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Abstract 

Understanding the impact of single kinesin detachment  

kinetics on kinesin-based transport 

by 

John Wilson 

Doctor of Philosophy in Physics 

University of California, Merced 

Jay Sharping, Chair 

 

Molecular motors such as kinesin-1 drive the active and long-range transport of 

materials inside of our cells. This transport process is highly regulated, as these cellular 

cargos need to reach their destinations in a timely manner to maintain the proper function 

of the cell. Indeed, dysfunctions in this process have been linked to neurodegenerative 

diseases such as Lou Gehrig’s disease. Kinesins single motor properties play a central role 

in this regulatory process, as these regulatory factors often act by altering these properties. 

A major focus of my research was how kinesin-1 detachment rate increases with force and 

how it is sensitive to the direction of the force. In my thesis study I employed Monte Carlo 

simulations to investigate the role of kinesins force-detachment kinetics in tuning key 

transport metrics such as the distance the cargo travels and the velocity of the cargo. I found 

that kinesins asymmetric force response results in a shorting effect on the cargos run length, 

as a result of the cargo random thermal motion (chapter 3). This diffusion-based shortening 

is countered by viscous drag, leading to an unexpected, non-monotonic variation in run 

length as viscous drag increases. Next, I found that the cargos run length is sensitive to 

slight changes in the average number of motors on the cargo and how this sensitivity can 

be tuned by kinesins detachment and attachment rates (chapter 4). Next, I explore how 

alterations to kinesins force-detachment kinetics, which can arise from macromolecular 

crowding, can impact the average velocity of cargos carried by more than one motor 

(chapter 5). Finally, a major part of my PhD experience has been mentoring undergraduates 

in simulation-based research, for many students this is their first-time doing research. Thus, 

I have created a guide of useful resources to engage future undergraduate students in similar 

simulation-based research projects (chapter 7).  
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Chapter 1 Introduction 

 

1.1 Background  

1.1.1 Active motion is a hallmark of life 

One of the hallmarks of life is motion, specifically the ability to actively use energy 

to engage in this motion. We see this every day all around us. For example, we might 

observe an eagle in flight. With each beat of the eagle’s wings, it consumes energy, which 

of course came from the food it consumed. What we don’t often think about is the motion 

that happens at the microscopic level.  

Zooming in on this microscopic level we will find a world full of cells in active 

motion [1-4]. Cells have evolved many different mechanisms to move themselves, such as 

flagella and cilia [3, 4]. These mechanisms allow cells to move towards nutrients, away 

from toxins, and interact with other cells [4]. Flagella and cilia are hair-like structures that 

extend from the surface of many cells, such as those in our respiratory tract, or sperm cells 

[3, 4]. These structures can move in a whip-like motion, propelling the cell forward or 

creating currents in the surrounding fluid [3, 4]. 

Another important aspect of cellular motility is the ability of cells to sense and 

respond to their environment [4]. This is accomplished through a variety of mechanisms, 

including chemical signals, mechanical cues, and electrical fields [5]. For example, 

immune cells can detect the presence of pathogens through chemical signals, and then 

move toward them in order to engulf and destroy them [4]. 

If we zoom in even further, to the inside of cells, we will find a bustling world of 

molecular motion and activity [6-8]. Cells are like highly organized microscopic cities, 

with different components of the cell serving different functions [7, 8]. A critical part of 

this organization is the placement of the various organelles and the distribution of materials 

to support the function of those organelles [9]. Cells achieve this by utilizing molecular 

motors, such as kinesin, to move materials around [6, 7]. These molecular motors are tiny 

machines, which function by utilizing chemical energy [6, 7]. 

 

1.1.2 Active transport is critical to cell function  

The active transport of materials is critical to the health and function of all human 

cells (Fig 1.1).  The various organelles within cells, such as mitochondria, endoplasmic 

reticulum, and Golgi apparatus, all have specific functions that require them to move and 

interact with each other [6, 7, 9]. In addition to organelles, cells must maintain a proper 
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distribution of materials to support their overall function and, the functions of their 

organelles [6, 7, 9]. To maintain the proper distribution of these materials and organelles, 

cells need to be able to move these materials around [6, 7].  

 

 

 

Figure 1.1: The transport of cargos by molecular motors is important across many 

cell types. Broadly these can broken down into two categories neuronal cells (A) 

and non-neuronal cells (B). Cargos being transported range from organelles 

(mitochondria for example) or other materials important to the function of the cells. 

This transport is carried out by many different types of motors including kinesin 

and dynein motors. A) In the axon (the long part of the neuron, kinesin motors 

transport their cargos from the cell body to the synaptic terminals. Dynein motors 

transport their cargos towards the cell body. B) In non-neuronal cells kinesin 

transports their cargos towards the cell body, while dynein transports their cargos 

towards the cell center. Diagram was reproduced with permission from Hirokawa, 

Nobutaka, et al. [10]. In my research, I focus on KIF5 also known as kinesin-1. 

Specifically, I use Monte Carlo simulations to investigate the impact of the impact 

of single kinesin detachment kinetics on kinesin-based transport. 
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Cells utilize molecular motors such as kinesin to actively drive the transport of 

materials and organelles [6, 7] (Figure1.3). Molecular motors transport their cargos, by 

“walking” along the cytoskeleton of the cell, consuming energy with each step.  This active, 

and often long-range, transport of materials is critical to the cell's ability to maintain a 

proper distribution of materials. 

Impressively, the process of active transport mediated by molecular motors can 

span several orders of magnitude in length scale, from nanometers to up to a meter in length 

in the case of neurons in the human body (Figure 1.3). This is one of the reasons cells must 

rely on active transport, as opposed to passive transport mechanisms such as diffusion. For 

example, it would take 2 years for a cargo to travel across a 10 cm neuron. With active 

transport, it would take approximately 3 hours.  

 

 

Figure 1.2: The active transport of material by molecular motors such as kinesin-

1 spans 5 orders of magnitude and is important for many cell types. In my research, 

I aim to understand how kinesin-1’s detachment kinetics acts as a regulatory 

mechanism in the transport process, which may help us better understand how 

transport by kinesin-1 motors can span this 5 order of magnitude length scale.  

 

When this transport process becomes impaired, it can lead to severe consequences 

for the cell's health and function [11-13]. Neurons are elongated cells, which perhaps pose 

additional challenges in the transport process. It is conceivable that small mistakes in 

transported can result in the accumulation of cargos leading to major problems for the 

health of the neuron. Indeed, mutations in the gene associated with axonal transport 

machinery and errors in gene encoding have been linked to a large variety of 

neurodegenerative and neurodevelopmental diseases [11-13] (Table 1.1). 
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Table 1.1: Neurological diseases associated with dysfunctions in axonal transport.  

Motor Disease Disease Type References 

Kinesin-1 

Amyotrophic Lateral Sclerosis (ALS)  Neurodegenerative [14, 15] 

Huntington  Neurodegenerative [16] 

Alzheimer's Neurodegenerative [17] 

Spastic Paraplegia 10  Neurodegenerative [18] 

Charcot-Marie-Tooth Type 2  Neurodegenerative [19] 

Neonatal Intractable Myoclonus  Neurodevelopmental [13] 

Kinesin-3 

Multiple Sclerosis  Neurodegenerative [20] 

Meckel Syndrome 12  Neurodegenerative [21] 

Primary Microcephaly 20  Neurodegenerative [22] 

Charcot-Marie-Tooth Type 2a  Neurodevelopmental [23] 

Kinesin-4 
Acrocallosal Syndrome  Neurodevelopmental [24] 

Multiple Sclerosis Neurodevelopmental [25] 

Kinesin-5 Microcephaly  Neurodevelopmental [26] 

Kinesin-7 Primary Microcephaly 13  Neurodevelopmental [13] 

Kinesin-12 Microcephaly and Thrombocytopenia  Neurodevelopmental [27] 

Kinesin-13 Cortical Dysplasia Neurodevelopmental [28] 

 

 

1.2 Transport machinery in axons 

The machinery supporting long-range transport of cargos in the axon consists of 

three primary components: the microtubules, the motors, and the cargos (Fig 1.4) [6, 7, 10]. 

In my thesis study, I focus on kinesin-1 motors as a model for understanding the transport 

process. Understanding the transport mechanisms of kinesin-1 motors is important because 

they are implicated in many neurological diseases (Table 1.1). Furthermore, we have a solid 

understanding of their single motor properties and have made significant progress in 

understanding what factors can influence these properties [29-34].  

In the remainder of this section, I will discuss each of these transport components 

in turn, starting with the microtubules which act as a roadway for kinesin motors. Next, I 

will discuss kinesin motors. Finally, I will discuss the cargos and how they can impact the 

transport process.   
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Figure 1.3: Kinesin-1 motor transport their cargos along a microtubule track. Each 

of these components plays an important role in the transport process Kinesins 

motor head domain allows it to step along the microtubule. In my thesis, I am 

focused on the force sensitivity in kinesins-1 detachment kinetics, and in particular 

the asymmetric response to the direction of the force. In my research I found that 

this asymmetric response introduces non-linearity in the transport process, 

suggesting that the force-detachment kinetics of kinesin motors plays an import 

role in the regulation of kinesin-based transport.  

 

1.2.1 Microtubules are the molecular highway for kinesin motors 

Microtubules are a critical component of the active transport of materials inside 

cells[8, 35-37]. They act as the highway for kinesin [38-40]. And thus plays a central role 

in maintaining the distribution of organelles and materials inside cells [7].  

Microtubules are biopolymers that self-assemble from α- and β-tubulin dimers that 

polymerize to form long, hollow cylindrical structures [35, 37, 41]. These dimers can 

assemble into protofilaments, which then bundle together to form the microtubule [35]. 

Microtubules are polarized, with one end having a β-tubulin exposed, known as the plus 

end, and the other end having an α-tubulin exposed, known as the minus end [42].  

The polarization of microtubules allows for the directional transport of cargos [6, 

7, 10]. Typically, the plus end of microtubules is at the cell periphery and the minus is at 

the cell center. Kinesin motors are plus-end motors meaning they drive transport toward 

the cell periphery [6, 7, 10]. Dynein is minus end-directed motors driving transport toward 

the cell center. The opposing directionality of Kinesin and Dynein motors allows for the 

precise regulation of the transport process [43-46]. 

Just like the conditions of the roadway can impact traffic, the conditions of the 

microtubule can affect the transport of their cargos. Defects in the structure of microtubules 

can for instance cause transport to stall [47]. Further, the dynamics of transport can be 

regulated by MAPs. MAPs bind to the microtubule and play a critical role in their dynamics 

[48]. But they can also impact how molecular motors interact with them [49-55]. For 

example, MAP7 increases the binding rate of kinesin [50-52].  
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1.2.2 Kinesin-1 motors 

Kinesin-1 (henceforth referred to as kinesin) motors are complex machines made 

up of several parts that work together to achieve their function [6, 7, 10, 56, 57]. Kinesin 

motors consist of two main regions: the motor domain and the tail domain (Figure 1.4). 

The motor domain has two heads, each of which can bind to the microtubule at specific 

locations.  

The motor domain contains the microtubule-binding sites, while the tail domain is 

responsible for cargo binding [56]. Together, the motor domain, neck linker, and tail 

domain allow kinesin motors to move along microtubules and transport various cargos 

within cells [56]. 

 

1.2.2.1 Kinesins stepping rate 

Kinesin motors step along the microtubule using a "hand-over-hand" motion [58-

61]. This means that the two "heads" of the motor alternate in binding to the microtubule, 

with one head binding and propelling the other head forward, and then releasing and 

binding again in front of the first head. With each step, kinesin advances 8 nm along the 

microtubule while hydrolyzing one molecule of ATP [31, 34]. 

The hand-over-hand motion of kinesin motors along the microtubule is 

accomplished through a series of conformational changes in the motor domain, which is 

driven by the motor's chemomechanical cycle [57, 60, 62]. This cycle involves the binding 

of ATP to the motor domain, which induces a conformational change that allows the motor 

to bind to the microtubule and move forward [31, 34]. Hydrolysis of ATP then leads to a 

release of energy, which triggers a second conformational change that causes the motor to 

detach from the microtubule and move its trailing head forward [31, 34]. This process is 

then repeated as the motor takes additional steps along the microtubule. The coordination 

of this chemomechanical cycle with the hand-over-hand stepping mechanism allows 

kinesin motors to efficiently transport cargos over long distances within cells and produce 

a force of up to 7 pN [32, 33, 62]. 

Taken together the rate at which kinesin steps along the microtubule and its step 

size (8 nm), dictate kinesin's average velocity [31, 34]. Kinesin motors step along the 

microtubule at a rate that is limited by the amount of ATP available to them [63]. Kinesin’s 

stepping rate is also sensitive to the force it experiences (see section 1.2.2.3) [29, 30].   
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1.2.2.2 Kinesins off-rate 

During the chemomechanical cycle of kinesin motors, there are various points 

where the motor may become detached from the microtubule [29, 30, 61, 64]. For example, 

after hydrolyzing ATP and taking a step along the microtubule, the motor may release its 

grip on the microtubule if it fails to rebind to a new binding site on the microtubule. This 

process is captured in the motors detachment kinetics, which can be sensitive to force and 

other factors (section 1.2.2.3) [29, 30].  

 

1.2.2.3 Force sensitivity of stepping and off-rates 

It is common to model the chemomechanical cycle using simplified parameters 

such as detachment rate and stepping rate [45, 65]. These parameters can be adjusted to 

account for the effects of external forces on the motor's movement along the microtubule 

[29, 30]. For example, when kinesin motors experience a force, it can reduce their stepping 

rate and increase the likely hood of detaching from the microtubule [29, 30]. 

Notably, kinesin's response to force is asymmetric [29, 30]. Forces in the direction 

of their motion (assisting forces) lead to larger detachment rates than forces opposing their 

motion (hindering forces). 

Kinesin’s stepping rate is only impacted by hindering forces [29, 30]. Importantly, 

kinesin's force response can be modified by the cellular environment [66]. For example, 

macromolecular crowding can increase the rate at which kinesin detaches under hindering 

forces [66].  
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Figure 1.4: Motors experience a force when they become separated from the cargo 

by more than their rest length. Hindering forces result in a decreased stepping rate 

of the motor and an increased detachment rate. Assisting forces increase the motor's 

detachment rate, but don’t impact the motor's stepping rate. In my thesis study, I 

explore how the cargos run length and velocity are sensitive to the asymmetric 

response of kinesins force-detachment rate.  
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1.2.2.4 Kinesin attachment rate 

Another important parameter in kinesin-based transport is the rate at which motors 

bind to the microtubule or on-rate [67-69]. Motors unattached from the microtubule will 

be undergoing diffusion and when they come close to the microtubule there is a chance 

they can attach to the microtubule [55]. Many factors can impact this process. For example, 

the location of the motor on the cargo can impact the probability the motor will be near 

enough to the microtubule to bind [70]. Another factor could be the availability of binding 

sites [71]. Additionally, certain MAPs, such as MAP7 are known to recruit kinesin motors 

effectively increasing the on-rate [50-52]. Other MAPs, such as Tau, will decrease the 

kinesin’s on-rate [53-55, 72].   

 

Figure 1.1: Kinesin 

1.2.3 Cargos 

Kinesin motors are involved in the transport of a wide variety of cargoes in cells, 

including organelles, vesicles, and protein complexes [7, 10]. The identity of the cargo 

being transported can impact the activity of kinesin motors in several ways, including their 

velocity, processivity, and detachment kinetics [73].  

 

1.2.3.1 Forces on the cargo 

The size of the cargos that kinesin carries can vary greatly [74, 75]. Some cargos, 

such as small vesicles, may be only a few nanometers in size, while others, like organelles 

such as mitochondria, can be several micrometers in length. This size variation can impact 

the transport process in several ways, including the velocity and processivity of the motor, 

as well as the forces exerted on the motor by the cargo during transport. 

