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An Unsupervised PDP Learning Model for Action Planning

Yoshiro Miyata
Bell Communications Research

Whenever we have in mind something that we wish to bring about in the environment, we must
find an appropriate sequence of actions that will result in the desired state. For example, if we decide to
move from one place to another, we need to find an appropriate path between the two places and an
appropriate sequence of actions. Likewise, when we reach for an object we must find an arm
configuration such that the arm’s tip touches the object as well as a set of muscle contractions that will
result in that configuration. These are problems we encounter and solve with ease hundreds of times
every day. What is the mechanism that enables us to map from the representation of a goal to the
representation of the action plan for realizing that goal, and how can such capability be learned from
experience?

Much work has focussed on execution of actions, namely, how a representation of action is
converted into the right sequence of actions (for example, Rumelhart & Norman, 1982; Mackay, 1982;
Rosenbaum, Hindorff & Munro, 1987). Not much work has been done to understand planning of actions,
namely, how to find an appropriate action sequence to achieve an environmental state. Works in this
domain have tended to require hand-wiring of task specific structures into the system and thus are not
readily applicable to more general situations (for example, Hinton & Smolensky 1984; Anzai, 1984).
Recent development of learning algorithms for Parallel Distributed Processing (PDP) networks
(Rumelhart & McClelland, 1986), especially the back-propagation (BP) algorithm (Rumelhart, Hinton, &
Williams, 1986), enables a network to learn task specific structures based on general principles. There
have been extentions of the BP algorithm to sequential action execution (Jordan 1986; Miyata 1987)
which have shown that the networks exhibit a number of characteristics observed in human actions
(Miyata 1988). However, as discussed below, planning of actions requires more than learning a single
input/output mapping, which the BP algorithm is designed to do.

THE COMPUTATIONAL REQUIREMENTS

Figure 1 illustrates the computational requirements of the situations that are considered in this
paper. The process starts from Eu,ir.a, a representation of some desired environmental state. The system
generates a representation of an action plan, A,.., which is then executed (A). One requirement is that
there is no teacher that gives the system the desired actions. The feedback provided to the system for

E desired
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% igure 1. The compurational requirements for the frame-
Goal work: (1) Feedback for learning is the environmental state as
the result of an action plan: (2) A goal only partially speci-
fies the desired environmental state. These requirements are
E not easily handled by the single mapping leaming scheme.
leedback
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learning is the environmental state as the result of executing the actions, Epeanact (the environment as the
teacher requirement), Another requirement is that Essir.a may be only partially specified by a goal of the
task. For example, in a ship navigation task, the desired trajectory is usually only partially constrained
by, say a gate or a channel (the goal as partial specification of environment requirement). Stated more
precisely, a single goal specifies only some of the dimensions necessary to represent all possible goals.
People seem to be able to learn and plan actions in situations defined by these requirements (see Anzai,
1984).

A common learning scheme is to characterize a task as a mapping from one representational space
to another, and to train a network by presenting pairs of vectors from the input and the output space. One
difficulty with applying this scheme to action planning is that the feedback provided to the learner from
the environment does not necessarily specify what actions (outputs) the learner should have produced.
Another difficulty is that, in order to generate an output, the input to a mapping must always be specified
completely. This conflicts with the goal as partial specification of environment requirement. This paper
presents one approach to these problems and proposes a framework in which the task-specific structure is
learned as multiple mappings and planning is accomplished via interaction of these mappings that
incorporates a constraint satisfaction process.

THE EAE NETWORK

The basic structure of the network, called the EAE (Environment-Action-Environment) network, is
shown in Figure 2-(A). There is a set of units, called the E-units, for representing an environmental state,
and another set, called the A-units, for representing an action plan. There are two mappings in the
network: E—A mapping is the mapping from the E-units to the A-units; and A—E mapping is the
mapping from the A-units to the E-units. Each mapping is implemented through a layer of hidden units.

Figure 2. (A) The basic structure
of the EAE network. E-units (A) FAE network ptime

represent an environmental state ol (C) Shi

and A-units an action plan. The A-units 0068 = Steering Task
E —A mapping maps from the : B

E-units to the A-units, and the : i Y 4

A —E mapping from the A-units I LI | Contro

to the E-units, each through a set > = Actlons

of hidden units. (C) The network o ; 3 " \

was applied to a ship steering task. = - m :

