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ARTICLE OPEN

Widespread white matter microstructural abnormalities in
bipolar disorder: evidence from mega- and meta-analyses
across 3033 individuals
This article has been corrected since Advance Online Publication and a correction is also printed in this issue

Pauline Favre 1,2, Melissa Pauling1,2, Jacques Stout1, Franz Hozer1,2,3,4, Samuel Sarrazin1,2,5,6, Christoph Abé7, Martin Alda 8,
Clara Alloza 9,10, Silvia Alonso-Lana11,12, Ole A. Andreassen13,14, Bernhard T. Baune15,16, Francesco Benedetti17,18,
Geraldo F. Busatto19,20, Erick J. Canales-Rodríguez11, Xavier Caseras21, Tiffany Moukbel Chaim-Avancini19,20, Christopher R. K. Ching22,23,
Udo Dannlowski16, Michael Deppe24, Lisa T. Eyler25,26, Mar Fatjo-Vilas27,28, Sonya F. Foley29, Dominik Grotegerd16, Tomas Hajek8,
Unn K. Haukvik13,14, Fleur M. Howells30,31, Neda Jahanshad22, Harald Kugel 32, Trine V. Lagerberg13,14, Stephen M. Lawrie 33,
Julia O. Linke34,35, Andrew McIntosh 33,36, Elisa M. T. Melloni37, Philip B. Mitchell38,39, Mircea Polosan40, Edith Pomarol-Clotet27,28,
Jonathan Repple16, Gloria Roberts38,39, Annerine Roos41, Pedro G. P. Rosa19,20, Raymond Salvador28,29, Salvador Sarró28,29,
Peter R. Schofield 42,43, Mauricio H. Serpa17,18, Kang Sim44,45,46, Dan J. Stein 41, Jess E. Sussmann33, Henk S. Temmingh30,47,
Paul M. Thompson23, Norma Verdolini27,28,48, Eduard Vieta28,48, Michele Wessa34, Heather C. Whalley 34, Marcus V. Zanetti18,19,49,
Marion Leboyer1,50,51, Jean-François Mangin1, Chantal Henry52, Edouard Duchesnay1 and Josselin Houenou 1,2,50,51

for the ENIGMA Bipolar Disorder Working Group

Fronto-limbic white matter (WM) abnormalities are assumed to lie at the heart of the pathophysiology of bipolar disorder (BD); however,
diffusion tensor imaging (DTI) studies have reported heterogeneous results and it is not clear how the clinical heterogeneity is related to
the observed differences. This study aimed to identify WM abnormalities that differentiate patients with BD from healthy controls (HC) in
the largest DTI dataset of patients with BD to date, collected via the ENIGMA network. We gathered individual tensor-derived regional
metrics from 26 cohorts leading to a sample size of N= 3033 (1482 BD and 1551 HC). Mean fractional anisotropy (FA) from 43 regions of
interest (ROI) and average whole-brain FA were entered into univariate mega- and meta-analyses to differentiate patients with BD from
HC. Mega-analysis revealed significantly lower FA in patients with BD compared with HC in 29 regions, with the highest effect sizes
observed within the corpus callosum (R2= 0.041, Pcorr < 0.001) and cingulum (right: R2= 0.041, left: R2= 0.040, Pcorr < 0.001). Lithium
medication, later onset and short disease duration were related to higher FA along multiple ROIs. Results of the meta-analysis showed
similar effects. We demonstrated widespread WM abnormalities in BD and highlighted that altered WM connectivity within the corpus
callosum and the cingulum are strongly associated with BD. These brain abnormalities could represent a biomarker for use in the
diagnosis of BD. Interactive three-dimensional visualization of the results is available at www.enigma-viewer.org.
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INTRODUCTION
Bipolar disorder (BD) is a severe chronic mental illness that affects
~1% of the general population [1]. There is often a long period
with inadequate treatment before the diagnosis is established [2].
Consequently, there is a great need to identify biomarkers of BD. A
better understanding of the neurobiology of BD could ultimately
help to refine the diagnosis and guide innovative interventions.
Recent advances in magnetic resonance imaging (MRI) could help
to achieve this goal.
Neural models of BD suggest a role of fronto-limbic dyscon-