This size variation of the cargos is import because the size of the cargo can impact 

the drag forces experienced by the cargo [74, 75]. The larger the cargo, the higher the drag 

force it experiences as it moves through a fluid, such as the cytoplasm of a cell [76]. 

Furthermore, high cytoplasmic viscosities can also increase the drag on the cargo [74, 77-

79]. A large drag force on the cargo will lag behind the motor, and the motor will experience 

a force opposing its motion which can impact both the stepping and detachment kinetics 

of the motors [76, 80].  

Cargo size can also impact the diffusion of the cargo which can also have important 

implications for kinesin-based transport [76]. Diffusion is the process by which particles 

move randomly due to their thermal energy, the rate of diffusion decreases with cargo size 

[81]. The diffusion of the cargo can impact kinesin-based transport because the cargos 

diffusion will cause it to exert both hindering and assisting loads on the cargo.  
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1.3.3.2 Biological nature of the cargo 

Another factor that can impact transport is the composition of the cargo [55] [75]. 

For example, enclosing a cargo in a lipid membrane can enhance its velocity [82]. 

Furthermore, the surface fluidity of lipid membrane-enclosed cargos may reduce the 

mechanical interference between motors, thereby enhancing the cargo processivity [83]. 

The lipid membrane of cargos may also play an important role in the ability of the cargo to 

navigate obstacles along the microtubule, such as tau, during transport [55]. 

 

1.1.3 Regulations of transport target single-molecule functions 

In cells, motor-based transport is highly regulated, ensuring that cargos reach its 

destinations in a timely manner [8, 73, 84]. There are many ways this transport is regulated, 

for example, cells can use chemical signals which lead to post-translational modifications 

in the motor [8]. Another way this transport process may be regulated is via microtubule-

associated proteins (MAPs), which can affect how the motors interact with the microtubule 

[85-87]. Often these regulatory mechanism act by changing and impacting the single motor 

properties [84]. Thus, understanding how the single motor properties impact the transport 

process is critical to understanding how this transport process is regulated in cells.  

 

1.3 Overview of my thesis study 

In my thesis research, I used Monte Carlo simulations to investigate the role of 

single motor properties in regulating kinesin-based transport. Many factors which regulate 

kinesin-based transport do so by modifying kinesin’s single-motor properties. My primary 

focus was on understanding how asymmetry in kinesins detachment kinetics introduced 

non-linearity during the cargo transport process. In this section, I introduce each of the 

major topics in my research. 

 

1.3.1 Cargo diffusion shortens single-kinesin runs at low viscous drag 

Molecular motors such as kinesin-1 drive active, long-range transport of cargos 

along microtubules in cells. Thermal diffusion of the cargo can impose a randomly directed, 

fluctuating mechanical load on the motor carrying the cargo. Recent experiments 

highlighted a strong asymmetry in the sensitivity of single-kinesin run length to load 

direction, raising the intriguing possibility that cargo diffusion may non-trivially influence 
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motor run length. To test this possibility, here we employed Monte Carlo-based simulations 

to evaluate the transport of cargo by a single kinesin. Our simulations included 

physiologically relevant viscous drag on the cargo and interrogated a large parameter space 

of cytoplasmic viscosities, cargo sizes, and motor velocities that captures their respective 

ranges in living cells. We found that cargo diffusion significantly shortens single-kinesin 

runs. This diffusion-based shortening is countered by viscous drag, leading to an 

unexpected, non-monotonic variation in run length as viscous drag increases. To our 

knowledge, this is the first identification of a significant effect of cargo diffusion on motor-

based transport. Our study highlights the importance of cargo diffusion and load-

detachment kinetics on single-motor functions under physiologically relevant conditions. 

 

 

Figure 1.5: Cargo diffusion shortens single-kinesin runs at low viscous drag. A) Cargo 

diffusion can cause the motor to experience both assisting forces and hindering forces. B) 

Viscous drag on the cargo results in the motor experiencing hindering forces. In my thesis 

study, I explore how the relative sampling of both assisting and hindering forces from cargo 

diffusion, as tuned by the viscous drag, impacts the cargos run length. I found when viscous 

drag is low, the frequent sampling of assisting forces results in a shorting of the cargo’s run 

length. Slight increases in viscous drag reduce this sampling increasing the cargos run 

length. Overall, I found that this asymmetric force-detachment rate results in a non-

monotonic response in kinesin’s run length as viscous drag is increased.  

 

1.3.2 Tuning ensemble-averaged cargo run length via a fractional change 

in mean kinesin number 

The number of motors carrying cargos in biological cells is not well-defined, 

instead varying from cargo to cargo about a statistical mean. Predictive understanding of 

motility in cells therefore requires quantitative insights into mixed ensembles of cargos. 

Toward this goal, here we employed Monte Carlo simulations to investigate statistical 

ensembles of cargos carried by a Poisson-distributed number of motors. Focusing on the 

key microtubule-based motor kinesin-1, our simulations utilized experimentally 

determined single-kinesin characteristics and alterations in kinesin’s on- and off-rates 

caused by cellular factors and/or physical load. We found that a fractional increase in mean 

kinesin number enhances the ensemble-averaged cargo run length and amplifies run-length 

sensitivity to changes in single-kinesin on-rate and off-rate. These tuning effects can be 
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further enhanced as solution viscosity increases over the range reported for cells. Together, 

our data indicate that the physiological range of kinesin number sensitively tunes the 

motility of mixed cargo populations. These effects have rich implications for quantitative 

and predictive understanding of cellular motility and its regulation. 

 

1.3.3 Force-dependent kinesin detachment critically influences the effect 

of cargo-mediated motor interactions on cargo velocity 

Molecular motors such as kinesin-1 often work in small teams to drive the long-

range transport of cargo along microtubules in cells. During transport these motors can 

undergo force-based interactions, mediated through the cargo, increasing the likelihood of 

one of the motors detaching from the microtubule. After a detachment event will be pulled 

toward the remaining motor. If these detachment events are biased toward one direction 

they can impact the average velocity of cargos transported under these conditions. This is 

potentially the case with macromolecular crowding which has been shown increase 

kinesin’s detachment rate under hindering loads. This increase in detachment kinetics is 

thought to be responsible for the slow down of cargos transported by multiple kinesins 

under crowded conditions. Here, we used Monte Carlo simulations to examine how kinesin 

force-dependent detachment kinetics influence the effects of cargo-mediated motor 

interactions on the cargo's average velocity. We found increasing the motors detachment 

rate under hindering loads resulted in a slowdown under crowded conditions. This effect 

could be amplified by heterogeneity in kinesin’s population which increases the cargo-

mediated interactions between the motors. We also found that a small external forces on 

the cargo could also amplify the impact of the slowdown. Our study indicates that kinesin's 

force-dependent detachment rates may be an important and sensitive tuning factor 

influencing the velocity of cargos transported by multiple motors in the cell.  

 

 

Figure 1.6: Force-dependent kinesin detachment critically influences the effect of 

cargo-mediated motor interactions on cargo velocity. When two motors 

transporting a cargo become separated, they will each experience a force, which 

may result in one of them detaching from the microtubule. When this happens the 

cargos position will change in response. In my thesis study, I am interested in how 
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kinesin’s force-detachment kinetics may bias this process resulting in a change to 

the average velocity of the cargo. 
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Chapter 2 Methods 

 

2.1 Kinesin Simulation 

In my thesis project, I adapted a previously developed Monte Carlo-based 

simulation model to examine the regulating effects of kinesin's single motor parameters. In 

this section, I outline the algorithm employed in the kinesin simulations used in my thesis 

project.   

 

2.1.1 Description of kinesin simulation 

Here I will give an overview of the flow of my simulation, breaking it the simulation 

down into a series of key steps which are evaluated at each time step (Figure 2.1). Each of 

these steps are described in detail in sections 2.1.2-2.1.7.  

 

Increased microtubule-detachment rate of kinesin under hindering load reduces 

multiple-kinesin cargo velocity 

 

Figure 2.1: Flow chart for simulation the trajectory of a cargo carried by kinesin 

motors employed in my thesis study [65, 76, 88]. 
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My simulation takes in the single motor properties, along with other key parameters 

to model the cargo transport process (Section 2.1.2). Before a cargo trajectory is initiated, 

all of the motors are unattached from the microtubule. The cargo trajectory is initiated when 

one (or more) of the motors attach to the microtubule (Section 2.1.3). The cargo is 

transported along a one-dimensional microtubule lattice, with motors stochastically 

stepping along the microtubule. The cargos trajectory is terminated when all of the motors 

become unbound. The motors are assumed to be idealized springs with an unstretched rest 

length and a linkage stiffness (Table 2.1). The motors are assumed to experience a force 

only when the displacement between the motor and its cargo is larger than the motor’s rest 

length. 

At each time step, unattached motors can stochastically attach to the microtubule 

(Section 2.1.3). Next the force between all attached motors and the cargo is evaluated 

(Section 2.1.4). Attached motors can become can take a step along the microtubule can 

take a step along the microtubule or become detached from the microtubule, the probability 

of either of these events occurring is based on the force on the motor. Next, the cargos 

trajectory is updated based on the force between the motor and the cargo (Section 2.1.5 & 

2.1.6). Once the motile states of all kinesin molecules on the cargo have been updated, the 

simulation updates the cargo position by summing the deterministic drift motion and the 

random thermal motion of the cargo during the time step along the one-dimensional 

microtubule (Section 2.1.1.7). This process is repeated until all motors become detached 

from the microtubule. Finally, the trajectory of the cargo and motors are output to a file for 

latter analysis (Section 2.2). 

 

2.1.2 Simulation parameters 

The following table (Table 2.1) contains a list of the single kinesin and 

environmental parameters I used in my simulations unless otherwise noted in the text.   
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Table 2.1: Table of single kinesin and environmental parameters employed in my 

thesis study, unless otherwise noted in the text. 

Paramete

r  

Description Values References 

𝑣0 Unloaded velocity of the motors. 800 nm/s [34, 89] 

ℓ𝑚 Rest length of the motors. 40 nm [70, 89] 

𝑘 Spring constant of the motor. 0.32 pN/nm [90-92] 

𝜀0 Unloaded off-rate of kinesin. 0.8 s-1 [29, 30, 32] 

𝛿− 
Characteristic distance between the 

attached and the detached states. F < 0 

0.6 nm [29, 30, 32] 

𝛿+ 
Characteristic distance between the 

attached and the detached states. F > 0 

0.32 nm [29, 30, 32] 

kon Kinesins on-rate.  5 s-1 [67, 93] 

𝐹𝑠 Kinesin stall force. 7 pn [30] 

∆𝑥 Kinesin step size 8 nm [31, 34] 

N Number of motors on the cargo. 1 - 4 [44, 75] 

𝑘𝐵𝑇 
Thermal energy in the system (room 

temperature).  

4.11 pN·nm  

∆𝑡 Simulation time step 10 µs [65] 

𝜂 Viscosity of the surrounding fluid. 10-3 pa·s [74, 77, 79, 

94] 

𝑅 Radius of the cargo. 250 nm [74, 75] 

 

2.1.3 Motors attaching to the microtubule 

At each simulation time step, an individual unbound kinesin binds the microtubule 

with a probability determined by its on-rate, within a region on the microtubule that can be 

explored by its rest length. The simulation time step is incremented, and the above 

evaluations are repeated until at least one kinesin on the cargo binds the microtubule, at 

which point the run is initiated. 
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2.1.4 Calculating the force between the motors and the cargo 

The force between the motor and the cargo depends on the separation between the 

motor and the cargo. When this separation is greater than the motors rest length the motor 

will experience a force with a magnitude of  

𝐹 =  {
0, |𝑥𝑐 − 𝑥𝑚|  ≤  ℓ𝑚

𝑘 ∙ (|𝑥𝑐 − 𝑥𝑚| − ℓ𝑚), |𝑥𝑐 − 𝑥𝑚| >  ℓ𝑚
 ,   (2.1) 

where ℓ𝑚 is the motors rest length, 𝑘 is the motors spring constant, 𝑥𝑐is the position of the 

cargo, and 𝑥𝑚 is the position of the motor. The force on the motor will be positive if 𝑥𝑐 >
𝑥𝑚 and negative otherwise. The force on the cargo from the motor will have the opposite 

sign.  

 

2.1.5 Kinesin’s force-dependent stepping kinetics  

The force-dependent stepping rate for kinesin has been previously determined by 

experimental [29, 32, 95] and modeling [45, 65, 76] studies: 

𝑘𝑠𝑡𝑒𝑝(𝐹) = {

0,                                                   𝐹 ≤ −𝐹𝑠      

(𝑣0 ∆𝑥) ⁄ ∙ (1 − (𝐹 𝐹𝑆⁄ )2),   −𝐹𝑠 < 𝐹 ≤ 0 

𝑣0 ∆𝑥,⁄                                         𝐹 >  0           

,   (2.2) 

where v0 is the unloaded velocity, Δx is the step size, Fs is the stall force, and F is 

the force on the motor. 

 

2.1.6 Kinesin’s force-dependent detachment kinetics  

The motor’s load-detachment kinetics was as determined in recent experimental 

studies by Milic et al. [30] and Andreason et al. [29] for hindering forces between -25 pN 

and 0 pN, and for assisting forces between +2 pN and +20 pN. Extrapolation of 

measurements of these two ranges yields an apparent discontinuity [29] in kinesin’s 

detachment rate at 0 pN. This apparent discontinuity has not yet been resolved 

experimentally: direct measurements of the motor’s load-detachment kinetics are not yet 

available for the 0-2 pN assisting force range. To mitigate this apparent discontinuity, here 

we modeled the detachment rate of kinesin as a linear continuation between available 

experimental measurements at 0 pN and at 2 pN [29, 30]. Note that this linear-interpolation 

approach underestimates the effect of cargo diffusion uncovered in the current study. We 

summarize the motor’s detachment rate under load used in the current study as the 

piecewise function 
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𝜀(𝐹) = 𝜀0 {
𝑒𝑥𝑝(|𝐹|/𝐹𝑑−), 𝐹 ≤ 0
1 + 3.8247 ∙ 𝐹, 0 < 𝐹 ≤ 2
7.4 𝑒𝑥𝑝(|𝐹|/𝐹𝑑−), 𝐹 > 2

,   (2.3)  

where ɛ0 is the unloaded single-kinesin detachment rate, F is the load on the motor, 

Fd- is the detachment force of kinesin in the hindering direction, and Fd+ is the detachment 

force of kinesin in the assisting direction. The unit of detachment rates is s-1, and the unit 

of forces is pN. All other numerical values are dimensionless. Positive force indicates load 

in the direction assisting motor motion, and negative force indicates load in the direction 

hindering motor motion. The unloaded detachment rate is determined as ɛ0 = v0/l0, where 

v0 is the unloaded single-kinesin velocity, and l0 is the unloaded single-kinesin run length. 

The value of the detachment force in the hindering direction was defined by Schnitzer et 

al. [32] as Fd-=kBT/l-, where kBT is the thermal energy (4.11 pN·nm) and l- is the 

characteristic distance between the attached and the detached states. The value of l- was 

recently determined as 0.60 nm by Andreason et al. [29], approximately half of the value 

previously reported by Schnitzer et al. [32], likely reflecting the major technological 

advances in the force-clamping experiments used for these measurements [30, 96, 97]. The 

value of the detachment force in the assisting direction is similarly defined by Andreason 

et al. [29] as Fd+=kBT/l+, where l+=0.32 nm. 

