.2AB.
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Figure 4.8: Simulations with gene regulation turned on at different periods. (A-D) The
time series of cell distribution with gene regulation turned on at different periods. Cell
identities are denoted by the expression of Hoxb1a (red) and Krox20 (blue). The dislocated
cells are highlighted by yellow edges. (A) Three simulations start with the same initial cell
distribution (11hpf). The initial condition is generated by gene expression model. The gene
regulation is turned on for different length of periods: (B) 11-12hpf, (C) 11-13hpf and (D)
11-14hpf. (F) The sharpness index for four boundaries (SI(r2/r3), SI(r3/r4), SI(r4/r5) and
SI(r5/r6)) and number of dislocated cells (DC) versus time. Statistics of three cases for their
(G) rhombomere sizes of r3, r4 and r5, (H) SI and (I) DC. Total 100 independent stochastic
simulations for each type of convergence are computed under the same parameters set. Error
bars represent the standard deviation.
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the selectivity in cell sorting, we set the similarity function as a constant F = 0.5 where
cells sort equally. (A-D) The time series of cell distribution with selectivity during different
periods. Cell identities are denoted by the expression of Hoxb1a (red) and Krox20 (blue).
The dislocated cells are highlighted by yellow edges. (A) Three simulations start with the
same initial cell distribution (11hpf). The initial is generated by gene expression model. The
cells sort for each other all the time, but the selectivity is only turned on at one hour in
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standard deviation.
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Figure 4.10: The relations between rhombomere size and the level of boundary sharpness
(SI).
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Figure 4.10 (continued): In each plot, one dot represents for a simulation that generated
from the stochastic simulation with a random parameters set. A total of 513, 562 and 452
simulations out of 1000 simulations under fast, medium and slow convergence successfully
generated the r2-r6 pattern and they are displayed in the plots. (A-A) Size of r3 versus
SI(r2/r3) under (A) fast, (A) linear and (A) slow convergence. (B-B) Size of r3 versus
SI(r3/r4) under (B) fast, (B) linear and (B) slow convergence. (C-C) Size of r4 versus
SI(r3/r4) under (C) fast, (C) linear and (C) slow convergence. (D-D) Size of r4 versus
SI(r4/r5) under (D) fast, (D) linear and (D) slow convergence. (E-E) Size of r5 versus
SI(r4/r5) under (E) fast, (E) linear and (E) slow convergence. (F-F) Size of r5 versus
SI(r5/r6) under (F) fast, (F) linear and (F) slow convergence.

Since we mainly focus on the pattern in the region r2-r6, we only consider discrete cells in one

part of the hindbrain, called tissue domain, to save the computational cost. We assume the

growth is isotropic and the tissue domain scales proportionally with the morphogen domain:

T (t) =

{(
x(1), x(2)

)
:
(
x(1), x(2)

)
∈ [r1L1(t), r2L1(t)]×

[
−1

2
L2(t),

1

2
L2(t)

]}
(4.3)

where r1 and r2 are constants given in the Table 4.2.

With the isotropic growth, at x = (x1, x2), the growth velocity of the tissue is given by

V(x, t) =

(
L1
′(t)

x(1)

L1(t)
, L2

′(t)
x(2)

L2(t)

)
. (4.4)

4.7.2 Stochastic dynamics of morphogens and intracellular gene

expressions

morphogen

To model dynamics of morphogen in the growing hindbrain, the stochastic convection-

reaction-diffusion equations are used. We assume the hindbrain growth is isotropic. The
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Figure 4.11: Morphogens distributions. (A) The distribution of [RA]out at 14hpf. (B) The
distribution of [Fgf]out at 14hpf. (C) The AP distribution of [RA]out in the morphogen
domain and the zoomed-in AP distribution of [RA]in for the AP range present in the tissue
domain. The curves show the average morphogen level over LR axis. (D) The AP distribution
of [Fgf ]out and [Fgf ]in. The curves show the average morphogen level over LR axis.
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equations of RA are given by

∂[RA]out
∂t

+

convection︷ ︸︸ ︷
∇ · (V[RA]out) =

diffusion︷ ︸︸ ︷
Dr∆[RA]out +

production︷ ︸︸ ︷
A(x, t)

+

f1︷ ︸︸ ︷
kr[RA]in − (1 + βr)kr[RA]out +

noise︷ ︸︸ ︷
µr1

dwr1(t)

dt
,

∂[RA]in
∂t

+∇ · (V[RA]in) =

f2︷ ︸︸ ︷
kr[RA]out − kr[RA]in − dr(x1)[RA]in

+ µr2
dwr2(t)

dt
,

(4.5)

where [RA]out and [RA]in are extracellular and intracellular forms of RA, respectively. The

convection term describes the dilution and advection of RA caused by growth. V(x, t) is the

growth velocity of tissue at location x and time t. The production rate is confined at the

RA production region and modeled by a hill function of AP position x(1) with a large hill

coefficient:

A(x, t) =
vr

1 +
(
x(1)

p(t)

)−20 . (4.6)

In f1 and f2, kf is the rate of exchange of morphogen between intracellular and extracellular

forms. The degradation of extracellular morphogen rate is taken as a constant βrkr and the

degradation of intracellular morphogen rate dr is a piecewise function for AP axis

dr(x) =


kmax, if x(1) > p(t),

k0, otherwise.

(4.7)

The degradation rate in the RA production region takes a large value kmax, since the RA

degrading enzymes cyp26s highly expressed in the RA production region [177]. We take

absorbed boundary condition at x(1) = 0 since cyp26s is highly expressed in MHB that

provides a sink for RA. No-flux boundary conditions are taken on the other three boundaries.
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Similarly, we model both intracellular and extracellular FGF as the following:

∂[Fgf ]out
∂t

+∇ · (V [Fgf ]out) = Df∆[Fgf ]out + Af ([H], x) + kf [Fgf ]in

− (1 + βf ) kf [Fgf ]out + µf1
dwf1(t)

dt
,

∂[Fgf ]in
∂t

+∇ · (V [Fgf ]in) = kf [Fgf ]out − kf [Fgf ]in

− df [Fgf ]in + µf2
dwf2(t)

dt
,

(4.8)

The production of FGF is upregulated by hoxb1a and the production rate is given by a hill

function of [H]:

Af ([H],x) = vf
[H](x)2

1 + ahf [H](x)2 . (4.9)

The intracellular gene [H] is defined on the locations of cell centers. The term [H](x) is

obtained by interpolating [H] values with locations in cell centers (see ”Signaling exchange

between continuum domain and discrete cell” for details).

Intracellular genes

The intracellular genes expression levels determine the cell fate of each individual cell. The

gene regulatory network has been discussed in Section 4.3.1. We model the dynamics of gene

expressions by a system of stochastic differential equations. The expressions of intracellular

genes are defined on the individual cell in the tissue domain. For the i-th cell centered at ci,

the equations are given by

d[H]i
dt

= vh
ahh[H]2i + arh[RA]2in

1 + ahh[H]2i + arh[RA]2in + bkh[K]2i + bvh[V ]2i
− dh[H]i + µh

dwh
dt

,

d[K]i
dt

= vk
akk[K]2i + afk[Fgf ]2in

1 + akk[K]2i + afk[Fgf ]2in + bhk[H]2i
− dk[K]i + µk

dwk
dt

,

d[V ]i
dt

= vv
arv[RA]2in

1 + arv[RA]2in + biv[I]2i
− dv[V ]i + µv

dwv
dt

,

d[I]i
dt

= vi
1

1 + bvi[V ]2i
− di[I]i + µi

dwi
dt

,

(4.10)
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where [H], [K], [V ] and [I] are concentrations of hoxb1a, krox20, vhnf1 and irx3, respectively.

[RA]in = [RA]in |x=ci and [Fgf ]in = [Fgf ]in |x=ci are intracellular form of RA and Fgf at

location ci that provide spatial signal for the cell. To generate the initial gene expressions

at 11hpf, we run the stochastic gene expressions for two hours without the consideration of

cell movement. In the first hour, we start with the equilibrium of RA and zero expression of

vhnf1 and irx3, and we only run the stochastic simulations of [RA]out, [RA]in, [V ] and [I] for

one hour since RA gradients are established before 6hpf and vhnf1 and irx3 expressions are

earlier than hoxb1a, krox20 and FGF. For the second hour, we run the stochastic simulations

for all morphogens and genes. The hoxb1a starts with uniform expression level 0.1 and krox20

and FGF start with zeros expression.

Signaling exchange between continuum domain and discrete cell

In morphogen domain and tissue domain, the signals exchange between each other. In the

computational framework, the morphogen domain uses regular rectangular mesh and the

tissue domain has irregular mesh where grids are the centers of moving cells. Morphogens

need to give signal to individual cell and cells need to provide information for FGF synthesis.

We use interpolations to conduct the signaling exchange from two domains.

From morphogen domain to tissue domain, we use a constant interpolation. For i-th cell,

it receives the signals of intracellular morphogen at the grid point that is closest to the cell

location: 
[M ]in |x=ci ≈ [M ]in

∣∣∣∣x=
(
x

(1)
i0
,x

(2)
j0

) ,
(i0, j0) = arg min

i,j

∣∣∣(x(1)
i , x

(2)
j

)
− ci

∣∣∣ . (4.11)

From tissue domain to morphogen domain, we use the build-in function ”griddata” in Mat-

lab to interpolate the function ([H]) defined on scatter points to the regular mesh in mor-
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phogen domain:

[H](x) = griddata([H]i

∣∣∣Ncelli=1 , ci

∣∣∣Ncelli=1 ,x). (4.12)

4.7.3 Modeling discrete cells and their mechanical interactions

In tissue domain, we model the individual cells and their movement driven by mechanical

interactions. Following the previous work [170], we use the subcellular element method

(SCEM) to model those individual cells [117]. Each cell consists of sub-cellular elements

(nodes) and interacts according to a prescribed intercellular force potential. A cell consist

of 2Nnode (Nnode = 6) nodes and those nodes form two hexagon layers as shown in Figure

4.12A. The radius of the outer layer is Rout and the radius of the inner layer is Rin. And we

generate the initial distribution of cells uniformly in the tissue domain as shown in Figure

4.2H. For a system with Ncell cells and each cell has 2Nnode nodes, the location of i-th node

in n-th cell xn,j is determined by the equation

d

dt
xn,i = vchemo

n,i + vinter
n,i + vinner

n,i . (4.13)

On the right hand side, the first term is the chemoattractant that drive cell migration along

with the convergent extension [146, 140]. It is given by


vchemo
n,j = V(cn, t),

cn =
1

2Nnode

2Nnode∑
i=1

xn,i.
(4.14)

The second term represents the forces between nodes given by Morse potential, and the last

term is an additional term for the forces from the nodes in the same cell to maintain stable

cell morphology.
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For two nodes, their forces are determined by Morse potential:

Φ(r) =


U exp(−r

ξ
)− V exp(−r

ζ
), if r ≤ d;

0, otherwise;

(4.15)

where r is the distance between these two nodes and d is the constant cut-off distance taken

as two times of the cell diameters (4R0 = 16 µm). The short-range repulsion U exp(− r
ξ
)

maintains a minimum distance between nodes and the long-range attraction −V exp(− r
ζ
)

makes nodes moving closer.

For nodes in the same cell, the non-zeros intra-cellular forces are determined by:

Φintra(|xn,i − xn,j|) = Uintra exp

(
−|xn,i − xn,j|

ξintra

)
− Vintra exp

(
−|xn,i − xn,j|

ζintra

)
. (4.16)

Nodes in two cells are subject to inter-cellular forces and the magnitude of inter-cellular

forces depend on cell-identity of these two cells. For the extreme case, two nodes are subject

to an attractive force with a short-range repulsion if two cells they have same identity; two

nodes are subject to a repulsive force if two cells they belong to have different identities:

Φinter(r) =


UAtr

inter exp(− r

ξinter

)− V Atr
inter exp(− r

ζinter

), same identity;

URep
inter exp(− r

ξinter

), different identities.

(4.17)

The selective cell-cell adhesion depends on the krox20 expression in a pair of cells. A simi-

larity function between m-th and n-th cell is defined by the following:

F(m,n) =
1

2
(δmδn + 1) ∈ [0, 1], (4.18)

where δi is a linear function of [K] normalized by the maximum expression krox20 in i-th

cell. δi = 1 indicates the cell expresses maximum level of krox20 and δi = −1 indicates the
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cell has no expression of krox20. The force is attractive when two cells have similar krox20

level (F = 1 if δm = δn = ±1) and is repulsive when two cells have different krox20 level

(F = 0 if δm = −δn = ±1).

The Morse potentials between a pair of nodes in two different cells with locations at xm,j

and xn,j are defined by

Φinter(|xn,i − xm,j|) =
[
(1−F)URep

inter + FUAtr
inter

]
exp

(
−|xn,i − xm,j|

ξinter

)
−FVAtr

inter exp

(
−|xn,i − xm,j|

ζinter

)
.

(4.19)

Taken together, the first term in Eq. (4.13) given by

vinter
n,i = ηn,i −∇xn,i

[
2Nnode∑
j 6=i

Φintra(|xn,i − xn,j|) +

Ncell∑
m 6=n

2Nnode∑
j

Φinter(|xn,i − xm,j|)

]
, (4.20)

where ηn,i ∼ N (0, 10) is the Gaussian-distributed noise.

The canonical SCEM only consider Morse potentials discussed above. To avoid squashed or

explode cell, we add another spring-type pair-wise forces to nodes within the same cell [170].

In i-th cell, we evenly divide nodes into two layers, where each layer initially has a structure

of regular polygon. This pair-wise forces act on neighboring nodes between the same layer

xn,i ∼ xn,i+1 and the nodes between different layers with the same index xn,i ∼ xn,i±Nnode .

