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SUMMARY

Local recurrent networks in neocortex are critical
nodes for sensory processing, but their regulation
by experience is much less understood than for
long-distance (translaminar or cross-columnar) pro-
jections. We studied local L2/3 recurrent networks
in rat somatosensory cortex during deprivation-
induced whisker map plasticity, by expressing chan-
nelrhodopsin-2 (ChR2) in L2/3 pyramidal cells and
measuring light-evoked synaptic currents in ex vivo
S1 slices. In columns with intact whiskers, brief light
impulses evoked recurrent excitation and supralin-
ear inhibition. Deprived columns showed modestly
reduced excitation and profoundly reduced inhibi-
tion, providing a circuit locus for disinhibition of
whisker-evoked responses observed in L2/3 in vivo.
Slower light ramps elicited sustained gamma fre-
quency oscillations, which were nearly abolished in
deprived columns. Reduction in gamma power was
also observed in spontaneous LFP oscillations in
L2/3 of deprived columns in vivo. Thus, L2/3 recur-
rent networks are a powerful site for homeostatic
modulation of excitation-inhibition balance and regu-
lation of gamma oscillations.

INTRODUCTION

Experience regulates multiple components of cortical microcir-

cuits to mediate sensory map plasticity. Plasticity in long-range

excitatory circuits (thalamocortical, translaminar and cross-

columnar) is well characterized and often follows Hebbian rules

in which deprived inputs weaken or lose synapses, and spared

inputs strengthen or add synapses (e.g., Antonini and Stryker,

1993; Allen et al., 2003; Trachtenberg and Stryker 2001; Broser

et al., 2008; Yamahachi et al., 2009). In contrast, the contribution

of local recurrent circuits to cortical plasticity is much less under-

stood. Local recurrent circuits help generate sensory tuning
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(Schummers et al., 2002) and include both recurrent excitation

and inhibition whose ratio regulates sensory gain and informa-

tion flow (Adesnik and Scanziani, 2010; Atallah et al., 2012).

Recurrent inhibition from fast-spiking (FS) interneurons gener-

ates gamma oscillations (30–90 Hz), which synchronize local

spikes and may promote formation of cell assemblies and infor-

mation transfer to higher areas (Fries, 2009; Buzsáki and Wang,

2012). Thus, local recurrent circuits may be a powerful nexus for

regulation of cortical information processing. Experience can

alter some components of recurrent circuits (Maffei et al.,

2004, 2006; Cheetham et al., 2007; Maffei and Turrigiano

2008), but the net functional effect, and whether this plasticity

is functionally distinct from plasticity in long-range circuits, is

not known. Local circuits are intermixed with long-range axons

and therefore cannot be studied selectively using classical extra-

cellular stimulation. Here, we use optogenetics to selectively

activate local recurrent circuits and measure the functional

changes that accompany map plasticity.

We focus on L2/3 of somatosensory cortex, which is a major

site of receptive field reorganization during whisker map plas-

ticity (Glazewski and Fox, 1996). Rats have five rows of whiskers,

termed A–E, represented in S1 by an isomorphic map of cortical

columns. Thalamocortical input arrives principally in L4, which

projects to L2/3. L2/3 pyramidal (PYR) cells make glutamatergic

synapses on nearby PYR cells (recurrent excitation) and on L2/3

and L5 interneurons that inhibit L2/3 PYR cells (recurrent inhibi-

tion) (Reyes et al., 1998; Kapfer et al., 2007; Lefort et al., 2009).

Plucking the D row of whiskers in juvenile animals causes

whisker map plasticity in which spiking responses to deprived

whiskers are depressed in L2/3 of deprived columns, while L4

remains relatively unaffected (Drew and Feldman, 2009; Jacob

et al., 2012). Major loci of this Hebbian weakening are the

L4/L2/3 feedforward projection (Allen et al., 2003; Shepherd

et al., 2003; Bender et al., 2006) and L2/3 cross-columnar projec-

tions (Broser et al., 2008). How deprivation alters L2/3 recurrent

circuit function is unknown.

We hypothesized that local recurrent L2/3 circuits are a major

site of compensatory (homeostatic) plasticity that stabilizes,

rather than weakens, cortical firing during whisker deprivation.

This could occur if deprivation preferentially weakened recurrent

inhibition relative to excitation. Such disinhibition could explain
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http://dx.doi.org/10.1016/j.neuron.2013.07.026
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuron.2013.07.026&domain=pdf


Figure 1. ChR2 Expression in L2/3 Pyrami-

dal Neurons following In Utero Electropora-

tion

(A) ChR2-EYFP expression in S1 of a P24 rat,

showing somatodendritic labeling in L2/3 pyrami-

dal cells and axonal branches in L2/3 and L5.

Laminar boundaries were determined from DAPI

staining (data not shown).

(B) Labeled pyramidal cells.

(C) Double immunostaining for ChR2-EYFP and

the neuronal marker Neu-N. Ovals are L4 barrels.
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the reduction inwhisker-evoked inhibition observed in L2/3 pyra-

midal cells in vivo (Gambino and Holtmaat, 2012). Homeostasis

is critical for cortical function but remains much less understood

than Hebbian plasticity (Turrigiano, 2012), and identification of

L2/3 recurrent circuits as a major site for homeostatic plasticity

would be novel. If a preferential loss of inhibition occurs within

recurrent L2/3 circuits, it may also have an effect on gamma

oscillations. Plasticity of gamma oscillations is a predicted effect

of synaptic plasticity in cortical fast-spiking networks (Paik and

Glaser, 2010) but has not yet been directly observed.

RESULTS

We studied functional activation of L2/3 recurrent circuits by

optogenetic activation of L2/3 pyramidal cells using channelrho-

dopsin-2 (ChR2). (L2/3 recurrent circuits cannot be selectively

activated by extracellular electrical stimulation because of inter-

mixed feedforward and cross-columnar axons.) ChR2(H134R)-

EYFP fusion protein (Nagel et al., 2005), cytosolic GFP, and the

red fluorescent protein DsRedwere coexpressed (using three in-

dependent plasmids) in L2/3 pyramidal cells by in utero DNA

electroporation of Long-Evans rat embryos at E18 (Saito andNa-

katsuji, 2001; Tabata and Nakajima, 2001; Petreanu et al., 2007;

Miyashita et al., 2010). The separate GFP plasmid was needed to

drive sufficient fluorescence for transcranial identification of P1

pups with strong S1 expression. We confirmed histologically

that fluorescence expression was confined to L2/3 pyramidal

cells and their axons, with no expression in L4 or L5 neurons (Fig-

ures 1A and 1B). As expected, 100% of fluorescent cells had py-

ramidal morphology (n = 399 neurons, four histological sections,

two rats). Overall, 21.1% ± 0.9% of L2/3 neurons (identified by

immunostaining for Neu-N) also expressed fluorescence in the

EYFP/GFP emission band (Figure 1C) (n = 10 rats, 37 columns),

consistent with a prior study in mouse S1 (Adesnik and Scan-
Neuron 80, 210–222
ziani, 2010). Linear spectral unmixing of

GFP and EYFP signals (Zeiss 780

confocal with multispectral detector)

confirmed strong EYFP expression in

axonal and dendritic membranes (data

not shown).