 

2.1.7 Updating the cargos position 

The cargos position is updated by taking into account the drift motion and the 

thermal motion of the cargo. The drift motion of the cargo opposes the kinesin motion and 

is determined as ∆𝑡 ∙ 𝐹/𝜉, where ∆𝑡 is the simulation time step, 𝐹 is the net load on the 

cargo, and 𝜉 = 9𝜋𝜂𝑑 is a friction constant determined by the solution viscosity 𝜂 and cargo 

diameter 𝑑. In all simulations. The thermal motion of the cargo is uncorrelated to kinesins 

motion and is drawn from a normal distribution with a mean square displacement of 2𝐷 ∙
∆𝑡, where the cargo diffusion constant D is related to the friction constant 𝜉 by the Einstein 

relation 𝜉 = 𝑘𝐵𝑇 𝐷⁄  [81]. 

 

2.2 Analysis 

Here I go over the analysis methods common to each of my thesis studies. Other 

analysis methods, specific to one of my studies, can be found in the methods section of the 

chapter associated with that study.   
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2.2.1 Cargo run length 

Run length was determined as the distance that the simulated cargo travels after 

binding to and before unbinding from the microtubule. Within the uncertainty arising from 

the thermal diffusion of the cargo, the motion of each simulated run was unidirectional and 

plus-end oriented (in the direction of kinesin motion). For each simulation condition, the 

cumulative probability distribution of the run lengths was fitted to the cumulative 

probability function of a single exponential distribution 1 − 𝑒−𝑥/𝐿. Mean run length was 

determined as the best-fit decay constant 𝐿. The associated standard error of the mean was 

determined via a bootstrap method [98]. 

 

2.5.2 Cargo velocity 

The velocity of a simulated trajectory was determined as the best-fit slope of the 

trajectory. Only trajectories ≥0.2 s in duration were considered for analysis; of these 

trajectories, only those that moved ≥100 nm were analyzed. We determined the mean cargo 

velocity by fitting the cumulative distribution of each individual cargo velocity to a normal 

distribution 
1

2
(1 + 𝑒𝑟𝑓 ( 

𝑣 −𝑣𝑚

𝜎√2
 )), where v is the cargo velocity, 𝑣𝑚 is the mean cargo 

velocity, and 𝜎 is the standard deviation of the cargo velocity. The associated standard error 

of the mean was determined via a bootstrap method [98]. 

 

2.5.3 Data representation 

MATLAB functions corocet.m [99] and cmap2pal.m [100] were used to generate 

the perceptually uniform color maps in figure 2(a). 
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Chapter 3 Cargo diffusion shortens single-kinesin runs at low 

viscous drag 

 

3.1 Background 

Molecular motors such as kinesin-1 are mechanoenzymes that drive long-range 

transport of cargos in living cells [6, 7]. This transport process is challenging to accomplish, 

because motors must overcome substantial thermal diffusion to maintain directional 

transport. Thermal diffusion encompasses the set of random, non-directional motions that 

result from thermal agitation [101]. Thermal diffusion plays important roles in a variety of 

biological processes, including early embryonic patterning [102, 103], cell signaling [104], 

and metabolism [105]. For motor-based transport, thermal diffusion can manifest as 

random motions of the motor or of the cargo. A recent investigation highlighted a 

significant effect of thermal diffusion of individual motor domains on single-kinesin 

function in vitro [106]. How thermal diffusion of the cargo influences motor-based 

transport, however, has remained unclear. While previous numerical modeling [65] did not 

uncover a significant effect of cargo diffusion on single-motor function, recent modeling 

work [107] indicated that changing the solution viscosity significantly affects cargo 

navigation across three-dimensional microtubule intersections, suggesting a likely effect 

of cargo diffusion on motor function. 

The functions of molecular motors are affected by external force, or “load” [29, 30, 

32]. Until recently, kinesin-1 was thought to be affected by load oriented in the direction 

opposite (“hindering”) of motor motion, but not by load oriented in the same (“assisting”) 

direction. This notion was reflected in previous numerical modeling studies, including 

work that predicted a null effect of cargo diffusion on single-kinesin transport [65]. 

However, recent single-molecule investigations [29, 30] revealed a significant impact of 

assisting load on the distance traveled by a single kinesin ("run length”), revising our 

understanding of the dependence of single-kinesin function to load. Importantly, these 

recent studies demonstrate a strong and perhaps counterintuitive asymmetry in the effect 

of load on single-kinesin run length: under the same amount of load, kinesin’s run length 

is significantly shorter when the load is in the direction assisting versus hindering motor 

motion [29, 30]. In the current study, we carried out the first investigation of how this 

asymmetric sensitivity combines with cargo diffusion to impact kinesin’s motor function. 

Thermal diffusion of the cargo can exert load on the motor. Importantly, because 

cargo diffusion is not correlated with motor motion [81, 108], the direction of the load from 

cargo diffusion can assist or hinder motor motion, depending on whether the cargo is 

leading in front of or lagging behind the motor. Given the recently identified asymmetric 

response of kinesin run length to load direction [29, 30], we hypothesized that cargo 

diffusion may non-trivially influence the run length of the kinesin carrying that cargo. 
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Here we employed Monte Carlo-based simulations to numerically examine the 

effects of cargo diffusion on transport by a single kinesin. Our study builds on previous 

numerical models [45, 65] and incorporates the recently uncovered effect of assisting load 

on single-kinesin run length [29, 30]. We carried out our simulations over a large parameter 

space that captures crucial transport characteristics in living cells, including variations in 

cytoplasmic viscosity [74, 77-79, 94, 109], cargo size [74, 75, 110-114], and transport 

velocity [115, 116]. Our simulations included the physiologically relevant viscous drag that 

is associated with these parameter choices. Our simulations revealed that cargo diffusion 

significantly shortens single-kinesin run length at low viscous drag; this diffusion-based 

shortening effect arises from the specific asymmetry in the response of kinesin run length 

to load direction. 

 

3.2 Methods 

3.2.1 Monte Carlo-based simulation 

Simulations were as described in chapter 2.1 with the following exceptions. The 

number of motors on the cargo in each simulation was 1. The values of viscosity and cargo 

radius are indicated in the text.  

A faster simulation time step of 10-6 s was used for simulations of stiffer motors 

(>0.32 pN/nm, Figure 4), which better resolved the position of the cargo under higher 

tension from the stiffer motor linkage (data not shown).  

 

3.2.2 Data analysis 

The cargo run length and velocity were determined as described in chapter 2.2.  

The load on the motor for a given displacement of the cargo from the motor was 

determined as the length of the motor stretched beyond its rest value, multiplied by motor 

stiffness. The direction of the load was determined by the relative position of the cargo to 

the motor: “assisting” when the cargo position leads the motor, “hindering” when the cargo 

position lags behind the motor. 

The effective detachment rate of the motor for a given distribution of displacements 

of the diffusing cargo from the motor (Figures 3 and 4) was determined as the weighted 

sum of kinesin’s detachment rate at a particular displacement value, multiplied by the 

frequency of occurrence of the particular displacement value. Kinesin’s detachment rate at 

a particular displacement value was calculated by first determining the load associated with 

the displacement value, then applying the motor’s load-detachment kinetics as described 

above. The run length was calculated as the ratio of cargo velocity to its detachment rate. 
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3.2.3 Analytical model of the run length of single-kinesin cargos in the 

diffusion-free case 

In the absence of cargo diffusion, the only load on the motor is imposed by viscous 

drag in the direction that hinders the motor’s motion: |F|=9πdηv, as described above for the 

Monte Carlo-based simulations. 

The run length of single-kinesin cargos was determined as L=v/ɛ, where v is the 

velocity and ɛ is the detachment rate of the motor carrying the cargo. Based on the 

experimentally measured load-detachment kinetics of kinesin for hindering loads [29, 30, 

32] (described in the simulation model for F<0), the run length of single-kinesin cargos is 

𝐿 =
𝑣

𝜀0
𝑒𝑥𝑝 (

−9𝜋𝜂𝑑𝑣

𝐹𝑑−
), 

where ɛ0 is the unloaded single-kinesin detachment rate and Fd- is the single-kinesin 

detachment force under hindering load, as described above for the Monte Carlo-based 

simulations. 

The velocity of the motor under viscous load in the preceding equation was 

calculated as follows. The experimentally measured load-velocity kinetics of kinesin for 

hindering loads [95] is well approximated as [45] 

𝑣 =  𝑣0 (1 − (
𝐹

𝐹𝑠
)

2
), 

where v0 is the unloaded single-kinesin velocity, and F is the hindering load on the 

motor. The velocity of the motor under viscous load (|F|=9πdηv) is then described as 

𝑣 =  𝑣0 (1 − (
9π𝑑𝜂𝑣

𝐹𝑠
)

2
), 

The solution to this above quadratic equation gives rise to the analytic description 

of the velocity of single-kinesin cargos in a viscous medium 

𝑣 =  
𝑣0

2
(

𝐹𝑠

9π𝑑𝜂𝑣
)

2

(−1 + √1 + 4 (
9π𝑑𝜂𝑣

𝐹𝑠
)

2

), 
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3.3 Results 

3.3.1 Thermal diffusion of the cargo shortens the run length of single-

kinesin cargos 

We used a previously developed Monte Carlo simulation [45, 65] to examine the 

effect of cargo diffusion on kinesin run length in a viscous medium (Chapter 2). In this 

simulation, the motor steps directionally along the microtubule track, while its cargo 

undergoes both random thermal diffusion and deterministic drift under load [81, 101, 108]. 

The direction and the value of the load on the cargo and the motor are determined by the 

displacement between them. The effect of load on run length is modeled by the motor’s 

load-detachment kinetics (Chapter 2), which describes the probability of the motor 

detaching from the microtubule per unit time (“detachment rate”) for a given load value 

and direction. Previously, this and similar numerical simulation models included kinesin’s 

load-detachment kinetics under hindering load only and assumed that the motor’s 

detachment rate is unaffected by assisting load [45, 65]. In the current study, we extended 

the load-detachment kinetics of the simulated motor (Chapter 2) to reflect recent 

experimental measurements of the motor’s detachment rate under load oriented in both the 

assisting and the hindering directions [29, 30]. 

We first examined the run length of single-kinesin cargos over a physiologically 

relevant range of solution viscosities [74, 77-79, 94, 109], while holding cargo size and 

motor velocity constant at 0.5 µm in diameter and 0.8 µm/s when unloaded, respectively. 

These values are commonly captured in in vitro studies and are within the ranges measured 

for intracellular cargos [74, 75, 110-116]. 

Perhaps surprisingly, our simulations revealed a non-monotonic dependence of run 

length on solution viscosity (blue scatters, Figure 3.1A). Whereas the mean run length 

reached only 76±6% of the unloaded single-kinesin value at the viscosity of water, it 

recovered to 97±7% of the unloaded single-kinesin value at a viscosity ~22-fold higher 

than that of water, before declining with further increases in solution viscosity (blue 

scatters, Figure 3.1A). In contrast, when we did not include thermal diffusion of the cargo 

in our simulations, we detected only a simple monotonic effect of viscosity on run length; 

importantly, run length remained approximately the same as the unloaded single-kinesin 

value at low viscosity (magenta scatters, Figure 3.1A). Our simulations of the diffusion-

free case were in excellent agreement with predictions of the analytical model that 

considers the motor’s response to viscous load but not cargo diffusion (Section 3.2.3) 

(magenta line, Figure 3.1A). The reduction in run length for simulations carried out in the 

presence of cargo diffusion versus the diffusion-free case was pronounced at low viscosity 

(grey area, Figure 3.1A). This difference in run length vanished at higher viscosities, where 

viscous drag alone was sufficient to shorten cargo runs (magenta, Figure 3.1A). 
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Figure 3.1: Cargo diffusion shortens single-kinesin run length at low viscosities 

(A) by imposing substantial assisting load on the motor (B). Simulations were 

carried out using a cargo 0.5 µm in diameter and a motor velocity of 0.8 µm/s 

unloaded. ηwater, the viscosity of water. (A) Run length (mean ± standard error of 

the mean) was normalized by the unloaded single-kinesin run length. N = 1000 for 
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each simulation condition. Grey area, the difference in run length between 

simulations with and without cargo diffusion. Vertical dashed line, a viscosity 22-

fold higher than that of water (22·ηwater). (B) Thermal diffusion of the cargo 

increases the load on the motor at low viscosities. Positive values indicate load in 

the direction that assists motor movement; negative values indicate load in the 

direction that hinders motor movement. 

 

Together, our data demonstrate that thermal diffusion of the cargo results in kinesin 

run lengths that are shorter than those achieved without diffusion. This effect is localized 

to the low-viscosity range (grey area, Figure 3.1A), yielding a non-monotonic dependence 

of run length on solution viscosity. 

 

3.3.2 Cargo diffusion imposes assisting load on the motor that is absent 

in the diffusion-free case 

How does cargo diffusion shorten single-kinesin run length? Molecular motors such 

as kinesin are affected by mechanical load; a shorter run length suggests a larger load on 

the motor [29, 30, 32]. We thus hypothesized that cargo diffusion increases the load on the 

motor, particularly at the low viscosities at which we detected substantial diffusion-based 

shortening (grey area, Figure 3.1A). To test this hypothesis, we compared the distribution 

of load on the motor between simulations with and without cargo diffusion. 

We found that cargo diffusion introduced substantial assisting load on the motor at 

low viscosities (positive load, blue, Figure 3.1B, i-iii). For example, at the viscosity of 

water, the motor had a similar probability of experiencing load in the assisting direction as 

in the hindering direction (positive vs. negative load, blue, Figure 3.1Bi). In contrast, in the 

diffusion-free case, the motor experienced load only in the hindering direction (negative 

load, magenta, Figure 1Bi), which is expected because viscous drag always opposes cargo 

motion. Note that cargo diffusion also increased the hindering load on the motor at low 

viscosity. For example, at the viscosity of water, the motor had a higher probability of 

experiencing a greater hindering load in the presence of cargo diffusion than in the 

diffusion-free case (negative load, blue vs. magenta, Figure 3.1Bi). This observation is 

reasonable: thermal diffusion of the cargo is not correlated with the direction of motor 

motion[101] and can thus contribute to load in both directions. As viscosity increased, the 

difference in load distributions diminished more quickly in the hindering direction than in 

the assisting direction (negative load vs. positive load, Figure 3.1B, i-iii). 

Taken together, our data demonstrate that cargo diffusion imposes substantial 

assisting load on the motor at low viscosities. Because assisting load shortens kinesin’s run 

length more severely than does hindering load [29, 30], diffusion-based assisting load 
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supports the observed reduction in run length versus the diffusion-free case (grey area, 

Figure 3.1A). 

 

3.3.3 The effect of cargo diffusion on run length depends non-

monotonically on viscous drag 

We next sought to understand how cargo size and/or motor velocity impact the run 

length of single kinesins carrying a cargo. While these parameters were held constant in 

the preceding simulations at 0.5 µm in diameter and 0.8 µm/s unloaded, respectively 

(Figure 3.1), their values are known to vary in living cells [74, 75, 110-116]. 

We first examined the impact of cargo size, while holding motor velocity constant 

at 0.8 µm/s unloaded. The effect of solution viscosity on run length remained non-

monotonic for cargos 0.1-1 µm in diameter (v0 = 0.8 µm/s, Figure 3.2A). Interestingly, the 

viscosity at which run length most closely approached the unloaded single-motor value 

(“critical viscosity”) scaled inversely with cargo size (Figure 3.2A, left). Because viscosity 

(η) and cargo size (d) enter the problem via viscous drag on the cargo, which scales as the 

product ηd, a reasonable ansatz would be for run length to depend on this product. 

Consistent with this hypothesis, the simulated run lengths for each combination of solution 

viscosity and cargo size collapsed onto a single curve with ηd as the control parameter 

(Figure 3.2B, left). 