The force is given by

Ψ(xn,i,xn,j) = µ
|xn,i − xn,j| − lni,j
|xn,i − xn,j|

(xn,i − xn,j), (4.21)

where lni,j is the constant length between node xn,i and xn,j at initial time and it has three

possible values, lout, lin, linter, depending on the types of two nodes (Figure 4.12A). Then for
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i-th node in the n-th cell, the motion from this force is

vinner
n,i = Ψ(xn,i,xn,i+1) + Ψ(xn,i,xn,i−1) + Ψ(xn,i,xn,i±Nnode). (4.22)

To prevent cells running out the tissue domain, we add two layers of ”ghost cells” located

outside the boundary tissue domain to provide extra forces to keep cells staying inside the

tissue domain.

4.7.4 Quantifications of boundary location (m), sharpness index

(SI ) and number of dislocated cells (DC ) in model

In this study, we aim to study rhombomere size and boundary sharpness. We need to quantify

the location of the boundary and its sharpness level. Here we introduce three quantifications

allowing a systematic way to study the sharpness and size.

Taken r3/r4 boundary as an example, it is a straight line vertical to the AP axis with

AP location denoted by m(r3/r4) and its sharpness index is denoted by SI(r3/r4). We

identity a cell as a dislocated cell if its shortest distance to the region it belongs to is over 3

cell-diameters (6R0). The total number of dislocated cells is counted and denoted by DC.

In a region with AP range (a, b), we split the index set of all cells into two sets SL and SR.

We define the distance function from the i-th cell centered at ci to an arbitrary straight line

with AP position k:

dis(ci, k) =


ReLU(c

(1)
i +R0 − k), if i ∈ SL,

ReLU(−c
(1)
i +R0 + k), if i ∈ SR,

(4.23)
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Figure 4.12: Additional information for the model. (A). Cell representation in SCEM: Each
cell is represented by two layers of nodes and each layer has Nnode = 6 nodes with a hexagon
structure. The pairwise lengths used in Eq. (4.21) have three possible constant values, lout,
lin, linter. The length between two neighbor nodes in the outer layer is lout. The length
between two neighbor nodes in the inner layer is lin. For two nodes in different layers with
same angle, the length is linter. (B). An illustration of the distance function between cell
and the boundary. For cell with identity belonging to the left side of the boundary (red
cells), the distal end is taken as the most right side of the cell. The distance is the Euclidean
distance from the distal end to the boundary if the distal end is on the right of the boundary.
Otherwise the distance is zero. Similarly, for the cell with identity belonging to the right
side of the boundary (blue cells), the distal end is taken as the most left side of the cell. The
distance is the Euclidean distance from the distal end to the boundary if the distal end is on
the left of the boundary. Otherwise the distance is zero. For the distance greater than 6 ∗ r,
(r is the radius of the cell), the cell is identified as a dislocated cell. (C) The probability
distribution for generating the initial distribution of cells in Figure 4.4B. There are five cell
identities and each of them is a Gaussian with respect to the AP position.
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where r is the radius of the cell, and

ReLU(x) =


x, if x > 0,

0, if x ≤ 0,

(4.24)

is the rectified linear unit function. For a cell in SL or SR with non-zero distance, this

distance function calculates the Euclidean distance between the right or left distal end of

this cell to the boundary m. An illustration for this distance function is shown in Figure

4.12B.

We quantify the boundary location (m), sharpness index (SI) and number of dislocated cells

(DC) in this region, called K, by solving an optimization problem:

mK = arg min
k∈(a,b)

 ∑
dis(ci,k)≤6R0

(dis(ci, k))2

 1
2

,

SIK = min
k∈(a,b)

 ∑
dis(ci,k)≤6R0

(dis(ci, k))2

 1
2

,

DCK = # {k : dis(ci,mR) > 6R0} .

(4.25)

Next, we split all cells in tissue domain with index set S into three sets with distinct cell

types at time t. There are hoxb1a cells (Sh), krox20 cells (Sk) and none expressing cells (Sn)

based on their expression level of hoxb1a and krox20:

Sh = {i ∈ S : [H]i(t) ≥ 1.2} ,

Sk = {i ∈ S : [K]i(t) ≥ 1.2} ,

Sn =
{
i ∈ S : i /∈ Sh

⋃
Sk

}
.

(4.26)

Now, we calculate those quantities for four boundaries in the tissue domain one by one by
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utilizing Eq. (4.25) and Eq. (4.26) in the flow shown in Table 4.1.

STEP 1 C = mean
i∈Sh

(c
(1)
i ) Find a point to split the tis-

sue domain

STEP 2

K1 = [r1L1(t), C],

SL =
{
i ∈ S : i ∈ Sk

⋃
Sn and c

(1)
i ∈ K1

}
,

SR =
{
i ∈ S : i ∈ Sh and c

(1)
i ∈ K1

}
,

m(r3/r4 ) = mK1 ,

SI(r3/r4 ) = SIK1 ,

DC(r3/r4 ) = DCK1 .

Quantify r3/r4 boundary:
hoxb1a cells are on the right
and other cells are on the
left.

STEP 3

K2 = [C, r2L1(t)],

SL =
{
i ∈ S : i ∈ Sh and c

(1)
i ∈ K2

}
,

SR =
{
i ∈ S : i ∈ Sk

⋃
Sn and c

(1)
i ∈ K2

}
,

m(r4/r5 ) = mK2 ,

SI(r4/r5 ) = SIK2 ,

DC(r4/r5 ) = DCK2 .

Quantify r4/r5 boundary

STEP 4

K3 = [r1L1(t),m(r3/r4 )],

SL =
{
i ∈ S : i ∈ Sn and c

(1)
i ∈ K3

}
,

SR =
{
i ∈ S : i ∈ Sk and c

(1)
i ∈ K3

}
,

m(r2/r3 ) = mK3 ,

SI(r2/r3 ) = SIK3 ,

DC(r2/r3 ) = DCK3 .

Quantify r2/r3 boundary

STEP 5

K4 = [m(r4/r5 ), r2L1(t)],

SL =
{
i ∈ S : i ∈ Sk and c

(1)
i ∈ K4

}
,

SR =
{
i ∈ S : i ∈ Sn and c

(1)
i ∈ K4

}
,

m(r5/r6 ) = mK4 ,

SI(r5/r6 ) = SIK4 ,

DC(r5/r6 ) = DCK4 .

Quantify r5/r6 boundary

STEP 6
DC = DC(r2/r3 ) +DC(r3/r4 )

+DC(r4/r5 ) +DC(r5/r6 ).
Calculate the number of dis-
located cells

Table 4.1: Calculate m, SI and DC for cells in domain with AP range [r1L1(t), r2L1(t)].
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4.7.5 One-morphogen model

In Section 4.4, we present two models, the two-morphogens model and the one-morphogen

model. The equations for the two-morphogens model are followed by Eq. (4.5), (4.8) and

(4.10) in the one-dimensional space without the noise terms. For the one-morphogen model,

RA induces both hoxb1a and krox20. There is no FGF and the equation of krox20 is modified:

d[K]

dt
= vk

akk[K]2 + ark[RA]2in
1 + akk[K]2 + ark[RA]2in + bhk[H]2

− dk[K]. (4.27)

4.7.6 Initial cell distribution for the model with only selective cell-

cell adhesion.

In Figure 4.4B, we use mixture Gaussian distribution to generate the ”salt-and-pepper”

initial cell distribution. We label the cells with r2, r3, r4, r5 and r6 identity as 1, 2, 3, 4 and

5. For a cell with AP position x, we normalized its AP position x̃ = x−xmin

xmax−xmin
in the range of

[0, 1] where xmin = r1L1(0) and xmax = r2L1(0) are AP positions of boundaries of the tissue

domain. The probability for this cell being i-th type of cell is given by

pi(x̃) =
φiN ( x̃|µi, σi)

5∑
i=1

φiN ( x̃|µi, σi)
. (4.28)

We take the weights and the variance as φi = 1/5 and σi = 0.08 for all i. The means

⇀
µ = 1

10
(1, 3, 5, 7, 9) denote the average AP positions of each type of cells. The probability

distributions of different cell types are shown in Figure 4.12C.
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4.7.7 Determination of cell type

In Section 4.5.2, we talk about the cell commitment time. The commitment time is defined

by the latest time that a cell changes its fate. To determine the cell type numerically, we

set thresholds for hoxb1a and krox20 expression, respectively. There is a total of three types

of cells in the r2-r6 pattern. The cells in r2 and r6 are identified by low expressions of both

hoxb1a and krox20. The cells in r3 and r5 are identified by low expression of hoxb1a and

high expression of krox20. The cells in r4 are identified by high expression of hoxb1a and

low expression of krox20. The expression thresholds are selected to specify the ”high” and

”low” expression levels. Under those thresholds, there is no cell being identified with high

expressions of hoxb1a and krox20. The expression thresholds are picked up as 1.2 as the

following:

none expressing identity: [H] < 1.2, [K] < 1.2;

hoxb1a identity: [H] < 1.2, [K] ≥ 1.2;

krox20 identity: [H] ≥ 1.2, [K] < 1.2.

(4.29)

4.7.8 Numerical solvers

Solving PDEs (morphogens) in moving boundary

For morphogens RA and FGF, their two-dimensional spatial domains have moving bound-

aries. A general form of the equation is given by

∂[M ]

∂t
+∇ · (V[M ]) = D∆[M ] + f,

x = (x(1), x(2)) ∈ [0, L1(t)]× [−1

2
L2(t),

1

2
L2(t)].

(4.30)

126



To handle those PDEs, we first transform the dynamical domain to the unit square by using

a coordinate transformation:
X = (X(1), X(2)) =

(
1

L1(t)
x(1),

1

L2(t)
x(2) +

1

2

)
∈ [0, 1]× [0, 1],

τ = t.

(4.31)

The partial derivatives in transformed coordinate are given by

∇X =

(
∂

∂X(1)
,

∂

∂X(2)

)
=

(
L1(t)

∂

∂x(1)
, L2(t)

∂

∂x(2)

)
,

∂2

∂(X(1))
2 = (L1(t))2 ∂2

∂(x(1))
2 ,

∂2

∂(X(2))
2 = (L2(t))2 ∂2

∂(x(2))
2 ,

∂

∂τ
=

∂

∂t
+ L

′

1(t)X(1) ∂

∂x(1)
+ L

′

2(t)

(
X(2) − 1

2

)
∂

∂x(2)
.

(4.32)

Then the equation in the new coordinate systems are given by:

∂[M ]

∂τ
=

1

(L1(t))2

∂2[M ]

∂(X(1))
2 +

1

(L2(t))2

∂2[M ]

∂(X(2))
2 +

L1
′(t)

L1(t)
[M ] +

L2
′(t)

L2(t)
[M ] + f. (4.33)

For spatial discretization, we use the uniform rectangular grids with 151 and 71 grid points

in AP and LR axis, respectively. The central difference method is used for the discretization

of the diffusion term. For temporal discretization, we use the Euler-Maruyama method with

fixed time step. The time step for morphogens and gene expression model is ∆tgene = 1.8

seconds.

Solving discrete cells dynamics

We use Euler-Maruyama method to solve Eq. (4.13) with fixed time step ∆tgene = 3.6

seconds. For the pairwise interactions between nodes in Eq. (4.20), we use GPUs algorithm
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Parameters Value Unit
R0 (Cell radius) 4 µm
Rout 3.60 µm
Rin 1.80 µm
lout 3.60 µm
lin 1.80 µm
linter 1.80 µm
µ 1.11 sec−1

Uintra 1.33× 10−1 µm2 sec−1

ξintra 2.4 µm
Vintra 5.56× 10−2 µm2 sec−1

ζintra 3.6 µm
UAtr

inter 1.04× 10−1 µm2 sec−1

URep
inter 2.50× 10−2 µm2 sec−1

ξinter 5.0 µm
V Atr

inter 6.67× 10−2 µm2 sec−1

ζinter 11.00 µm
r1 0.038 –
r2 0.28 –

Table 4.2: Parameters for the discrete cell model.

to accelerate the computation where gpuArray function in Matlab is used.

4.7.9 Parameters

Here, we list the parameters we used for the simulations shown in this work. The parameters

for discrete cells (Table 4.2) are adopted from [170] and take the same values in the entire

work.

In Figure 4.7 and 4.10, we generated the simulations with random parameters on the equa-

tions of hoxb1a and krox20. We use the Latin hypercube sampling to generate a high di-

mension random numbers and each sample is written as (ω1, ..., ωN). We list the parameters

that are perturbed by using the random number. If not listed, those parameters are taken

as the same with that in Table 4.4.
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Parameters Value Unit
Dr 2.83 µm2 sec−1

vr 1.11×−2 sec−1

kr 2.22× 10−4 sec−1

βr 1 –
kmax 5.56× 10−1 sec−1

k0 1.11× 10−4 sec−1

Df 0.85 µm2 sec−1

vf 5.56× 10−2 sec−1

ahf 2 –
kf 2.67× 10−4 sec−1

βf 1 –
df 0.013 sec−1

µr1 0.1 –
µr2 0.003 –
µf1 0.1 –
µf2 0.01 –
vh 0.056 sec−1

vk 0.056 sec−1

vv 0.11 sec−1

vi 3.33× 10−4 sec−1

ahh 0.85 –
arh 0.13 –
akk 0.9 –
afk 6 –
arv 0.1 –
bkh 40 –
bvh 5 –
bhk 20 –
biv 3.5 –
bvi 5 –
dh 0.022 sec−1

dk 0.022 sec−1

dv 0.022 sec−1

di 3.33× 10−4 sec−1

µh 0.01 –
µk 0.01 –
µv 0.005 –
µi 0.005 –

Table 4.3: Parameters for the equations of morphogens and intracellular genes.
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Parameters Value Unit
ahh 0.85× 2−0.4+0.8ω1 –
akk 0.9× 2−0.4+0.8ω2 –
arh 0.13× 2−1+2ω3 –
afk 6× 2−1+2ω4 –
bkh 40× 2−1+2ω5 –
bvh 5× 2−1+2ω6 –
bhk 20× 2−1+2ω7 –
dh 0.022× 2−1+2ω8 sec−1

dk 0.022× 2−1+2ω9 sec−1

biv 4 –
vh 2.5dh sec−1

vk 2.5dk sec−1

Table 4.4: Parameters for Figure 4.7 and 4.10. If not specified, they are the same as that in
Table 4.3.
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Chapter 5

A hybrid method for stiff

reaction-diffusion equations

This chapter is a reprint of the material as it appears in Discrete and Continuous Dynamical

Systems - Series B [132]. The co-authors listed in this publication directed and supervised

research which forms the basis for this chapter.