The ship moves at a constant g 00 081‘1%800 3 (B) Representaticon ship
speed along the Y-axis of a 2- g 2 ilme i’h
dimensional space and the nei- % g 1 csesmmE - / ”
work controls the acceleration of 5 ©« e -

the ship along the X-axis. (B) The ! :::::. Trajectofy

two matrices of squares show an 3 ’ '::" :

activation pattern in the E-units I i ::.. : g

representating a trajectory of the + e W

ship and an activation pattern in E-units OOOOOOO _::::'

the A-unils representing an action
plan.
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The EAE network has been applicd (o a task of navigating a ship in a 2-dimensional space (Figure
2-(C)), similar to an experimental task used by Anzai (1984). The ship moves at a constant speed along
the Y-axis, and the network's action controls the acceleration along the X-axis. The E-units represent a
trajectory of the ship, and the A-units a sequence of actions for controlling the ship. A trial consists of 10
time steps. A trajectory for a trial, shown on the right, is represented as the activation pattern in the (110)
E-units shown as an 10x11 matrix of squares (Firuge 2-(B)). Each row of 11 units represents the X-
position of the ship at a point in time by a coarse coding. The pattern in the (20) A-units, shown as an
10x2 matrix, represents an action plan for a trial. A pair of units in each row represents the control value
at a point in time. The ship’s acceleration to the right is proportional to the activation of the right unit
minus the activation of the left unit. In addition, there is a set of units (not shown in the figure) for
representing the context, i.e., the ship’s initial position and velocity. These units are fully connected to
both hidden layers.

The network learns by executing many quasi-random actions and observing what trajectories are
generated. The E—A mapping receives the trajectory as the input and uses the action as the target. (In
other words, it learns the knowledge of the form "to get this trajectory do this action".) The A—E
mapping learns using the same action/trajectory pair, but the action as the input, and the trajectory as the
target. ("If I do this action then this trajectory results.") Both mappings are learned only by interacting
with the environment.

After the mappings in the network were trained to some criterion, the network was given various
kinds of goals and it was able to find an appropriate action plan for each of the goals. The planning
process starts from a specification of a goal. A goal in this task is some part of the trajectory that the ship
must follow, such as a gate or a channel. Figure 3 illustrates an example goal which is a channel that the
ship must be steered into. This goal is specified by the activation pattern shown in the middle, in which
the units representing a part of the trajectory are given activation values representing the goal. The
activation of other E-units are not constrained by the goal, and are given some default initial value, in this
case, all zeros. When given such a goal, the network tries to fill in the unspecified part of the trajectory as
well as an action sequence that will result in that trajectory. The planning process is achieved by the
following steps (see Figure 4):

1 A goal is set by clamping some E-units and zero activation in other units.

2 From this pattern, the E—A mapping generates an action plan in the A-units. If a complete
trajectory is specified in the E-units, this mapping can generate an appropriate action plan to achieve
the trajectory. However, because the trajectory is only partially specified, the generated plan is
unlikely to be appropriate.

Control
A-units ......‘-@,

Actlons
EAE ) Goal Figure 3. A goal is given by specifying ac-
networ . tivation values of some E-units representing

CERL NN § § A 5 . :
0000 COOCQC o anmEn s e partial trajectory, and the network tnes 1o
find activation patterns in the other E-units

Vil
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representing the rest of the trajectory, as
well as an activation pattern in the A-units

representing an action plan for achieving the
trajectory.
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Figure 4. After the goal is specified in
the E-units, the network maps back and
forth between the E-umits and A-units
until the patterns settle into a stable
state.
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3 The A—E£ mapping generates, from the action plan, a predicted trajectory as the result of executing

the plan.

4 This predicted trajectory may not satisfy the constraint of the goal. So, the E-units representing the
goal are given the original values again.
5 The steps 2, 3, and 4 are repeated until the patterns settle into a stable state.

Figure 5 shows the series of patterns in the network during the process of planning after 1, 3, and 5
cycles. The leftmost column (E) shows the patterns in the E-units, after each time the goal is set. The
second column (A) shows the patterns in the A-units. The third column (Action) shows the actual control
values represented by these patterns. The rightmost column (Trajectory) shows what the trajectories
would have looked like, if the actions were actually executed. As can be seen, the network was able to
gradually improve the action plan. In this example, the patterns were stable after 5 cycles. This is one of

Figure 5. The activation patterns in the E-units (E)
and the A-units (A) dunng the process of planning.
after 1, 3, and 5 cycles. These pattems represent the

wn

cycle
™~

trajectories and actions shown (Trajectory. anc Ac-
tion). The process starts from the representation of
the goal in the E-units (bottom left) and the parterns in 1
the E-units and in the A-units are iteratively mapped

to each other until they are stable (cycle 5).
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the most difficult cases, because a slight adjustment in the final direction of the ship requires a large
change in the initial portion of the trajectory. Figure 6 shows the trajectories found by the network for 9
different goals and 3 different initial conditions.