nectivity in the emergence of mood symptoms of BD [3, 4]. This
model is mainly supported by results from functional MRI (fMRI)
studies demonstrating that emotional instability in this disorder
might be underpinned by abnormal connectivity between frontal
and limbic regions [5, 6]. However, results from diffusion tensor
imaging (DTI) studies, a technique that allows the exploration of
structural connectivity in vivo, have highlighted far more extensive
brain abnormalities in BD. Indeed, the first DTI studies identified
alterations in limbic tracts [7–9], followed by numerous studies
that reported WM alterations within non-limbic regions, such as
the corpus callosum [10–15] and corona radiata [16]. Meta-
analyses based on whole-brain data have revealed lower fractional
anisotropy (FA), a metric derived from DTI known to be positively
correlated with the directionality and coherence of white matter
bundles [17], in patients with BD near the parahippocampal gyrus,
subgenual cingulate cortex [18], temporo-parietal junction and
cingulum [19].
Inconsistencies in the location of WM microstructure altera-

tions may be related to limited sample sizes and diversity in
methods to collect data from different populations and for DTI
data analysis. Indeed, differences in sample characteristics such
as age of onset, disease duration, psychotic features, and lithium
treatment, all of which have been associated with WM features
[12, 20–22], may have contributed to the inconsistency in
previous findings. Consequently, large harmonized multi-center
studies are required to improve the reliability of case-control
findings.
The ENIGMA consortium presents a framework to identify

generalizable biomarkers, by analyzing large samples with a
harmonized processing pipeline—a strategy that has already
identified widespread cortical alterations and specific subcortical
volumetric abnormalities in patients with BD [23, 24]. Thus, we
analyzed DTI data from the ENIGMA-BD working group with the
objectives of (i) identifying reliable generalizable WM abnormal-
ities in BD using mega- and meta- analytics; (ii) testing if clinical
characteristics modulate WM microstructure using mega- analy-
tics. Specifically, we expected more pronounced alterations (i.e.,
larger FA differences with respect to healthy controls) in WM
microstructure in patients with a more severe course of illness,
and a significant association with psychotropic medication.

METHODS
Samples
The ENIGMA-BD DTI working group, comprised of 26 cohorts
spanning 12 countries, yielded a total of 3033 individuals (1551
healthy controls (HC) and 1482 patients with BD) included in this
study. Demographic and clinical information from the whole
sample is shown in Table 1; details of the contributing sites may
be found in Table S1 and available clinical data for each site is
provided in Table S2. Each cohort comprised a minimum of
12 subjects per group and a minimal ratio of patients to controls
of 1:3, to allow for robust comparisons and meta-analysis. When
needed, we randomly removed some subjects from a given group
(mainly control subjects that were too numerous at 4 sites, except
for one site that comprised too many patients in comparison to
controls; for details, see Table S3). The current analysis includes
data acquired until February 2018.

All participating sites obtained approval from their local ethics
committees and all participants gave written informed consent.
Participants younger than 18 or older than 65 as well as
individuals with diffusion images with low quality after visual
inspection (e.g., movement artifacts) were excluded from the
analyses.

Image processing
Acquisition parameters for each of the 26 sites are provided in
Table S4. The pre-processing (i.e., eddy current and echo-planar
corrections and tensor fitting) was performed at each site using
harmonized analysis and quality control protocols from the
ENIGMA consortium that have previously been applied in large-
scale studies of schizophrenia [25]; recommended pipelines and
procedures for the image analyses and quality control are
provided online at the ENIGMA-DTI website (http://enigma.ini.
usc.edu/protocols/dti-protocols/). After estimation of tensors, each
site performed the image analysis and extracted the FA of each
region of interest (ROI) (see description in Table S5) according to
the ENIGMA-DTI protocol. The multi-subject JHU white matter
parcellation atlas [26] was used to parcellate regions of interest
from the ENIGMA template in MNI space. Mean FA from 43
regions of interest (ROI) as well as average whole-brain FA were
then extracted for each participant across all cohorts.

