
UC Irvine
ICS Technical Reports

Title
An optimal clock period selection method based on slack minimization criteria

Permalink
https://escholarship.org/uc/item/79212829

Authors
Chang, En-Shou
Gajski, Daniel D.
Narayan, Sanjiv

Publication Date
1996-01-08

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/79212829
https://escholarship.org
http://www.cdlib.org/

Notics; This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

An optimal
clock period selection method

based on

slack minimization criteria

En-Shou Chang
Daniel D. Gajski
Sanjiv Narayan

Technical Report ^95-57
January 8, 1996

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92717-3425
(714) 824-8059

echang@ics.uci.edu

Abstract

An important decision in synthesizing a hardware implementation from a behavioral
description is selecting the clock period to schedule the datapath operations into control
steps. Prior to scheduling, most existing behavioral synthesis systems either require the
designer to specify the clock period explicitly or require that the delays of the operators
used in the design be specified in multiples of the clock period. An unfavorable choice
of the clock period could result in operations being idle for a large portion of the clock
period, and consequently, affect the performance of the synthesized design. In this
paper, we demonstrate the effect of clock slack on the performance of designs and
present an algorithm to find a slack-minimal clock period. We prove the optimality
of our method and apply it to several examples to demonstrate its effectiveness in
maximizing design performance.

aU &Ar«.

C 5

iBi'tSJny E'-'i"''
briioaloiq sd VEfn
wbJ iilQnVQoO vd
(.a.e.u \i sii'O

1 Introduction

In recent years, logic synthesis has come to be recog

nized as an integral part of the design process, and this

recognition has led to an evolutionary change in design

methodology into a describe-and-synthesize[l, 2]

approach. The advantage of this new methodology is

that it allows us to specify a design in a purely be

havioral form, devoid of any implementation details.

For example, we can describe a design using Boolean

equations, finite-state, etc. An implementation for the

design can be generated by automatic synthesis tools,

instead of manual design, which is usually tedious.

Behavioral synthesis involves the transformation of

a design specification into a set of interconnected RT-

components[2] which satisfy the behavior and some

specified constraints, such as the number of functional

units, performance etc. Three major synthesis tasks

are applied during the transformation[2]: allocatioii,

scheduling and binding. The purpose of alloca

tion is to determine the number of resources, such

as registers, buses, and functional units, that will be

used in the implementation. The task of scheduling is

intended to partition the behavioral description into

time intervals, called control steps. During each con

trol step, which is usually one clock-cycle long, data

will be fetched from a register, transformed y a func

tional unit, and written back to a register. All regis

ter transfers in any given control step will be executed

concurrently. The binding task assigns variables to

storage units and operations to functional units, as

well as making sure that there is a distinct communi-

cation path or bus assigned for each transfer of data

between the storage and functional units.

Another major task in behavioral synthesis is the

selection of the clock period that will be used for im

plementing the design. Selecting clock period before

performing synthesis tasks is important, since the choice

of clock period could affect the execution time and the

resources required to implement the design. For exam

ple, consider using three different clock periods (380

ns, 150 ns and 80 ns) for implementing the dataflow

graph in Figure 1. In Figure 1(a), clock period 380 ns

allows the fastest possible execution time but requires

2 multipliers and 4 adders to implement the design

(the multiplier and adder have a delay of 150 ns and

80 ns, respectively). On the other hand, a clock period

of 150 ns in Figure 1(b) requires only one adder and

one multiplier, but results in a total execution time of

600 ns. The most efficient implementation, in terms

of performance per resource, is obtained with an 80 ns

clock period, as shown in Figure 1(c). Its execution

time is comparable to that of the first implementation,

and it requires the same minimal number of resources

required by the second implementation.