Optogenetic Activation of L2/3
Recurrent Circuits
Circuit function was studied in acute S1

slices prepared at P17–P21. Slices were
cut in the ‘‘across-row’’ plane that allows identification of col-

umns corresponding to A–E whisker rows using transillumination

(Finnerty et al., 1999). Whole-cell recordings were targeted to

presumptive ChR2-expressing or ChR2-nonexpressing cells

based on DsRed fluorescence. This approach avoids unwanted

ChR2 activation by GFP excitation light. We confirmed in histo-

logical sections that 94% ± 1% of DsRed+ L2/3 pyramidal cells

also exhibited fluorescence in the EYFP/GFP emission band (n =

1,421 neurons, 37 columns, 10 rats). Moreover, all DsRed+ cells

exhibited direct ChR2-mediated photocurrent when patched

(see below). Thus, single cells expressed multiple plasmids,

and DsRed fluorescence was a valid indicator for putative

ChR2+ neurons.

Only slices with strong, uniform expression of DsRed across

all S1 columns were used (Figure 2A). A 443 nm blue laser

beam (CrystaLaser DL-445-040) was shaped using a pinhole

and focusing optics and was routed through a 43 air objective

to the slice. Beam diameter (2 SD of Gaussian profile) was either

312 mm (spike threshold experiment) or 238 mm (synaptic phys-

iology experiments), both of which fit in a single column (diam-

eter 375–500 mm; Wimmer et al., 2010).

We first measured ChR2-elicited spike thresholds to deter-

mine the light stimulation parameters that achieve single-column

photostimulation in L2/3. We made whole-cell current clamp re-

cordings from DsRed+ (putative ChR2+) neurons (n = 13) in L2/3

of the C column and applied 2 ms light pulses centered in L2/3 of

either the C column or adjacent columns (Figure 2B). Synaptic

transmission was intact, so that both direct photocurrent and

network synaptic activation contributed to spiking. At each stim-

ulation site, we identified the threshold photostimulation intensity

required to elicit a single spike from Vrest (Figure 2C). In the home

column, low-intensity light (0.2 ± .05 mW) evoked spikes in every

DsRed+ neuron, with < 0.2 ms latency to initial (subthreshold)

depolarization. This latency is too short to be mediated
, October 2, 2013 ª2013 Elsevier Inc. 211



Figure 2. Single-Column Activation of L2/3

Recurrent Networks

(A) Ds-Red epifluorescence in a living slice, with

barrels visualized by transillumination.

(B) Schematic of the spike threshold experiment

used to calibrate single-column stimulation.

(C) Photostimulation-evoked depolarization and

spiking in one DsRed+ pyramidal cell to light

stimulation centered in L2/3 of the C column.

(D) Photostimulation intensity required to evoke a

spike as a function of photostimulus location. Each

circle is a cell. Diamonds and error bars show

population mean and SEM.

See also Figure S1.
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synaptically and is indicative of ChR2 expression in the recorded

neuron (Cruikshank et al., 2010). Higher photostimulation inten-

sity (>0.5 mW) was required to evoke spikes from stimulation

sites in adjacent columns and at the L4-L5 border in the home

column (Figure 2D). Thus, 2 ms light impulses of <0.5 mW in

L2/3 drive spikes in L2/3 pyramidal cells only within a single S1

column. All subsequent experiments used light intensity within

the column-specific range.

Synaptic Responses from the L2/3 Recurrent Network
To measure the functional output of the L2/3 recurrent network,

we made voltage-clamp recordings from DsRed-negative L2/3

pyramidal neurons and measured excitatory postsynaptic cur-

rents (EPSCs) and inhibitory postsynaptic current (IPSCs)

evoked by light centered in L2/3 of the neuron’s home column.

D-APV (50 mM) and saclofen (100 mM) were bath applied to

isolate AMPAR-EPSCs and GABAA-IPSCs. EPSCs and IPSCs

were measured at �68 and 0 mV, respectively (ECl and EAMPA

in our solutions). Unlike DsRed+ cells, which uniformly exhibited

short-latency responses (<0.2 ms), most DsRed� cells exhibited

long-latency responses (>1.5 ms) consistent with network-medi-

ated synaptic currents (Figure 3A). Synaptic responseswere only

analyzed in long-latency cells that lacked direct ChR2 photocur-

rent. We confirmed that ChR2-evoked EPSCs were blocked by

NBQX (10 mM), but not gabazine (1 mM), whereas IPSCs were

blocked by both NBQX and gabazine (applied independently),

as expected for disynaptic GABA-A inhibition (n = 4 cells) (Fig-

ure S1A available online). TTX (1 mM) completely blocked

ChR2-evoked currents (n = 4 cells), indicating that synaptic cur-

rents were not due to direct ChR2-mediated release from termi-

nals (Figure S1B). Pharmacologically isolated EPSCs and IPSCs

reversed at 0.4 ± 2.5 mV and �66.7 ± 0.8 mV (n = 5 and 6 cells)

(Figures S1C and S1D), confirming that recording at �68 and

0 mV isolated EPSCs and IPSCs, respectively.

Prior studies of synaptic activation within the local L2/3 recur-

rent network in S1 focused on output of a single pyramidal cell
212 Neuron 80, 210–222, October 2, 2013 ª2013 Elsevier Inc.
(Reyes et al., 1998; Feldmeyer et al.,

2006; Lefort et al., 2009), recruitment of

inhibition by spiking of 1–2 pyramidal cells

(Kapfer et al., 2007), or excitation-inhibi-

tion balance evoked by strong or sus-

tained network activation (Adesnik and

Scanziani, 2010; Mateo et al., 2011).
How progressive activation of the L2/3 pyramidal cell population

recruits recurrent excitation and inhibition is unknown.We there-

fore first characterized recruitment of recurrent excitation and

inhibition in response to increasing photostimulation of the

ChR2-expressing L2/3 pyramidal cell population. Experiments

were performed in whisker-intact B columns from P17–P21

rats that had the D row of whiskers plucked for plasticity exper-

iments (see below).

For each neuron (n = 10), we identified the excitatory stimula-

tion threshold (Ethresh), defined as the photostimulation intensity

that reliably evoked a detectable EPSC. We used a 2 ms light

pulse to mimic transient sensory-driven spiking (Simons, 1978;

Jadhav et al., 2009). IPSCs were invariably absent at Ethresh.