5.1 Background

The second-order implicit integration factor method (IIF2) is effective at solving stiff reaction–

diffusion equations owing to its nice stability condition. IIF has previously been applied

primarily to systems in which the reaction contained no explicitly time-dependent terms and

the boundary conditions were homogeneous. If applied to a system with explicitly time-

dependent reaction terms, we find that IIF2 requires prohibitively small time-steps, that are

relative to the square of spatial grid sizes, to attain its theoretical second-order temporal

accuracy. Although the second-order implicit exponential time differencing (iETD2) method
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can accurately handle explicitly time-dependent reactions, it is more computationally expen-

sive than IIF2. In this work, we develop a hybrid approach that combines the advantages of

both methods, applying IIF2 to reaction terms that are not explicitly time-dependent and

applying iETD2 to those which are. The second-order hybrid IIF-ETD method (hIFE2)

inherits the lower complexity of IIF2 and the ability to remain second-order accurate in

time for large time-steps from iETD2. Also, it inherits the unconditional stability from IIF2

and iETD2 methods for dealing with the stiffness in reaction–diffusion systems. Through

a transformation, hIFE2 can handle nonhomogeneous boundary conditions accurately and

efficiently. In addition, this approach can be naturally combined with the compact and array

representations of IIF and ETD for systems in higher spatial dimensions. Various numeri-

cal simulations containing linear and nonlinear reactions are presented to demonstrate the

superior stability, accuracy, and efficiency of the new hIFE method.

5.2 Introduction

Consider a reaction–diffusion system

ut = D∆u + f(u,x, t), x ∈ Ω ⊂ Rk, t ∈ [0, T ], (5.1)

where u = u(x, t) ∈ Rm, D ∈ Rm×m is the diffusion coefficient matrix, and f(u,x, t) describes

the reactions. In biology, reaction–diffusion equations have been used to model predator–

prey interactions [128, 48, 49], the formation of Turing patterns in organs or tissues [162, 52],

stochastic dynamics in gene networks [138], and fetal and adult dermal wound healing [28].

In ecology, they have been applied to study population dynamics [63, 129, 6]. In finance, the

estimation of option prices under several risk factors can be represented by reaction–diffusion

systems as well [195]. While the reaction terms in these applications are often autonomous,

i.e. f(u,x, t) = h(u), in morphogen gradients systems in biology [39, 186, 173, 80, 91, 189],
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the reactions contain explicitly time-dependent terms.

Many numerical methods have been developed to solve (5.1). Typically, finite difference or

finite element methods are used to approximate the equation in space, equipped with some

time integration method. To ensure stability, classic explicit methods require a time step

∆t ∼ ∆x2 [92, 113, 159]. To relax this severe stability restriction, many other schemes have

been developed, such as exponential time differencing (ETD) and semi-implicit integration

factor (IIF) methods. In both ETD and IIF methods, (5.1) is written into a system of

ordinary differential equations (ODEs) by applying the spatial discretization,

Ut = AU + F (U, t), (5.2)

where U = U(t) is the spatially discretized form of u, and AU is the finite difference approx-

imation of the diffusion term D∆u. By using the integration factor e−At to integrate (5.2)

from tn to tn+1 exactly, i.e.,

U(tn+1) = eA∆tU(tn) + eA∆t

∫ ∆t

0

e−AτF
(
U(tn + τ), tn + τ

)
dτ,

, eA∆tU(tn) + F̃n,

(5.3)

the stability constraint due to the diffusion is removed, and the problem becomes one of

approximating the integral F̃n.

In ETD, F̃n is approximated by integrating the product of e−Aτ and the interpolated F (U, tn+

τ) [16, 62]. All explicit ETD (eETD) methods are not unconditionally linearly stable; they

require prohibitively small time steps to solve stiff systems [85]. To help improve stability,

Runge–Kutta-type methods are sometimes employed [27, 60, 61, 79], and several methods

have been developed through splitting of the linear diffusion operator [36, 37, 76, 193]. An

unconditionally linearly stable (A-stable) method is the implicit second-order ETD method

(iETD2). Although iETD2 is A-stable, it has the drawback of high computational cost to
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solve the implicit equations at each step [120].

In IIF, instead of only interpolating F (U, tn+τ), the approximation of F̃n is obtained by inter-

polating e−AτF (U, tn+τ) [120]. The second-order IIF method (IIF2) is A-stable like iETD2,

but it has the advantage that the nonlinear equations at each step are much cheaper to solve.

Owing to its good stability and reduced computational complexity compared with iETD2,

IIF2 is more suitable for solving stiff reaction–diffusion equations. For high-dimensional sys-

tems, compact and array representations of IIF [119, 168] are effective in reducing the storage

and computational cost associated with the exponential matrix, along with the flexibility to

handle non-constant diffusion coefficients or cross-derivatives. Furthermore, by incorporat-

ing the sparse grids technique [167, 100], the IIF method can be applied to multi-dimensional

systems with better efficiency. IIF has also been extended to treat fourth-order parabolic

equations [75, 104], reaction–diffusion–advection equations [191], and stochastic differential

equations [153], and it has been combined with adaptive meshes [98].

In both ETD and IIF methods, the high cost of computing exponential matrices is challeng-

ing. To speed up the computation, the discrete fast Fourier transformation (FFT)-based

algorithms were adopted in both ETD and IIF methods [164, 179, 76]. For non-constant

diffusion coefficients, Krylov-ETD and Krylov-IIF methods [145, 21, 73, 74, 101] were devel-

oped to reduce the computational cost and storage associated with exponential matrices by

utilizing Krylov subspace approximation [142, 46, 59].

Although the IIF2 method is theoretically second order in time [120], when it is applied to ex-

plicitly time-dependent reactions, extremely small time steps compared to spatial grid sizes,

∆t ≤ O(∆x2), are required to observe second-order temporal error. Above some critical

threshold for ∆t, the observed error in IIF2 is only first order. In contrast, iETD2 remains

second order in time for larger ∆t, especially for finer spatial discretization. When applied

to nonhomogeneous boundary conditions, IIF2 also requires small ∆t to retain second-order

accuracy because the nonhomogeneous boundary conditions can be interpreted as introduc-
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ing a large time-dependent reaction to the semi-discrete form in (5.2) [76]. In an attempt to

construct a method that can deal with both explicitly time-dependent reactions and nonho-

mogeneous boundary conditions efficiently, the fast explicit integration factor (fEIF) method

[76] can retain its theoretical order of accuracy under large ∆t like iETD2 and has low com-

putational cost like IIF2. One of the drawbacks of fEIF is that, as a conditionally stable

method, it has strict time step constraint when reactions are stiff.

In this work, we introduce a new hybrid method which combines the IIF and iETD methods.

The hybrid IIF-ETD method (hIFE) is composed in such a way as to inherit the advantages

of both methods simultaneously: that is, to retain second-order accuracy for large time steps

with time-dependent reactions like iETD and to reduce computational complexity in each

iteration like IIF. In addition, in contrast to fEIF2, the second-order hIFE method (hIFE2)

inherits A-stability from its constituents. We also introduce a procedure to more easily ac-

commodate nonhomogeneous boundary conditions by transforming the system into one with

homogeneous boundary conditions, using hIFE on the transformed system. Combining the

transformation with hIFE2 provides a framework for an A-stable, efficient numerical method

that remains effectively second-order accurate in time in the presence of time-dependent

terms and nonhomogeneous boundary conditions.

The rest of the chapter is organized as follows. In Section 5.3, we introduce the IIF2, iETD2,

and new hIFE2 methods and explore and compare the order of accuracy of hIFE2 with that

of IIF2 and iETD2 for explicitly time-dependent, autonomous, and mixed reactions in both

scalar and semi-discrete form. In Section 5.4, we apply hIFE2 to systems with nonhomoge-

neous boundary conditions and introduce a transformation to better treat these boundary

conditions. In Section 5.5, we demonstrate an extension of the hIFE2 method to high-

dimensional problems. In Section 5.6, we provide multiple numerical tests to demonstrate

the accuracy, efficiency, and stability of hIFE. In Section 5.7, we prove that IIF2 displays

first order when the time step is large. In Section 5.8, we provide the complexity analysis. In
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Section 5.9, we introduce the exponential-like matrices formation. In Section 5.10, we give

some concluding remarks.

5.3 Temporal error analysis

The defining feature of each of the methods discussed in this work is how the integral F̃n

in (5.3) is approximated. Both ETD and IIF approximate F̃n using Lagrange interpolation

[67]. In ETD, only the reaction F (U, tn + τ) is interpolated, yielding a polynomial p(τ).

Then the product e−Aτp(τ) is integrated exactly [16, 62]. The approximation for iETD2 is

thus given by

F̃n ≈
I + (−I + A∆t)eA∆t

A2∆t
Fn +

(−I − A∆t) + eA∆t

A2∆t
Fn+1, (5.4)

where Fn , F (U(tn), tn). In IIF, instead of only interpolating F (U, tn + τ), the approxima-

tion of F̃n is obtained by interpolating the entire integrand, e−AτF (U, tn + τ) ≈ q(τ), and

integrating q(τ) exactly [120]. IIF2 approximates

F̃n ≈
∆t

2

(
eA∆tFn + Fn+1

)
. (5.5)

We show in Section 5.3.1 that, when applied to time-dependent reactions, IIF2 requires

extremely small ∆t to exhibit second-order behavior while iETD2 remains second order for

large time steps. Motivated by this analysis, we define for our hIFE method a splitting of

the reaction term

F (U, t) = [F (U, t)− F (0, t)] + [F (0, t)] , F1(U, t) + F2(t) (5.6)
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in (5.3) and apply IIF on F1(U, t) and iETD on F2(t). The second-order hybrid method

(hIFE2) thus approximates

F̃n = eA∆t

∫ ∆t

0

e−AτF1

(
U(tn + τ), tn + τ)

)
dτ + eA∆t

∫ ∆t

0

e−AτF2

(
tn + τ

)
dτ

≈ ∆t

2

(
eA∆t(F1)n + (F1)n+1

)
+
I + (−I + A∆t)eA∆t

A2∆t
(F2)n +

(−I − A∆t) + eA∆t

A2∆t
(F2)n+1.

(5.7)

In Section 5.3.1, we perform an analysis of the temporal error in using each method to solve

(5.2) with the operator A replaced by a scalar α for explicitly time-dependent, autonomous,

and mixed reactions. Then in Section 5.3.2, we investigate the differences between the scalar

and semi-discrete form, showing that iETD2 and hIFE2 remain effectively second order for

large ∆t while IIF2 does not.

5.3.1 Accuracy in scalar form

To compare the error associated with each method above, we first consider the scalar form

of (5.2), where A is replaced by the scalar α:


ut = αu+ f(u, t), t ∈ [0, T ],

u(0) = v.

(5.8)

By making use of the Taylor expansions

1 + (−1 + α∆t)eα∆t

α2∆t
= ∆t

∞∑
k=0

1

(k + 2)k!
(α∆t)k, f(tn+1) =

∞∑
k=0

1

k!
∆tk

dk

dtk
fn,

(−1− α∆t) + eα∆t

α2∆t
= ∆t

∞∑
k=0

1

(k + 2)!
(α∆t)k, u(tn+1) =

∞∑
k=0

1

k!
∆tk

dk

dtk
un,

(5.9)
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and, from (5.8),

dk

dtk
u = αku+

k−1∑
j=0

αk−1−j d
j

dtj
f, (5.10)

we derive the local truncation errors, Tn, of iETD2 and IIF2 for a general f(u, t) to be

T iETD2
n =

1

∆t

(
u(tn+1)− eα∆tun −

1 + (−1 + α∆t)eα∆t

α2∆t
fn −

(−1− α∆t) + eα∆t

α2∆t
fn+1

)
=
∞∑
j=2

∆tj
dj

dtj
fn

[
∞∑
k=0

(
1

(k + j + 1)!
− 1

j!(k + 2)!

)
(α∆t)k

]

=
∞∑
j=2

∆tj
dj

dtj
fn

(
Qj+1(α∆t)− 1

j!
Q2(α∆t)

)
, (5.11)

T IIF2
n =

1

∆t

(
u(tn+1)− eα∆tun −

∆t

2

(
eα∆tfn + fn+1

))
= α2∆t2fn

∞∑
k=0

(
1

(k + 3)!
− 1

2(k + 2)!

)
(α∆t)k

+
∞∑
j=1

∆tj
dj

dtj
fn

(
∞∑
k=0

1

(k + j + 1)!
(α∆t)k − 1

2j!

)

= α2∆t2fn

(
Q3(α∆t)− 1

2
Q2(α∆t)

)
+ α∆t2

d

dt
fnQ3(α∆t)

+
∞∑
j=2

∆tj
dj

dtj
fn

(
Qj+1(α∆t)− 1

2j!