In most synthesis tools[3, 4, 5, 6, 7], the clock pe

riod must be specified by the designer before synthesis

— either the clock period is specified explicitly or the

delays of components are expressed in multiple of the

clock period. Designer-specified clock period is appli

cable when the design is developed as a part of a larger

i1 12 13 14 15 i6
II 12 13 14 15 16

i1 i2 iS j4 is 16 " t"

150 X

150 X

Clock cycle : 380 ns Clock cycle : 150 ns
Exec, time : 380 ns Exec, time ; 600 ns
Resources : 2 x, 4 + Resources : 1 x, 1 +

Clock cycle : 80 ns
Exec, time : 400 ns
Resources : 1 x, 1 +

Figure 1: Effect of the clock period on execution time and resources required

system. In this case, the clock period used for some of the faster functional units. The reason for low uti-

of the standard components in the system is known lization of faster units is that in the presence of a

and can be used for the remainder of the design. In slower functional unit such as a multiplier, which has a

some other cases, where the clock period is not spec- large delay, the clock period will be at least as long as

ified, clock period selection assume great importance. the multiplier delay, andfaster functional units imple-

It is evident from Figure 1 that the choice ofa partic- menting other operations (such as an addition) will be

ular clock period has a strong impact on the quality idle for a significant portion of the clock cycle. Hence,

of the design both in terms of hardware size and its longer execution times can be expected for a design

performance. Thus, it is essential that clock period using the maximum-operator-delay clock.

selection become an integral part of synthesis tools. In order to improve the performance of the design.

which should provide the designer with feedback as we need to minimize the time that operations are idle

to how various clock periods could possibly affect the (i.e. slack time) in any given control step. In this

design quality.

Some synthesis tools[8, 9, 10] equate the clock pe

riod with the delay of the slowest functional unit in the

paper, we will present a method to compute the clock

period for implementing a given behavioral description

with a view to eliminating or minimizing the idle time

design. However, this scheme leads to under-utilization associated with datapath operations.

An overview of existing approaches for estimating time steps. The critical path delay and the number

the clock period is presented in Section 2. We will ex- of time steps are used to compute the lower bound on

plain our'design model in Section 3. Section 4 presents the clock as given in the following equation ;

a formulation of the clock estimation problem. We for

mally prove some properties of zero-slack clock period

in relation to the delays of the functional units that

will be used in the design in Section 5 In cases where

its not possible to entirely eliminate the slack associ

ated with design operations, we present an algorithm

to determine a slack-minimal clock period, idle time

of the functional units in Section 6. Experimental re

sults on several benchmarks are shown in Section 7.

Finally, we present our conclusions in Section 8.

2 Previous Work

A few synthesis tools [8, 9, 10] have incorporated clock

estimation techniques which are used to either exam

ine area-time trade-off in the design or to guide syn

thesis tasks such as scheduling.

In MAHA [8], the critical path in the dataflow graph

is determined first. The maximum delay of any oper

ator in the critical path is chosen as the clock period.

The clocking scheme proposed in [9] computes a

lower bound for the clock period of a multi-stage sys

tem to be the longest stage time. Since the longest

stage time is at least as long as the longest opera

tor delay, this scheme computes a clock period greater

than or equal to the longest operator delay.

A model for area-time estimation is presented in

[10]. The dataflow graph is divided into a number of

CT K —MAX Path Delay/Time Steps,
MAX[Operator Delay]

Each of the above approaches assume that each

operation must be executed within one clock cycle.

Multi-cycle operations, where an operation could be

scheduled in two or more control steps, are not per

mitted. Consequently, they are similar to each other

in one respect — the clock period calculated by each

of the above methods is at least as long as the largest

operator delay. We shall refer to these clock esti

mation methods as the maximum-operator-delay

methods. The advantage of the above methods is that

they are simple to implement and their algorithmic

complexity is linear with respect to the number of dif

ferent operation types that will be used to implement

the design.

Let the clock period computed by these methods be

denoted by CLKmod- Let Delay{operi) denote the

delay of operation type opevi. From the above analysis

of maximum-operator-delay methods.

CLKmod ^ MAX [Delay{operi]],

for all operator types t,- (2)

However, using the maximum-operator-delay clock

period will lead to under-utilization of the functional

units in cases where the delays differ widely. Conse-

quently, the performance of the design (start to finish where T,etup and Tprop be the register setup and prop-

execution time) is slower that cases where the idle time agation delays, Ttri,tateJiriver be the delay of the tris-

was somehow minimized. Incorporating the effect of tate driver and OpDelay{operi) be the delay of the

clock period on the idle times of operations, during functional unit of type operj.

clock selection, forms the main motivation of the slack The operator delays used in the following sections

minimization method presented in this paper. are the values delay(operi) computed above, since the

delay of the tri-state drivers and the registers can be
3 Design model

counted as a constant.