Mega-analysis
Our first aim was to identify WM microstructure differences
between patients with BD and HC. We merged individual FA
values of the 43 ROIs and Average FA (from each cohort) into one
mega-analysis and entered them separately in a linear mixed
model (using R software version 3.2.1. (R Core Team, 2015) and
lme4 package [27]) including fixed effects for the diagnosis
(patients vs. controls), age, sex, and random intercepts for each
site:

FA ROIi ¼ Interceptþ β1 � Diagnosisþ β2 � Age
þ β3 � Sexþ randomeffect siteð Þ

We used Bonferroni correction to control for multiple compar-
isons (p < 0.05/44= 0.0011). We also assessed the influence of
average FA (per subject) across the entire TBSS FA tract skeleton
(including core and periphery FA [25]) on local FA differences
observed in the first analysis by running the same models
including average FA as a covariate.
We performed additional analyses to assess how age, sex, illness

duration, age of onset, medication at the time of scan (lithium,
antipsychotics, anticonvulsants, and antidepressants), illness
severity, history of psychotic symptoms and type of BD (type I
vs. type II) might have modulated the main effect of diagnosis. We
tested the effect of age and sex by including age-by-diagnosis and
sex-by-diagnosis interaction terms. We included medication and
history of psychosis as dichotomous measures in the analyses
(yes/no variables) and used the density of episodes as an index of
illness severity (number of mood episodes/illness duration).
Importantly, each analysis controlled for age and sex, so that
associations with illness duration and the age of onset would not
be confounded by global age differences.
Age, sex, and diagnosis were available for all participants,

whereas the remaining variables were available for some sites only
(see Table S2 for details of available data for each site).

Meta-analysis
Given previous demonstrations of the usefulness of meta-analysis
for multisite neuroimaging [28], we performed a meta-analysis to
allow comparisons with previous ENIGMA studies and comparison
across sites. Similarly to previous ENIGMA meta-analyses, we
conducted a random-effects inverse-variance weighted meta-
analysis (R, metaphore package), to combine Cohen’s d effect size
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of each of the 26 cohorts of the study, both for right and left tracts
separately and for bilateral tracts (to allow comparison with other
ENIGMA DTI working groups). We calculated the I2 statistic to
estimate the heterogeneity of the diagnostic effects across sites.
This analysis was run following publicly available scripts on the
ENIGMA-GitHub (https://github.com/ENIGMA-git).

RESULTS
We included 1482 patients with BD and 1551 HC. The patients were
significantly older than the controls (mean age BD= 39.6 years;
mean age HC= 35.1 years; t= 10.11; p < 0.001) and comprised a
higher proportion of females (60.7 vs. 51.1%; χ2= 25.77; p < 0.001).
We included both age and sex as covariates in the mega- and
meta-analyses, and tested for the age-by-diagnosis and sex-by-
diagnosis interactions for further exploration of these effects.

Mega-analysis
Linear mixed models revealed significantly lower FA in BD vs. HC
along 29 out of 43 WM tracts and whole skeleton FA (see Table 2,
Fig. 1). The largest effect sizes were found in the whole corpus
callosum (CC) (R2= 0.0441; P < 1.0 × 10−20), followed by the body
(R2= 0.0368; P < 1.0 × 10−20) and genu (R2= 0.0331; P < 1.0 ×
10−20) of the CC and the bilateral cinguli (right: R2= 0.0281; P <
1.0 × 10−20; left: R2= 0.0269; P < 1.0 × 10−20). Notably, we found
lower FA in bilateral tracts, with the exception of the inferior
fronto-occipital fasciculus, where significant difference was
observed only in the right hemisphere. In a second analysis, with
similar LMM but also covarying for average FA, we still observed
lower FA in BD vs. HC across 19 tracts, meaning that the whole-
brain average FA moderately influenced the results and that the
effects were not exclusively driven by a global decrease in FA in
patients (Table S6).