ANALYSIS

Next, I present an analysis of the planning procedure and show that, under a number of
assumptions, the process is expected to find an appropriate action plan. First, I make four assumptions.
In figure 7, E-space is the space of all the possible activation patterns that can occur in the E-units. A-
space is the space of all the possible activation patterns that can occur in the A-units. The first
assumption is that all points in A-space are possible, i.e., they correspond to actual physical actions. This
is reasonable because these patterns cause the physical actions. The second assumption is that only some
points in E-space represent possible physical environmental states. This is reasonable because some
physical states cannot be achieved by any action. Furthermore, some patterns may not correspond to any
physical state. The third assumption is that the system learns the two mappings perfectly. The fourth
assumption is that these mappings generalize to new patterns based on similarities to the learned patterns.

Goals
A B C D E E G H I
[ I N [/ Fii
NI e
4 1 L ! L -——,!— 1 1 3 Figure 6. The trajectories found by the net-
Y 1 " L'} ¥ 4 i\ I Al work for 9 different goals (A, B, .., [) and 3
\ ) J f( ( Straight different initial conditions (Right, Straight,
{ 1 ! Left).
) o, 0
’j \ , I J / Left

Initial Direction

Figure 7. The four assumptions for the planning pro-
cess: (1) All points in A-space represent some physical
actions; (2) Not all points in E-space represent physi-
cal states: (3) Perfect E—A and A —-E mappings:
(4) Generalization based on similanty.

o
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Such property has been demonstrated in many PDP networks (e.g., Cottrell, Munro, & Zipser, 1987,
Chauvin, 1987).

Under these assumptions, the planning process can be analyzed as follows. (See Figure 8.) In E-
space, the E, regions are the points that represent possible physical states. For any particular goal, some
dimensions of E-space are constrained by the goal. These dimensions, represented by the horizontal axis
in the figure, correspond to the E-units that are given specific values by the goal. The other dimensions
are not constrained by the goal. Thus, the goal defines a hyperplane in the space, called the E. plane,
which is parpendicular to all the constrained dimensions. The task of the planning is to find a possible
state, a state that can be achieved by some action, that also satisfies the constraint of the goal. Such a
state is represented by a point in an £, region that is also on the E, plane.

The EAE network searches for such a point by mapping back and forth between the two spaces.
The network starts from ed%), a point in the E. plane with zero activation values for the unconstrained
dimensions. This point is mapped by E—A mapping to a point in A-space, a(©®, and then mapped back by
A—E mapping to a point in E-space, e¢41). This point must fall within an £, region because all points in
A-space are possible and must be mapped to a point representing a possible state. This point may no
longer on the E. plane, and so the goal constraint is imposed again by projecting onto the E. plane. This
corresponds to clamping of some E-units to the goal. Using this point as the new starting point, the
process is repeated. If it finds a solution after some iteration, the point no longer moves because a point
in the E, regions is mapped to itself. From the assumption that the mappings generalize based on
similarity between patterns, or in this case similarities defined as the distance between points, it can be
shown that, the distance between the points on the E. plane (el9, ed), e?), - - - ) and the points in the E,
regions (e, ef?), ..) will keep decreasing. Thus, the network will either find a solution or fall into a local
minimum, depending on the shape of the E, regions in relation to the E. plane.
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Figure 8. An analysis of the planning process.
A solution is a point in E-space that both is pos-
sible (in an E,, region) and satisfies the goal (on
the E. plane). The network searches for such a
point by mapping back and forth between E-
space and A-space.
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SUMMARY AND EXTENSION

The EAE network gives one explanation of how learning and planning of actions can be
accomplished, using only feedback from the environment and when the desired state of the environment
is only partially specified. Obviously, in order to evaluate the framework it is necessary to test on many
different tasks and also to compare the performance of the network more closely to that of humans. The
advantage of the EAE framework is that it does not need any domain specific structure, except a design of
representation of the environment and of the actions, and thus it is readily applicable and testable in other
domains. Furthermore, the framework can be extended in several interesting ways. First, it is obvious
that people can modify a planned sequence of actions based on feedback from the environment, especially
when the action is slow. The system could use feedback from the environment during the execution of an
action plan to adjust its prediction of future states and the action plan. This would allow accurate
performance without perfect prediction and therefore without perfect learning of the mappings. Second,
the framework provides a possible way to model automatization of a skill when actions and
environmental contexts are sufficiently correlated (Shiffrin & Schneider, 1977). In such situations, the
system could establish a mapping from the contexts to actions, which could speed up, or possibly
eliminate the need for, the process of generating predictions and comparing with explicit repesentations
of goals.
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