The design model for which the clock calculation is
4 The slack minimization crite-

based on is shown in Fig 2. A two level bus structure
ria

is assumed for the interconnection across the registers

andfunctional units. This model allows for easy anal- section, we will present a new approach to guid-

ysis of the performance issues since the delay of the clock period selection based ona slack minimiza-

4 The slack minimization crite-

tristate driver can be considered to be constant with tion criteria. We first define a few terms that will

respect to the number of the tristate drivers driving used frequently throughout this paper:

a bus. We also assume, that for each operation in DFG completion time: It represents the execution

the design, there is exactly one functional unit which time of a DFG (Data Flow Graph). If the DFG is

implements it. scheduled into C control steps with a clock period elk,

Operations can be executed over several clock cy- thenthecompletion timeofthe DFG, Tdfg i isdefined

cles. Thus, if a functional unit has a delay of 90 ns

and the clock period is 50 ns, then the functional unit Tdfg = C x elk

will take two clock cycles to execute the operation. A Operator Occurrences: This represents the number

typical register-to-register transfer involves operands occurrences of an operation type open in agiven be-

being read from registers, an operation performed on havioral description or its corresponding DFG, and is

the operands, and the results stored in another regis- denoted by occur{operi)

ter. Therefore, the delay delay{operi) associated with

operation type open of register-to-register transfer is clock slack[l]: For a given clock period, the clock

the following:

dclayi^OpCVi) — 2 * Tir»state-dr»wer "I" etup

+ Tprop + OpDelay{open) (3)

slack associated with an operation (or its correspond

ing functional unit) is defined as the difference be

tween the operation delay and the next higher multi-

Control
Logic

IState.Register

Next state
logic

Status
Bits

R1 R2 R3 R4

I Tristate
wiv ii
j i I Buses

R5 R6 R7 R8 Registers

T ristate
Drivers

Buses

Functional
Units

Figure 2: Design Model for Clock Calculation

pie of clock cycle. In other words, the clock slack is Let occur(operi) represent the number of occurrences

equivalent to the time that the functional unit would of operation type operj in the design, then the average

be idle, if it were scheduled into a control step. For a slack is defined as:

given clock period elk and operation type opevi, the

clock slack, denoted by slack{clk,operi), is computed

using the following equation:

slack{clk, operi) —(\delay{operi) elk] x elk)

ave-slaek(clk)
J2i{o(^cur{operi) x slaek{elk, operi)}

oeeur{operi)

Let's consider the example shown in Figure 4, which

graphically depicts the clock slack associated with the

- delay{operi) (5) different operations in HAL[4], a second-order differ-

Figure 3 shows the clock slack associated with three

types of operations. In this example, the clock pe

riod is determined by the maximum-operator-delay

method. The lightly shaded regions represent the de

lays of three operation types. The clock slacks are

represented by the dark regions.

average slack: For a given clock period elk, the aver

age slack, denoted by ave.slaek{elk), is defined as the

ential equation example. The components used are

from the VDPlOO datapath library[11]. Figure 4(a)

shows the dataflow graph for this design. Figure 4(b)

shows the occurrences and the delays of each operation

type. In Figure 4(c), the delay of each operation type

is shown graphically as the length of the lightly shaded

regions along the X-axis. The number of occurrences

of the operations in the behavior is the height of the

shaded region along the Y-axis. The dark shaded re-

average clock slack of each operation in the design. ^ions represent the clock slack for each operation type.

Operators
in description

Functional unit delay

Functionai unit deiay
Siack

Ciock cycie

150 ! ''"le (ns)

163 ns

56 ns

48 ns

Figure 3; Functional unit clock slack with clock period 163 ns

The average slack for a design of clock period 65 ns is 5 Computing a zero-slack clock

24.4 ns, graphically shown in Figure 4(d).