)
,

(5.12)

where we have made use of the function

Qj(x) =
ex −

∑j−1
k=0

1
k!
xk

xj
=
∞∑
k=0

1

(k + j)!
xk (5.13)

from [16] to simplify the expressions.

The truncation error for hIFE is a more complicated expression, and its general form

is omitted in favor of more specific cases below. We now investigate the properties of

each of these for three different possible f(u, t): (I) explicitly time-dependent reactions,
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f(u, t) = g(t); (II) autonomous reactions, f(u, t) = h(u); and (III) mixed reactions of the

form f(u, t) = h(u) + g(t). The first few terms of each of these expressions is included in

explicit form up to O(∆t4) for each of these cases in Table 5.1.

Case I: explicitly time-dependent reactions

Here we consider explicitly time-dependent reactions of the form f(u, t) = g(t). We assume

g ∈ C∞ and g and its derivatives of any order are bounded and O(1). We only compare

IIF2 and iETD2 here, since hIFE2 is equivalent to iETD2 in this case (F1(u, t) ≡ 0 in (5.6)).

Since f(u, t) = g(t) is dependent only on t, the time derivatives dj

dtj
f in (5.11) and (5.12)

are just the single-variable derivatives g(j)(t), so the truncation error takes the same general

form as those expressions in this case.

Although both methods have second-order truncation errors O(∆t2) and thus should exhibit

second-order behavior in the limit ∆t → 0, for a fixed nonzero ∆t, we are only guaranteed

to observe second-order behavior if the higher-order terms are much smaller in magnitude

than the terms involving ∆t2. By comparing the ∆t2 and ∆t3 terms (given explicitly in

Table 5.1), we see in both IIF2 and iETD2 that if ∆t > O(1/|α|), the ∆t3 terms have a

larger magnitude than the ∆t2 terms. If we want to observe second-order behavior, then it

must satisfy ∆t < O(1/|α|); the behavior of the error above this threshold is unpredictable.

We demonstrate this claim by means of an example, taking g(t) = t2. The numerical errors

from applying IIF2 and iETD2 (and, thus, hIFE2) to (5.8) with f(u, t) = t2 are plotted in

Figure 5.1A as a function of ∆t for various −α. We see that for a fixed −α, the thresholds

at which both IIF2 and iETD2 “switch” to second order are similar to each other, and both

are near ∆t ≈ 1/|α|, consistent with our claim.

On the other hand, another interesting feature of the plot is that for a fixed ∆t, the error in

IIF2 increases as −α increases while that of iETD2/hIFE2 decreases. Indeed, to demonstrate
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why the error for each method behaves differently as −α increases for general g(t), we explore

the magnitudes of truncation errors when α → 0 and α → −∞. We first note that for a

fixed ∆t, as α → 0, the truncation errors in (5.11) and (5.12) for both methods take the

form of the Crank–Nicholson method, with truncation error

Tn =
∞∑
j=2

∆tjg(j)
n

(
1

(j + 1)!
− 1

2j!

)
= O(∆t2).

Then as α→ −∞, the truncation error for iETD2 in (5.11) tends to zero while that for IIF2

in (5.12) tends to −1
2
gn+1, which is O(1). When −α varies from 0 to∞, the truncation errors

of iETD2 are generally decreasing, changing from O(∆t2) to 0. In contrast, the truncation

errors of IIF2 are generally increasing, changing from O(∆t2) to O(1). Thus, we expect, for

a fixed ∆t, the global error for iETD2 to decrease for larger −α while the global error in

IIF2 should increase.

Remark. We have shown in the scalar case that the threshold at which IIF2 and iETD2

“switch” to second-order temporal error for time-dependent reactions is similar in both

methods, and this seems to invalidate our entire motivation for developing hIFE2 in the first

place. It is, however, the preceding observation concerning the behavior of the errors for

large −α that will prove crucial to why iETD2 remains second order for larger ∆t than IIF2

when applied to a semi-discrete system with time-dependent reactions. We examine that

form in Section 5.3.2.

Remark. In Figure 5.1A, for ∆t above the threshold, the temporal error of IIF2 has first-

order behavior instead of second. For some remarks on why that might be the case, see

Section 5.7.
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Case II: autonomous reactions

We now consider reactions of the form f(u, t) = h(u) satisfying h(0) = 0, which do not have

explicitly time-dependent terms. In this case, hIFE2 is equivalent to IIF2 since F2(t) ≡ 0 in

(5.6), so again we only compare IIF2 and iETD2 here. Further, we only consider h(u) = ru

(r ∈ R) since this form is easily extendable to the semi-discrete case.

Here, the total time derivatives in (5.11) and (5.12) take the form

dj

dtj
fn = r(α + r)jun = r(α + r)je(α+r)tnu0, (5.14)

where we have made use of the exact solution un = u0e
(α+r)tn . The full truncation error up

to O(∆t4) is given for both methods in Table 5.1. Similar to Case I, we note that the ∆t3

coefficients are O(α) larger than the coefficients of ∆t2 in both iETD2 and IIF2/hIFE2 so

that it must also satisfy ∆t < O(1/|α|) to observe second-order behavior of the error.

The most important difference between this case and Case I, though, is that the error in

both IIF2 and iETD2 now includes, through the derivatives, a factor of un = u0e
(α+r)tn in

every term, and thus as −α increases, un exponentially suppresses the truncation error to

zero in both methods, not just in iETD2.

Again, we demonstrate the validity of our claims with an example. The error in applying

iETD2 and IIF2/hIFE2 to (5.8) with f(u, t) = −u (so r = −1) is shown as a function

of ∆t for various −α in Figure 5.1B. We note that, consistent with the above analysis, the

error decreases dramatically with −α for both iETD2 and IIF2/hIFE, and both demonstrate

second-order accuracy for ∆t < O(1/|α|) while the error (particularly in iETD2) remains

unpredictable above this threshold.
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Figure 5.1: Plots of the numerical error at T = 1 after applying IIF2, iETD2, and hIFE2
to the scalar equation in (5.8) with u(0) = 1 for various ∆t. Plots are shown for (A)
f(u, t) = t2 with α = −101, −102, −103, −104, −105, and −106; (B) f(u, t) = −u with α =
−8, −16, −32, −64, and−128; and (C) f(u, t) = −u+t2 with α = −102, −103, −104, −105,
and −106. The curves for iETD2 and hIFE2 are identical in (A), and those for IIF2 and
hIFE2 are identical in (B). We see that for the time-dependent reactions (A,C), the error in
IIF2 increases as −α increases while the error in iETD2 and hIFE2 decreases.

Case III: mixed reactions

Finally, we consider mixed reactions of the form f(u, t) = ru+ g(t), where, as in Case I, we

assume g ∈ C∞ and g and all its derivatives are bounded and O(1). Again, we only consider

ru for the u-dependent term so that the extension of the analysis to system case in the next

section is straightforward. In this case, the derivatives in (5.11) and (5.12) are given by

dj

dtj
fn = r(α + r)jun + g(j)

n + r

j−1∑
l=0

(α + r)j−1−lg(l)
n . (5.15)

The expressions for the truncation errors of IIF2, iETD2, and hIFE2 up to O(∆t4) are given

in Table 5.1. This is the first (and only) case we examine where the hIFE2 method differs

from both IIF2 and iETD2.

As in Cases I and II, we observe that the ∆t3 terms are O(α) times larger than the ∆t2

terms, so the threshold ∆t < O(1/|α|) also applies here. The main feature we point out for
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the errors in this case is that, owing to the form of the derivatives in (5.15), after substituting

this expression into the truncation errors in (5.11) and (5.12) and multiplying everything

out, the truncation error in this case will contain terms that involve just the derivatives g
(j)
n ,

exactly replicating the error in Case I. Then, regardless of how the other terms behave, there

will be a part of the error that behaves in the same manner as the time-dependent Case I.

That is, as −α grows, some part of the error will increase under IIF2 whereas that same part

of the error will decrease under iETD2. The error should also decrease under hIFE2 since

this method treats those time-dependent terms with iETD2. Thus, in this case we expect to

observe similar behavior as in Case I: increasing error in IIF2 and decreasing error in iETD2

and hIFE2 as −α increases.

We demonstrate this claim with yet another example, this time taking f(u, t) = −u + t2,

the results of which are shown in Figure 5.1C as a function of ∆t. We see that indeed the

error for all three methods behaves similarly to Case I, increasing as −α increases under

IIF2 while decreasing under iETD2 and hIFE2. The plot also verifies our prediction that

the threshold at which second-order behavior is seen is around ∆t ≈ 1/|α|.

5.3.2 Accuracy in semi-discrete form

Having examined each of the three cases for the scalar equation (5.8), we now turn our

attention to the differences between the scalar form and the semi-discrete form,

Ut = AU + F (U, t). (5.16)
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Method Reaction f Truncation error

IIF2

g(t)
− 1

12
∆t2(α2gn − 2αg′n + g′′n)

− 1
24

∆t3(α3gn − α2g′n − αg′′n + g′′′n ) +O(∆t4)

ru
− 1

12
∆t2r3un

− 1
24

∆t3(2αr3 + r4)un +O(∆t4)

ru+ g(t)

− 1
12

∆t2
[
α2gn + α(−rgn − 2g′n) + (r3un + r2gn + rg′n + g′′n)

]
− 1

24
∆t3
[
α3gn + α2(−rgn − g′n) + α(2r3un + r2gn − g′′n)

+(r4un + r3gn + r2g′n + rg′′n + g′′′n )
]

+O(∆t4)

iETD2

g(t)
− 1

12
∆t2g′′n

− 1
24

∆t3(αg′′n + g′′′n ) +O(∆t4)

ru
− 1

12
∆t2(α2r + 2αr2 + r3)un

− 1
24

∆t3(2α3r + 5α2r2 + 4αr3 + r4)un +O(∆t4)

ru+ g(t)

− 1
12

∆t2
[
α2run + α(2r2un + rgn) + (r3un + r2gn + rg′n + g′′n)

]
− 1

24
∆t3
[
2α3run − α2(5r2un + 2rgn) + α(4r3un + 3r2gn + 2rg′n + g′′n)

+(r4un + r3gn + r2g′n + rg′′n + g′′′n )
]

+O(∆t4)

hIFE2

g(t) equivalent to iETD2

ru equivalent to IIF2

ru+ g(t)

− 1
12

∆t2
[
− αrgn + (r3un + r2gn + rg′n + g′′n)

]
− 1

24
∆t3
[
− α2rgn + α(2r3un + r2gn + g′′n)

+(r4un + r3gn + r2g′n + rg′′n + g′′′n )
]

+O(∆t4)

Table 5.1: The truncation errors of IIF2, iETD2, and hIFE2 when applied to (5.8) with
different reactions.

A motivating one-dimensional problem that can be written in the form (5.16) is


ut = duxx + f(u, x, t), x ∈ [a, b], t ∈ [0, T ],

ux|x=a = u|x=b = 0,

u(x, 0) = v(x),

(5.17)

where u = u(x, t), d > 0, and we require v(x) to satisfy the given boundary conditions.

Note that the boundary conditions here are mixed homogeneous; we discuss different types

of boundary conditions in Section 5.4.

We can put the partial differential equation (PDE) (5.17) into the form (5.16) by using finite
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difference discretization of the operator d ∂2

∂x2 . Let ∆x = (b−a)/N be the mesh size and N be

the number of grid points in the spatial discretization. We can write A as the diagonalizable

N ×N matrix,

A =
d

∆x2



−2 2

1 −2 1

1 −2 1

. . . . . . . . .

1 −2 1

1 −2


N×N

, (5.18)

and we form the vectors

U(t) =
(
u0(t), u1(t), . . . , uN−1(t)

)T
F (U, t) =

(
f(u0(t), x0, t), f(u1(t), x1, t), . . . , f(uN−1(t), xN−1, t)

)T (5.19)

where xi = a + i∆x, i = 0, . . . , N − 1, are the grid points in the discretization (we identify

xN = b), and ui(t) , u(xi, t). This spatial discretization completely removes x-dependence

from the equation and introduces an error from the exact solution of O(∆x2); we assume

this level of spatial error in the remaining calculations and only discuss temporal error for

the remainder of the analysis.

The matrix A has N distinct eigenvalues, λj , dσj/∆x
2, j = 1, . . . , N , where σj are listed

in descending order:

σj = −2 + 2 cos
(2j − 1)π

2N
, j = 1, . . . , N. (5.20)

The eigenvalues are all negative, and in the limit N →∞,

λ1 → −d
(
π/2

b− a

)2

= O(d), λN ≈ −
4d

∆x2
→ −∞. (5.21)
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For convenience, we henceforth set a = 0, b = π/2 so that λ1 → −d. The least negative

possible eigenvalue occurs at N = j = 1, where λ1 = − 8d
π2 . For small ∆x (i.e. large N), the

range of eigenvalues is large, as listed in Table 5.2. Though we have only discussed mixed

boundary conditions here, the eigenvalues of the matrices corresponding to Neumann and

Dirichlet conditions have similar properties, which are all negative and differ in a large range

[159].

j
N

32 64 128 256 512 1024

1 −1.00 −1.00 −1.00 −1.00 −1.00 −1.00
5 −7.97e+1 −8.07e+1 −8.09e+1 −8.09e+1 −8.10e+1 −8.10e+1

N/2 −7.89e+2 −3.23e+03 −1.31e+04 −5.28e+04 −2.12e+05 −8.49e+05
N −1.66e+03 −6.64e+03 −2.66e+04 −1.06e+05 −4.25e+05 −1.70e+06

Table 5.2: Eigenvalues of A, λj, under different spatial resolutions, where d = 1, a = 0,
b = π/2, j = 1, 5, N/2, N .