Increasing photostimulation intensity (in multiples from 1.0 to

2.03 Ethresh) evoked steadily larger EPSCs (quantified as charge

integrated over the first 50 ms of the response) but more steeply

larger IPSCs (Figures 3B–3D). IPSC charge increased particu-

larly steeply between 1.0 and 1.4 3 Ethresh, consistent with

supralinear recruitment of a subset of recurrent inhibition (Kapfer

et al., 2007). To compare relative recruitment of excitation and

inhibition, we calculated fractional excitation (defined as E/(E +

I)) at each stimulus intensity. Fractional excitation varied

inversely with stimulus intensity, reflecting preferential recruit-

ment of inhibition over excitation as L2/3 network activation

increased (Figures 3C–3E).

To determine the relationship between light intensity and

spiking in the L2/3 network, we first measured how Ethresh for

ChR2-negative cells compares with spike threshold for ChR2-

positive cells in the same column (n = 7 columns, 21 ChR2- cells,

20 ChR2+ cells). All cocolumnar ChR2� cells had similar Ethresh,

but intermixed ChR2+ cells showed a range of spike thresholds

from 1.0 to 2.03mean Ethresh for the ChR2� cells in that column

(Figure S2A). This is expected because each pyramidal cell re-

ceives excitatory synapses from many neighbors, so Ethresh in

ChR2� cells must approximate the lowest spike threshold of

local ChR2+ cells. As photostimulus intensity was increased



Figure 3. Activation of the Recurrent L2/3

Network by a 2 ms Light Pulse

(A) Bimodal distribution of response latency

allowed identification of directly light-responsive

versus synaptically responsive cells. Gray bars,

DsRed-negative cells under normal recording

conditions. Red bar, DsRed+ cells with TTX,

kynurenic acid, and PTX present in the bath (in

addition to the standard APV and saclofen).

(B) Recruitment of recurrent EPSCs (red) and

IPSCs (blue) in an example neuron. Each trace is

mean of 10–14 sweeps. Top: 1.0, 1.1, and 1.2 3

Ethresh. Middle: 1.3, 1.4, and 1.5 3 Ethresh. Bottom;

1.6, 1.8, and 2.03 Ethresh. Blue bar length indicates

photostimulus intensity relative to Ethresh (dashed

line). Cell was located in B column.

(C and D) EPSC and IPSC charge as a function of

light intensity, for all cells in B columns (n = 10

cells). Open symbols show cell in (B). Lines are

bootstrapped 25th, 50th, and 75th percentiles.

(E) Fractional excitatory charge for all cells in B

columns. Error bars are SEM.

See also Figure S2.
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from 1.0 to 2.03mean column Ethresh, the fraction of ChR2+ cells

that spiked increased nearly linearly (Figure S2A), but ChR2�
cells were not recruited to spike (0/15 cells, six columns).

Thus, ChR2 stimulation does not drive positive-feedback recruit-

ment of the L2/3 pyramidal cell network. This was due to power-

ful disynaptic IPSPs (Figure S2B) that prevented spiking in

ChR2� pyramidal cells, as shown previously for ChR2 activation

of the L2/3 network in vivo (Mateo et al., 2011). Both fast-spiking

(FS) and non-FS L2/3 interneurons are known to mediate this

recurrent inhibition (Mateo et al., 2011).

Effects of Whisker Deprivation
To drive whisker map plasticity, the D row of whiskers was

plucked from P12 until the day of recording (P17–P21). This

manipulation drives weakening of principal whisker-evoked

spiking responses in L2/3 of deprived columns, which is a major

component of plasticity in juveniles (Glazewski and Fox, 1996;

Feldman and Brecht, 2005; Drew and Feldman, 2009). To

understand how L2/3 recurrent network function is altered by

deprivation, we compared ChR2-evoked synaptic responses in
Neuron 80, 210–222
deprived (D) columns with spared (B, C,

and E) columns. Example cells from the

B and D columns of a single slice are

shown in Figure 4. In the B column,

EPSCs grew slowly with photostimulation

intensity, whereas IPSCs grew more

steeply, so that inhibition dominated exci-

tation for all photostimulation intensities

>1.23 Ethresh. In the D column, EPSCs

were recruited similarly, but IPSCs were

undetectable until 1.53Ethresh, and inhibi-

tion did not exceed excitation until 1.83

Ethresh. To rule out differences in func-

tional expression of ChR2 between

columns, we recorded the local field
potential evoked by photostimulation in the presence of TTX, ky-

nurenic acid, picrotoxin, D-APV, and saclofen to block spikes

and fast synaptic transmission. This ‘‘photocurrent-local field

potential (LFP)’’ reflects summed photocurrents from the popu-

lation of pyramidal neurons near the field potential pipette.

Photocurrent-LFP magnitude was identical in the two columns

across a wide range of photostimulation intensities (Figure 4C).

Across cells, IPSC charge was smaller in D columns than B

columns across a wide range of photostimulation intensity (p <

0.000001, two-factor ANOVA, B versus D, n = 10 cells each).

The largest reductions were observed for IPSC1.1 to IPSC1.4,

with 96.7% smaller IPSCs, on average, in D columns (Figure 5A).

EPSC charge was also reduced (p < 0.001, two-factor ANOVA, B

versus D) but by a smaller amount (EPSC1.1 � EPSC1.4 were

41.5% smaller in D than in B columns). To take IPSC1.4 and

EPSC1.4 as examples (Figure 5B), IPSC1.4 was 92% smaller in

D than in B columns (D: 69 ± 29 pA peak, 1.4 ± 0.4 nA*ms charge;

B: 880 ± 352 pA peak, 13.9 ± 5.4 nA*ms charge, p < 0.05, t test).

EPSC1.4 was 45% smaller in D than in B columns (D: 139 ± 37 pA

peak, 1.2 ± 0.27 nA*ms charge; B: 272 ± 53 pA peak, 2.2 ± 0.4
, October 2, 2013 ª2013 Elsevier Inc. 213



Figure 4. Effect of D-Row Deprivation on

Two Representative Cells in B and D Col-

umns of a Single Slice

(A and B) IPSCs (blue) and EPSCs (red) recorded in

response to 1.0 � 1.4 3 Ethresh (top) and 1.5, 1.6,

1.8, and 2.03 Ethresh (bottom). Inset: recording and

photostimulus locations for these two neurons.

(C) Photocurrent-LFPs recorded at the location of

each neuron in the presence of TTX, kynurenic

acid, and picrotoxin. Photocurrent-LFPs were re-

corded in response to the same series of photo-

stimulation intensities (30–300 mW) and were

identical in both columns.
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nA*ms charge, p < 0.05 and p = 0.054, respectively). In contrast,

there was no difference in Vrest (B:�69.5 ± 1mVD:�68.3 ± 2mV,

p = 0.6, t test) or Rinput (at �68 mV, B: 329 ± 50 MU; D: 279 ± 31

MU, p = 0.4) (Figure 5B, inset). To determine whether excitation-

inhibition ratio was changed, we calculated fractional excitation

(E/(E + I)) for each cell and stimulation intensity. Fractional exci-

tation was significantly higher in D than in B columns at 1.1–1.43

Ethresh (two-factor ANOVA, deprivation effect p = 0.001, inter-

action p < 0.05, Tukey HSD post hoc test, p < 0.05 for

1.1–1.43 Ethresh) (Figure 5C).