We next examined the impact of motor velocity on our simulation results. For each 

unloaded motor velocity examined, the run length of single-kinesin cargos again varied 

non-monotonically with the combined parameter ηd (Figure 3.2, A and B, middle and 

right). Interestingly, the value of ηd at which run length approached the unloaded single-

motor value correlated inversely with motor velocity (Figure 3.2C). This inverse scaling 

suggests that the effects of ηd and motor velocity (v) on run length may be again combined 

as that of their product ηdv [117], or equivalently the viscous drag experienced by the cargo 

(modeled as 9πηdv, see Discussion). Consistent with this hypothesis, the run length for the 

three unloaded motor velocities (Figure 3.2B) collapsed onto a single curve with viscous 

drag as the single control parameter (Figure 3.2D). 

Thus, our simulations demonstrate that the run length of single-kinesin cargos is 

influenced by three independent parameters: solution viscosity, cargo size, and motor 

velocity. The effect of these three parameters on run length is summarized as that of a single 

control parameter: the product of the three parameters, or viscous drag that arises from the 

active motion of the motor. This collapsed single-parameter curve differs substantially from 

model predictions for the diffusion-free case at low viscous drag (≤0.2 pN, Figure 3.2D). 

This difference diminishes when the effect of viscous drag on kinesin’s run length becomes 

pronounced (scatters vs. solid line, Figure 3.2D). 
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Figure 3.2: Non-monotonic variation in run length is general for physiologically 

relevant ranges of cargo size and motor velocity (A) and is summarized by the 
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single parameter of viscous drag (B-D). v0 indicates the unloaded single-motor 

velocity. Run length was normalized by the unloaded single-motor value. N = 1000 

for each simulation condition. (A) Dashed line, example inverse relationship 

between viscosity and cargo size as a guide to the eye. ηwater, the viscosity of water. 

(B) For each unloaded motor velocity, the impact of solution viscosity and cargo 

size on run length (panel A) is summarized as that of their product ηd. Solid line, 

smoothed moving average of simulated run lengths to guide the eye. Vertical 

dashed line, critical ηd value, where run length approaches that of the unloaded 

single kinesin. (C) The critical ηd value scales inversely with motor velocity. Solid 

line, best linear fit with the indicated slope. (D) The impact of ηd and motor 

velocity (v) on run length (panel B) is summarized as that of viscous drag (9πηdv). 

Solid line, model prediction of run length for the diffusion-free case. Vertical 

dashed line, an approximate threshold (0.3 pN) where the shortening effect of 

viscous drag on kinesin run length exceeds 5% of the unloaded single-kinesin 

value. 

 

3.3.4 Viscous drag biases thermal diffusion of cargo toward the hindering 

direction 

We next sought to understand the impact of viscous drag on the displacement of the 

diffusing cargo from the motor; this displacement information is important because it 

determines the load on the motor. 

We first carried out simulations for the case of zero viscous drag (Figure 3A). Here, 

the motor velocity was set at 0 µm/s to realize a zero drag force, and solution viscosity and 

cargo size were varied over the physiologically relevant ranges used in preceding 

simulations (1000- fold and 10-fold ranges, respectively). The resulting displacement 

distributions were symmetric about the motor position and exhibited two diffusion regimes: 

a uniformly distributed “free diffusion” range (grey area, Figure 3) where thermal motion 

of the cargo does not stretch the motor beyond its rest length (Chapter 2) and is thus 

effectively decoupled from the motor; and a normally distributed “tethered diffusion” range 

(cyan and yellow areas, Figure 4) where thermal excursion of the cargo is restricted by the 

motor that tethers the cargo to the microtubule [81]. Displacement distributions were not 

sensitive to cargo size or solution viscosity, with each distribution demonstrating a similar 

probability and a similar mean excursion of the cargo in the tethered diffusion range (~5% 

and ~3 nm, respectively and in both load directions, cyan and yellow areas, Figure 3.3A). 

These displacement distributions correspond to a 30% increase in the motor’s detachment 

rate and a 26% reduction in motor run length from their unloaded values (Chapter 2). These 

values are in excellent agreement with the ~24% reduction in run length in our simulations 

at negligible viscous drag (1×10-3 pN, Figure 2D). 
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Figure 3.3: Distributions of the displacement of thermally diffusing cargo from the 

motor, simulated at zero viscous drag (A), low viscous drag (B), and relatively high 

viscous drag (C). Positive displacement reflects the cargo leading in front of the 

motor; negative displacement indicates that the cargo lags behind the motor. Grey 

area, free-diffusion range where the cargo does not impose load on the motor. Cyan 

(and yellow) area, tethered-diffusion range where the cargo imposes hindering (and 

assisting) load on the motor. (A) At zero viscous drag, the displacement of the 

diffusing cargo is symmetric about the motor position (0 nm) and is not sensitive 

to cargo size or solution viscosity. N = 10 for each simulation condition, with each 

simulation including 20,000 times steps. (B-C) At both low (B) and relatively high 

(C) viscous drag, the displacement of a diffusing cargo is biased toward the 

hindering direction (negative displacement). The extent of this bias increases as the 

viscous drag increases. N = 1000 for each simulation condition. 
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We next examined the case of low viscous drag (Figure 3.3B). Here, the motor 

velocity was kept constant at 0.8 µm/s, and solution viscosity and cargo size were chosen 

to capture the low viscous drag range that alleviates the shortening effect of cargo diffusion 

on kinesin run length (0.01-0.2 pN, Figure 3.2D). Within this force range, the effect of 

viscous drag on kinesin run length was ≤3% of the unloaded single-kinesin value (solid 

line, Figure 3.2D). The resulting displacement distributions were asymmetric about the 

motor position in both the free-diffusion range (grey area, Figure 3.3B) and the tethered-

diffusion range (cyan and yellow areas, Figure 3.3B). As the viscous drag increased, the 

position of the diffusing cargo increasingly lagged behind the motor. At a drag force of 0.2 

pN, the probability that the cargo will exert load in the assisting direction diminished to 

<0.4% (blue line, Figure 3.3B). Of note, despite the asymmetry in the displacement 

distribution, mean excursion of the cargo in the tethered-diffusion range remained similar 

between load directions (~2.9 nm in the hindering direction and ~3.2 nm in the assisting 

direction, cyan and yellow areas, Figure 3.3B) and similar to that for zero viscous drag (~3 

nm in both load directions, cyan and yellow areas, Figure 3.3A). For comparison, at higher 

viscous drag (1-3 pN, Figure 3.3C), the displacement of the diffusing cargo was further 

biased toward the hindering direction (cyan area, Figure 3.3C); the mean excursion of the 

cargo in the hindering direction increased as the viscous drag increased (cyan area, Figure 

3.3C). 

Thus, our simulations indicate that viscous drag biases the diffusing cargo to lag 

behind the moving motor, which reduces the probability of the motor experiencing 

assisting load. At low viscous drag, this reduction in assisting load is accompanied by an 

increased probability, but not the magnitude, of hindering load on the motor. 

 

3.3.5 The effect of cargo diffusion on run length is not strongly influenced 

by motor stiffness 

Because the stiffness of the motor is a key determining factor for tethered diffusion 

[65, 81, 108], we hypothesized that the effect of cargo diffusion on run length may be 

influenced by motor stiffness. We carried out simulations at zero viscous drag to test this 

possibility. As experimental measurements of the stiffness of molecular motors (or other 

proteins) are still limited, here we examined a large, 100-fold range of values of motor 

stiffness, including available in vitro experimental measurements for single-kinesin 

transport [91] and multiple-motor transport [67, 118, 119]. 

Our simulations demonstrate that although motor stiffness impacts both the 

probability and the extent of cargo displacement in the load-imposing, tethered-diffusion 

range (Figure 3.4, A and B), these two factors do not combine to substantially alter the 

effect of cargo diffusion on single-kinesin run length (Figure 3.4C). As the motor linkage 

increased in stiffness, there was a higher probability of the cargo remaining in the free-

diffusion range (grey area, Figure 3.4Ai; 0 pN, Figure 4Aii), and a lower probability of the 

cargo diffusing in the tethered range to exert load on the cargo (green, Figure 3.4B). These 
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observations are expected for tethered diffusion [65, 81, 108]. On the other hand, the 

magnitude of the load from the cargo increased as motor stiffness increased (blue vs. 

magenta, Figure 3.4Aii, and purple diamonds, Figure 3.4B), varying as the square root of 

motor stiffness as expected from equipartition theorem in statistical physics [108, 117] 

(solid line, Figure 3.4B). Thus, the stiffness of the motor has opposite effects on the 

probability of the cargo imposing load on the motor (green squares, Figure 3.4B) and the 

magnitude of the load that the cargo can impose (purple diamonds, Figure 3.4B). Over the 

100-fold range of motor stiffnesses tested, these two opposing effects resulted in a modest, 

3.5% change in the motor’s detachment rate (black triangles, Figure 3.4C), corresponding 

to a similarly modest, 3.8% change in run length over the same stiffness range (red circles, 

Figure 3.4C). 

Taken together—and contrary to our initial expectation—our data indicate that the 

effect of cargo diffusion on single-kinesin run length is not strongly influenced by motor 

stiffness. 
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Figure 3.4: The effect of cargo diffusion on single-kinesin run length is not 

strongly influenced by motor stiffness. Simulations were carried out at zero viscous 

drag. N = 10 for each simulation condition, with each simulation including 20,000 

times steps. (A) Motor stiffness impacts (i) the displacement of the diffusing cargo 

from the motor and (ii) the resulting load on the motor. Grey area, free-diffusion 

range where the cargo does not impose load on the motor. (B) Increasing motor 

stiffness decreases the frequency with which the diffusing cargo imposes load on 

the motor (green squares), while increasing the mean magnitude of the load on the 

motor (purple diamonds). Solid line, best linear fit with a slope of 0.505 ± 0.004. 

(C) The motor’s detachment rate (black triangles) and run length (red circles) were 

largely unchanged over the range of motor stiffness tested. Detachment rate and 

run length were normalized by their unloaded single-motor values. 

 

3.3.6 Non-monotonic variation in run length requires specific asymmetry 

in the motor’s load-detachment kinetics 

We next sought to understand how specific asymmetry in kinesin’s load-

detachment kinetics influences run length behavior. To address this, we varied the 

symmetry properties of the motor’s load-detachment kinetics under otherwise identical 

simulation conditions. We duplicated our preceding simulations and the associated 

experimentally measured load-detachment kinetics for single kinesins [29, 30] for ease of 

comparison (Figures 3.1A and 3.5A). 

We found that asymmetry in kinesin’s load-detachment kinetics is necessary but 

not sufficient for the observed non-monotonic dependence of run length on viscous drag 

(Figure 3.5, B-D). We first examined the effect of symmetric load-detachment profiles on 

run length (Figure 3.5, B and C). Here, we duplicated the experimentally measured load 

dependence [29, 30] in the hindering direction (left, Figure 3.5B) or the assisting direction 

(left, Figure 3.5C). In both cases, the effect of viscous drag on run length increased 

monotonically, with run length maintaining its maximum value at the lowest viscous drag 

tested (right, Figure 3.5, B and C). As expected, the maximum run length of the single-

motor cargo was substantially shorter when we assumed a higher sensitivity of the motor’s 

detachment rate to load (right, Figure 3.5, C vs. B). We next implemented an asymmetric 

load-detachment profile that reversed the directional bias of kinesin’s load dependence 

(left, Figure 3.5D); we again observed a monotonic dependence of run length on viscous 

drag (right, Figure 3.5D). 

Hence, our simulations reveal that the specific asymmetry in the load-detachment 

kinetics of kinesin—steeper sensitivity for assisting versus hindering load [29, 30] (inset, 

Figure 3.5A)—underlies the non-monotonic dependence of run length on viscous drag 

uncovered in the current study. 
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Figure 3.5: Non-monotonic dependence of run length on viscous drag reflects a 

specific asymmetry in the motor’s load-detachment kinetics. Vertical dashed lines 
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in run-length panels, the critical viscous drag force (0.2 pN, Figure 2D) that 

separates the region where the effect of thermal diffusion dominates (left) from the 

region where the effect of viscous drag dominates (right). (A) Experimentally 

measured load-detachment kinetics [29, 30] (inset) give rise to a non-monotonic 

dependence of run length on viscous drag. Data are duplicated from Figure 1A 

(blue scatter). (B-C) Symmetric load-detachment kinetics (left) cannot support a 

non-monotonic dependence of run length on viscous drag (right). (D) Asymmetric 

load-detachment kinetics with reduced sensitivity for assisting versus hindering 

load (left) also cannot support a non-monotonic dependence of run length on 

viscous drag (right). For all panels, run length (mean ± standard error of the mean; 

N = 1000 for each simulation condition) was normalized by the unloaded single-

kinesin value. 

 

3.4 Discussion 

Here we used Monte Carlo-based simulations to examine the effect of thermal 

diffusion of the cargo on the run length of a single kinesin carrying the cargo. To our 

knowledge, this is the first identification of a significant effect of cargo diffusion on motor-

based transport. We found that cargo diffusion shortens single-kinesin runs by imposing 

substantial load in the direction of transport; this load is absent in the diffusion-free case. 

This diffusion-based shortening is countered by viscous drag, which biases the effect of the 

diffusing cargo toward the hindering load. Combined, our simulations revealed an 

unexpected, non-monotonic variation in run length, which is impaired at low and high 

viscous drag, but recovers to the unloaded single-motor value at intermediate viscous drag. 

We determined that the shortening effect of cargo diffusion on run length is not strongly 

sensitive to motor stiffness, and that the specific asymmetry in kinesin’s load-detachment 

kinetics underlies the non-monotonic variation of run length uncovered in the current study. 

Our simulations reveal a novel, dual effect of viscous drag on molecular motor-

based transport. Because viscous drag opposes cargo motion, it is generally examined in 

the context of impairing motor-based transport [80, 120, 121]. Consistent with this notion, 

we observed substantial impairment at high viscous drag (Figure 3.2D). However, at lower 

viscous drag that does not significantly influence motor functions, our simulations indicate 

a novel, “recovery” effect of viscous drag on run length (Figures 3.2D). The resulting non-

monotonic variation in run length may be important for understanding the diverse 

characteristics of transport in living cells, where highly variable conditions can combine to 

alter viscous drag—and hence run length—non-trivially. Such predictions may be tested 

experimentally by combining fluorescence-based run length measurements [122, 123] with 

~10-fold variations in solution viscosity [80, 121], cargo size [124], and motor velocity  ). 

This would allow one to achieve a 1000-fold variation in viscous drag needed to explore 

the full range of the non-monotonic variation of run length (Figure 3.2D). Note that we 

modeled the viscous drag on the cargo as the Stoke’s drag near a hard wall (9πηdv), which 

matches the experimental conditions for many in vitro studies but may not be appropriate 
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for in vivo scenarios. Nonetheless, because our study identifies the magnitude of viscous 

drag as the single parameter controlling the impact of cargo diffusion on single-kinesin run 

length (Figure 3.2D), we anticipate that the results of our study will hold for in vivo 

scenarios, even if the precise expression evaluating the drag force may be different. 

An important implication of our study is that the specifics of load-detachment 

kinetics are likely critical for differentiating and fine-tuning the single-motor functions of 

distinct classes of motors under physiologically relevant conditions. The diffusion-based 

shortening of run length at low viscous drag arises from the motor’s sensitivity to assisting 

load (Figure 3.1); the non-monotonic variation in run length with viscous drag reflects the 

specific asymmetry in the motor’s load-detachment kinetics (Figure 3.5). The more likely 

the motor is to detach under load in the assisting versus the hindering direction, the greater 

the effect of cargo diffusion on shortening the motor’s run length, and the greater the non-

monotonic variation in cargo run length with viscous drag. We thus predict similar non-

monotonic variations in run length for other classes of motors whose detachment rates are 

more sensitive to assisting load than to hindering load, such as kinesin-2 [125] and 

cytoplasmic dynein [126]. The specifics of non-monotonicity in run length likely depend 

on the specific functional forms of their respective load-detachment kinetics. A potential 

sensitivity of the load-detachment kinetics to nucleotide concentrations, such as that 

experimentally identified [127, 128] and theoretically examined [129] for the load-velocity 

dependence of kinesin-1, may drive further fine-tuning of single-motor functions in vivo. 