Relating the error in semi-discrete form to that of the scalar form

In each of the three cases in Section 5.3.1, we have considered reactions that were easily

extendable to the semi-discrete form. Since the matrix A in (5.18) is diagonalizable, we

thus set A = HΛH−1, where Λ is the diagonal matrix consisting of the eigenvalues λj,

j = 1, . . . , N . Then for an explicitly time-dependent reaction F (U, t) = G(t), we can multiply

(5.16) on the left by H−1 to obtain

d

dt

(
H−1U

)
= Λ

(
H−1U

)
+H−1G(t), (5.22)

where H−1U and H−1G(t) are N -vectors. Then since Λ is diagonal, the jth component of

this system takes the form

d

dt

(
H−1U

)
j

= λj
(
H−1U

)
j

+
(
H−1G

)
j
(t), (5.23)

146



which matches the scalar form (5.8) with the new variable u = (H−1U)j, α = λj, and

f(u, t) = (H−1G)j (t), independent of u. We can thus solve this system by solving each of

the components individually.

Similarly, if F (U, t) = rU , we can also diagonalize the system, writing

d

dt

(
H−1U

)
= Λ

(
H−1U

)
+ r

(
H−1U

)
, (5.24)

so that we obtain a system of scalar equations with α = λj, f(u, t) = r(H−1U)j (cf. ut =

αu + ru). For the mixed reaction, F (U, t) = rU + G(t), a similar form can be obtained.

For general nonlinear reactions, the conclusions in scalar form cannot be directly extended

to semi-discrete form since the system may not be diagonalizable. We do not analyze the

nonlinear reactions in this work, only numerical tests are carried out in Section 5.6.

From the above, we see that solving an equation in the semi-discrete form is equivalent to

solving N separate scalar equations, each with different α. We showed in Sections 5.3.1 and

5.3.1 that for scalar equations with time-dependent or mixed reactions, as −α increases,

the error in IIF2 increases while the error in iETD2 and hIFE2 decreases. Thus, if we ap-

ply each method to the entire system (5.22) and measure error with the maximum norm,

the component we expect to have the largest error under IIF2 is the one with the largest

(i.e. most negative) eigenvalue, λN , whereas we expect the component with the largest er-

ror under iETD2 and hIFE2 to be the one with the smallest eigenvalue, λ1. Since each

scalar equation requires ∆t < O(1/|α|) = O(1/|λj|) to observe second-order temporal er-

ror (Section 5.3.1), we expect iETD2 and hIFE2 to display second-order behavior for any

∆t < O(1/|λ1|) = O(1/d) while IIF2 requires ∆t < O(1/|λN |) = O(∆x2/d). For large N ,

the magnitudes of λ1 and λN differ in large range as shown in (5.21), then IIF2 requires

a much smaller ∆t to exhibit second-order temporal error than iETD2 and hIFE2. Mean-

while, for autonomous reactions, we showed in Section 5.3.1 that the error for the scalar
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equation in all three methods decreases with larger −α. Thus, in this case, the error in all

three methods is dictated by the smallest eigenvalue, λ1, so that all three methods exhibit

second-order temporal error for large ∆t < O(1/d).

We demonstrate the above claims in Figure 5.2 by comparing the behavior of IIF2, iETD2,

and hIFE2 on the three reactions F (U, t) = t2, F (U, t) = −U , and F (U, t) = −U + t2 with

various N as a function of ∆t. We see that indeed for IIF2, as N increases, progressively

smaller ∆t are required to observe second-order temporal error. In contrast, iETD2 and

hIFE2 always maintain second-order temporal accuracy for different N , consistent with our

analysis.

Remark. When the explicitly time-dependent terms appear in the reactions, the difference

in performance of the IIF2 and iETD2 methods makes intuitive sense. In IIF2, the product

of the exponential integration factor and the reaction is interpolated together, whereas in

iETD2, only the reaction is interpolated, not the exponential. For large −α, IIF2 has to

interpolate an exponentially increasing function, e−αtg(t), with a polynomial, thus likely

introducing a lot of error. In contrast, iETD2 interpolates only the reaction, g(t), which is

independent of −α and likely varies less over time. Therefore, the approximation by iETD2

is likely to be more accurate than IIF2 in this case.

Remark. In previous work, the absolute stability analysis was carried out on ETD [16]

and IIF [120] methods. Both iETD2 and IIF2 are unconditionally linearly stable (A-stable),

while eETD2 is conditionally linearly stable. The absolute stability analysis only considers

equations with autonomous reactions and homogeneous boundary conditions. The hIFE2

has the same absolute stability with IIF2. The fEIF2 method [76] has the same absolute

stability with eETD2. Therefore, the hIFE2 method is A-stable, and fEIF2 is conditionally

linearly stable. For solving stiff systems, a large time step size is allowed if the method is

A-stable. We show the advantage of hIFE2 over fEIF2 in stability in Section 5.6.2.
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Figure 5.2: The temporal errors at T = 1 in the maximum norm when solving the semi-
discrete form (5.16) of (5.27) for different reactions with the IIF, iETD2, and hIFE2 methods.
In all simulations, the reaction coefficient d = 1. (A) IIF2 for F (U, t) = t2; (B) iETD2 for
F (U, t) = t2; (C) hIFE2 for F (U, t) = t2; (D) IIF2 for F (U, t) = −U ; (E) iETD2 for
F (U, t) = −U ; (F) hIFE2 for F (U, t) = −U ; (G) IIF2 for F (U, t) = −U + t2; (H) iETD2 for
F (U, t) = −U + t2; (I) hIFE2 for F (U, t) = −U + t2. Different colors represent the number
of points, N , in the spatial discretization, where N = 32, 64, 128, 256, 512, and 1024.
Subfigures in same row share the same y-axis while subfigures in same column share the
same x-axis. Panels (B) and (C) are identical because hIFE2 treats time-dependent terms
with iETD2, and panels (D) and (F) are identical since hIFE2 treats autonomous terms with
IIF2.

5.4 The hybrid method hIFE for systems with nonho-

mogeneous boundary conditions

We showed that hIFE2 is more accurate than IIF2 in Section 5.3 and has lower computational

cost than iETD2 in Section 5.8. In this section, we discuss the extension of hIFE2 to

equations with nonhomogeneous boundary conditions through a transformation.
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5.4.1 Direct treatment of nonhomogeneous boundary conditions

In all of the analysis in Section 5.3, we assumed that the explicitly time-dependent terms

were O(1). When considering a one-dimensional reaction–diffusion equation of the form

ut = duxx + f(u, x, t). (5.25)

with nonhomogeneous boundary conditions, however, the system can be written in the mod-

ified semi-discrete form (cf. (5.16)),

Ut = AU +B(t) + F (U, t), (5.26)

where B(t) is a time-dependent term of O(1/∆x) or O(1/∆x2) for Neumann- or Dirichlet-

type conditions, respectively [159]. Then hIFE2 may not remain second-order under large

∆t.

For example, we consider a specific one-dimensional reaction–diffusion equation,


ut = uxx − u, x ∈

[
0,
π

2

]
,

u(x, 0) = sin(x+
π

6
),

(5.27)

a solution of which is

u(x, t) = e−2t sin(x+
π

6
). (5.28)

We now consider three different variations of this problem with different nonhomogeneous

boundary conditions dictated by the exact solution (5.28): (a) the Neumann boundary

conditions; (b) the Dirichlet boundary conditions; (c) mixed boundary conditions, Neumann

at x = 0 and Dirichlet at x = π
2
. We list the boundary conditions and the corresponding A

and B(t) in the semi-discrete form (5.26) in Table 5.3. Note that Neumann conditions cause
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B(t) to be O(1/∆x), and Dirichlet and mixed conditions cause B(t) to be O(1/∆x2).

Neumann Dirichlet Mixed

BCs
ux|x=0 = e−2t cos π

6
u|x=0 = e−2t sin π

6
, ux|x=0 = e−2t cos π

6

ux|x=π
2

= e−2t cos 2π
3

u|x=π
2

= e−2t sin 2π
3

u|x=π
2

= e−2t sin 2π
3

B(t) e−2t


−2 cos π

6

∆x

0
...
0

2 cos 2π
3

∆x


N+1

e−2t


sin π

6

∆x2

0
...
0

sin 2π
3

∆x2


N−1

e−2t


−2 cos π

6

∆x

0
...
0

sin 2π
3

∆x2


N

A 1
∆x2


−2 2
1 −2 1

. . . . . . . . .
1 −2 1

2 −2


(N+1)2

1
∆x2


−2 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −2


(N−1)2

1
∆x2


−2 2
1 −2 1

. . . . . . . . .
1 −2 1

1 −2


N2

Table 5.3: Different boundary conditions in (5.27), and their corresponding A and B(t) in
the semi-discrete form (5.26).

We directly apply hIFE2 to (5.27) with these three kinds of boundary conditions and plot

the error at T = 1 in Figure 5.3A–C. In hIFE2, the explicitly time-dependent term B(t) is

treated by iETD2, and the autonomous term −U is treated by IIF2. In each of the cases, we

refine ∆t until the error is dominated by spatial error introduced in the discretization. We

see that hIFE2 exhibits second-order accuracy only for the O(1/∆x) Neumann boundary

conditions. The hIFE2 method does not retain second-order accuracy for large ∆t with the

O(1/∆x2) Dirichlet or mixed boundary conditions, presumably because B(t) is too large.

5.4.2 A transformation for nonhomogeneous boundary conditions

To observe second-order behavior for hIFE2 under large time step when dealing with non-

homogeneous boundary conditions, we construct an auxiliary function uB that satisfies the

same boundary conditions as u and form a new system in terms of the variable ũ = u− uB

that satisfies homogeneous boundary conditions [176]. We then solve the new system using

hIFE2 for ũ and add the auxiliary function uB back into the obtained solution to recover
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Figure 5.3: Plots of the numerical error at T = 1 in maximum norm after applying hIFE2 to
(5.27) with Neumann, Dirichlet, and mixed boundary conditions for various ∆t and fixed N .
The hIFE2 is applied to both original and transformed (Section 5.4.2) equations. Plots are
shown for hIFE2 on: (A) the original equation with Neumann boundary; (B) the original
equation with Dirichlet boundary; (C) the original equation with mixed boundary; (D) the
transformed equation with Neumann boundary; (E) the transformed equation with Dirichlet
boundary; (F) the transformed equation with mixed boundary. Different colors represent
different spatial mesh sizes N , where N = 32, 64, 128, 256, 512, and 1024.
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u. Since ũ satisfies homogeneous boundary conditions, hIFE2 can obtain a solution with

second-order accuracy even when u itself satisfies Dirichlet conditions.

One-dimensional system

Let u(x, t) satisfy (5.25) with the following general nonhomogeneous boundary conditions

on a one-dimensional domain [x1, x2]:

 B1u(x1, t) = (α1u+ β1ux)|x=x1 = f1(t),

B2u(x2, t) = (α2u+ β2ux)|x=x2 = f2(t).
(5.29)

To construct the auxiliary function uB, we define two basis functions,

C1(x) =
(x− x2)2

α1(x1 − x2)2 + 2β1(x1 − x2)
,

C2(x) =
(x− x1)2

α2(x2 − x1)2 + 2β2(x2 − x1)
,

(5.30)

so that

B1C1(x1) = 1, B1C2(x1) = 0,

B2C1(x2) = 0, B2C2(x2) = 1.

Then we construct uB as a linear combination of the basis functions

uB(x, t) = C1(x)f1(t) + C2(x)f2(t), (5.31)

so that uB satisfies the same nonhomogeneous boundary conditions (5.29) as u. Hence,

ũ = u− uB will satisfy homogeneous boundary conditions in the modified equation

ũt = dũxx + f(ũ+ uB, x, t)− (uB)t + d(uB)xx. (5.32)
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This modified equation can thus be solved by hIFE2 and the original solution u of (5.25)

can be found by adding uB back into the numerically obtained solution ũ of (5.32). Note

that the function uB is known, so uB and its derivatives can be computed analytically. The

modified equation includes nonzero explicitly time-dependent terms with magnitude O(1).

Indeed, hIFE2 can exhibit second order in time for large ∆t while IIF2 cannot exhibit that.

The effect of the transformation can be thought of as “spreading out” the two large nonzero

components in the untransformed B(t) over the entire domain to dampen their magnitude.

We include plots of the numerical results of applying hIFE2 to the transformed versions of

the model problem (5.27) from the previous section in Figure 5.3D–F, noting that indeed

hIFE2 remains second order for the transformed equations when it failed to do so for the

untransformed ones.

Higher-dimensional systems

Suppose a solution u(x, y, t) is desired on the two-dimensional domain [x1, x2]× [y1, y2], with

nonhomogeneous boundary conditions,



B11u(x1, y, t) = (α11u+ β11ux)|x=x1 = f1(y, t),

B12u(x2, y, t) = (α12u+ β12ux)|x=x2 = f2(y, t),

B21u(x, y1, t) = (α21u+ β21uy)|y=y1 = g1(x, t),

B22u(x, y2, t) = (α22u+ β22uy)|y=y2 = g2(x, t).

(5.33)
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Using a similar technique as in the one-dimensional case (5.30), we define the basis functions

C11(x), C12(x), C21(y), C22(y) satisfying

B11C11(x1) = 1, B11C12(x1) = 0,

B12C11(x2) = 0, B12C12(x2) = 1,

B21C21(y1) = 1, B21C22(y1) = 0,

B22C21(y2) = 0, B22C22(y2) = 1.