Table 1. Descriptive statistics of sample

Bipolar disorder Healthy controls

Na mean/freqb std Na mean/freqb std t/χ2 p-value

Mean age 1482 39.60 12.15 1551 35.08 12.10 10.11 <0.001

Sex (% females) 1482 60.66% 1551 51.13% 25.77 <0.001

Age of onset 1046 25.19 10.35

Illness duration 1045 15.47 10.58

Depression Score

HDRS-17 115 8.63 8.29

HDRS-21 285 6.42 8.06

MADRS 230 9.45 9.79

Number of depressive episodes 587 5.84 6.02

Mania Score (YMRS) 545 2.80 3.93

Number of manic episodes 485 4.30 5.44

Total number of major episodes 476 10.45 10.15

Density of episodesc 414 0.82 1.00

On medication 904 84.62% 36.09%

Antipsychotics 862 45.82% 49.85%

Antidepressants 903 31.34% 46.41%

Anticonvulsants 812 39.29% 48.87%

Lithium 824 42.48% 49.46%

History of psychotic symptoms 908 54.30% 49.84%

Lifetime alcohol abuse 272 8.09% 27.32%

Onset timed

Early 334 31.93%

Intermediate 534 51.05%

Late 178 17.02%

BD type

BD1 432 77.01%

BD2 129 22.99%

Mood phase

Depressed 313 46.23%

Euthymic 336 49.63%

Hypomanic 2 0.30%

Manic 18 2.66%

Mixed 8 1.18%

aNumber of available data
bProportion calculated among the available data
cDensity= total episodes/Illness duration
dEarly: < 18 years ; 18 years < intermediate < 35 years; Late: > 35 years
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Age and sex effects. To examine differential effects of age and sex
on group differences in FA values, we tested for age-by-diagnosis
and sex-by-diagnosis interactions for each ROI. Results showed
significant age-by-diagnosis interactions in bilateral superior
corona radiata, the posterior limb of the internal capsule and left

cingulum, such that there was steeper apparent age-related
decline in the HC than BD group in all but the cingulate gyrus
portion of the cingulum, where the opposite was found (Table S7;
Figure S1). We did not find any significant sex-by-diagnosis
interaction (Table S8).

Table 2. Mega-analysis results: linear mixed model parameters sorted by effect size (descending order) for FA differences between bipolar patients
and healthy controls after controlling for age and sex

ROI β s.e. t-value Pcorr > |t| R2 [0.025 0.975] Sign.