Our findings at the single-molecule level are likely directly relevant for transport 

by small teams of kinesin-1, which is on average accomplished via the action of a single 

kinesin [63, 130, 131]. Thermal diffusion of multiple-motor cargos depends stochastically 

on the number of motors linking the cargo to the microtubule [67, 118, 119]. Because we 

did not detect a strong impact of motor stiffness on the shortening effect of cargo diffusion 

on run length (Figure 3.4C), we speculate that the effects uncovered here may not be 

substantially altered by changes in effective stiffness in multiple-motor transport versus 

single-motor transport. 

The effects uncovered here also highlight diffusion-based load as a new 

consideration for understanding multiple-motor transport, particularly for mixed classes of 

motors that differ in their load-detachment kinetics. Recent investigations have focused on 

the importance of inter-motor strain [118, 132, 133] and local confinement [63, 67, 118] 

on team-motor functions. The current study suggests that, depending on the specifics of the 

load-detachment kinetics of the motor(s) present, thermal diffusion of the cargo may 

preferentially shorten the run length of a particular class of motor engaged in team 

transport, a bias that may be further tuned by viscous drag. We are developing simulations 

to explore this intriguing possibility. 

In summary, our simulations revealed a previously unexplored, non-monotonic 

variation of run length that arises from the interplay between cargo diffusion and solution 

viscosity. As an additional consideration, the elastic nature of the cytoplasm, which is 

strongly influenced by spatial heterogeneity of the cytoskeleton [134], has been predicted 
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to impact the velocity of a single, cargo-free kinesin [135]. Future investigations combining 

solution viscoelasticity with cargo diffusion may reveal additional diversity or tunability 

in cargo transport, for single motors and for multiple motors functioning in teams. 

 

 



 

38 

 

Chapter 4 Tuning ensemble-averaged cargo run length via 

fractional change in mean kinesin number 

 

4.2 Background 

Kinesin-1 is a key microtubule-based motor that drives long-range delivery of cargos in 

cells [7, 10]. This intracellular motility is critical for eukaryotic cell function and survival; 

dysfunctions in this process are linked to human diseases including neurodegeneration [11, 

12]. While the single-molecule characteristics of kinesin are reasonably well understood, 

many important questions still remain, including how the number of kinesins carrying a 

cargo impacts the distance over which the cargo travels before unbinding from the 

microtubule (“run length”). 

In cells, individual vesicular cargos are often carried by one or two kinesins, with the 

motor number varying among cargos in a population [44, 75, 136]. Although intuitively 

run length should increase as more motors carry a cargo, it is unclear how substantial such 

an increase would be, given that only a limited fraction of the cargo population is carried 

by more than one kinesin in vivo [44, 75, 136]. Further, for a given cargo carried by 

multiple kinesins, intra-motor strain can hinder cooperative function between kinesins and 

limit the contribution of additional kinesins to run length [63, 118, 131]. Additionally, the 

microtubule binding and unbinding kinetics of kinesin can be altered by cellular factors 

such as microtubule-associated proteins [50-52, 54, 137-139]. How the interplay of these 

single-motor alterations with a fractional change in mean kinesin number impacts cargo 

delivery is not currently understood. 

Here we employed Monte Carlo-based simulations to investigate statistical ensembles 

of cargos, with each cargo carried by a Poisson-distributed number of kinesins. Our 

assumption of a Poissonian motor number is consistent with random processes [31, 70, 

140] and with data available for biological scenarios [44, 75, 136]. We varied the mean 

number of kinesins on motile cargos between 1 and 1.3, corresponding to a modest range 

of 0-25% of the cargos in the population carried by two or more motors (figure 1(a)). We 

then characterized the run length of the cargo population as the ensemble average of the 

mean run lengths of cargos carried by one or more kinesins. Our simulations employed 

experimentally determined single-kinesin characteristics [29-32, 34, 70, 89-92, 95], 

including the load-dependent off-rate [29, 30] that limits the cooperative function of 

kinesins in a team. We varied the single-kinesin on-rate and unloaded off-rate over a large 

parameter space, capturing how these characteristics are altered by cellular factors [50-52, 

54, 137-139]. Our simulations also included cargo diffusion [76] and viscous drag [74, 77, 

79, 94], two sources of physical load that are important at the molecular level and present 

in all live cells. We found that a fractional change in mean kinesin number has important 

ramifications for the ensemble-averaged cargo run length, suggesting that the physiological 

range of kinesin number [44, 75, 136] provides crucial regulation of cargo delivery in cells. 
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4.3 Methods 

4.3.1 Monte Carlo-based simulations 

The kinesin simulation was the same as described in chapter 2.1 with the following 

exceptions. Cargos in a population were either transported by a fixed number of motors or 

using a poison distributed number of motors. Values for the single-kinesin on-rate, 

unloaded off-rate, and solution viscosity are indicated in the text.  

 

4.3.1.1 Cargos carried by the same number of kinesins 

Each cargo in a simulated population was carried by the same number of kinesins 

(1, 2, 3, 4, or 5). Simulations of individual cargo runs were carried out as described in 

section 3.2.1.2. 

 

4.3.1.2 Cargos carried by a Poisson-distributed number of kinesins 

For each simulated ensemble, the number of kinesins on each cargo in the 

population was drawn from the discrete Poisson distribution, 𝜆𝑘𝑒−𝜆 𝑘!⁄ , where the motor 

number 𝑘 is a non-negative integer and 𝜆 is the Poisson mean. Only cargos assigned one 

or more kinesins were used to simulate runs. Simulations of individual cargo runs were 

carried out as described in section 3.2.1.2. 

The mean number of kinesins on motile cargos was varied between 1 and 1.3, 

corresponding to a range of 0-25% of cargos in the populations carried by ≥ 2 kinesins 

(Figure 1(A)). There was a probability of <0.006% that a cargo is carried by ≥ 6 kinesins. 

 

4.3.2 Analysis of cargo run length 

4.3.2.1 Run length of individual simulated cargos 

Run length was determined as the distance that the simulated cargo travels after 

binding to and before unbinding from the microtubule. Within the uncertainty arising from 

the thermal diffusion of the cargo, the motion of each simulated run was unidirectional and 

plus-end oriented (in the direction of kinesin motion). We detected no evidence of minus-

end directed (in the direction opposite of kinesin motion) segments within individual 

simulated runs (data not shown), suggesting no substantial impact of intra-motor strain on 

the direction of cargo motion. 
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4.3.2.2 Mean run length of cargos carried by the same number of kinesins 

For each simulation condition in which all cargos were carried by the same number 

of kinesins (Section 2.1.3), the cumulative probability distribution of the run lengths was 

fitted to that of a single exponential distribution 1 − 𝐴 ∙ 𝑒−𝑥 𝑑⁄ . Mean run length was 

determined as the best-fit decay constant 𝑑. The associated standard error of the mean 

(SEM) was determined via a bootstrap method [98]. 

 

4.3.2.3 Ensemble-averaged run length of cargos carried by a Poisson-distributed 

number of kinesins 

For each simulation condition in which cargos were carried by a Poisson-distributed 

number of kinesins (Section 2.1.4), the cumulative probability distribution of cargo run 

lengths was fitted to the following weighted sum: 

𝑃(𝑥) = 1 − ∑ 𝑃𝑘 ∙ 𝑒−𝑥 𝑑𝑘⁄5
𝑘=1 ,     (4.3) 

where 𝑃𝑘 is the probability that a cargo is carried by 𝑘 kinesins and 𝑑𝑘 represents 

the mean run length of cargos carried by 𝑘 kinesins. Note that the weighted sum considers 

up to 5 kinesins per cargo because the probability that a cargo is carried by 6 or more 

kinesins is negligible (<0.006%) over the range of mean kinesins examined in this study. 

Each probability 𝑃𝑘 was determined as the fraction of simulated cargos carried by 𝑘 

kinesins. This approach accounts for stochasticity inherent in simulations of statistical 

ensembles; the resulting 𝑃𝑘 values are in good agreement with those expected from Poisson 

distributions (data not shown). The value of each fitting parameter 𝑑𝑘 was constrained to 

be within one SEM of the mean run length of cargos carried by a well-defined 𝑘 number 

of kinesins (section 2.2.2). This approach accounts for stochasticity inherent in run-length 

simulations in section 2.1. The resulting best-fit determines the ensemble-averaged cargo 

run length, ∑ 𝑃𝑘 ∙ 𝑑𝑘
5
𝑘=1 . The associated SEM was determined via a bootstrap method [98]. 

 

4.4 Results 

4.4.1 A fractional increase in mean kinesin number enhances the 

ensemble-averaged cargo run length 

We first carried out run-length simulations using the commonly reported values for 

single-kinesin on-rate (5 s-1 [67, 93]) and unloaded off-rate (0.8 s-1 [34]). Our simulations 

utilized a solution viscosity of water (1 mPa·s), capturing the lower limit of cytoplasmic 
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viscosity [74, 77, 79, 94]. Under these conditions, we previously showed that load arising 

from cargo diffusion shortens single-kinesin runs from the unloaded value of 1 µm to 0.8 

µm [76]. 

We found that the ensemble average of cargo runs substantially lengthened as the 

mean number of kinesins on the cargo fractionally increased from one (Figure 4.1). For 

cargos carried by a single motor (0% with ≥2 kinesins, Figure 4.1(A)), the run-length 

distribution was well described by a single exponential fit (Figure 4.1(B) and (C)), with a 

mean that was in excellent agreement with our prior work (0.80±0.04 µm, Figure 4.1(B), 

inset; compare with 0.8 µm in [76]). As we increased the fraction of cargos with ≥2 kinesins 

(5-25%, Figure 4.1(A)), the run-length distributions shifted toward longer runs (Figure 

1(b)), were well-described by a weighted sum of several exponentials (Equation (4.3); solid 

lines, figure 4.1(C)), and deviated from a single-exponential fit (grey lines, Figure 1(C)). 

These changes in run-length distributions are consistent with increases in the mean number 

of kinesins for the cargo population [140, 141]. The reduction in run length due to cargo 

diffusion was mitigated when the fraction of cargos with ≥2 kinesins increased to a modest 

10%, with the ensemble-averaged cargo run length returning to the unloaded single- 

kinesin value (1.07±0.08 µm, Figure 4.1(B), inset). Overall, the ensemble-averaged cargo 

run length increased by 1.9-fold (±0.2) as the fraction of cargos carried by ≥2 kinesins 

increased from 0% to 25% (Figure 4.1(B), inset). 
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Figure 4.1: The ensemble-averaged cargo run length increases as the fraction of 

cargos with ≥2 kinesins increases. Simulations were carried out using an on-rate of 

5 s-1 and an unloaded off-rate of 0.8 s-1 for a single kinesin, and a solution viscosity 

of 1 mPa·s. (A) Fraction of motile cargos carried by the indicated number of 

kinesins, for mean kinesin numbers between 1.0 and 1.3. Grey regions indicate the 
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fraction of cargos with ≥2 kinesins. (B) Cumulative frequency distributions of 

cargo run length, for the four distributions of kinesin numbers in (A). Dashed lines 

indicate best-fit to a single exponential (0% with ≥2 kinesins) or a weighted sum 

of several exponentials (Equation (4.4)) (5, 15, 25%). N = 1000 for each 

distribution. Inset: Mean run length of single-kinesin cargos (0% with ≥2 kinesins) 

and ensemble-averaged run length of cargos with contributions from ≥2 kinesins 

(5, 15, and 25%). Error bars indicate SEM. N = 5000 for each simulation condition 

in the inset. (C) Residuals of fits from (B). Grey solid lines indicate deviations from 

a single-exponential fit (5, 10, 25%). 

 

4.4.2 A fractional increase in mean kinesin number amplifies the impact 

of single-motor alterations on run length 

We next examined how changes in single-kinesin binding and unbinding kinetics 

impact the ensemble-averaged cargo run length. To allow direct comparison with the 

simulations in Figure 4.1, we carried out this set of simulations at the same solution 

viscosity (1 mPa·s). We varied the single-kinesin on-rate between 1 s-1 and 8 s-1 and the 

unloaded off-rate between 0.5 s-1 and 1.6 s-1, guided by how these single-motor rates are 

altered by cellular factors such as microtubule-associated proteins [50-52, 54, 137-139]. 

The run-length increase that we observed in Figure 4.1 was general over a wide 

parameter space of single-motor on-rates and off-rates (Figure 4.2). For each rate 

combination, the larger the fraction of cargos with ≥2 kinesins, the greater the increase in 

the ensemble-averaged cargo run length over that of single-kinesin cargos (Figure 4.2(A)). 

Moreover, the sensitivity of cargo run length to these rate changes was amplified by the 

fraction of cargos carried by ≥2 kinesins (Figure 4.2(B)). For example, over an 8-fold 

change in the single-kinesin on-rate and a 3-fold change in its unloaded off-rate, the run-

length increase remained largely constant when only a limited fraction of cargos was 

carried by ≥2 kinesins (Figure 4.2(B), left). In contrast, the run-length increase was strongly 

sensitive to changes in single-motor on- and off-rates when the fraction of cargos with ≥2 

kinesins increased to 25% (Figure 4.2(B), right). 



44 

 

 

Figure 4.2: The impact of single-motor alterations on the ensemble-averaged cargo 

run length is amplified by the fraction of cargos carried by ≥2 kinesins. Simulations 

were carried out using a solution viscosity of 1 mPa·s. Fold-increase in ensemble-

averaged run length is determined relative to the mean run length of single-kinesin 

cargos. (A) Fold-increase in run length as a function of the single-kinesin on-rate 

and the fraction of cargos carried by ≥2 kinesins, evaluated for three unloaded off-

rates of a single kinesin. N = 5000 for each simulation condition. (B) Fold-increase 

in ensemble-averaged run length from (A), replotted as a function of single-kinesin 

on-rate, for three fractions of cargos with ≥2 motors and three unloaded off-rates 

of the single kinesin. Shaded regions indicate SEM.  
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4.4.3 Solution viscosity can enhance the effects of mean kinesin number 

on run length 

We next explored whether our findings in Figures 4.1 and 4.2 are sensitive to 

changes in solution viscosity. Thus far, our simulations were conducted at the viscosity of 

water. In contrast, cytoplasmic viscosities can be up to ~300-fold higher than that of water 

[76]. We previously showed that, due to the interplay between cargo diffusion and viscous 

drag, the run length of cargos carried by a single kinesin varies non-monotonically with 

solution viscosity [76]. 

We found that the effects of kinesin number on run length (Figures 4.1 and 4.2) can 

increase as solution viscosity increased over the range reported for cells (Figure 4.3). As in 

our previous work [76], here we observed a non-monotonic effect of viscosity on the run 

length of single-kinesin cargos (dashed line, Figure 4.3(A)). This non-monotonic variation 

in run length persisted for mixed ensembles of cargos (5-25% with ≥2 kinesins, Figure 

4.3(A)). For each solution viscosity tested, the ensemble-averaged cargo run length 

increased as the mean number of kinesins on the cargo increased fractionally from one. 

This run-length increase was sensitive to both solution viscosity and single-kinesin 

characteristics, for example remaining constant for a combination of 5 s-1 on-rate and 0.8 

s-1 unloaded off-rate (grey scatter, Figure 4.3(B)), but increasing at higher viscosity for a 

combination of 8 s-1 on-rate and 0.5 s-1 unloaded off-rate (open scatter, Figure 4.3(B)). 

These effects were again amplified by the fraction of cargos carried by ≥2 kinesins (Figure 

3(B)). 
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Figure 4.3: Solution viscosity can enhance the effects of kinesin motor number on 

run length. (A) Ensemble-averaged cargo run length as a function of solution 

viscosity, for three fractions of cargos with ≥2 kinesins. Simulations were carried 

out using an on-rate of 5 s-1 and an unloaded off-rate of 0.8 s-1 for a single kinesin. 