These changes in network-mediated synaptic responses

occurred without systematic differences in direct ChR2 photo-

current (as assayed by photocurrent-LFP amplitude at Ethresh)

or in the ability of light stimulation to drive initial EPSCs (assayed

by the laser intensity required to elicit EPSC1.0), indicating that

ChR2 activation was equally effective in driving spikes in

ChR2+ cells in D versus in B columns (Figure 5D). To determine

whether deprivation effects were confined to deprived D col-

umns, we recorded neurons (n = 10) in spared C and E columns,

using a subset of stimulus intensities (1.0, 1.2, and 1.33 Ethresh).

EPSCs and IPSCs in C and E columns were identical to B

columns (ANOVA, p > 0.05) and were larger than in deprived D

columns (ANOVA, p < 0.05) (Figure 5B, inset). Again, ChR2 acti-

vation was equally effective in C/E versus D columns (Figure 5D).

Together, these results indicate that D-row deprivation power-

fully reduced recurrent inhibition in L2/3 of deprived columns

and more modestly reduced recurrent excitation.
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Effect of Deprivation on Network
Oscillations In Vitro
A major function of local recurrent inhibi-

tion, particularly via fast-spiking (FS)

interneurons, is to synchronize spiking

activity in the gamma frequency band,

generating oscillations that are measur-

able both intracellularly and in local field

potentials (Cardin et al., 2009; Buzsáki

and Wang, 2012). Gamma oscillations

have been proposed to promote synaptic

integration, to select or bind cell assem-

blies, and to enable efficient area-to-

area coupling for information transfer

(Fries, 2009; Wang, 2010). Gamma oc-

curs in awake rodent S1 (Sirota et al.,

2008; Pritchett et al., 2012, Soc. Neuro-
sci., abstract, 377.11), but its functional role there is not under-

stood. We predicted that reduced recurrent inhibition may

reduce the capacity of L2/3 to generate gamma oscillations.

To measure gamma oscillations within L2/3 recurrent circuits,

we photostimulated with light ramps (1.2 s duration, linear ramp

to 2.5, 5, or 103 Ethresh, 238 mmspot diameter centered in L2/3 of

one column). Calibration experiments showed that these ramps

evoked spikes largely in the home column (Figure S3). We made

voltage-clamp recordings from DsRed-negative pyramidal cells

and measured ramp-evoked EPSCs and IPSCs. In spared B col-

umns (n = 16 cells), evoked IPSCs (measured at 0 mV) showed

prominent oscillations in the low gamma range (20–60 Hz), as

shown previously in slices from whisker-intact mice (Adesnik

and Scanziani, 2010). Evoked EPSCs (measured at �68 mV)

had substantially less gamma power (Figure 6A). In deprived D

columns (n = 16 cells), the sustained component of the IPSC

was attenuated and gamma oscillations were substantially

reduced (Figures 6B–BF). This was true for all ramp intensities.

For IPSC10, the sustained component (0.3–1.2 s after ramp

onset) was 68% smaller in D columns (B: 142 ± 27 pA; D: 45 ±

17 pA) and had 70% less gamma power (mean in 20–60 Hz

band; B: 43.4 ± 14 pA2; D: 12.9 ± 6.4 pA2 in D columns), whereas

the early peak (0–0.3 s) was notmuch affected (B: 611 ± 73 pA; D:

497 ± 80 pA). Two-factor ANOVA (whisker experience 3 ramp

intensity) showed a significant effect of experience on sustained

IPSC amplitude (p < 0.00005) and gamma power (p < 0.005). In

contrast, EPSC sustained amplitude was indistinguishable



Figure 5. Effect of D-Row Deprivation on Synaptic Responses Elicited by 2 ms Light Pulse

(A) Recruitment of recurrent EPSCs and IPSCs in spared B versus deprived D columns. Circles: mean ± SEM. Lines and shaded region: median and 25th–75th

quartiles. Insets: EPSCs and IPSCs measured in spared C and E columns (triangles), relative to B and D columns (circles and lines).

(B) Mean population EPSC and IPSC at 1.43 Ethresh in B andD columns (n = 10 cells each). Inset: the average response to a�5mV current stepwas not altered by

deprivation.

(C) Fractional excitatory charge was higher in D columns, consistent with reduced IPSCs. *p < 0.05, Tukey HSD. B column mean (not individual cells) is replotted

from Figure 3E.

(D) Mean effective stimulation intensity was not different between B and D columns, as assessed by laser intensity required to elicit a threshold EPSC or by

amplitude of photocurrent-LFP at Ethresh.

Error bars are SEM.
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between spared and deprived columns (ANOVA, p > 0.05), and

EPSC gamma power showed a modest decrease (Figures 6C

and 6E) (p < 0.05). Thus, deprivation powerfully reduced the

ability of L2/3 local circuits to generate endogenous gamma

oscillations.

Spontaneous Network Oscillations In Vivo
To test whether reduced oscillations also occurred in vivo, we

measured spontaneous LFPs in spared and deprived S1 cortical

columns in urethane anesthetized rats. Rats (n = 5) were

deprived of D-row whiskers from P12, and recordings were

made at P30–P37 after 14 days deprivation followed by

4–11 days of partial whisker regrowth. LFP recordings (500 ms

duration) were made in L4 and L2/3 of D (deprived) and C or E

(spared) columns in each animal (Figures 7A and 7B). Sponta-

neous LFPswere dominated by low frequencies but included pe-

riods with enhanced gamma power (Figure 7B, bold epochs), as

observed previously (Cardin et al., 2009). We compared LFP

spectra between spared and deprived columns within each

animal by normalizing all spectra to the average peak gamma

power (30–50 Hz band) measured in spared columns for that

animal. For L2/3, the resulting normalized spectra (averaged

across animals) show that spectral power was reduced in

deprived columns across a broad range of frequencies, with

maximal decrease of 26% ± 12% in the 30–40 Hz range (n =

3,070 sweeps in 14 deprived columns, 2,617 sweeps in 11
spared columns, 5 rats). Power was significantly decreased in

all gamma frequencies (20–80 Hz, tested in 10 Hz bands, a =

0.05, permutation test) (Figure 7D). This effect was consistent

in 4/5 animals (Figure 7E). Reduced gamma power was observ-

able in raw LFPs as reduced LFP amplitude during gamma-

containing epochs (Figure 7B). In contrast, in L4 of the same

penetrations, deprivation had no effect on average gamma

power (3162 sweeps in deprived columns, 2,517 sweeps in

spared columns, Figures 7C and 7D). Thus, deprivation de-

creases spontaneous (resting) gamma in L2/3 in vivo. We did

not analyze whisker deflection-evoked gamma because any

reduction is trivially attributed to the weakened L4 input to L2/3

(Allen et al., 2003; House et al., 2011).