We now formulate the Slack Minimization prob

lem. The main objective of the slack minimization

problem is to minimize the clock slack in each clock

cycle with the assumption that a smaller clock slack

on the average will decrease the execution time of the

Obviously, "zero slack" is a lower bound of the clock

slack. In this section, we will introduce two extended

definitions of common divisor and greatest com

mon divisor (GCD) and then demonstrate how a

clock period is selected to obtain zero slack.

given behavior. The clock period that produces min- Definition 1 A common divisor in the domain of

imum average slack, within a certain clock range, is

selected as the slack-minimal clock period. Thus, the

problem is defined as follow:

Find elk > clkmin which

Minimizes ave.slack{clk)

real numbers is defined eis:

A real number r is a common divisor of

a set of real numbers •,t„}

= 3 positive integer ki 9 rfc,- = ti, Vi

Definition 2 A greatest common divisor (GCD)

where clkmin is the lower bound of the clock period. in the domain of real numbers is defined as:

clkmin can be determined by the designer or physical

restrictions. For example, a component library usually

specifies the shortest clock period at which the clock

input of a bistate circuit may be driven with stable

transitions of logic levels.

GCD : set of iZ —• i?

GCD{ti,t2, ...

= the largest common divisor associated

with

'^5

(a) Dataflow Graph for the HAL
differential Equation example.

H] Functional unit delay

ave_slack(65 ns) =

operation type occurrences delay
add 2 48 ns

subtract 2 56 ns
multiply 6 163 ns

(b) Occurrences and Delays of each operation type

Slack Clock = 65 ns

(c) clock slack

2x9 2x17

6+2+2

slack{Q5, x) = 32
slack(6d, —) = 9
slack(Q5, +) = 17

time (ns)

= 24.4 ns

(d) average slack

Figure 4: Clock slack and average slack for HAL differential equation with clock period 65 ns

Whenever we select a common divisor for the delays Theorem 2 The longest clock period which causes no

of all the operation types used in the design to be clock slack for a given set of operations is the GCD of

the system clock period, it is directly induced from the delays of these operations.

Definition 1 that all the operations can be executed

completely in one or more clock cycles without any

clock slack. We prove this property formally below:

From Theorem 2, we can see that if we select the

GCD of the delays of all the operation types used in

the design to be the clock period, there will be no

Theorem 1 A given clock period causes no clock slacks idle portion in all of the clock cycles, no matter what

for a given set of operations {operi, oper2,..., oper„} operations are executed in each clock cycle, i.e. the

if and only if the clock period is a common divisor of longest clock period for which we will have a zero clock

the delay time {ti,t2, •. • ,tn} of those operations.

Proof:

First, we prove the necessity. Let the delays of the

operation types be {ti,t2,. • .,tn} and the given clock

period be a common divisor r of them. According to

Definition 1, there are corresponding positive integers

{^1, ^2) •• •1̂ »} such that rki = ti for all i, i.e., an

operation of type oper,- can be executed exactly in ki

clock cycles with no slack.

Second, we prove the sufficiency. Assume that the de

lays of the operation types are {ti,f2) •••i tr»} and that

there are corresponding positive integers {^1,^2,...,^,}

such that an operation of type operi can be executed

exactly in kj clock cycles with no slack, then the clock

period r satisfies Definition 1: 3 positive integer ki

3 rki = U, V i

Since a clock period that causes zero-slack should

be a common divisor of the delays of those operation

types, it is trivial to infer the next theorem:

slack for a//operation types is the GCD of their delays.

6 Slack minimization method

Although using the GCD of the all the operation de

lays as the clock period will result in zero clock slack, it

is sometimes too small to be practically implemented.

Thus, we need a method to select a good clock pe

riod with the smallest average slack within the feasible

range, when the GCD is not applicable.

Consider the definition of the slack minimization

problem (Eq.(7)). To find out the properties of Eq.(7),

we shall expand the equation into a formula of primary

terms, shown in Eq.(8).

Since we are minimizing Eq.(8) over a range of clock

period values, terms in the equation that are invariant

regardless of the specific clock period value being con

sidered (elk) can be treated as constants. Thus, the

problem can be further simplified into Eq.(9).