Shaded regions indicate SEM. N = 5000 for each simulation condition. (B) Fold-

increase in the ensemble-averaged run length as a function of solution viscosity, 

for three fractions of cargos with ≥2 kinesins and three combinations of single-

kinesin on-rate and unloaded off-rate. Fold-increase in run length is determined 

relative to the run length of cargos carried by a single motor. Shaded regions 

indicate SEM. N = 5000 for each simulation condition. 
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Figure 4.4: Mean run lengths of cargos carried by exactly 1, 2, 3, 4, or 5 kinesins, 

evaluated for four on-rates and three unloaded off-rates of a single kinesin. (A) 

Simulation results from the current study. Simulations were carried out using a 

solution viscosity of 1 mPa·s. Error bars indicate SEM. N = 5000 for each 

simulation condition. (B) Analytical calculations developed by Klumpp et al. [142] 

describing the mean run length of cargos carried by exactly N motors as 
𝑣

𝜀
[1 + ∑ ∏

(𝑁−𝑖)𝜋𝑎𝑑

(𝑖+1)𝜀

𝑛
𝑖=1

𝑁−1
𝑛=1 ], where 𝑣 = 0.8 µm/s is the single-kinesin velocity, 𝜀 is 

the motor’s unloaded off-rate, and 𝜋𝑎𝑑 is the motor’s on-rate. We verified that the 

mean cargo run lengths from our simulations in panel (A), which included intra-

motor strain that hinder motor cooperativity, are substantially shorter than those 

determined from analytical calculations that do not consider intra-motor strain 

[142] in panel (B). Mean run lengths in (A) were used to determine the ensemble-

averaged run length of mixed cargo populations in Figures 4.1-3 in the main text. 

 



48 

 

 

Figure 4.5: Run lengths of cargos carried by exactly 1, 2, 3, 4, or 5 kinesins. 

Simulations were carried out using an on-rate of 5 s-1 and an unloaded off-rate of 

0.8 s-1 for a single kinesin, and a solution viscosity of 1 mPa·s. (A) Cumulative 

frequency distributions of cargo run length, for five defined kinesin numbers. For 

reference, run-length distributions for mixed ensembles of cargos are replotted 

from Figure 4.1(B) in the main text (5, 15, and 25% cargos). Dashed lines indicate 

best-fit to a single exponential (1, 2, 3, 4, or 5 kinesins) or a weighted sum of 

several exponentials (Equation (4.4) in the main text) (5, 15, 25% cargos). N = 

1000 for each distribution. (B) Mean cargo run length, for five defined kinesin 

numbers. For reference, the ensemble-averaged run lengths of cargos with 

contributions from ≥2 kinesins (5, 15, and 25% cargos) are replotted from Figure 

4.1(B) in the main text. Error bars indicate SEM. N = 5000 for each simulation 

condition. 
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Figure 4.6: The impact of single-motor alterations on mean run length, for cargos 

carried by exactly 2, 3, 4, or 5 kinesins. Simulations were carried out using a 

solution viscosity of 1 mPa·s. Single-kinesin on-rates and unloaded off-rates are as 

indicated. Fold-increase in run length is determined relative to the mean run length 

of single-kinesin cargos. Error bars indicate SEM. N = 5000 for each simulation 

condition. 
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Figure 4.7: The impact of solution viscosity on mean run length, for cargos carried 

by exactly 1, 2, 3, 4, or 5 kinesins. (A) Mean cargo run length as a function of 

solution viscosity, for five defined kinesin numbers. For reference, ensemble-

averaged run lengths of mixed cargo populations (5%, 15%, 25% with ≥2 kinesins) 

are replotted from Figure 4.3 (A) in the main text. Simulations were carried out 
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using an on-rate of 5 s-1 and an unloaded off-rate of 0.8 s-1 for a single kinesin. 

Shaded regions indicate SEM. N = 5000 for each simulation condition. (B) Fold-

increase in the mean run length of cargos as a function of solution viscosity, for 

four defined kinesin numbers and three combinations of single-kinesin on-rate and 

unloaded off-rate. Fold-increase in run length is determined relative to the mean 

run length of cargos carried by a single motor. Error bars indicate SEM. N = 5000 

for each simulation condition. 

 

4.5 Discussion 

Here we present in silico evidence that mean kinesin number is an important and 

sensitive tuning parameter for the ensemble-averaged distance that cargos travel in 

biological cells. Compared to the single-motor case, a fractional changes in mean kinesin 

number enhances both the ensemble average of cargo run length and its sensitivity to 

single-kinesin alterations (Figures 4.1 and 4.2). Thus, although kinesin is thought to 

function non-cooperatively [63, 118], our study indicates that a modest change in mean 

kinesin number can have important ramifications for the motility of mixed ensembles of 

cargos, which reflects the biological scenario. We found that the effects of kinesin number 

on cargo run length can be further enhanced over the range of solution viscosities reported 

for living cells (Figure 4.3). 

Our results may be understood by considering the interplay between the 

microtubule-binding and -unbinding kinetics of individual kinesins. The load-dependent 

off-rate of kinesin [29, 30] limits cooperative function in an ensemble. However, because 

the on-rate of the motor can be several-fold faster than the unloaded off-rate (5 s-1 [67, 93] 

versus 0.8 s-1 [34]), the presence of an additional motor increases the probability that the 

cargo remains tethered to the microtubule, thereby lengthening the run without necessarily 

contributing to the number of kinesins simultaneously driving motility. Thus, under 

otherwise identical conditions, the faster the on-rate of the motor, the longer the individual 

runs of cargos carried by ≥2 kinesins, and the greater the ensemble-averaged run length of 

the cargo population. Our results in Figure 4.2 capture this interplay. 

The effects of viscosity (Figure 4.3) further highlight the interplay between 

kinesin’s binding and unbinding kinetics. Solution viscosity imposes load on the cargo and 

increases the off-rate of kinesin carrying the cargo [76, 143]. The presence of additional 

motors on the cargo can reduce the impact of viscous load on kinesin’s off-rate by enabling 

load sharing between kinesins [65]. The higher the solution viscosity and/or fraction of 

cargos carried by ≥2 kinesins, the more effective load sharing can be, and the larger the 

contribution that each additional motor can make to run length. These effects are 

pronounced when kinesin’s on-rate is substantially faster than its off-rate, enabling the load 

sharing that can only take place between motors simultaneously driving motility. 
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Taken together, we anticipate that the effects uncovered here will have rich 

implications for delineating the motility of cellular cargos. In particular, because cellular 

factors impact kinesin function on the single-molecule level, quantitative insights into how 

these single-kinesin alterations combine with the biological range of kinesin number are 

critical for predictive understanding of motility and its regulation in cells. The range of 

tuning by kinesin number will likely expand as we learn more about the regulation of 

single-molecule characteristics, including the microtubule binding and unbinding kinetics 

of the kinesin motor highlighted here. 
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Chapter 5 Force-dependent kinesin detachment critically influences 

the effect of cargo-mediated motor interactions on cargo velocity  

 

5.1 Background 

Kinesin-1 is a key microtubule-based motor that drives the long-range delivery of 

cargos in cells [6, 7, 44]. Cargo transport is critical for eukaryotic cell function and survival, 

as dysfunctions in this process are linked to human diseases, including neurodegeneration 

[11, 12]. Cargo velocity is an important factor governing timely cargo delivery. For cargos 

transported by a single motor, research has demonstrated which factors (such as forces on 

the motor) impact cargo velocity [29, 33, 95]. However, we still lack a complete 

understanding of the factors that influence the velocity of cargos transported by more than 

one motor.  

In cells, individual vesicular cargos are often transported by a small team of 

molecular motors [44, 75]. Up until recently, the velocity of cargos transported by multiple 

motors was largely thought to reflect the single motor velocity [63, 130, 144]. However, 

recent evidence has emerged suggesting non-linearity in the team motor velocity may arise 

in multi-motor transport under certain conditions [53, 65, 66, 82, 131, 145, 146]. Force-

based interactions, mediated through the cargo, among the motors are likely a critical factor 

underlying non-linearity in the team motor velocity. During transport the motors step 

asynchronously and can get separated along the microtubule, resulting in force-based 

interactions mediated through the cargo [118]. In cells, these force-based interactions are 

likely a frequent occurrence given the inherent heterogeneity in kinesins population [145]. 

Furthermore, multiple types of molecular motors may be active on any given cellular cargo, 

leading to force-based interaction between different types of motors [44]. Importantly, 

these force-based interactions make it likely that one of the motors will detach from the 

microtubule because the detachment rates of molecular motors increase with force [29, 30, 

147]. As one of these motors detach, the cargo will be pulled towards the remaining motor 

(cargo flop). It is conceivable that if these cargo flops occur frequently enough and with a 

preference for one direction, they could alter the average cargo velocity. Indeed, recent 

evidence has emerged that this may indeed be the case with macro-molecular crowding 

[66]. Cells are composed of macromolecules which may limit the available volume to 

molecular motors [148-153]. Recent efforts have begun to determine the impact of 

macromolecular crowding on molecular motors [106, 152, 154, 155]. A recent experiment 

showed that macromolecular crowding can increase the likelihood the leading motor will 

detach during force-based interactions (due to entropic forces in the crowded medium), 

potentially causing the cargo to flop back more frequently than it flops forward [66]. It has 

become clear the details of kinesins detachment kinetics critically influence the impact of 

cargo-mediated interactions among the motors on the cargo’s velocity.  
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In this work, we used Monte Carlo-based simulations to examine how the details 

of kinesin detachment kinetics and cargo-mediated motor interactions impact cargo 

velocity. For this purpose, we first captured the entropic effect of macromolecular crowding 

in our simulations by increasing the kinesin detachment rate for motors experiencing a 

hindering force [66]. In this scenario, we characterized the cargo velocity as the detachment 

rate increased for cargos transported by up to four motors (see Methods). Next, we 

examined how the separation between two motors carrying a single cargo impacts 

detachment events for the leading and lagging motors. Here, we examined changes in cargo 

position after a detachment event and the detachment frequency for leading and lagging 

motors. We then assessed the impact of heterogeneity in the single-motor velocity on cargo-

mediated motor interactions when one cargo is carried by two motors. Specifically, we 

examined how this heterogeneity impacts the cargo velocity. The single-motor detachment 

was varied to mimic non-crowded versus crowded. Finally, we assessed the effect of 

crowding when an external force biases the cargo position to be behind the central position 

of the motors, making it more likely for the motors to experience hindering forces. Overall, 

we found that the kinesin detachment kinetics indeed play a central role in how cargo-

mediated interactions impact cargo velocity. Additionally, for the first time, we directly 

capture how reductions in cargo velocity arise from an increased detachment frequency of 

the leading motor. Our findings here suggest that the velocity of vesicles in cells is sensitive 

to environmental factors inside the cell, which can modify the kinesin force-detachment 

rate or otherwise influence cargo-mediated interactions among the motors. 

 

5.2 Methods 

5.2.1 Monte Carlo-based simulations 

Kinesins simulations were as described in chapter 2.1 but with the following change 

to kinesins force detachment kinetics.  

We modeled kinesin’s force-dependent off-rate as an exponential function that is 

asymmetric for positive and negative forces [66]: 

𝜀(𝐹) = {
𝜀0 ∙ exp (

𝛿𝐻|𝐹|

𝑘𝐵𝑇
)  ,   𝐹 <  0

𝜀0 ∙ exp (
𝛿𝐴|𝐹|

𝑘𝐵𝑇
) ,   𝐹 > 0

    (5.1) 

where 𝜀0 is the unloaded off-rate and F is the force on the motor. Positive values of 

F indicate a force oriented in the direction of kinesin motion; negative values of F indicate 

a force oriented in the direction opposite to motor motion. F is given in units of pN. 𝑘𝐵𝑇 

is the thermal energy at room temperature (4.11 pN·nm). 𝛿𝐻 and 𝛿𝐴 are the characteristic 

distance between attached and unattached states under hindering and assisting loads, 

respectively. δH/δA was varied from 0.5 to 2 with 𝛿𝐴 = 2.0 nm [29, 32].  
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5.2.2 Analysis of cargo velocity 

We determined the velocity of an individual cargo by fitting the cargo position as a 

function of time. We determined the mean cargo velocity by fitting the cumulative 

distribution of each individual cargo velocity to a normal distribution:
1

2
(1 + 𝑒𝑟𝑓 ( 

𝑣 −𝑣𝑚

𝜎√2
 )), 

where 𝑣 is the cargo velocity, 𝑣𝑚 is the mean cargo velocity, and 𝜎 is the standard deviation 

of the cargo velocity.  

 

5.2.3 Analysis Motor detachment events 

For each detachment event in which two or more motors were attached to the cargo, 

we tracked the positions of the cargo and all motors at the time of detachment and the cargo 

position 5 ms after the detachment event. For two-motor cargos, we calculated the 

separation between the motors and the change in cargo position. We next calculated the 

frequency of detachment events for each motor separation depending on whether the 

detached motor was the leading or lagging motor. The detachment frequency was defined 

as the number of detachment events for a given motor separation (for leading vs. lagging 

detachments) divided by the total number of detachment events (including both leading 

and lagging motor detachments). The associated standard error of the mean (SEM) was 

determined via a bootstrap method [98]. 

 

5.3 Results 

5.3.1 Multi-motor cargo velocity is sensitive to the parameters of single-

motor detachment 

Here we examined how increasing a motor's detachment rate, for hindering forces, 

impacted the velocity of multi-motor cargos. In our simulations, we modeled the motor's 

force detachment rates using an exponential function (Equation 5.1). We assumed that all 

motors were identical and used a previously established force-velocity dependence for the 

motors (Equation 2.2). We simulated cargo runs for cargos carried by 1, 2, 3, or 4 motors 

and increased the motor's characteristic distance parameter in the hindering direction 

(Figure 5.1A, δH) such that from 0.6 to 4.0 nm, reflecting uncrowded and crowded 

conditions. We held the motor’s characteristic distance parameter in the assisting direction 

constant (Figure 5.1A, δH = 2 nm). Under these conditions, we determined the cumulative 

velocity distribution of the cargos and found the average cargo velocity (Figure 5.1B&C, 

see Methods).  
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Figure 5.1: Multi-motor cargo velocity is sensitive to the single-motor detachment 

rate. (A) Schematic: of a cargo-mediated interaction between two motors. Each 

motor experiences a force proportional to its stiffness (k) and how much the motor 

is stretched past its rest length (Lr = 40 nm). The force increases the motors 

detachment rate (ε), this increase depends on the thermal energy (kBT) and the 

motor’s characteristic distance, δH for motors leading the cargos and which δA. 

Note the simulations are in one-dimension, the schematic is shown in 2D for 

illustration purposes. (B) Mean cargo velocity as a function of δH/δA for cargos 
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carried by 1–4 motors. The single-motor velocity is 0.8 nm/s for all motors, and 

there are no external forces on the cargo. Error bars are the variance of the cargo 

velocity (see Methods). For each condition, 1000 cargo trajectories were simulated. 

 

We found that the velocity of multi-motor cargos decreased as δH increased (Figure 

5.1B&C). We first examined the cumulative distribution of the cargos velocity for each 

condition tested. For multi-motor cargos, increasing the δH shifted the velocity distribution 

towards the left, indicating a decrease in the average velocity of multi-motor cargos (Figure 

5.1B). The velocity distribution of cargos carried by one motor did not shift to the left, 

indicating no such reduction in the mean velocity (Figure 5.1B). We next found that the 

mean velocity of cargos carried by two motors decreased by 5% when δH/δA increased from 

0.5 to 2 (Figure 5.1B). The cargo velocity was lower than the single-motor velocity when 

δH/δA > 1 (Figure 5.1C). Over the same range of δH/δA, cargos carried by three or four 

motors exhibited a similar reduction in cargo velocity, 7% and 8%, respectively. In contrast, 

cargos carried by a single motor did not exhibit a slow-down as δH/δA increased from 0.5 

to 2. Thus, our data indicates that the velocity of cargos carried by two or more motors is 

sensitive to the single motor force-detachment rate. 