DISCUSSION

L2/3 is a major locus of whisker map plasticity in postneonatal

rodents (Fox, 2002; Feldman, 2009), but prior studies of cellular

plasticity mechanisms in L2/3 have focused on excitatory cir-

cuits almost exclusively. Whisker deprivation alters cross-

columnar excitation (Finnerty et al., 1999; Marik et al., 2010),

L4-L2/3 feedforward excitation (Allen et al., 2003; Shepherd

et al., 2003; Clem and Barth, 2006; Bender et al., 2006; Hardi-

ngham et al., 2008; House et al., 2011), and local recurrent exci-

tation in single columns (Cheetham et al., 2007, 2008; Bruno

et al., 2009; Wen and Barth, 2011). These excitatory circuit
Neuron 80, 210–222, October 2, 2013 ª2013 Elsevier Inc. 215



Figure 6. Effect of Deprivation on Intrinsic Gamma Oscillations Evoked by Ramp Photostimulation
(A) Two example B column cells, showing EPSCs and IPSCs evoked by a light ramp to 10 3 Ethresh. Each trace is a single sweep.

(B) Two example D column cells, using the identical light ramp.

(C) Population mean EPSC and IPSC in spared (B) versus deprived (D) columns, calculated for 10 3 Ethresh stimuli.

(D) Effect of deprivation on early IPSC amplitude versus late IPSC amplitude (0–0.3 and 0.3–1.2 s after ramp onset). Each symbol is one cell tested at 53 Ethresh

(circles) or 10 3 Ethresh (diamonds).

(E) Mean gamma power (20–60 Hz) for late component of IPSCs and EPSCs. Bars are SEM.

(F) Mean power spectrum for late IPSCs in spared B columns (blue) versus deprived D columns (black), for 103 Ethresh ramps.

See also Figure S3.
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changes are mostly consistent with reduced feedforward and

local excitation within deprived columns, increased feedforward

excitation into spared columns, and increased cross-columnar

excitation from spared to deprived columns. These are

appropriate to explain basic Hebbian features of map reorgani-

zation, including the reduction in responses to deprivedwhiskers

and the strengthening and expansion of spared whisker

representations.

In contrast, the role of L2/3 inhibitory circuits in plasticity is not

understood. We hypothesized that deprivation preferentially

weakens local recurrent inhibition in L2/3 relative to excitation.

This disinhibition would constitute a homeostatic (compensa-

tory) response to whisker deprivation (Turrigiano, 2012), which

would be a significant modification of classical Hebbian models

of L2/3 plasticity (e.g., Buonomano and Merzenich, 1998).

Recently, in vivo measurements have detected deprivation-

induced disinhibition in whisker-evoked sensory responses in

L2/3 of S1 (Li and Feldman, 2010, Soc. Neurosci., abstract,

284.1; Gambino and Holtmaat, 2012). However, whether L2/3

recurrent circuits are a site of this disinhibition was not known.
216 Neuron 80, 210–222, October 2, 2013 ª2013 Elsevier Inc.
We used ChR2 activation of L2/3 pyramidal cells to measure

AMPA-mediated excitation and GABA-A mediated inhibition in

local L2/3 recurrent networks (Adesnik and Scanziani, 2010;

Mateo et al., 2011). Whisker deprivation moderately reduced

L2/3 recurrent excitation (by �40%, for EPSC1.1–1.4), consistent

with the known reduction in PYR-PYR local connectivity (Chee-

tham et al., 2007). However, amuch larger decrease (�95%)was

observed for recurrent inhibition, resulting in a substantial in-

crease in excitation-inhibition ratio. These effects were observed

in deprived D columns relative to spared B, C, and E columns,

suggesting that disinhibition was column specific. Increased

excitation-inhibition ratio was most pronounced at stimulus

levels of 1.1–1.43 Ethresh, corresponding to initial network

recruitment (Figure 5). This is likely to be themost physiologically

relevant activity regime, because L2/3 neurons spike sparsely

in vivo (Jadhav et al., 2009; O’Connor et al., 2010). Thus, L2/3

recurrent circuits are a major site of disinhibition following

whisker deprivation and of homeostatic plasticity within deprived

columns. We do not know how NMDA- or GABAB-receptor

mediated currents were affected by deprivation.



Figure 7. D-Row Deprivation Reduces Spontaneous Gamma Oscillations in L2/3 of Anesthetized S1 In Vivo.

(A) Recording locations for deprived (D) and spared (C and E) penetrations, reconstructed from marking lesions and plotted on representative barrel outlines.

Deprived columns are shaded.

(B) Example raw LFP traces from a spared and a deprived column of one animal. Traces were chosen based on maximum similarity to mean LFP spectra for this

animal. Bold indicates LFP segments with highest 40 Hz power (see the Experimental Procedures).

(C) Mean normalized LFP spectra for spared and deprived columns across all animals. Shading: 99% confidence intervals.

(D) Mean normalized LFP power in 10 Hz bins. Top: L2/3 recordings. Bottom: L4 recordings. *p < 0.05, random permutation test.

(E) Mean LFP power in 30–40 Hz band for L2/3 recordings in each of the five rats separately.
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Optogenetic stimulation provided several key advantages

to examine changes in recurrent circuit function after experi-

ence-dependent plasticity. Optogenetic activation was critical

to enable selective, single-column activation of the L2/3 recur-

rent network without contamination from fibers of passage,

feedforward input, or direct stimulation of interneurons. Further-

more, graded stimulation by increasing light intensity allowed us

to characterize the progressive recruitment of excitation and in-

hibition in the active recurrent network, which provides substan-

tial additional information beyond unitary synaptic physiology

using dual whole-cell recording. Light ramp stimulation

confirmed that recurrent inhibition was reduced substantially

more than excitation and showed that the ability of deprived

L2/3 networks to generate gamma oscillations was profoundly

reduced (Figure 6). This reduction was also observed in vivo,

suggesting that L2/3 network changes are physiologically rele-

vant (Figure 7). In contrast, prior studies of recurrent circuit plas-

ticity were restricted to selected unitary connections or inferred

recurrent network function from spontaneous activity, which is

relatively nonselective and influenced by multiple circuit compo-

nents (Cheetham et al., 2007; Maffei et al., 2004, 2006).
Reduced Inhibition as a Homeostatic Mechanism during
Critical Period Plasticity
Deprivation is known toweaken or delay early development of in-

hibition in L4 (Chattopadhyaya et al., 2004; Maffei et al., 2004;

Jiao et al., 2006; Chittajallu and Isaac, 2010), but its effects dur-

ing the critical period for plasticity and in L2/3 have been unclear.