Projection fibers

PTR.R 0.0098 0.0013 7.3542 1.09E-11 0.0176 0.0095 0.0281 ***

PTR.L 0.0079 0.0013 5.9150 1.63E-07 0.0115 0.0051 0.0203 ***

ACR.L 0.0065 0.0011 5.8177 2.91E-07 0.0110 0.0048 0.0197 ***

CR.L 0.0046 0.0009 5.2310 7.94E-06 0.0088 0.0034 0.0168 ***

ACR.R 0.0056 0.0011 4.9348 3.73E-05 0.0080 0.0029 0.0156 ***

CR.R 0.0040 0.0009 4.6037 1.90E-04 0.0068 0.0022 0.0140 ***

PCR.R 0.0040 0.0011 3.8079 6.29E-03 0.0048 0.0011 0.0110 **

ALIC.L 0.0040 0.0011 3.7958 6.61E-03 0.0047 0.0011 0.0108 **

ALIC.R 0.0038 0.0010 3.6899 1.00E-02 0.0044 0.0009 0.0104 *

PCR.L 0.0036 0.0010 3.4692 2.33E-02 0.0040 0.0007 0.0098 *

SCR.L 0.0028 0.0010 2.7731 2.46E-01 0.0026 0.0002 0.0075 NS

SCR.R 0.0022 0.0010 2.3003 9.46E-01 0.0017 0.0000 0.0060 NS

IC.L 0.0014 0.0008 1.6965 1.00E+00 0.0009 0.0000 0.0044 NS

RLIC.L 0.0014 0.0011 1.3106 1.00E+00 0.0006 0.0000 0.0036 NS

IC.R 0.0011 0.0008 1.3451 1.00E+00 0.0006 0.0000 0.0036 NS

CST.R −0.0021 0.0016 −1.2829 1.00E+00 0.0005 0.0000 0.0035 NS

CST.L −0.0017 0.0017 −1.0213 1.00E+00 0.0003 0.0000 0.0030 NS

RLIC.R 0.0009 0.0012 0.7712 1.00E+00 0.0002 0.0000 0.0025 NS

PLIC.L −0.0007 0.0010 −0.7363 1.00E+00 0.0002 0.0000 0.0024 NS

PLIC.R −0.0002 0.0010 −0.2474 1.00E+00 0.0000 0.0000 0.0018 NS

Association fibers

CGC.R 0.0136 0.0015 9.3757 0.00E+00 0.0281 0.0176 0.0408 ***

CGC.L 0.0138 0.0015 9.1811 0.00E+00 0.0269 0.0166 0.0395 ***

EC.L 0.0057 0.0009 6.0965 5.39E-08 0.0119 0.0054 0.0209 ***

EC.R 0.0051 0.0009 5.6114 9.65E-07 0.0100 0.0042 0.0184 ***

UNC.R 0.0103 0.0019 5.3636 3.87E-06 0.0096 0.0039 0.0178 ***

UNC.L 0.0103 0.0020 5.1902 9.87E-06 0.0090 0.0035 0.0171 ***

SS.L 0.0054 0.0012 4.6913 1.25E-04 0.0072 0.0024 0.0146 ***

IFO.R 0.0080 0.0017 4.6490 1.53E-04 0.0071 0.0024 0.0144 ***

SFO.R 0.0057 0.0013 4.2623 9.18E-04 0.0060 0.0017 0.0128 ***

SFO.L 0.0053 0.0014 3.8511 5.29E-03 0.0049 0.0012 0.0112 **

FX.ST.R 0.0047 0.0014 3.3251 3.94E-02 0.0036 0.0006 0.0092 *

IFO.L 0.0059 0.0018 3.2375 5.36E-02 0.0035 0.0005 0.0090 NS

SS.R 0.0039 0.0012 3.1308 7.75E-02 0.0032 0.0004 0.0086 NS

FX.ST.L 0.0038 0.0013 2.9044 1.63E-01 0.0028 0.0003 0.0078 NS

CGH.R 0.0038 0.0019 2.0100 1.00E+00 0.0013 0.0000 0.0052 NS

CGH.L 0.0007 0.0018 0.3830 1.00E+00 0.0000 0.0000 0.0019 NS

Commissural fibers

CC 0.0123 0.0010 11.9431 0.00E+00 0.0441 0.0308 0.0594 ***

BCC 0.0150 0.0014 10.7856 0.00E+00 0.0368 0.0247 0.0511 ***

GCC 0.0123 0.0012 10.2936 0.00E+00 0.0331 0.0217 0.0468 ***

SCC 0.0077 0.0009 8.1690 1.95E-14 0.0209 0.0119 0.0322 ***

FX 0.0185 0.0025 7.4763 4.42E-12 0.0184 0.0101 0.0292 ***

AverageFA 0.0025 0.0006 4.0044 2.80E-03 0.0050 0.0012 0.0113 **

ns not significant
*pcorr < 0.05; **pcorr < 0.01; ***pcorr < 0.001
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Effects of clinical variables. Within the BD group, we found a
significant positive relationship of age at onset to FA in the right
inferior fronto-occipital fasciculus (Table S9) and a negative
association between illness duration and FA within the left
cingulum (Table S10) (Fig. S2). In addition, we observed
significantly lower FA in patients receiving vs. not receiving
antipsychotics within the genu of the CC and in patients receiving
vs. not receiving anticonvulsants within multiple ROIs (Figs. S3
and S4; Tables S11 and S12). In contrast, we found higher FA
values in several regions among patients receiving vs. not
receiving lithium (Fig. S5, Table S13).
We did not observe any significant relationships between FA

and antidepressant medication, illness severity, history of psycho-
tic symptoms, or BD subtype (I or II) (see Tables S14–S17).

Meta-analysis
Results from the meta-analysis revealed lower FA among 23 out of
the 44 ROIs (43 tracts and the whole-brain skeleton) analyzed
(Table 3, Fig. 2). Similarly to the mega-analysis, the results showed
largest effect sizes for the whole CC (d=−0.46; P= 7.86 × 10−12),
body of the CC (d=−0.43; P= 5.41 × 10−11), and left cingulum
(d=−0.39; P= 2.38 × 10−8). Overall, the meta-analysis showed
similar effects to the mega-analysis but was slightly less sensitive.
The I2 test indicates small to high heterogeneity across sites for all
effect sizes (I2= 0.002–69.24). To allow comparison with other DTI
studies of the ENIGMA consortium, we also conducted a meta-
analysis based on bilateral tracts (i.e., 25 ROIs). We found
significant decrease FA in patients with BD compared to HC
along 15 fasciculi. Similarly, the higher effect sizes were observed

for the CC (d=−0.46; P= 7.86 × 10−12) and cingulum (d=−0.39;
P= 4.58 × 10−8) (Figure S6, Table S18).