To construct the auxiliary function uB, we first transform the boundary conditions at x =

x1, x2, letting

uB1(x, y, t) = C11(x)f1(y, t) + C12(x)f2(y, t). (5.34)

Then u− uB1 satisfies the boundary conditions

B11(u− uB1)(x1, y, t) = 0,

B12(u− uB1)(x2, y, t) = 0,

B21(u− uB1)(x, y1, t) = g1(x, t)− [C11(x)B21f1(y1, t) + C12(x)B21f2(y1, t)] , g̃1(x, t),

B22(u− uB1)(x, y2, t) = g2(x, t)− [C11(x)B22f1(y2, t) + C12(x)B22f2(y2, t)] , g̃2(x, t),

which is homogeneous with respect to x. Then we transform the boundary conditions at

y = y1, y2, letting

uB2(x, y, t) = C21(y)g̃1(x, t) + C22(y)g̃2(x, t).

Then uB = uB1 + uB2 satisfies the same boundary conditions (5.33) as u so that ũ =

u − uB1 − uB2 = u − uB satisfies homogeneous boundary conditions. Altogether, then, we

have

uB = C11(x)f1(y, t) + C12(x)f2(y, t) + C21(y)g1(x, t) + C22(y)g2(x, t)

− C11(x)C21(y)B21f1(y1, t)− C12(x)C21(y)B21f2(y1, t)

− C11(x)C22(y)B22f1(y2, t)− C12(x)C22(y)B22f2(y2, t).

(5.35)
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Remark. Such an approach of constructing uB can be extended to higher dimensions in a

straightforward manner.

5.5 The hIFE method in higher dimensions

We now introduce a higher-dimensional version of the hIFE method that utilizes the compact

versions of iETD [76] and IIF [119] to reduce the size of the system compared with a näıve

discretization of the Laplacian operator. We only introduce the three-dimensional version

since the procedure generalizes trivially to other dimensions.

The main drawback of higher-dimensional IIF and iETD methods is the large size of the

system. For example, in three dimensions, if Nx, Ny, and Nz correspond to the number of

grid points in the x, y, and z, directions, respectively, the matrix A in the semi-discrete

form (5.2) has dimension NxNyNZ × NxNyNz (or N3 × N3 if Nx = Ny = Nz = N). Since

the number of computations per iteration for IIF is proportional to the square of the size of

the system, each iteration requires O(N2
xN

2
yN

2
z ) operations (or O(N6) if all are equal). The

number of operations for iETD is proportional to the cube of the size of the system—O(N9)

operations per iteration for equal spacing in all directions.

In contrast, the compact representation reduces the storage requirement on A toO(N2
x+N2

y+

N2
z ) = O(3N2) and the number of operations in each iteration to O(N2

xNyNz + NxN
2
yNz +

NxNyN
2
z ) = O(3N4). When applied to hIFE, this approach leads to a significant improve-

ment in its efficiency for higher-dimensional systems.

To illustrate the compact representation approach, we consider (5.1) in three dimensions.

As in the one-dimensional hIFE, we split the reaction term f(u, x, y, z, t) = f1(u, x, y, z, t) +

f2(x, y, z, t), where f1(u, x, y, z, t) , f(u, x, y, z, t)−f(0, x, y, z, t) and f2(x, y, z, t) , f(0, x, y, z, t).

Let Nx, Ny, and Nz be the number of grid points in each dimension, and hx, hy, and hz be
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the corresponding mesh sizes. The spatial discretization is {(xi, yj, zk) : 1 ≤ i ≤ Nx, 1 ≤ j ≤

Ny, 1 ≤ k ≤ Nz}. Denote the discretized u by UNx×Ny×Nz = (Ui,j,k)Nx×Ny×Nz . Here F1(U, t)

and F2(t) are the discretized forms of f1 and f2, respectively. We define the linear operators

x©, y©, and z© as

(A x©U)i,j,k =
Nx∑
l=1

Ai,lUl,j,k

(B y©U)i,j,k =

Ny∑
l=1

Bj,lUi,l,k

(C z©U)i,j,k =
Nz∑
l=1

Ck,lUi,j,l,

(5.36)

and define the matrices Lx,Ly,Lz to approximate the one-dimensional diffusion operators

D ∂2

∂x2 , D
∂2

∂y2 , D
∂2

∂z2 by the same second-order central difference in the one-dimensional method.

The compact representation for the diffusion approximation is

Ut = Lx x©U + Ly y©U + Lz z©U + F1(U, t) + F2(t). (5.37)

The matrices Lx, Ly, and Lz are diagonalizable, i.e.,

Lx = PxΛxP
−1
x , Ly = PyΛyP

−1
y , Lz = PzΛzP

−1
z ,

where Λx, Λy, and Λz are diagonal matrices,

Λx = diag[α1, α2, . . . , αNx ],

Λy = diag[β1, β2, . . . , βNy ],

Λz = diag[γ1, γ2, . . . , γNz ].

We define H = (hi,j,k)Nx×Ny×Nz such that

hi,j,k = αi + βj + γk,
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the operator (e∗) as taking exponential of an array element by element,

(e∗)H = (ehi,j,k)Nx×Ny×Nz ,

and the operator � as componentwise matrix multiplication,

A�B = (ai,j,kbi,j,k)Nx×Ny×Nz .

Then we define the operator L(t) applied to U as

L(t)U = e−Lzt z©e−Lyt y©e−Lxt x©U

= (Pz z©Py y©Px x©)e−Λzt z©e−Λyt y©e−Λxt x©(P−1
z z©P−1

y y©P−1
x x©U)

= (Pz z©Py y©Px x©)(e∗)−Ht � (P−1
z z©P−1

y y©P−1
x x©U).

Using L(t) as an integration factor in (5.37) and integrating over [tn, tn+1], we obtain

Un+1 = L(−∆t)Un + L(−∆t)

∫ ∆t

0

L(τ)F1(U(tn + τ), tn + τ) dτ

+ L(−∆t)

∫ ∆t

0

L(τ)F2(tn + τ) dτ

, L(−∆t)Un + (F̃1)n + (F̃2)n,

(5.38)

which takes a similar form to (5.3) in the one-dimensional method. Motivated by the one-

dimensional method, then, in the compact hIFE we approximate (F̃1)n using the compact IIF

and (F̃2)n using the compact iETD. As in one dimension, the compact iETD approximates

F2 ≈ p(τ) using Lagrange interpolation, and L(τ)p(τ) is integrated exactly. The compact

IIF interpolates L(τ)F1 ≈ q(τ), and q(τ) is integrated exactly. The compact hIFE2 thus
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approximates

(F̃1)n ≈
∆t

2

(
F1(Un+1) + eLz∆t z©eLy∆t y©eLx∆t x©F1(Un)

)
, (5.39)

(F̃2)n ≈ Pz z©Py y©Px x©

((1 + (−1 + hi,j,k∆t)e
hi,j,k∆t

h2
i,j,k∆t

)
i,j,k
� (F2)n

+
((−1− hi,j,k∆t) + ehi,j,k∆t

h2
i,j,k∆t

)
i,j,k
� (F2)n+1

)
.

(5.40)

Note that these expressions are very similar to expression (5.7) for hIFE2 in one dimension.

5.6 Application of hIFE to more complex systems

In this section, we present several numerical simulations, demonstrating the advantages of

hIFE2 in accuracy, complexity, and stability compared with the other methods. In Section

5.6.1, we apply IIF2, iETD2, fEIF2, and hIFE2 to a nonlinear reaction to demonstrate the

advantages of hIFE2 over IIF2 and iETD2 in accuracy and complexity. Then, in Section

5.6.2, we apply all of the methods to a stiff system of coupled PDEs to demonstrate the

stability advantage of hIFE2 over fEIF2. In both examples we choose systems with nonho-

mogeneous boundary conditions to highlight how hIFE2 can handle these (with the aid of

the transformation from Section 5.4.2). In Section 5.6.3, we provide examples justifying the

choice of F1, F2 in (5.6) compared with the more “obvious” choice. Finally, in Section 5.6.4,

we provide an example of the compact hIFE2 in three dimensions.

5.6.1 Reaction–diffusion equation with a nonlinear reaction term

All the reactions we have considered in the analysis so far have been linear in u. We now

consider an equation with a nonlinear reaction term and, just for good measure, a space-
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dependent term as well. We compare the obtained solutions using IIF2, iETD2, fEIF2, and

hIFE2 in terms of accuracy and complexity. We start with the equation


ut = duxx + u2 − e−2dt sin2 x, 0 ≤ x ≤ π

2
,

ux|x=0 = e−dt, u|x=π
2

= e−dt,

u(x, 0) = sinx,

(5.41)

which has the exact solution

u = e−dt sinx. (5.42)

Since the boundary conditions are nonhomogeneous, we apply the transformation introduced

in Section 5.4.2 to the equation, setting

uB = e−dt
(−(x− π

2
)2

π
+

4x2

π2

)

so that we obtain a transformed equation for ũ = u− uB,

ũt = dũxx + ũ2 + 2uBũ+ u2
B + duB + de−dt

(
− 2

π
+

8

π2

)
− e−2dt sin2 x, (5.43)

with homogeneous boundary conditions. Since fEIF2 is supposed to work without trans-

forming the boundary conditions, we apply it to the untransformed equation (5.41), and we

apply IIF2, iETD2, and hIFE2 to the transformed equation (5.43). In both cases, we choose

a uniform spatial grid with ∆x = π/2N and set the time step to vary proportional to the

spatial grid, ∆t = 0.1∆x. We further set the diffusion constant d = 2 and approximate

the solution through time T = 1. Since fEIF2 is a second-order explicit method, we require

knowledge of the discretized U at two time steps to begin the approximation when we are

only given the initial condition. To determine the second time step, U1 = U(∆t), we mod-

ify fEIF2 to use the first-order eETD1 on the reaction terms and iETD2 on the boundary

terms. Then we proceed with the usual fEIF2 for later time steps. For solving the nonlinear
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equations in the implicit methods, IIF2, iETD2, and hIFE2, we use Newton’s method [67]

with a tolerance of 10−8 and a maximum of 15 iterations.

We compare the results of the four methods for various N in terms of the L∞ error at T = 1

and CPU time for the computation in Table 5.4. We include both the CPU time (“CPU

time 1”) for forming the exponential-like matrices (Section 5.9) and (“CPU time 2”) for the

actual iterations. The total CPU time is listed in a separate column. We see that, consistent

with Section 5.3, IIF2 does not attain second-order accuracy, especially for large N , while

the other methods do. In addition, consistent with Section 5.8, the ratio of CPU time among

IIF2:hIFE2:fEIF2 is around 1:3:5, and the computation time of iETD2 is much higher than

the others.

In this example, hIFE2 and fEIF2 perform similarly and exhibit a major advantage in ac-

curacy compared with IIF2 and computational speed compared with iETD2. Despite being

implicit, hIFE2 even has a minor advantage in computational time over fEIF2.

5.6.2 Stiff system of coupled reaction–diffusion equations

In the previous example, hIFE2 and fEIF2 performed similarly in terms of accuracy and

complexity. We note, however, that the IIF2, iETD2, and hIFE2 methods are A-stable

whereas fEIF2 is not. This advantage in stability will be significant for systems with stiff
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N L∞ error Order CPU time (s) CPU time 1 (s) CPU time 2 (s)

IIF2

8 0.00228 - 0.09 0.05 0.04
16 0.000591 1.95 0.04 0.02 0.02
32 0.000198 1.58 0.07 0.03 0.04
64 7.81e-05 1.34 0.13 0.04 0.09
128 0.000108 −0.46 0.54 0.07 0.47
256 5.18e-05 1.06 1.26 0.23 1.03
512 1.83e-05 1.50 4.00 1.39 2.61
1024 2.07e-05 −0.18 28.30 7.75 20.55
2048 1.07e-05 0.96 168.12 42.10 126.02
4096 5.35e-06 1.00 1148.42 265.35 883.07

N L∞ error Order CPU time (s) CPU time 1 (s) CPU time 2 (s)

iETD2

8 0.00216 - 0.07 0.04 0.03
16 0.000539 2.00 0.07 0.04 0.03
32 0.000135 2.00 0.12 0.06 0.06
64 3.37e-05 2.00 0.80 0.07 0.73
128 8.41e-06 2.00 3.78 0.16 3.62
256 2.1e-06 2.00 22.99 0.54 22.45
512 5.26e-07 2.00 289.66 2.70 286.96
1024 1.32e-07 2.00 2841.66 14.65 2827.01
2048 3.31e-08 1.99 35348.32 91.84 35256.48
4096 - - too long - -

N L∞ error Order CPU time (s) CPU time 1 (s) CPU time 2 (s)

hIFE2

8 0.00217 - 0.12 0.09 0.03
16 0.000544 1.99 0.06 0.04 0.02
32 0.000137 1.99 0.08 0.05 0.03
64 3.42e-05 2.00 0.16 0.08 0.08
128 8.75e-06 1.97 0.76 0.17 0.59
256 2.21e-06 1.99 1.85 0.54 1.31
512 5.53e-07 2.00 9.17 2.61 6.56
1024 1.49e-07 1.89 61.82 14.20 47.62
2048 3.93e-08 1.93 419.24 89.49 329.75
4096 1.12e-08 1.81 3096.23 603.04 2493.19

N L∞ error Order CPU time (s) CPU time 1 (s) CPU time 2 (s)

fEIF2

8 0.00216 - 0.37 0.37 0.00
16 0.00054 2.00 0.04 0.04 0.00
32 0.000135 2.00 0.07 0.07 0.00
64 3.38e-05 2.00 0.09 0.08 0.01
128 8.44e-06 2.00 0.54 0.18 0.36
256 2.11e-06 2.00 1.41 0.69 0.72
512 5.28e-07 2.00 11.62 3.01 8.61
1024 1.32e-07 2.00 84.11 16.11 68.00
2048 3.31e-08 1.99 613.91 101.12 512.79
4096 8.89e-09 1.90 4700.11 707.64 3992.47

Table 5.4: Numerical errors in terms of the maximum norm and CPU time for the various
methods on the example in Section 5.6.1 at T = 1 with diffusion coefficient d = 2. Here
N is the number of grid points in the spatial discretization (∆x = π/2N), and the time
step ∆t = 0.1∆x. “CPU time 1” is the CPU time for initializing the matrices (Section 5.9),
“CPU time 2” is the CPU time for the iterations, and “CPU time” is the sum of the two.
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reactions, which we now investigate. In the system of PDEs,



ut = duxx − au+ v,

vt = dvxx − bv,

ux|x=0 = e−(a+d)t + e−(b+d)t, vx|x=0 = (a− b)e−(b+d)t,

u|x=π
2

= e−(a+d)t + e−(b+d)t, v|x=π
2

= (a− b)e−(b+d)t,

u(x, 0) = 2 sinx,

v(x, 0) = (a− b) sinx,

(5.44)

whose exact solution is

u(x, t) = (e−(a+d)t + e−(b+d)t) sin(x),

v(x, t) = (a− b)e−(b+d)t sin(x),

(5.45)

if a and b have very different magnitudes, the resulting system will be stiff. As such, we

compare the performance of IIF2, iETD2, fEIF2, and hIFE2 on this system of PDEs.