Visual deprivation during the critical period potentiates recurrent

inhibition in L4 of V1 (Maffei et al., 2006), but evidence for such

potentiation in L2/3 or in S1 has been lacking. We performed

deprivation during the P10–P14 critical period for maximal L2/3

plasticity in S1 (Stern et al., 2001) and found that L2/3 recurrent

inhibition was strongly reduced. This is consistent with several

structural measures of plasticity in L2/3 interneurons (Marik

et al., 2010; Chen et al., 2011; Keck et al., 2011; van Versendaal

et al., 2012) and provides a circuit locus for the disinhibition

observed in vivo for whisker-evoked sensory responses in L2/3

of deprived (Li and Feldman, 2010, Soc. Neurosci., abstract,

284.1) and spared (Gambino and Holtmaat, 2012) columns.

Thus, the current results show that L2/3 recurrent circuits are a

major site of disinhibition for critical period plasticity. The prefer-

ential reduction in inhibition is unlike the L4-L2/3 feedforward
Neuron 80, 210–222, October 2, 2013 ª2013 Elsevier Inc. 217



Neuron

Disinhibition in L2/3 Recurrent Networks
projection, where deprivation drives a parallel (balanced) reduc-

tion in excitation and inhibition (House et al., 2011). Because

local recurrent inhibition was not reduced in spared columns

(Figure 5), disinhibition to surround whiskers in spared columns

in vivo (Gambino and Holtmaat, 2012) must reflect either

reduced cross-columnar drive onto local L2/3 interneurons or

reduced efficacy of cross-columnar inhibitory axons (Helm-

staedter et al., 2009). Deprivation also weakens L4-L2/3 feedfor-

ward inhibition in V1 and increases L2/3 network excitability, but

whether local recurrent circuits are affected is not known (Maffei

and Turrigiano, 2008).

Preferential reduction of L2/3 inhibition will increase network

excitability and promote whisker-evoked spiking and therefore

is a homeostatic response to deprivation that co-occurs with

Hebbian weakening of excitatory input (Turrigiano, 2012).

Reduced inhibition may also broaden sensory tuning, depending

on which interneuron subtypes are affected (Atallah et al., 2012;

Wilson et al., 2012). Deprivation-induced disinhibition in L2/3 of

S1 also promotes LTP of spared whisker responses (Gambino

and Holtmaat, 2012) and thus may be a permissive gate for sub-

sequent steps in whisker map plasticity (Gandhi et al., 2008; Ya-

zaki-Sugiyama et al., 2009; House et al., 2011). Consistent with

this idea, disinhibition precedes associative learning and recep-

tive field plasticity in L2/3 of auditory cortex (Froemke et al.,

2007; Letzkus et al., 2011), and reduction of inhibition restores

ocular dominance plasticity in adult V1 (Sale et al., 2010).

Sites and Mechanisms for Inhibitory Plasticity
Reduced recurrent excitation and inhibition may represent the

functional outcome of known structural plasticity in L2/3 circuits.

Deprivation reduces PYR-PYR unitary connection rate in

deprived columns by reorganization of synaptic contacts and

local axons (Cheetham et al., 2007, 2008; Bruno et al., 2009)

without altering intrinsic excitability or unitary EPSP amplitude

(Allen et al., 2003; Bender et al., 2006; Cheetham et al., 2007).

This is likely to underlie the reduction in L2/3 recurrent excitation.

In addition, deprivation drives rapid loss of inhibitory cell axons

(in S1; Marik et al., 2010), dendritic and spine retraction by

L2/3 interneurons, loss of inhibitory axonal boutons, and loss

of inhibitory synapses on PYR dendrites (in V1; Chen et al.,

2011; Keck et al., 2011; van Versendaal et al., 2012). These

changes are likely to contribute to the loss of L2/3 recurrent

inhibition observed here. Reduced inhibition may also reflect

physiological weakening of excitatory synapses onto L2/3 inter-

neurons (Lu et al., 2007).

Many inhibitory cell types exist in L2/3 that could mediate the

loss of recurrent inhibition (Gentet, 2012). One likely candidate is

FS basket cells, which contribute strongly to disynaptic inhibition

elicited by brief ChR2 stimulation in L2/3 pyramidal cells (Mateo

et al., 2011) and generate perisomatic recurrent inhibition. Depri-

vation increases FS/PYR unitary IPSPs and does not alter FS

intrinsic excitability (House et al., 2011), suggesting that reduced

recurrent inhibition to the 2 ms pulse may reflect a reduction in

the strength or number of PYR/FS synapses. This is also

consistent with the loss of gamma oscillations (see below). We

speculate that recurrent inhibition evoked by ramp stimuli also

involves somatostatin-positive Martinotti cells, which generate

dendritic inhibition (Reyes et al., 1998; Kapfer et al., 2007). The
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reduction in ramp-evoked inhibition may reflect reduced activa-

tion or output of these cells, including structural loss of dendritic

inhibitory synapses.

Plasticity of Gamma Oscillations
A major function of L2/3 FS inhibitory networks is to synchronize

PYR cell spiking in the gamma frequency range (Cardin et al.,

2009; Sohal et al., 2009). Gamma oscillations are a characteristic

feature of cortical processing and have been proposed to pro-

mote synaptic integration, bind activity in cell assemblies, and

regulate information transfer between neighboring neurons and

distant cortical areas (Fries, 2009; Sohal et al., 2009; Wang,

2010). In rat S1, short bursts of tightly spatially localized gamma

occur during exploration, though their behavioral relevance re-

mains unclear (Sirota et al., 2008). Synaptic plasticity within

PYR-FS circuits has been proposed to alter gamma oscillations

(Paik and Glaser, 2010), but experimental evidence for plasticity

of gamma (or other cortical rhythms) is lacking. We hypothesized

that by reducing L2/3 inhibition, deprivation may reduce the

capacity for gamma oscillations in deprived columns. Indeed,

we observed a 70% reduction in ramp-evoked gamma power

in L2/3 of S1 slices and a 25% reduction in spontaneous gamma

power in L2/3 of deprived columns in S1 in vivo (Figures 6 and 7).

Thus, the capacity for gamma oscillations is plastic and depends

on sensory experience, likely reflecting local plasticity in FS

recurrent circuits.

We speculate that this reduction in gamma power may impair

sensory computation and reduce the ability of deprived whisker

input to be relayed to higher cortical areas. If so, this would act to

reduce the effective perceptual impact of deprived whiskers

beyond the Hebbian reduction in whisker-evoked spike count

alone. Thus, modulation of gamma could be an additional mech-

anism by which sensory experience regulates sensory process-

ing or perception.

Conclusion
We used optogenetics to investigate the functional recruitment

of L2/3 recurrent circuits during deprivation-induced whisker

map plasticity. Deprivation modestly reduced recurrent excita-

tion but powerfully reduced recurrent inhibition, suggesting

that L2/3 recurrent circuits are a major site of homeostatic plas-

ticity. At the same time, the capacity for gamma oscillations were

powerfully reduced, which is likely to reduce the effective repre-

sentation of deprived whiskers.