 

5.3.2 Single-motor detachment kinetics influence the detachment 

probability of the leading versus lagging motor 

We next examined how changes in the single-motor detachment rate impact 

detachment events of leading versus lagging motors for cargos carried by two motors. We 

hypothesized that increasing δH/δH would result in an increased frequency of detachment 

for leading motors versus lagging motors. For simplicity, we tested this hypothesis for 

cargos carried by two motors. We quantified two metrics of these detachment events to 

assess their impact on cargo velocity. First, we examined how the cargo position changes 

5 ms after a detachment event (cargo flop) as a function of the separation between two 

engaged motors. Next, we compared the fraction of detachment events for leading versus 

lagging motors as a function of separation between the two engaged motors. 

We found that the direction of cargo flops, but not their magnitude, depends on 

whether the leading or lagging motor detaches from the microtubule (Figure 5.2 top row). 

When the lagging motor detaches from the microtubule, the cargo position tends to increase 

(Figure 5.2, magenta top). Similarly, when the leading motor detaches from the cargo, the 

cargo position decreases (Figure 5.2, blue top). We found that the cargo flop magnitude is 

similar for leading versus lagging motor detachment events (Figure 5.2C, blue vs. 

magenta). We expected the cargo flop to be a direct result of the force on the cargo from 

the remaining motor. However, if this had been the case we would expect to see a sudden 

increase in the change in cargo position at a separation of 80 nm, corresponding to the 

motors being separated by twice their rest length. Instead, we see that the change in cargo 
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position increases at a constant rate with motor separation. This is consistent with the 

cargo’s average position changing from the midpoint between the two attached motors to 

the position of the remaining motor. We examined the change in cargo position after a 

detachment event for δH/δA = 0.5 and 2 and found no significant difference for either 

leading or lagging motor detachment events (Figure 5.2 top, square vs. circle points). 

Importantly, we found that when δH/δA < 1 the leading motor is more likely to detach 

from the microtubule than the lagging motor during force-based interactions. Two motors 

undergo forced-based interactions when they are separated by more than 80 nm because 

motors only experience a force when they are stretched passed their rest length. To quantify 

this, we considered the number of leading (or lagging) motor detachment events at a given 

motor separation divided by the total number of detachment events (detachment 

frequency). For a δH/δA = 0.5 force-based interactions were more likely to result in the 

lagging motor detaching (Figure 5.2A, bottom). For example, at a motor separation of 104 

nm, the frequency of lagging motor detachments was 0.05 while the frequency of leading 

motor detachments was 0.01. However, when δH/δA = 0.5 the leading motors were more 

likely to detach during force-based interactions (Figure 5.2B, bottom). For instance, at a 

separation of 104 nm, the frequency of leading motor detachments was 0.10, while the 

frequency of lagging motor detachments was 0.01. Thus, as δH/δA increases it becomes 

more likely the cargo will flop backward after a detachment event, which is consistent with 

the decrease average velocity of the cargo over the same range.  
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Figure 5.2: Single-motor detachment kinetics influence the probability that the 

leading versus lagging motor will detach from the microtubule. (A) Average 

change in cargo position 5 ms (top) after a detachment event for lagging (magenta) 

and leading (blue) motor detachment with δH/δA = 0.5. Fraction of detachment 

events (bottom) for a given motor separation with δH/δA = 0.5. (B) Average change 

in cargo position 5 ms (top) after a detachment event for lagging (magenta) and 

leading (blue) motor detachment with δH/δA = 1 Fraction of detachment events 

(bottom) for a given motor separation with δH/δA = 1. Error bars were calculated 

using bootstrapping (Methods). Cargos were carried by two motors and had the 

same unloaded single-motor velocity (0.8 μm/s). For each condition, 1000 cargo 

trajectories were simulated. 

 

5.3.3 Heterogeneity in single-motor velocity increases the sensitivity of 

cargo velocity to single-motor detachment kinetics 

In Sections 4.2.1 and 4.2.2, we examined cargos transported by motors with the 

same single-motor velocity; however, in vivo, variations arise among motors [145]. 

Variations in the single motor velocity will increase the frequency of force-based 

interaction. Thus, we examined how heterogeneity in single-motor velocities impacts the 

velocity of cargos carried by multiple motors. We hypothesized that when δH is high, as in 
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crowded conditions, heterogeneity would lead to a greater reduction in cargo velocity than 

that experienced by cargos carried by motors with the same velocity. To test our hypothesis, 

we simulated cargos carried by two motors, with each motor’s velocity being randomly 

drawn from a normal distribution with a standard deviation (Δv) ranging from 0 to 0.2 

µm/s. For each velocity distribution, we determined the average cargo velocity as a 

function of δH.  

We found that increasing the standard deviation in the motor velocity (Δv) led to a 

larger decrease in cargo velocity compared with the change observed for a homogeneous 

population of motors (Figure 5.3A). For a low value of δH/δA < 1, the average cargo velocity 

equals the average single-motor velocity for both heterogeneous and homogeneous 

populations of motors. As δH/δA increased, the cargo velocity fell below the single-motor 

velocity for each Δv examined here; however, there was a greater reduction in cargo 

velocity for a heterogeneous population of motors. For example, for δH/δA = 2, a standard 

deviation of 0 µm/s in the single-motor velocity led to a decrease of 5% in the cargo 

velocity while a standard deviation of 0.2 µm/s led to a 12% decrease in the cargo velocity.  

We found heterogeneity in kinesin's single motor velocity increased the frequency 

of force-based interactions between the motors, further increasing the frequency of leading 

motor detachment events (Figure 5.3B). As we increased Δv, the frequency of motors that 

detached with a separation of less than 80 nm (not undergoing forced-based interactions) 

decreased for all values of δH tested (Figure 5.3B). For example, at δH/δA = 0.5 and a motor 

separation of 8 nm, the combined frequency of leading and lagging motor detachment 

events decreased from 0.08 to 0.05 when Δv increased from 0 to 0.2 μm/s. This corresponds 

to an increase in the frequency of motors detaching during force-based interactions. When 

δH/δA > 1there was a larger increase in detachment frequency for leading motors than for 

lagging motors, as Δv increased (Figure 5.3B, left column). Thus, there was both an 

increase in the frequency of force-based interactions, as well as an increase in the frequency 

of flops that were backward (Figure 5.3B, left column). This is consistent with the greater 

slowdown we observed for a heterogeneous population of kinesin with δH/δA = 2 versus 

the homogeneous population of kinesin under the same conditions. 
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Figure 5.3: Heterogeneity in the single-motor velocity increases the sensitivity of 

cargo velocity to single-motor detachment kinetics. (A) Cargo velocity as a 

function of δH/δA for three standard deviations (Δ𝑣) in single-motor velocity. Error 

bars are the variance in cargo velocity. (B) Detachment fraction of leading (blue) 
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and lagging (magenta) motors for δH/δA = 0.5, 1, or 2 and Δ𝑣 = 0, 0.1, or 0.2 μm/s 

as a function of motor separation. In both (A) and (B), cargos were carried by two 

motors. For each condition, 1000 cargo trajectories were simulated. 

 

5.3.4 Low-to-moderate external forces on the cargo amplify the impact of 

crowding by increasing the frequency of leading motor detachment  

In cells, cargos are often subject to forces opposing their motion, such as drag on 

the cargo and other motors pulling the cargo in the opposite direction. Here we consider 

the impact of these external forces which cause the cargo position to be behind the central 

position of the motors. For motors separated on the microtubule, this change in cargo 

position will cause the hindering force on the leading motor to be greater than the assisting 

force on the lagging motor. We hypothesized that these forces would amplify the slow-

down caused by cellular crowding by increasing the frequency at which leading motors 

detach from the microtubule. Thus, we examined how low-to-moderate forces (0–1 pN) on 

the cargo impact the slow-down caused by leading motor detachments. For each external 

force tested, we determined the average velocity of cargos carried by two motors as δH/δA 

increased from 0.5 to 2 (Figure 5.4A).  

We found that increasing δH/δA resulted in a greater slow-down when the cargo was 

subjected to an external load (Figure 5.4A). Consistent with previous findings, when δH/δA 

> 1, the cargo velocity decreased as the load on the cargo increased. As we increased δH/δA, 

we found that the velocity of cargos subject to an external load was more sensitive to δH/δA 

than cargos without an external force. For example, for an external force of 0.5 pN, the 

cargo velocity decreased by 7% as δH/δA increased from 0.5 to 1. In contrast, for an external 

force of 0 pN, the cargo velocity decreased by only 5% as δH/δA increased from 1 to 2. 

We found that the decrease in velocity was associated with a further increase in the 

frequency of leading motor detachments versus when no force was present (Figure 5.4B, 

top versus bottom 2 rows). Further, this increase included motors not undergoing force-

based interactions as δH/δA was increased from 0.5 to 1 (Figure 5.4B, bottom 2 rows). 

Indicating an increase in motors under hindering forces due to the load on the cargo. 
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Figure 5.4: Low-to-moderate forces on the cargo amplify the impact of crowding 

by increasing the frequency of leading motor detachment. (A) Cargo velocity as a 

function of δH/δA for four external forces (F) on the cargo. Error bars are the 

variance in cargo velocity. (B) Frequency of leading (blue) and lagging (magenta) 
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motor detachments for δH/δA = 0.5, 1, or 2 and F = 0.1, 0.5, or 1.0 pN. In both (A) 

and (B), cargos were carried by two motors and had the same unloaded single-

motor velocity (0.8 μm/s). For each condition, 1000 cargo trajectories were 

simulated.  

 

5.4 Discussion 

Here, we have presented in silico evidence that the force-based detachment rates of 

kinesin is an important and sensitive tuning parameter influencing the velocity of cargos 

transported by multiple motors in a cell. In contrast to the velocity of cargos transported by 

a single motor, the velocity of cargos transported by multiple motors is sensitive to 

alterations in kinesin’s force-dependent detachment rate. Specifically, we found that when 

the motors are more likely to detach under hindering forces than assisting forces, the cargos 

velocity slows down when compared with the single motor velocity under identical 

conditions. This discrepancy in the team motor velocity and the single motor velocity arises 

because of force-based interactions between the motors as they become separated along 

the microtubule. When motors are more likely to detach under hindering loads the cargo 

will flop backward more often than it will flop forwards reducing the average velocity of 

the cargo. Furthermore, we found heterogeneity in the single motor velocity increased the 

occurrence of these detachment events amplifying the slowdown in cargo velocity. We also 

found that external forces, opposing the motion of the cargo, can amplify the slowdown 

because the cargo will on average be behind the central position of the motors.  

In part, our study aimed to capture the slowdown in the cargos average velocity 

from macromolecular crowding by including the increased force-detachment rate under 

hindering load observed in experiments. While our simulations did confirm that the cargo 

does indeed slow down under these conditions due to the cargo flopping backward, our 

simulations did not capture the magnitude of the slowdown observed in experiments. Our 

simulations found a slowdown of 12% of the single motor velocity (with crowding and 

heterogeneity in single motor velocity) while the experiments indicate a 28% slowdown 

[14]. A slight external load, which has a negligible impact on the single motor velocity was 

not enough to account for this difference. Thus, our study suggests that the change in the 

detachment rate of the motors is an important factor in explaining the slowdown from 

macromolecular crowding, but it is likely not the only important factor. 

Taken together our findings provide strong evidence that cellular factors that alter 

the details of force-dependent kinesin detachment can substantially influence the velocity 

of cellular cargos. More generally our study adds to the mounting evidence of the 

importance of force-based interactions on the transport of cargos by multiple motors [9, 

14, 15, 20]. Factors impacting either the frequency of force-based interaction or their 

outcome, are likely to impact the velocity of multi-motor cargos. For instance, cellular 

cargos are enclosed in a lipid membrane, recent work suggests that this membrane might 

delay force-based interactions leading to an increase in cargo velocity [15]. Further, the 
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frequency of force-based interactions could be impacted by microtubule-associated 

proteins which can impact the rate motors bind to the microtubule [13, 48-51]. Overall, our 

study suggests that understanding the details of force-based interaction and the factors that 

impact them, such as kinesins force detachment kinetics, may provide rich insight into the 

velocity of cellular cargos transported by small teams of motors. 
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Chapter 6 Future direction/conclusion 

 

The primary driving factor behind my research has been understanding how 

kinesin's single motor detachment kinetics impacts the transport of its cargo. In my first 

project, I examined the interplay between cargo diffusion and the motor's force-based 

detachment kinetics over a large parameter space of viscosities and cargo sizes. I found 

that at low viscous drag, there is a shoring of the cargo’s run length leading to a non-

monotonic response to viscosity. In my second project, I explored, how the fractional 

changes in the number of motors on the cargo can change the impact. I found that these 

changes are highly sensitive to both the motor's detachment rate and the on rate of the 

motors. Finally, I explored how the motor’s force detachment kinetics can impact the 

cargo's velocity. I found that, for cargos carried by more than one motor, the asymmetric 

detachment kinetics can have a significant impact on the cargo's velocity. For example, if 

the motors are more sensitive to hindering loads, this can slow the cargo's velocity 

significantly. This effect is greatly amplified by heterogeneity in the motor’s unloaded 

velocity.   

Overall, my work has indicated that single motor detachment kinetics may play a 

central role in regulating cargo transport in cells. However, we are still learning more about 

the detachment kinetics of molecular motors, and how they are impacted by cellular 

conditions. For example, kinesin’s detachment rates in the hindering direction are increased 

by macromolecular crowding [66]. Another study indicates that the vertical component of 

the detachment kinetics may be import.  

Future work could incorporate these new findings into the simulations and explore 

how they impact transport dynamics. Another possibility direction to go with these 

simulations is to explore the role of detachment kinetics in regulating the transport of 

cargos with different types of motors. For example, cargos that are transported by both 

kinesin and dynein. An emphasis could be placed on how changes in environmental factors 

influence the direction of the cargos motion.  
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Chapter 7 Educational Guide 

 

Mentoring undergraduate students has been a major part of my PhD experience. As 

such I would like to write a guide to introduce students to performing simulation-based 

research. My goal is for this guide to be useful for either a student first getting into research 

or someone mentoring a student in research.  

In this guide, I will start with an introduction to python. Here I will start with setting 

up python, and then cover enough about python for a student to get started with a simulation 

project. Next, introduce the idea of simulations to students including starting with dynamic 

simulations for a deterministic system. I will then move on to cover simulating non-

deterministic systems using stochastic and Monte-Carlo simulations.  

 

7.1 Introduction to python 

Here I give a comprehensive introduction to python. First, I will go over installing 

python and then get into a few of the basics such as using python as a simple calculator. I 

will discuss how we can expand pythons’ capabilities by importing a library. Then I will 

cover a few data types in python along with a few basic operators. Next, I will discuss how 

we can store value in a variable. Finally, I will cover some more intermediate topics such 

as conditional statements, arrays, loops, and functions.    

 

7.1.1 Installing python 

There are many ways we can set up python on our own computers. I believe the 

most useful is using what is called the anaconda framework. Not only does this give us 

python but it gives us several useful tools along with python. We won’t use them all, but 

there are several we will use, so it saves us from needing to install them all separately.  

To install anaconda all we need to do is go to https://www.anaconda.com/ and click 

the download link. If prompted select the appropriate system (windows, macintosh, or 

linux). Once downloaded open the link and follow the installation prompts. I would 

recommend sticking with all recommended settings.  