We transform the equation to make the boundary conditions homogeneous and apply IIF2,

iETD2, and hIFE2 to the transformed system whereas we apply fEIF2 to the untransformed

system. The corresponding auxiliary functions are


uB = (e−(a+d)t + e−(b+d)t)

(−(x− π
2
)2

π
+

4x2

π2

)
,

vB = (a− b)e−(b+d)t

(−(x− π
2
)2

π
+

4x2

π2

)
.

In each of the simulations, we fix the spatial mesh size ∆x = π/2N with N = 1024 and

run each method through K time steps to a final time T (so ∆t = T/K). We set a = 500,

b = −2, d = 0.1, T = 1, and include the results for various K in Table 5.5. As the magnitude

of the solutions is large, we also include the relative error in this table.

In this example, hIFE2 is still more accurate than IIF2 and faster than iETD2. The fEIF2
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method, however, suffers from stability issues. The numerical solution obtained with fEIF2

blows up when the time step size is not small enough. Meanwhile, the other three methods

never suffer from this blow-up issue since they are all A-stable. When K = 320 (so ∆t =

1/320 = 3.125 × 10−3), the error in the numerical solution of fEIF2 is still huge while the

relative error of hIFE2 is already very small. A-stability in solving stiff equations is thus a

significant advantage of hIFE2 over fEIF2, cementing its position as the most versatile of

the four methods examined in this work.

K L∞ error Relative error Order CPU time (s) CPU time 1 (s) CPU time 2 (s)

IIF2

20 10 0.00381 - 5.32 5.25 0.07
40 4.81 0.00182 1.06 5.07 4.91 0.16
80 2.32 0.000881 1.05 5.09 4.78 0.31
160 1.12 0.000425 1.05 5.07 4.44 0.63
320 0.534 0.000203 1.07 5.24 3.90 1.34
640 0.251 9.51e-05 1.09 5.92 3.40 2.52
1280 0.115 4.34e-05 1.13 7.90 2.92 4.98
2560 0.0503 1.91e-05 1.19 12.84 2.55 10.29

K L∞ error Relative error Order CPU time (s) CPU time 1 (s) CPU time 2 (s)

iETD2

20 3.99 0.00151 - 19.63 10.88 8.75
40 0.994 0.000377 2.00 28.60 10.80 17.80
80 0.248 9.41e-05 2.00 46.92 10.76 36.16
160 0.0617 2.34e-05 2.01 80.10 10.41 69.69
320 0.0152 5.76e-06 2.02 148.60 9.80 138.80
640 0.00366 1.39e-06 2.05 285.20 9.27 275.93
1280 0.000872 3.31e-07 2.07 567.11 8.94 558.17
2560 0.000227 8.61e-08 1.94 1140.59 8.49 1132.10

K L∞ error Relative error Order CPU time (s) CPU time 1 (s) CPU time 2 (s)

hIFE2

20 4.19 0.000397 - 11.11 0.00 0.28
40 1.05 0.000397 2.00 11.96 11.39 0.57
80 0.261 9.91e-05 2.00 11.61 10.70 0.91
160 0.0652 2.47e-05 2.00 12.36 10.37 1.99
320 0.0162 6.14e-06 2.01 13.90 9.84 4.06
640 0.00397 1.51e-06 2.03 17.65 9.43 8.22
1280 0.000971 3.68e-07 2.03 25.08 8.88 16.20
2560 0.000256 9.72e-08 1.92 40.83 8.45 32.38

K L∞ error Relative error Order CPU time (s) CPU time 1 (s) CPU time 2 (s)

fEIF2

20 1.49e+29 4.43e+25 - 12.42 11.96 0.46
40 2.9e+48 8.65e+44 −64.08 12.61 11.78 0.83
80 6.04e+73 1.8e+70 −84.11 13.07 11.46 1.61
160 2.27e+96 6.77e+92 −74.99 14.43 11.20 3.23
320 1.92e+79 5.71e+75 56.72 17.20 10.59 6.61
640 0.251 7.48e-05 265.37 23.47 9.93 13.54
1280 0.119 3.54e-05 1.08 35.96 9.57 26.39
2560 0.0603 1.8e-05 0.98 62.05 9.08 52.97

Table 5.5: Numerical errors and CPU time for the test in Section 5.6.2 at time T = 1. We
set the diffusion coefficient d = 0.1 and the coefficients of the reactions a = 500 and b = −2.
For each simulation, we fix the number of grid points N = 1024 (∆x = π/2N), and run
the simulation for K time steps (∆t = T/K). The error e is measured in the maximum
norm, and the relative error is defined by e/max{‖UK‖∞, ‖VK‖∞}, where UK and VK are
the numerical solutions after K time steps. “CPU time 1” is the CPU time for initialization
(Section 5.9), “CPU time 2” is the CPU time for the iterations, and “CPU time” is the sum
of the two.
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5.6.3 Justification of the chosen splitting of the reaction terms

Recall that the motivation for the hIFE2 method was that IIF2 could not handle time-

dependent reaction terms with second-order temporal accuracy while iETD2 could. For the

hIFE2 method, we then defined a splitting of the reaction term in (5.6) that might at first

glance seem more complicated than necessary. At the level of the undiscretized PDEs, the

method splits the reaction f(u, x, t) = f1(u, x, t) + f2(x, t), where

f1(u, x, t) = f(u, x, t)− f(0, x, t), f2(x, t) = f(0, x, t). (5.46)

In this section we demonstrate by means of two examples why we suggest this decomposition

over what one may consider a more “obvious” one.

Consider a general reaction–diffusion equation in one dimension with homogeneous boundary

conditions, 
ut = uxx + f(u, x, t), 0 ≤ x ≤ π

2
,

ux|x=0 = 0, u|x=π
2

= 0,

u(x, 0) = cos x.

Straightforward decomposition

First consider the reaction

f(u, x, t) = cosu+ t. (5.47)

Since hIFE2 aims to treat time-dependent terms with iETD2 and autonomous terms with

IIF2, one might be led to choose the straightforward decomposition of the reaction

f1(u, x, t) = cos(u), f2(x, t) = t. (5.48)
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The decomposition in (5.46), however, would lead to the splitting

f1(u, x, t) = cos(u)− 1, f2(x, t) = 1 + t. (5.49)

We include the numerical results of each of the decompositions (5.48) and (5.49) for various

spatial mesh sizes, N , fixing ∆t = 0.1∆x in Table 5.6(A). We see that indeed the decompo-

sition (5.49) outperforms the näıve decomposition (5.48) for each value of N since it remains

second order while the näıve decomposition does not.

Numerical results aside, however, there are other problems with näıvely splitting the reaction

into time-dependent and autonomous terms. Namely, what does one do with a term such as

ut, cos(t)u2, or etu? Should they be included in f1 or f2? The decomposition (5.46) provides

a framework for even these more complicated reactions and so is more desirable than the

näıve decomposition, especially since it seems to give more accurate results anyway.

More complicated reactions

In this section, we provide an example of a more complicated reaction. We construct a

reaction that contains x and t, and is unable to be fully decomposed into an autonomous

term and an explicitly time-dependent term:

f(u, x, t) = (t+ 1) cos(xu) + xet. (5.50)

The näıve decomposition is

f1(u, x, t) = (t+ 1) cos(xu), f2(x, t) = xet, (5.51)
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and the decomposition followed by (5.46) is

f1(u, x, t) = (t+ 1) cos(xu)− (t+ 1), f2(x, t) = t+ 1 + xet. (5.52)

The numerical errors for various N , similar to the previous example, are shown in Table

5.6(B). Again, we see that the decomposition (5.52) outperforms the näıve decomposition

(5.51) for each value of N since it remains second order while the näıve decomposition does

not. The hIFE2 method is thus able to accurately handle even complicated equations with

temporal and spatial variables present in both of the decomposed terms.

Remark. Despite the appearance of explicitly time-dependent term in f1, the hIFE2 method

can achieve second–order accuracy with large time step as long as f1(0, x, t) = 0 is held. This

example shows that hIFE2 is also able to handle complicated reactions efficiently.

5.6.4 Reaction–diffusion system with nonhomogeneous boundary

conditions in three dimensions

Finally, we include an example of the compact hIFE2 applied to a three-dimensional system

with nonhomogeneous boundary conditions,



ut = d1uxx + d2uyy + d3uzz + ru, (x, y, z) ∈
[
0,
π

2

]3

ux|x=0 = u|x=π
2

= E sin y sin z,

uy|y=0 = u|y=π
2

= E sinx sin z,

uz|z=0 = u|z=π
2

= E sinx sin y,
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(A)

Decomposition (5.48) Decomposition (5.49)
N A priori error Order A priori error Order
16 0.00103 - 0.00102 -
32 0.000532 0.95 0.000255 2.00
64 0.000328 0.70 6.37e-05 2.00
128 8.21e-05 2.00 1.59e-05 2.00
256 0.000196 −1.25 3.98e-06 2.00
512 0.000106 0.88 9.95e-07 2.00
1024 8.69e-06 3.61 2.49e-07 2.00
2048 3.37e-05 −1.96 6.19e-08 2.01
4096 1.75e-05 0.95 1.42e-08 2.12

(B)

Decomposition (5.51) Decomposition (5.52)
N A priori error Order A priori error Order
16 0.00979 - 0.00977 -
32 0.00245 2.00 0.00245 1.99
64 6.67e-04 1.88 0.000614 2.00
128 1.67e-04 2.00 0.000153 2.00
256 3.94e-04 -1.24 3.83e-05 2.00
512 2.13e-04 0.89 9.59e-06 2.00
1024 1.76e-05 3.60 2.4e-06 2.00
2048 6.75e-05 -1.94 5.99e-07 2.00
4096 3.50e-05 0.95 1.48e-07 2.02

Table 5.6: Numerical a priori error in applying hIFE2 to a one-dimensional reaction–diffusion
system with (A) f(u, x, t) = cosu + t for the decomposition (5.48) and (5.49) and (B)
f(u, x, t) = (t+1) cos(xu)+xet for the decomposition (5.51) and (5.52). The a priori error is
defined by ‖uN −uN/2‖∞, where N is the number of grid points in the spatial discretization.
The simulations are run through time T = 1 with ∆x = π

2N
and ∆t = 0.1∆x.

where E = e(−d1−d2−d3+r)t. The exact solution is

u(x, y, z, t) = e(−d1−d2−d3+r)t sinx sin y sin z.

As usual, we transform the boundary conditions to be homogeneous, yielding the auxiliary

function

uB =E [C(x) sin y sin z + C(y) sinx sin z + C(z) sinx sin y

− C(x)C(y) sin z − C(x)C(z) sin y − C(y)C(z) sinx

+C(x)C(y)C(z)] ,

where C(x) =
−(x−π

2
)2

π
+ 4x2

π2 . We use a uniform mesh with Nx = Ny = Nz = N , and set

∆x = π/2N and time step ∆t = 0.1∆x. We choose parameters d1 = d2 = d3 = 1, r = −1,

168



and T = 1. Applying compact hIFE2 to the transformed equation for ũ = u − uB with

homogeneous boundary conditions, the numerical errors are listed in Table 5.7 for various

N . We verify that indeed the method attains second-order temporal error as expected.

N ×N ×N L∞ error Order
4× 4× 4 1.33e-03 -
8× 8× 8 3.28e-04 2.02

16× 16× 16 8.17e-05 2.01
32× 32× 32 2.04e-05 2.00
64× 64× 64 5.10e-05 2.00

128× 128× 128 1.27e-06 2.00

Table 5.7: Numerical errors in the maximum norm for hIFE2 applied to the example in
Section 5.6.4. The spatial resolution is ∆x = π

2N
in all three dimensions, the time step is

∆t = 0.1∆x, the ending time is T = 1, and the coefficients are d1 = d2 = d3 = 1 and r = −1.

5.7 The first-order exhibition of IIF2

In Section 5.3, when dealing with explicitly time-dependent reactions, we conclude that IIF2

requires ∆t < O(1/|α|) in the scalar equation (5.8) or ∆t < O(∆x2/d) in semi-discrete form

(5.16) to ensure second-order temporal accuracy, but we did not address the accuracy of IIF2

for ∆t above this threshold. In Figures 5.1A and 5.2(A), however, we observe IIF2 exhibits

first-order behavior when ∆t is large. Motivated by this observation, we attempt to provide

an explanation for the first-order behavior in this section.