DISCUSSION
In the largest multi-center DTI study of BD to date, we found
alterations of WM microstructure in patients with BD along
multiple bundles, with strongest effects within the CC and the
cingulum. FA was lower in patients in most ROIs, although effect
sizes were small. Age, age of onset, illness duration as well as
anticonvulsants and antipsychotic medications were associated
with lower FA.
We collected individual data from 1482 patients and 1551

controls across 26 international cohorts, allowing a sample size
considerably exceeding all prior DTI studies of BD. Unlike most
studies that found localized WM alterations in BD, we identified
widespread abnormalities (lower FA along 29 out of the 44 regions
analyzed in the mega-analysis and 32 out of 44 ROIs in the meta-
analysis). Similarly to results in the ENIGMA DTI schizophrenia
project, this suggests a global profile of microstructural abnorm-
alities in BD, which are however not specific to that disorder [25].
For both analyses (i.e., mega and meta), the largest effect sizes

were observed within the CC and cingulum. This is consistent with
a recent meta-analysis showing decreased FA within the CC,
cingulum and the anterior superior longitudinal fasciculus in BD in
comparison to controls [29]. The cingulum is a major pathway in
the limbic system. Impairment of cingulum and uncinate structural
integrity is in good agreement with previous models of altered
fronto-limbic connectivity in BD [3, 30].

Fig. 1 Results of the mega-analysis. a Effect sizes of fractional anisotropy (FA) differences between patients with bipolar disorder (BD) and
healthy controls projected on the 43 white matter (WM) tracts analyzed. b R squared (effect size) with confidence interval, sorted in increasing
order of magnitude, for the regions showing significant differences between bipolar patients and healthy controls

Widespread white matter microstructural abnormalities in bipolar. . .
P Favre et al.

2289

Neuropsychopharmacology (2019) 44:2285 – 2293



In contrast, the role of the CC in pathophysiological models of
BD is less straightforward. Disconnection in patients with BD with
psychotic history has been suggested [12] but there is no clear
evidence for the implication of the CC in emotion processing or

mood switching [31]. Reduced FA within the CC was also reported
in a meta-analysis of DTI studies in schizophrenia [25] and major
depressive disorder [29], suggesting an overlapping involvement
in both psychosis and affective disorders. Further studies are
warranted to evaluate to what extent the CC is differentially
affected in these disorders. Preliminary data suggest that
disruption of interhemispheric connectivity is a disease marker
rather than a vulnerability marker to BD [32]. Nonetheless, we
identified extensive WM abnormalities suggesting that current
pathophysiological models of BD are incomplete. Future models
should not be limited to fronto-limbic networks, and should
perhaps consider interhemispheric disconnectivity as a key
feature of BD.
Importantly, the patient group was significantly older than the

control group. Although we controlled for age in all analyses, it is
possible that the linear models used are not fully accounting for
the age-related variance [33]. However, the assessment of the
effects of age revealed a significant interaction between age and
diagnosis for only 4 ROIs out of the 43 analyzed. We found a
significant increase in the effect of age in patients with BD for the
left CGC only, while we found the reverse association for the
bilateral SCR and the left PLIC, these effects were not anticipated
and should be verified when replication samples become
available.
We found that lithium intake was associated with higher FA in

several tracts, as well as with global FA. Prior studies have
suggested neuroprotective effects of lithium, on gray matter
[23, 34–36] and white matter [37]. Higher FA associated with
lithium use could reflect a direct influence of lithium on water
diffusion or a beneficial effect on myelination [38], as suggested
by the observation that lithium promotes myelin gene expression,
morphological maturation, and remyelination in cultured oligo-
dendrocytes via the Wnt/β-catenin and the Akt/CREB pathways
[39]. In patients with BD, lithium may increase axial diffusivity in
WM tracts also influenced by genetic variation in this pathway
[22]. We also found lower FA in patients who received antic-
onvulsants in several tracts and average global FA. Further,
patients who were on antipsychotic treatment showed lower FA
within the genu of the CC. This is consistent with prior results
suggesting a negative relationship between anticonvulsants,
antipsychotics and cortical thickness or FA [23, 37]. However, it
could be possible that the choice of the medication was driven by
some patients’ particularities or unknown neurobiological char-
acteristics, which are hard to assess with a cross-sectional design,
leading to confounding by indication. Longitudinal clinical trials
are needed to clarify this point.
We did not find significant differences between BD type I and