EXPERIMENTAL PROCEDURES

Long-Evans rats (both sexes) were used. Procedures were approved by UC

Berkeley Institutional Animal Care and Use Committee and meet the National

Institutes of Health’s guidelines.

In Utero Electroporation

Timed-pregnant rats (18 days postcoitum) were anesthetized with isoflurane.

The uterus was lifted from the abdominal cavity, and embryos were visualized

and electroporated through the uterine wall. A glass pipette (30–40 mm tip

diameter) was placed inside the left lateral cerebral ventricle, and �1 ml

of plasmid DNA solution was injected. The DNA solution contained: pCAG-

ChR2(H134R)EYFP-WPRE plasmid (1 mg/ml), pCAG-DsRed plasmid

(0.5 mg/ml), pCAG-GFP (0.5 mg/ml) plasmid, and 0.05% Fast Green. The capil-

lary was removed, and electrode forceps (CUY650-5; NEPA GENE) were
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placed on either side of the head, outside the uterine wall. Five 50 V square

pulses (50 ms duration, 950 ms interval) were delivered via an electroporator

(BTX ECM830, Harvard Apparatus). The uterus was returned to the abdominal

cavity, and the abdominal wall and skin were sutured. Buprenorphine was

given for postoperative analgesia (0.05 mg/kg, twice at 8 hr interval). Pups

were born by natural delivery.

The purpose of the GFP plasmid was to increase overall fluorescence inten-

sity to enable identification of expressing pups by transcranial imaging at

postnatal day (P) 1. Only pups showing strong fluorescence in the EYFP/

GFP emission band in S1 on P1 were used in later experiments. The purpose

of the DsRed plasmid was to enable fluorescently targeted patching of

expressing cells during brain slice physiology (EYFP/GFP fluorescence was

not imaged during physiology experiments, to avoid activating ChR2 with

GFP excitation wavelengths). All DsRed cells expressed ChR2 (see the Re-

sults), indicating that individual cells take up multiple plasmids.

Whisker Deprivation

Starting at postnatal day (P) 12, D-row whiskers D1–D6 and g were plucked

from the right side of the face under transient isoflurane anesthesia (3.5% in

O2). This is a standard manipulation to drive whisker map plasticity in L2/3 of

S1 (Drew and Feldman, 2009). Plucking continued every other day (for

5–9 days) until recording.

Slice Preparation

Acute S1 slices were prepared at P17–P21 using standard techniques. Pups

were anesthetized with isoflurane; the brain was isolated; and slices

(0.4 mm) were cut in a semicoronal plane (Feldmeyer et al., 2002) that allows

identification of A–E whisker columns (Finnerty et al., 1999; Allen et al.,

2003). Slices were cut in low-sodium cutting solution (mM: NaCl 85, sucrose

75, D-(+)-glucose 25, NaHCO3 25, KCL 2.5, NaH2PO4 1.25, ascorbic acid

0.5, MgCl2 4, CaCl2 0.5, bubbled with 95:5 O2:CO2 [pH 7.2]) and collected

into standard Ringer’s solution (mM: 119 NaCl, 26.2 NaHCO3, 11 D-(+)-

glucose, 1.3 MgSO4, 2.5 KCl, 1 NaH2PO4, and 2.5 CaCl2). Slices were incu-

bated 30 min at 32�C and then stored 1–4 hr at room temperature (RT) before

use. Column boundaries were identified with transillumination.

In each slice, the spatial extent and level of expression were evaluated by

visualizing DsRed fluorescencewith low-power epifluorescence imaging using

a Rolera XR camera (Q Imaging). (DsRed was used to avoid GFP excitation,

which activates ChR2.) Only slices with strong, spatially uniform DsRed

expression over all five barrels of S1 (e.g., Figure 2A) were used in experiments.

Whole-cell recordings were targeted to presumptive ChR2-expressing or

ChR2-nonexpressing cells based on DsRed fluorescence using a 403 objec-

tive. In histological sections (n = 37 columns, ten rats), we determined that

94% ± 1% of DsRed+ L2/3 pyramidal cells also showed EYFP/GFP fluores-

cence, and 100% of DsRed+ cells showed direct ChR2 photocurrents, indi-

cating that cells took up multiple plasmids (see below). This validates use of

DsRed fluorescence to identify putative ChR2+ neurons.

Electrophysiology

Whole-cell recordings were made at 31�C using 2.5–4 MU pipettes and a Mul-

ticlamp 700B amplifier (Molecular Devices). Current clamp recordings to mea-

sure ChR2-evoked spiking were made using K gluconate internal (mM: 116 K

gluconate, 20 HEPES, 6 KCl, 2 NaCl, 0.5 EGTA, 4 MgATP, 0.3 NaGTP, 5

Na2phosphocreatine; pH 7.2 and 295 mOsm). Recordings were made in

Ringer’s solution. Voltage clamp recordings to measure ChR2-evoked synap-

tic currents were made using Cs gluconate internal with QX-314 and BAPTA

(mM: 108 D-gluconic acid, 108 CsOH, 20 HEPES, 5 tetraethylammonium-Cl,

2.8 NaCl, 0.4 EGTA, 4 MgATP, 0.3 NaGTP, 5 BAPTA, 5 QX-314 bromide;

pH 7.2 and 290 mOsm). Pipette capacitance was neutralized, and whole-cell

capacitance and series resistance were compensated (prediction and correc-

tion, 80%). The bath solution was Ringer’s with D-APV (50 mM) and saclofen

(100 mM). To measure the photo-LFP associated with direct ChR2 photocur-

rents, a 1.8–2.2 MU field potential pipette was used, and TTX citrate

(50 mM), kynurenic acid (2 mM) and picrotoxin (100 mM) were added to the

bath. All drugs were from Tocris.

Rinput and Rseries were monitored in each sweep in response to a 5 mV test

pulse. Recordings were targeted to pyramidal-shaped somata. Cells were
excluded if Vm at break-in was >�60 mV, Rseries >20 MU or Rinput <100 MU.

Vm values for voltage clamp recordings were corrected for the measured liquid

junction potential (12mV). Data acquisition and analysis used custom software

in IGOR Pro (Wavemetrics) and Matlab.

ChR2 Activation

A 443 nm blue laser (40 mW, CrystaLaser DL445-040) was coupled via a multi-

modal fiber to the microscope epifluorescence arm and projected to the slice

through a 43 air objective. Focusing optics and a pinhole set the beam diam-

eter at the slice to 238 mm (23 SD of Gaussian profile) for synaptic physiology

experiments or 312 mm for the spike threshold experiment. Both of these are

smaller than the width of a single barrel column in rats (diameter 375–

500 mm; Wimmer et al., 2010). Laser intensity and timing were controlled by

analog voltage commands generated in IGOR Pro. All laser intensity values

represent intensity at the sample, calibrated using a light meter (Newport

1918-C). The lowest possible light intensities were always used to avoid

phototoxicity.