First, we investigate the scalar equation (5.8), only considering explicitly time-dependent

reactions, f(u, t) = g(t), with g ∈ C∞ having an upper bound M > 0. We consider the

global error at time 0 < T < ∞, with a fixed ∆t = T/K (so K time steps) and various

α < 0 satisfying ∆t > O(1/|α|).

The one-step iteration of IIF2 at arbitrary time step tn only depends on the value of un−1

multiplied by an exponential factor eα∆t. Then since ∆t > O(1/|α|) =⇒ |α∆t| > O(1) =⇒
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eα∆t � 1. Indeed even for α∆t = −100, eα∆t ≈ 10−44. Then for large −α, the approximation

un becomes essentially independent of previous iterates,

un = eα∆tun−1 +
∆t

2
eα∆tgn−1 +

∆t

2
gn −→

∆t

2
gn (α→ −∞), (5.53)

so that, in particular,

uK →
∆t

2
gK =

∆t

2
g(T ) (α→ −∞). (5.54)

Now the exact solution u(T ) can be written in integral form, which we can bound using the

assumption |g(t)| ≤M :

|u(T )| =
∣∣∣∣eαTu(0) + eαT

∫ T

0

e−αtg(t) dt

∣∣∣∣ ≤ eαT |u(0)|+
∣∣∣∣eαT − 1

α

∣∣∣∣M. (5.55)

Then as α→ −∞, |u(T )| → 0. Indeed, even for finite but large −α, we have |u(T )| .M/|α|.

We thus have as a rough estimate of the global error e(T,K) , |u(T )−uK | in IIF2 for large

−α,

e(T,K) .
∆t

2
|g(T )|+ 1

|α|
M. (5.56)

Since we are working under the assumption ∆t > O(1/|α|), 1
|α| �

∆t
2

, so that we have

e(T,K) = O(∆t), first-order temporal error.

The same argument applies to IIF2 on the semi-discrete equation (5.16) with an explicitly

time-dependent reaction. As demonstrated in Section 5.3.2, if we apply IIF2 to the diagonal

system (5.22) and measure error with the maximum norm, the component that has the largest

error is that with the most negative eigenvalue. This then requires ∆t < O(1/|λN |) =

O(∆x2/d) to observe second-order temporal error. Repeating the above procedure with

∆t > O(∆x2/d), the error of IIF2 in that component will be first order, causing the overall

error to be first order as well.
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5.8 Complexity

In this section, we compare the computational cost per iteration of iETD2, IIF2, hIFE2, and

fEIF2, showing hIFE2 requires far fewer operations than iETD2 and a number of operations

similar to that of the less-costly IIF2 method.

We remind the reader of the form of the iteration in each of the methods below for conve-

nience:

U iETD2
n+1 = eA∆tUn +

I + (−I + A∆t)eA∆t

A2∆t
Fn +

(−I − A∆t) + eA∆t

A2∆t
Fn+1

, eA∆tUn + ∆t
[
L1(A∆t)Fn + L2(A∆t)Fn+1

]
,

(5.57)

U IIF2
n+1 = eA∆tUn +

∆t

2

(
eA∆tFn + Fn+1

)
, (5.58)

UhIFE2
n+1 = eA∆tUn +

∆t

2

(
eA∆t(F1)n + (F1)n+1

)
+ ∆t

[
L1(A∆t)(F2)n + L2(A∆t)(F2)n+1

]
,

(5.59)

U fEIF2
n+1 = eA∆tUn + ∆t

[
L3(A∆t)Fn−1 + L4(A∆t)Fn + L1(A∆t)Bn + L2(A∆t)Bn+1

]
,

(5.60)

where F1(U, t) and F2(t) were defined in (5.6), L3(A∆t) and L4(A∆t) are N ×N matrices of

similar form to L1 and L2 (i.e., including factors of eA∆t) whose exact forms are tangential to

this discussion but given in full in [76], andB is a vector related to nonhomogeneous boundary

conditions that does not depend on U (see Section 5.4 for details). The formation of the

exponential-like matrices, Li(A∆t), i = 1, 2, 3, 4, can be found in Section 5.9. Assuming the

exponential-like matrices have already been formed, the two main sources of computational

cost are matrix–vector multiplication and solving implicit equations.

At the beginning of each iteration in iETD2, the vectors Un and Fn are known from the

previous iteration, and the matrices eA∆t, L1(A∆t), and L2(A∆t) are assumed to have

already been computed and stored. Then after performing two matrix–vector multiplications,
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requiring O(2N2) operations, the system takes the form

Un+1 = ∆tL2(A∆t)F (Un+1, tn+1) + known , F1(Un+1).

This is a nonlinear system of N equations for the components of Un+1 that can be solved, e.g.,

by Newton’s method. During each step of Newton’s method, however, the N ×N Jacobian

matrix JF1 of F1 needs to be inverted, requiring O(N3) operations since the matrix L2 is

not in general diagonal. This computation then dominates the cost of the method, pushing

it up to O(kN3) operations if Newton’s method converges in k steps.

In IIF2, the vectors Un and Fn are known, and we can form the vector Un + ∆t
2
Fn in just

O(N) operations, so that only one matrix–vector multiplication is required for a total of

O(N2) operations. Then the system takes the form

Un+1 =
∆t

2
F (Un+1, tn+1) + known ,,F2(Un+1)

which is again a nonlinear system. Since ∆t
2

is just a number, though, we can decouple this

system into N individual scalar equations, one for each component, eliminating the need to

invert the Jacobian so that the total number of computations required to find a solution is

reduced to O(kN) for convergence in k iterations. The initial multiplication then dominates

the cost of this method, making its total complexity O(N2), an entire order of magnitude

smaller than iETD2.

Recall that the hIFE2 method splits F (U, t) into two parts: F1(U, t) and F2(t). Since F2 is

only time-dependent, it is easy to calculate at each step, so in addition to the pre-determined

vectors Un, (F1)n, and (F2)n, (F2)n+1 can be calculated in O(N) operations at the begin-

ning of the iteration. Similar to IIF2, we can form the vector Un + ∆t
2

(F1)n in only O(N)

operations, so we only require three matrix–vector multiplications, a total of O(3N2) op-

erations. Since only F2 is treated with iETD2 while F1 is treated with IIF2, the nonlinear
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system obtained after these multiplications takes the same form as IIF2 and so can also be

decoupled into N separate scalar equations and solved in O(kN) operations. Thus, the total

complexity of this method is O(3N2), slightly more than IIF2 but still an order of magnitude

better than iETD2.

Finally, fEIF2 is a completely explicit method, so all vectors are known at the beginning of

the iteration, and no nonlinear equations need to be solved. Each term involves a different

matrix, and there are five in total, so this method requires O(5N2) operations. Even though

fEIF2 is an explicit method, the implicit hIFE2 requires fewer operations per iteration due

to the ease with which the nonlinear equations are solved.

We summarize the complexity of these four methods in Table 5.8. The iETD2 method has

the largest computational complexity of all the examined methods, a full order of magnitude

larger than any of the others. The fEIF2 method has a higher computational complexity than

hIFE2, and hIFE2 has a higher computational complexity than IIF2, which scores the best

among the methods. We conclude that since both hIFE2 and iETD2 were shown to remain

second-order accurate in time (Section 5.3) for larger ∆t than IIF2, since hIFE2 requires

fewer computations per iteration than iETD2, it is the more desirable method, especially for

large systems.

Operations per iteration Total complexity (ratio)

IIF2 O(N2) 1

iETD2 O(kN3) O(kN)

hIFE2 O(3N2) 3

fEIF2 O(5N2) 5

Table 5.8: A comparison of the computational complexity between the IIF2, iETD2, hIFE2,
and fEIF2 methods.
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5.9 Exponential-like matrices formation

When iETD2, IIF2, and hIFE2 are applied, those matrices involved in an exponential matrix

only need to be formed once if the time step ∆t is fixed. In our work, the matrix eA∆t in (5.3)

and (5.5) is approximated by the expm() function in Matlab, and the two exponential-like

matrices, L1(A∆t) = I+(−I+A∆t)eA∆t

A2∆t2
and L2(A∆t) = (−I−A∆t)+eA∆t

A2∆t2
, in the iETD2 iteration

(5.4) are obtained via a cutoff of Taylor series [27] to avoid cancellation errors related to

inverting the matrix A.

We see that since A is diagonalizable, so are L1(A∆t) and L2(A∆t). We can thus build the

matrices by operating on the eigenvalues one by one rather than performing many matrix

multiplications. We only need to evaluate L1(λ∆t) and L2(λ∆t) for arbitrary eigenvalue λ of

A. If |λ∆t| is small, L1(λ∆t) and L2(λ∆t) are “0
0
”-type fractions in their analytic forms, we

will encounter a large cancellation error. We set a threshold bd = 10, where if |λj∆t| < bd,

we use a cutoff of the Taylor series

L1(λ∆t) =
∞∑
n=0

1

(n+ 2)n!
(λ∆t)n

L2(λ∆t) = ∆t
∞∑
n=0

1

(n+ 2)!
(λ∆t)n

(5.61)

up to a chosen tolerance TOL = 10−8, and otherwise use the direct expression in the frac-

tional form. We provide the algorithm of L1(A∆t) for an instance, the formation of L2(A∆t)

follows the same procedure.

5.10 Conclusions and discussion

IIF and iETD methods are two existing methods designed for dealing with stiffness in

reaction–diffusion equations. When solving systems that have explicitly time-dependent
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Algorithm 1 Generate L1(A∆t)

1: procedure
2: Λ = diag(λ1, λ2, . . . , λN)← diagonalization : [V,Λ] = eig(A) where A = V ΛV −1

3: for j = 1 : N do
4: if |λj∆t| < bd then
5: m = 1, n = 0, µj = 0,
6: while m < TOL do
7: m = 1

(n+2)n!
(λj∆t)

n . Use Taylor expansion
8: n← n+ 1
9: µj ← µj +m

10: end while
11: else
12: µj =

1+(−1+λj∆t)e
λj∆t

(λj∆t)2 . Direct implementation

13: end if
14: end for
15: L1(A∆t)← V diag(µ1, µ2, . . . , µN)V −1

16: end procedure

reactions, these two methods behave differently in accuracy and efficiency. In particular,

IIF2 requires extremely small time steps to exhibit the theoretical second-order temporal

accuracy in practice, whereas the iETD2 method maintains the second order with relatively

large time steps. On the other hand, the IIF2 method has the advantage of being more

efficient than iETD2 when solving systems with nonlinear reactions owing to the lower com-

putational cost per time step. The hybrid (hIFE) method intends to take advantage of the

strength in both methods. In hIFE method, the key step is to split the reaction term into

two parts by using (5.6), and to treat F1 by IIF and F2 by iETD. For complicated reactions,

as long as the condition F1|t=0 = 0 is held (i.e. a more general form than autonomous), the

hIFE method exhibits theoretical order of accuracy with large time step sizes compared to

spatial grid size. We have applied this hybrid method to reaction–diffusion systems contain-

ing explicitly time-dependent reactions, as well as systems with nonhomogeneous boundary

conditions through a transformation. To reduce the cost associated with both the storage

and computation of large matrices in high dimensions, we have incorporated the compact

representation previously developed for IIF and ETD methods into the high-dimensional

hIFE method. Based on various numerical simulations and comparisons with other schemes,
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the hIFE method is found to be more advantageous with respect to stability, efficiency, and

accuracy in solving reaction–diffusion systems with more complicated reactions or nonhomo-

geneous boundary conditions. The stability and restriction on the time step ∆t to exhibit

second order for all methods presented in this work are provided in Table 5.9.

Method A-stability
∆t to exhibit second-order accuracy

Time-dependent reactions Nonhomogeneous BCs

IIF2 Yes O(∆x2) ≤ O(∆x2)

iETD2 Yes O(1) -

fEIF2 No O(1) O(1)

hIFE2 Yes O(1) < O(1)

hIFE2 (transformed) Yes O(1) O(1)

Table 5.9: A summary of the four methods: for their A-stability, and the restriction on ∆t to
exhibit second order, with explicitly time-dependent reactions or nonhomogeneous boundary
conditions.

The computational complexity (Section 5.8) of our method is based on a simple implementa-

tion in this work. There are other techniques to reduce the computational cost. For example,

the discrete fast Fourier transformation [164, 179, 76] and Krylov method [145, 21, 73, 74, 101]

are two effective ways to reduce the computational cost for matrix-vector multiplications.

While the Newton’s method has been used to solve the nonlinear equations in hIFE, the

fixed–point method could be used to reduce the cost in each iteration whereas the number

of iterations may increase. Because IIF2 and hIFE2 do not involve solving large nonlinear

systems, its associated cost for the Newton’s methods is significantly lower than the iETD2

method [120]. Together, hIFE2 will cost less computationally than iETD2 but slightly more

than IIF2, as long as similar matrix-vector multiplication techniques and nonlinear solvers

are used.

In high dimensions, the current compact hIFE method can only deal with systems on fixed

rectangular domains and equally distributed meshes in spatial discretization. For more

complicated geometry or unstructured meshes, hIFE method needs to be further improved,

potentially coupled with Krylov method [21, 101], to reduce the computational cost. For
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systems in higher dimension (> 3), other techniques, such as the sparse grid technique,

can be incorporated into this hybrid scheme to further improve the efficiency. In addition,

the hybrid approach can potentially be applied to convection–reaction–diffusion equations

with explicitly time-dependent reactions, nonhomogeneous boundary conditions or domains

moving with time. It will be also interesting to generalize this hybrid method to reaction–

diffusion equations with anisotropic diffusion or to PDEs with high-order spatial differential

operators, such as Cahn–Hilliard equations with dynamic boundary conditions.
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