type II. The power of prior meta-analyses of DTI studies has also
been too low to perform this comparison. However, sensitivity
analyses for these meta-analyses indicated that the sub-group of
patients with BD I was driving the FA difference observed
between patients with BD and HC [19, 29, 40]. Although we had
enough power, the comparison of BD I vs. BD II did not replicate
this result. Consistent with our results, however, ENIGMA analyses
of T1-weighted anatomical MRI data of patients with BD did not
yield any detectable differences between BD types [23, 24].
In sum, the multisite nature of the study is a strength that

allowed us to detect small but significant differences. Our results
seem to challenge the hypothesis of a precise localization for the
WM alterations in BD. Indeed, we have highlighted extensive
abnormalities, which do not seem to be specific to this psychiatric
disorder. Lower FA across multiple bundles has already been
consistently observed in studies of schizophrenia, with apparently
higher effect sizes (e.g., [25]). Consequently, to build more precise
neurobiological models of BD future studies should benefit from
new advanced neuroimaging methods such as Neurite Orienta-
tion Dispersion and Density Imaging (NODDI) [41]. This recent
processing model allows fine-grained measurement of the WM

Table 3. Meta-analysis results: Cohen’s d values, their s.e., P-values and
I2 values (heterogeneity between sites) sorted by effect size
(descending order) for FA differences between patients with bipolar
disorder and healthy controls after controlling for age and sex

ROI Cohen’s d s.e. p-value I2 p-value (corr) Sign.