Synaptic Responses

Synaptic responses were defined as light-evoked currents with latency >1 ms

in nonfluorescent L2/3 pyramidal neurons (see below). Synaptic responses

were measured in D-APV (50 mM) and saclofen (100 mM) and thus primarily

reflect AMPA and GABA-A currents. The light stimulus was centered in L2/3

of the home column for the recorded neuron. For each cell, we first determined

the light intensity (using a 2 ms light pulse) required to elicit a reliable synaptic

response, which was invariably an EPSC. This light intensity was defined as

excitatory threshold (Ethresh).

For cells in the impulse experiment, we measured light-evoked currents at

�68 mV (presumed EPSCs) and 0 mV (presumed IPSCs) at 1.0, 1.1, 1.2, 1.3,

1.4, 1.5, 1.6, 1.8, and 2.03 Ethresh to define an input-output curve for synaptic

currents (10–14 sweeps at each holding potential and stimulus intensity, 10 s

interspike interval [isi]). Note that because driving force is equal for EPSCs and

IPSCs, reporting current or conductance is equivalent. PSC magnitude was

measured as charge (integrated current) in the first 50ms of the response, rela-

tive to a 2 ms baseline prior to the light stimulus. Fractional excitation (E/(E + I))

was calculated from PSC charge. Rseries compensation was checked and cor-

rected several times during each recording, and cells were discarded if un-

compensated Rseries exceeded 20 MU. For cells in the ramp experiment, we

measured currents at�68 and 0 mV in response to a linear ramp of light inten-

sity (1.2 s duration) from 0 mW to 2.5, 5, or 10 3 Ethresh (five sweeps at each

holding potential at each stimulus intensity, 30 s isi). Oscillations were

analyzed during the last 900 ms of the ramp stimulus, by calculating power

spectra on individual sweeps, in both Igor and Matlab (Chronux toolbox).

Gamma in slices was defined as power at 20–80 Hz, which is slightly lower

than in vivo (Adesnik and Scanziani, 2010).

In Vivo LFP Recording

D-row whiskers were plucked from P12–P26 under transient isoflurane anes-

thesia. At P30–P37, rats were anesthetized with urethane (1.5 g/kg i.p., plus

10% maintenance doses as needed). A craniotomy was made over S1

(2.5 mm caudal, 5.2 mm lateral from bregma). LFPs were recorded using a

tungsten electrode (5 ± 1 MU, FHC), amplified 1,0003, bandpass filtered

(10–300 Hz), digitized at 44.1 kHz using custom routines in Igor Pro, and down-

sampled to 1 kHz offline. Data are from 500 ms spontaneous activity periods

(no whisker stimulation) collected every 10 s. A small whisker deflection was

applied after each spontaneous period but was not analyzed here. Recording

depth was 491 ± 12 mm (n = 24) for L2/3 and 772.8 ± 7 mm for L4 (n = 24), as

previously calibrated for Long-Evans rats at this age (Celikel et al., 2004). Pen-

etrations were targeted to both deprived (D) and spared (C or E) columns in

each animal, with randomized recording order. Approximately 240 sweeps

were recorded in each layer per penetration (L2/3: 237 ± 4 sweeps, L4:

237 ± 9 sweeps). After all recordings were finished, electrolytic lesions were

made in L4 (5 mA, 10 s, tip negative), and recording sites were reconstructed

relative to barrel boundaries, as revealed by cytochrome oxidase staining in

flattened tangential sections (Li et al., 2009). At least one deprived and one

spared column was recorded in each animal, enabling within-animal compar-

ison of deprived versus spared column LFPs.
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The in vivo gamma experiments used longer deprivation (14 days) than the

slice experiments (5–9 days). Deprivation from 7–20 days duration drives

similar weakening of whisker responses in L2/3 in vivo (Glazewski and Fox,

1996). While network function and plasticity mechanisms can differ with age,

gamma was reduced in both experiments, suggesting it is a conserved feature

of plasticity across this age range.

In Vivo LFP Analysis

L2/3 and L4 spectra were analyzed separately. In 2/5 animals, slight 60 Hz

recording noise was present, so LFP waveforms were notch filtered at 60 Hz

(0.05 dB stopband attenuation, applied to all spared and all deprived record-

ings in those animals). LFPs were whitened using a second-order autoregres-

sion algorithm (Schneider and Neumaier, 2001; Minlebaev et al., 2011) whose

coefficients were determined by fitting all LFPs as a group. Spectra were

calculated from each whitened LFP segment using the Chronux toolbox in

MATLAB (three tapers, 4 Hz bandwidth, 500 ms windows). To compare

spectra between deprived and spared columns, all spectra from a single ani-

mal were divided by the peak power in the 30–50 Hz band of the average

spared spectrum for that animal. These normalized spectra were then aver-

aged across animals to determine the mean normalized spectra in spared

and deprived columns. Confidence intervals (99%) were determined by jack-

knifing (Chronux). Statistical differences were tested for average power in

10 Hz bins using a random permutation test in which spared/deprived labels

were randomized without replacement (5 3 105 permutations, a = 0.05, Bon-

ferroni correction for multiple comparisons). Representative LFP segments

(Figure 7B) were selected as those segments whose spectra showed the min-

imum least-squared error relative to the average spectrum. The highlighted

40 Hz epochs were identified by band-pass filtering the raw LFP (40 ±

7.5 Hz, Butterworth) and highlighting segments with band-passed amplitude

>1 SD above the mean for that layer and condition (spared or deprived).

Histology

Rats were deeply anesthetized with isoflurane and perfused transcardially with

4% paraformaldehyde in 0.1 M phosphate buffer (PB), and the brain was

removed. Brains were postfixed for 2 hr, cryoprotected in 30% sucrose in

0.1 M PB, and sectioned (50 mm) coronally on a freezing microtome. To deter-

mine the fraction of electroporated cells, sections were costained for the pan-

neuronal marker Neu-N by incubating free-floating sections for 40–48 hr at 4�C
with mouse anti-NeuN antibody (1:400, Millipore, MAB377) in phosphate-

buffered saline (PBS) containing 0.5%Triton X-100 and5%normal goat serum.

Sectionswere rinsedwith PBSand incubated for 90min at room temperature in

Alexa-594 conjugatedgoat anti-mouse secondary (1:200, Invitrogen). Sections

were rinsed three times in PB and mounted in Vectashield. Images were

obtained by confocal microscopy (Zeiss LSM 710 Axio Observer).

Statistics

Reported values are mean ± SEM, unless otherwise noted. Medians and 95%

confidence intervals were generated by bootstrapping (1,000 resamplings)

from the original distributions.
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