Let fi{clk) denote a single term of Eq.(9), we can

obtain the following equation.

fi{clk)=ki X((\di ^ elk] Xelk) - di) (10)

' ki X{elk —di)
where di < elk

= < ki X {m X elk —di)
where < elk < :^di ,
V integer m > 1

For example,

when < elk < di, f{elk) = ki x 2 x elk —di;

when gtfi < elk < ^di, fi{elk) = ki x 3 x elk —di;

•when \di < elk < ^di, fi{elk) = fc,- x 4 x elk —di.

Figure 5 graphically depicts the function Eq.(lO). There

fore, we observe three useful properties on Eq.(lO):

• A discontinuous point (break point) of this

function is created if and only if it is on elk =

where m is a positive integer.

• The gradient between any two adjacent discon

tinuous points is fixed.

• A minimal value is generated if and only if it is

on a discontinuous point.

Since Eq.(9) is a summation of Eq.(lO), it inher

its these properties from Eq.(lO). These properties of

Eq.(9) can be seen clearly in Figure 6, an example of

function diagram of Eq.(9) which is computed from

the HAL Second-Order Differential Equation example

[4]. With these properties, we can derive the mini

mal average slack by examining all the discontinuous

points and the boundary, elkmin.

The slack minimization algorithm, which computes

the clock period with the minimum average slack, is

outlined in Figure 7. First, we follow the definition of

operator occurrences to compute oeeur{operi) of each

operation type operi. Then, we search all the discon

tinuous points of the function ave.slaek{elk) defined

in Eq.(6) to find the clock period min_slack_clk that

will cause minimum average slack within the clock

range specified. The value elkmin is the lower bound

of the clock range.

The time complexity of computing operator occur

rences is 0{n), where n is the number of nodes in the

DFG provided. The time complexities of computing

function ave-slaek{elk) is 0{m), where m is the num

ber of the operation types used. The number of points

searched is

delay{operi)
elkmin

which is 0{m). Thus, the overall time complexity is

0(n + m^).

7 Experimental result

To verify the accuracy of the slack minimization cri

teria and to prove that the clock period selected by

the slack minimization algorithm can produce signif

icantly improved design performance, the Slack Min

imization method was applied to several well-known

benchmarks, the HALsecond order differentialequation[4],

a fifth order elliptical filter[12], a AR lattice filter[10],

and a linear phase B-spline interpolated filter[13]. We

use the resource-constrained scheduler of BdA[14] to

perform the scheduling.

The datapath elements we used, shown in Table 1(a),

are taken from VLSI Technology Inc. VCC4DP3 Dat

apath Library[15]. Computed by Eq.(3), the delay{operi)

150.0

1 OO.O

O.O 50.0 100.0

clock period (ns)

Figure 6: ave.slack(elk) = fi{clk) of the HAL example

procedure minimum^lack_clock(DFG: data flow graph,
delay{operi,oper2 ••. opevm) •' delays of all operation types,
clkmin: real number)

begin

compute occur{operi) , V operation type oper,-
min_slack ;= +00;

for elk G { clkmin } U { > clkmin | Vi Vm } do
begin

if ave-slack{clk) < inin_slack then
begin

minjslack := ave^lack{clk);
min_slack_clk := elk;

end;

end;

returnC inin_slaek_elk); end minimumjslack.clock

Figure 7; The slack minimization algorithm

datapath component VCC4DP3 cell name delay time
adder DPADDOOIH 26.90 ns

multiplier DPMLT020M 84.10 ns

subtracter DPSUBOOIH 27.40 ns

tristate buffer DPBUFOOll 0.78 ns

register VDP3DFF001 setup 3.12 ns
hold 2.06 ns

control buffer DPCLKGLOl-4 2.54 ns

(a) Datapath elements used in the designs

operation type delay
add 33.70 ns

subtract 34.20 ns

multiply 90.90 ns

(b) delay{operi) we used

Table 1: Operation delays derived from the VCC4DP3 Datapath Library

we used are shown in Table 1(b). The minimum clock

period clkmin is 2.54 ns, which is determined by the

speed of the global control input non-inverting buffer

of the VCC4DP3 Library.