Projection fibers

ACR.L −0.245 0.048 3.14E-07 25.562 8.86E-06 ***

ACR.R −0.217 0.051 2.07E-05 33.382 1.03E-03 **

CR.L −0.202 0.053 1.32E-04 37.861 4.00E-03 **

CR.R −0.180 0.056 1.26E-03 43.697 2.60E-02 *

ALIC.L −0.158 0.056 4.41E-03 43.311 2.32E-01 NS

PCR.R −0.152 0.043 4.26E-04 12.031 1.13E-01 NS

PCR.L −0.136 0.055 1.37E-02 42.736 7.39E-01 NS

ALIC.R −0.131 0.048 6.52E-03 26.872 2.78E-01 NS

SCR.L −0.095 0.052 6.90E-02 36.840 1.00E+00 NS

SCR.R −0.072 0.061 2.36E-01 53.242 1.00E+00 NS

IC.L −0.070 0.055 2.01E-01 41.932 1.00E+00 NS

IC.R −0.058 0.054 2.75E-01 39.437 1.00E+00 NS

RLIC.R −0.047 0.055 3.90E-01 41.619 1.00E+00 NS

RLIC.L −0.044 0.055 4.21E-01 41.598 1.00E+00 NS

CST.L −0.012 0.065 8.49E-01 58.035 1.00E+00 NS

CST.R 0.012 0.062 8.50E-01 53.890 1.00E+00 NS

PLIC.L 0.031 0.053 5.60E-01 37.920 1.00E+00 NS

PLIC.R 0.034 0.044 4.35E-01 13.722 1.00E+00 NS

Association fibers

CGC.L −0.391 0.062 2.99E-10 53.489 2.38E-08 ***

CGC.R −0.350 0.057 7.50E-10 45.173 2.00E-06 ***

EC.L −0.233 0.049 1.65E-06 27.203 1.06E-04 ***

UNC.L −0.231 0.052 8.16E-06 35.172 3.30E-04 ***

SS.L −0.220 0.044 6.96E-07 15.563 5.59E-05 ***

UNC.R −0.219 0.049 8.05E-06 28.252 1.30E-03 **

EC.R −0.205 0.042 1.09E-06 8.287 2.58E-04 ***

IFO.R −0.180 0.047 1.19E-04 22.441 3.99E-03 **

IFO.L −0.145 0.039 2.24E-04 0.000 1.41E-02 *

FX.ST.R −0.145 0.045 1.43E-03 18.610 9.68E-02 NS

SFO.L −0.144 0.051 4.67E-03 33.405 2.00E-01 NS

SS.R −0.140 0.053 8.63E-03 39.037 3.17E-01 NS

FX.ST.L −0.134 0.039 6.40E-04 0.002 5.12E-02 NS

SFO.R −0.127 0.053 1.65E-02 38.320 7.26E-01 NS

CGH.R −0.080 0.045 7.69E-02 18.794 1.00E+00 NS

CGH.L −0.039 0.044 3.71E-01 14.618 1.00E+00 NS

Commissural fibers

CC −0.462 0.055 5.08E-17 41.305 7.86E-12 ***

BCC −0.430 0.052 2.32E-16 35.479 5.41E-11 ***

GCC −0.373 0.066 1.78E-08 59.395 6.87E-06 ***

SCC −0.339 0.053 1.97E-10 37.906 5.66E-08 ***

FX −0.288 0.054 8.19E-08 39.029 7.84E-05 ***

AverageFA −0.260 0.076 5.69E-04 69.240 1.66E-01 NS

ns not significant
*pcorr < 0.05; **pcorr < 0.01; ***pcorr < 0.001
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microstructure, with physiological interpretation of the derived
indices, and has already shown promising results in BD [42].
However, the large-scale application of such methods will only be
possible with raw data sharing within international consortia. This
will allow the application of advanced DTI models and whole-brain
analyses, which are needed to better understand WM abnormal-
ities observed in BD. Finally, longitudinal studies conducted in
conjunction with advanced DTI protocols are essential to clarify
the impact of pharmaceutical treatments on brain microstructure.
Some limitations are important to emphasize. We did not

include other diffusion parameters in our analysis. Lower FA may
represent abnormal fiber coherence but does not yield informa-
tion on fiber density or myelination. The mean, radial and axial
diffusivity measure would have added complementary informa-
tion regarding the nature of WM alteration. However, we have
focused on the most commonly used measure, which offers better
comparability with prior studies. Also, most studies have high-
lighted a correlation between FA and these other measures, while
their inclusion would have tripled the number of analyses. In
addition, although we found “widespread” WM abnormalities in
patients with BD, the robust ENIGMA DTI pipeline used to partition
the ROIs involved only long and isolinear bundles. With this
methodological approach (i.e., FSL TBSS), we cannot evaluate
localized changes within the superficial WM, as have been
previously observed in BD and schizophrenia [43]. Also, this
methodological approach poorly reconstructs fiber crossings,
which may have led to incomplete localization of group

differences. Further studies are warranted to identify more fine-
grained WM abnormalities in BD.
Importantly, retrospective multisite analyses have some limita-

tions. Differences in the acquisition parameters, magnet strength,
head coil and manufacturer provided software could have
impacted the results. However, we believe that our approach,
using a harmonized data processing pipeline, with a reliable
procedure, allows for the first time coordinated mega- and meta-
analyses with robust results.
Moreover, the effects of the covariates found here are only

derived from post hoc analyses in cross-sectional studies with a
somewhat limited representation of individuals with BD over age
50 (only 18% of the sample). Longitudinal studies would be more
suitable to identify and predict the effect of age, illness duration/
severity and medication on WM microstructure in patients with
BD. In addition, despite their importance, we were not able to test
the relation between FA and other covariates, such as body mass
index and frequent BD comorbidities (e.g., anxiety or substance
use disorder). Too few sites had collected these measures to allow
robust analyses. However, we believe that our sample is
ecologically valid and captures the heterogeneity of BD.
With this unprecedented sample size, we found evidence for

widespread WM abnormalities in patients with BD and showed
differences in BD WM microstructure that were unobserved until
now. These results may inform future DTI studies with regard to
expected effect sizes, and the effects of several covariates and
clinical variables. We also highlighted that the CC and the

Fig. 2 Results of the meta-analysis. a Effect sizes for fractional anisotropy (FA) differences between patients with bipolar disorder (BD) and
healthy controls projected on the 43 white matter (WM) tracts analyzed. b Cohen’s d (effect size) sorted in increasing order of magnitude for
significant differences between bipolar patients and healthy controls. Significant findings after Bonferroni correction are highlighted in blue.
Error bars represent standard error
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cingulum had the strongest decrease in FA in patients with BD.
Despite growing evidence for altered structure of the CC in BD, its
specific role in the pathophysiology of BD needs to be further
integrated into neural models of BD.
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