7.1 Relation between average slack and
DFG completion time

Figure 8 illustrates the correlation between the av

erage clock slack and the execution time for the entire

behavior. Using an allocation of two functional units

for each operation type, the DFG completion time and

the average slack are plotted over a clock range for the

fifth order digital elliptical filter[12].

From this figure, we can clearly find the relation

ship between DFG completion time and the average

slack: smaller average slack is associated with shorter

DFG completion time in a range wherever the func

tions are continuous. This property is true regardless

of the behavior being synthesized, the resources al

located, or the scheduler involved. When we shrink

the clock period, as long as it doesn't change the

number of clock cycles needed to execute each opera

tion type, it doesn't change the number of total clock

cycles needed to execute the behavior. Under such

conditions, not only is the average slack reduced but

the DFG completion time is shortened too. However,

when the clock period is shrunk such that it changes

the number of clock cycles needed to execute one of the

operation types, the clock slack for the operation type

will jump up one clock period and consequently the

average slack will increase. This accounts for the dis

continuous point of the average slack function. At the

DFG comp. time
average slack

1000 3

clock period (ns)

Figure 8: Relation between average slack and DFG completion time; using the fifth order elliptical filter

same time, owing to the change in the number of clock In Table 2, the third column is the clock period se

cycles required to perform an operation of a specific lected by each method. The forth column is the aver-

type, it may change the schedule and consequently age slack computed by Eq.(6). The fifth column is the

change the number of total clock cycles required to DFG completion time after we scheduled each bench-

execute the behavior. Thus, a discontinuous point of marks with the clock period selected by each method,

the DFG completion time function is also created at We schedule them with allocating two functional units

the same clock period. of each operation type. Finally, the sixth column

Since there is a strong relationship between the av- shows the slow-down factors of two clock estimation

erage slack and DFG completion time, the clock period methods: the maximum-operator-delay method and

with the smallest average slack is an ideal metric to be the slack minimization method. The slow-down fac-

used while estimating the clock period that will result tor is calculated by Eq.(12).

in the shortest DFG completion time. Thus, we can From this table, we can see that the DFG comple-

obtain the best performance of the design if we select tion time for the clock period selected by the slack

the clock period with the smallest average slack. minimization method is very close to the DFG com-

Moreover, we can find the clock period that re- pletion time for the optimal clock period.

suits in the fastest DFG completion time by scheduling

the DFG with every clock period at which the aver

age slack function is discontinuous, and then selecting

the one with the shortest DFG completion time. Ac

cording to the properties of Eq.(6) discussed in Sec

tion 6, this approach guarantees the optimal solution.

However, this approach is impractical, since repetitive

scheduling is computationally expensive.

7.2 Benchmark Results

7.3 Effects of Varying Allocation

In Table 3, we examine the fact of whether the clock

period selected by the slack minimization method can

achieve the DFG completion time which is closed to

the DFG completion time for the optimal clock period,

regardless of the final allocation of functional units

used to implement the design. We scheduled the DFG

of the fifth order digital elliptical filter[12] with dif

ferent allocations for the clock period selected by the

Table 2 shows the experimental results of four bench- three approaches and compared their DFG completion

marks using three approaches: the maximum-operator-

delay method, the slack minimization method, and Similar to the results in Section 7.2, we can see that

the optimal clock period. The optimal clock period the DFG completion time for the clock period selected

is found by using exhausted search declared in Sec- by the slack minimization method is very close to the

DFG completion time for the optimal clock period re-

clock period clock average DFG slow
example selection period slack comp. down

method (ns) (ns) time(ns)
HAL max. operator delay 90.900 22.780 363.600 15.3%

differential slack minimization 3.134 0.212 316.582 0.4%
equation[4] optimal clock period 2.674 0.322 315.475 ^

digital max. operator delay 90.900 43.741 1454.400 100.7%
elliptic slack minimization 3.370 0.021 731.288 0.9%

filter[12] optimal clock period 2.597 0.048 724.602 ^

AR max. operator delay 90.900 24.514 909.000 5.0%
lattice slack minimization 2.597 0.027 916.790 5.9%

filter[10] optimal clock period 4.784 1.960 865.942 ^

B-spline max. operator delay 90.900 35.200 636.300 81.5%
interpolated slack minimization 3.370 0.035 353.849 0.9%

filter[13] optimal clock period 2.597 0.039 350.614 ^

Table 2: Result of four benchmarks scheduled with allocating two functional unitsof each operation type

slow-down =
DFG completion time for the clock estimation method

DFG completion time for the optimal clock period

allocated clock period clock
resources selection period

method (ns)
2 adder max. operator delay 90.900

2 multiplier slack minimization 3.370
optimal clock period 2.597

4 adder max. operator delay 90.900
2 multiplier slack minimization 3.370

optimal clock period 2.597

2 adder max. operator delay 90.900
3 multiplier slack minimization 3.370

optimal clock period 2.597

comp. down

time(ns)
1454.400 100.7%

731.288

724.602

1272.600 84.2%

697.588 rO%"
690.839

1454.400 107.4%

707.698

701.228

Table 3: Result of the fifth order elliptical filter scheduled with allocating different number of functional units

gardless of the allocation used for finally implementing

the design.

8 Conclusion

In this paper, we presented a new approach for clock

period selection, based on a clock slack minimization

criteria. They provide both designers and synthesis

tools with useful method for the clock period selection.

We proved that the longest clock period which pro

duces no slack for the functional units used in each

clock cycle, is the extended GCD defined in Section 5.

In some cases, the extended GCD may be too small

to be practically implementable. When the extended

GCD is not applicable, a method of finding the clock

period with the smallest average slack in any given

range was presented. Experimental results shows that

the DFG completion time for the clock period selected

by the method we proposed is very close to the optimal

References

[I] D. Gajski, F. Vahid, S. Narayan, and J. Gong,

Specification and design of embedded systems.

New Jersey: Prentice Hall, 1994.

ceedings of the Design Automation Conference,

pp. 68-74, 1989.

[4] P. Paulin, J. Knight, and E. Girzyc, "HAL: A

multi-paradigm approach to datapath synthesis,"

in Proceedings of the Design Automation Confer

ence, 1986.

[5] P. Paulin and J. Knight, "Algorithms for high-

level synthesis," in IEEE Design & Test of Com

puters, Dec. 1989.

[6] R. Walker and R. Camposano, A Survey of High-

Level Synthesis Systems. Kluwer Academic Pub

lishers, I99I.

[7] M. McFarland and T. Kowalski, "Incorporat

ing bottom-up design into hardware synthesis,"

IEEE Transactions on Computer-Aided Design,

September 1990.

[8] A. Parker, T. Pizzaro, and M. Mlinar, "MAHA: A

program for datapath synthesis," in Proceedings

of the Design Automation Conference, 1986.

[9] N. Park and A. Parker, "Synthesis of optimal

clocking schemes," in Proceedings of the Design

Automation Conference, 1985.

[2] D. Gajski, N. Dutt, C. Wu, and Y. Lin, High- [10] R. Jain, M. Mlinar, and A. Parker, "Area-time

Level Synthesis: Introduction to Chip and Sys

tem Design. Boston, Massachusetts: Kluwer Aca

demic Publishers, I99I.

model for synthesis of non-pipelined designs," in

Proceedings of the International Conference on

Computer-Aided Design, 1988.

[3] M. Balakrishnan and P. Marwedel, "A synthesis [II] VLSI Technologies Inc., VDPlOO 1.5 Micron

approach for design space exploration," in Pro- CMOS Datapath Cell Library, 1988.

[12] S. Kung, H. Whitehouse, and T. Kailath, VLSI

and Modern Signal Processing. Prentice-Hall,

[13] D. Pang and L. Ferrari, "Unified approach to gen

eral IFIR filter design using the B-spline func

tion," in Proceedings of Asilomar Conference on

Signals, Systems & Computers, 1989.

[14] L. Ramachandran and D. (Glajski, "Behavioral de

sign assistant (bda) user's manual." UC Irvine,

Dept. of ICS, Technical Report 94-36,1994.

[15] VLSI Technologies Inc., 0.8-Micron Datapath Li

brary (VCC4DPS), 1992.