Anaconda will install several programs along with python, we will use the one 

called Spyder to use python. To open Spyder you can search for it on your computer, you 

might want to set up a shortcut to it.    

https://www.anaconda.com/
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7.1.2 Using Spyder  

Spyder is what is called an integrated development environment (IDE). It provides 

a nice user interface for writing and running python code. Strictly speaking, we don’t need 

this to use python, but it will make our lives simpler to use it.  

Spyder has three panels. On the left we have the text editor; this is where we can 

write code that we can save for later use. On the bottom right is the console, this is where 

we can input code for immediate execution. On the upper right is where we can view 

various pieces of information as indicated by the tabs at the bottom of this panel. For 

example, this is where we can view plots.   

 

7.1.3 Python as a simple calculator 

To get started we will use the console on the bottom right. Let’s start with a basic 

calculation such as 5+5. On the line that has “In [1]:” immediately following the colon. We 

can then press enter to execute it and get the expected value of 10. Now I would suggest 

trying out a few more complex expressions. At this point the console supports a few of the 

basic operations we are familiar with (addition, subtraction, multiplication, and division, 

and exponents). Notably we input exponents using “**” We can also use parenthesis to 

make more complex statements (see below).  

 

In [2]: 5**2 

Out [2]: 25 

 

As you were trying out the trying out the console, you may have tried to use a 

function you know from math such as the sin function. If you did you will have gotten an 

error. This is because by default python only has a small set of things it knows how to do. 

So, if we want to use this function we need to import it from a library of functions. There 

are a few ways we can do this, here I will go over the easiest to understand. When I talk 

about python code files (7.1.5) I will introduce another approach.   

The first way is to make an import statement that allows us to use the function 

directly. In the example below I am first importing the sin function from the NumPy library 

(this is a library we will use frequently). We also imported the value of π from the same 

library. We can see the value of π by typing pi into the console (as shown below). Next, we 

evaluate the sin(π) (note that the sin function assumes an input in radians). You were likely 
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expecting a value of 0, though we get a value extremely close to zero we are not getting 

exactly zero. This has to do with how the computer represents number which have decimal 

points, which I will not go into here. But if you are interested, you can look into what are 

called floating point numbers.        

 

In [6]: from numpy import sin, pi 

 

In [7]: pi 

Out [7]: 3.141592653589793 

 

In [8]: sin(pi) 

Out [8]: 1.2246467991473532e-16 

 

7.1.4 Types 

We have already seen that we can use numbers in python. There are two types of 

numbers. The first is numbers that have decimal points (floating point numbers) and the 

other is integers. Python is reasonably forgiving about switching between these types of 

numbers, so I won’t go into any of the nuances here. But this is something to watch out for, 

especially if you decide to program in another programming language such as java or c. 

The different types of numbers are two examples of what are called data types. Python has 

other data types as well.  

In addition to the two already covered, we will use strings, Boolean, and lists. 

Strings are a data type the represents text. One common way we will use this data type is 

for keeping track of file and folder names. These values are entered as inside quotation 

marks. Boolean is a data type that can only have True or False. This will be useful to decide 

whether we take a certain action or not. And finally, lists are exactly as their name implies 

a list of values (which can be any of the data types mentioned). There are other data types 

that we won’t be using such as complex numbers.  

Each of these data types has operations associated with it. The Boolean type has 

four operators associated with it: comparison (multiple), not, and, and or. The comparison 

operators compares two values and outputs a Boolean value. For example, to check if two 

values are the same, we would use two equal signs (==). We can also compare if something 

is less than (<), greater than (>), less than or equal (<=), or greater than or equal (>=). These 

two inputs don’t need to be Boolean values. The not operator, takes a Boolean value and 

changes it to the opposite value. And takes in two Boolean values and outputs True if they 

are both True, otherwise it outputs False. Or takes in two Boolean values and outputs True 

if either one is True, otherwise it outputs Fales. Using the console to help, I suggest making 

a table for both and and or operations containing all four possible inputs for each. Some 
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examples with Boolean operations are shown below. We will return to dealing with strings 

and lists latter.  

 

7.1.6 Variables  

We can also have python store information for use. There are several reasons we 

might want to do this. First, it can make our code easier to read if we use given values 

relevant names. For instance, consider the value π, we all know that this represents a very 

specific number that shows up all over the place. Similarly in code if we want to use the 

same value in multiple locations it is cleaner to give that value a name. This is also useful 

for setting initial parameters before running our code (see 7.1.5). We might also want to 

store the output of some operations for later use. Finally, we might not even know the value 

ahead of time, the value might be read from a file or input by the user. 

Storing values into a variable is straight forward, we just use the equal symbol we 

use the equal symbol with the variable name to the left and the value to be stored on the 

right.  In the example below x is given a value of 3, and why is the assigned the outcome 

of the expression 4**2. Next, we multiply x by 2 adding the result to y, and store the result 

in z. Finally, we print the result to the console using the print statement. Print is a function 

we will use all the time, which prints its input to the console. This will be useful latter on 

when we aren’t running our code in the console.  

 

In [16]: y = 4**2 

In [17]: z = 2*x + y 

In [18]: print(z) 

22 

 

7.1.5 Python code files 

So far, we have just been entering code in the console and having each input 

statement executed immediately. However, our ultimate goal is to have code that we can 

execute multiple times and often with different starting values. To do this we will want to 

write our code in a file and have python execute that code line by line.  

To see how this can be useful, imagine we are conduction an experiment to measure 

the period of an oscillating spring with a mass attached to it. We are given its spring 

constant and mass, so we can calculate a theoretical value. We measure the time it takes to 

complete 10 oscillations, allowing use to compute an experimental value for the period. 
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Finally, we can compute the percent error in the period, using the theoretical and 

experimental values of the period.   

Below I have included some sample code that does exactly this, with its console 

output below it. This code would be typed in the left panel of Spyder. To run the code, you 

will press the large green arrow about it. The output will then appear in the console.  

 

import numpy as np 

 

# our input values 

mass = 0.15; # (kg) 

k_spring = 3; # (N/m) 

 

t_measured = 14.5 

num_osc = 10; 

 

T_theory = 2*np.pi*np.sqrt(mass/k_spring); # (s) 

T_exp = t_measured/num_osc 

 

p_error = 100*(T_exp - T_theory)/T_theory 

 

print("Experimental Period:", T_exp, "s"); 

print("Theoretical Period:", np.round(T_theory,2), "s"); 

print("Percent Error:", np.round(p_error,2), "%") 

 

Experimental Period: 1.45 s 

Theoretical Period: 1.4 s 

Percent Error: 3.21 % 

 

In this code start by importing the numpy library. Notice that instead of importing 

individual items, I have imported the entire library. At the end of the import statement I 

have included the as np, this allows me to create a shorthand for numpy so now instead of 

typing numpy every time I want to access the library, I can just type np. So, to access the 

value of π, I would type np.pi.  Next, I set up all of my input values. I then calculate the 

theoretical and experimental periods. After that, I use those values to calculate the percent 

error. Finally, I print out all the results to the console. Notice, I can give the print statement 

multiple values all separated by commas. In the last two print statements, I round the values 

to keep the output clean.  
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7.1.7 Conditional statements 

Often, we want to do something only under a specific condition. For instance, 

continuing from our previous example, we might want our program to warn us if the 

percent error is too large. Otherwise, we just print our output as usual. To do this we will 

use if else statements. In the if statement we evaluate a condition and execute a set of 

statements if the condition is True. We can also chain multiple conditions using the else if 

statements.  

Below I have modified our previous example to check if the percent error is a bit 

high or very high. I set two thresholds for these error_mid and error_high. Before printing 

the value of the percent error, I check if it is above either of these values. If it is I modify 

the enter a matching conditional statement. Notice at the end of the line for the if, elif, and 

else statements there is a colon. The statements to be executed under that condition are 

indented. This will also be the case for functions and loops.  

 

import numpy as np 

 

# our input values 

error_mid = 5; 

error_high = 10; 

 

mass = 0.15; # (kg) 

k_spring = 3; # (N/m) 

 

t_measured = 15 

num_osc = 10; 

 

T_theory = 2*np.pi*np.sqrt(mass/k_spring); # (s) 

T_exp = t_measured/num_osc 

 

p_error = 100*(T_exp - T_theory)/T_theory 

 

print("Experimental Period:", T_exp, "s"); 

print("Theoretical Period:", np.round(T_theory,2), "s"); 

if p_error >= error_high: 

  print("Double check your measurements.") 

  print("The percent error is very high: ", np.round(p_error,2), "%") 

elif p_error >= error_mid: 

  print("The percent error is a bit high: ",  np.round(p_error,2), "%") 

else: 

  print("Percent Error:", np.round(p_error,2), "%") 

 

Experimental Period: 1.5 s 

Theoretical Period: 1.4 s 

The percent error is a bit high: 6.76 % 
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7.1.6 Functions 

Often when we have a calculation, we don’t want to include the details of the 

calculation in our main code. To hide the details, we can use functions. We might also make 

a function if we are going to reuse a bit of code often. For example, we might be doing 

many experiments and need to calculate the percent error in each experiment. In that case, 

it might make sense to move this into a function. We have two choices as to where we can 

put the function at the top of the file (before it gets used), or in a new file. I will demonstrate 

putting it in a new file. 

In this example, I will put this function in a file called “Experimental_analysis.py”. 

the other file (“Spring_experiment.py”) will be in the same folder. Below I show each of 

these in the order mentioned.  

Notice that to define the function we used the key word def, we then have the name 

of the function (which we choose), then in parentheses, we list all the inputs and then end 

the line with a colon. Note inputs are not required, in that case, we will just have an empty 

set of parentheses.   

 

def percentError(T_exp, T_theory): 

   return 100*(T_exp - T_theory)/T_theory;  

 

#using the function 

p_error = percentError(T_exp, T_theory); 

 

7.1.8 Lists and Loops 

Let’s consider that in the spring-mass experiment, we have now repeated our 

measurement several times. If we want to have the output printed for each of these trials, 

we could of course run our code multiple times. A better approach is to store each of these 

values in a list, and then we can use a loop to repeat the calculations and print the results 

of each.   

In this case instead of having a single value for the time, we now have 5. To make 

a list we put all of these values in brackets. Now in order to go through and do our 

calculations and print our output for each of these, we will wrap the code we want to repeat 

in a for statement. This statement repeats itself for each value in the list. So as a result we 

perform our calculations for all of our time values using the same piece of code.  
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Note there is another important type of loop called a while loop. This loop repeats 

until some condition is not longer true.  

 

import numpy as np 

from Experimental_analysis import percentError 

 

# our input values 

error_mid = 5; 

error_high = 10; 

 

mass = 0.15; # (kg) 

k_spring = 3; # (N/m) 

 

t_list = [13,14.5,13.9,15,16.1]; 

num_osc = 10; 

 

for t_measured in t_list: 

  T_theory = 2*np.pi*np.sqrt(mass/k_spring); # (s) 

  T_exp = t_measured/num_osc 

   

  p_error = percentError(T_exp,T_theory) 

   

  print("Experimental Period:", T_exp, "s"); 

  print("Theoretical Period:", np.round(T_theory,2), "s"); 

  print("Percent Error:", np.round(p_error,2), "%") 

  print("") 

 

7.2 Introduction to simulations 

One of our goals in science is to create a model that represents the most important 

aspects of the system we are studying. Creating these models allows us to gain a deeper 

understanding of a system and allows us exam the behavior of the system under a wide 

range of conditions. Creating a model for a specific system might entail starting with a set 

of laws the system obeys and using these laws to determine how that system changes over 

time.  

For example, consider a spring-mass system. In this system, the forces experienced 

by the mass can be determined using Hooke’s law, while Newton’s Law will tell us how 

this force impacts the motion of the object. We can use these two laws to find an analytical 

solution for the position of the mass over time. 

We could instead create a simulation to model the position of the mass, in the 

spring-mass system, changes over time. To do this we would use Hooke’s law to determine 

the force on the mass at a given time and assume this force remains constant over a short 
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time. We could then use the standard kinematics equations (for a small time period) for an 

object under constant acceleration to update the position and velocity of the mass. 

Repeating this for many time steps we could determine how the position of the object 

changes over time.  

The spring-mass system is an example of a deterministic system, meaning we can 

determine the exact position of the mass at any given time. Indeed, the analytical model 

for this system does exactly that. Similarly, we can make the simulation model as accurate 

as we need by making the time steps arbitrarily small.  

Since the spring-mass system does have an analytical solution, modeling this 

system with a simulation is not strictly necessary. However, not all systems have an 

analytical solution. For example, for the N-body gravitational system, there is no known 

analytical solution. Thus, creating a simulation model for this system can be helpful in 

better understanding the system. In this case, the system is still deterministic. In principle, 

with the proper initial conditions we can determine the exact position of each of the objects 

at any given time.  

 

7.3 Stochastic Simulations 

Many systems don’t behave deterministically and instead contain a certain amount 

of randomness. In these cases, modeling the system using only deterministic equations will 

not be sufficient, as it fails to capture the inherent randomness and uncertainty present in 

the system. In these situations, stochastic simulation can be used to capture the probabilistic 

nature of the system.  

For example, in the case of Brownian motion, the motion of a small particle 

suspended in a fluid is affected by random collisions with the fluid molecules. These 

random collisions can cause the particle to move in random directions, which are 

uncorrelated with its previous movement. This process is called a random walk. A 

stochastic simulation uses random numbers to model the random motions of this particle. 

To see how this works we can consider the Brownian motion of a particle in two 

dimensions.    

To simulate Brownian motion in one dimension, we can start by defining the initial 

position of the particle, say at the origin. We can then use a random number generator to 

determine the direction and magnitude of the particle's displacement in a small-time 

interval. This random displacement can be modeled as a Gaussian distribution centered at 

zero with a certain standard deviation, which determines the average distance the particle 

travels in a given time interval. This distance is proportional to the square of the elapsed 

time. This is given by ∆𝑥 =  √2𝐷 ∙ ∆𝑡 where ∆𝑥 is the standard deviation of the Gaussian 

distribution, 𝐷 is the diffusion constant of the particle, and ∆𝑡 is the time interval over 

which the position of the particle is updated.        
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After determining the random displacement, we can update the position of the 

particle by adding the displacement to its previous position. We can repeat this process over 

many time steps to model the Brownian motion of the particle. If we run this simulation 

again, we can see that each time we end up with a distinct trajectory despite initial starting 

conditions. Figure 7.1 shows and example of the output from this simulation.  

 

 

Figure 7.1 Example trajectory from Brownian motion simulation. 

 

import numpy as np 

import matplotlib.pyplot as plt 

 

# Define the simulation parameters 

num_steps = 1000  # number of time steps 

delta_t = 0.1  # time step size 

diff_coef = 0.1  # diffusion coefficient 

 

 

# Initialize an arrays for the position and time   

X = np.zeros(num_steps + 1) 

T = np.zeros(num_steps + 1) 

# Generate random displacement at each time step using the normal 

distribution 

for i in range(num_steps): 

    X[i+1] = X[i] + np.random.normal()*np.sqrt(2 * diff_coef * delta_t) 

    T[i+1] = T[i] + delta_t 

 

# Plot the particle trajectory 

plt.plot(X, T) 

plt.xlabel('Position') 

plt.ylabel('Time') 

plt.title('Brownian Motion') 

plt.show() 
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7.4 Monte-Carlo Simulations   

Often, we want to model a system in which the outcome of a given event is 

determined by a probability distribution. Simulations of this nature are called monte-Carlo 

simulations. For example, we might simulate the chance of a kids making it across a set of 

monkey bars. To keep things simple, we could say that there are two possibilities each time 

the kid attempts to reach the next bar; they either reach the bar, or they fall off entirely. To 

make things more interesting, we can consider that the kid gets tired as they go, so the 

probability of reaching the next bar goes down as they get further across the monkey bars.  

To simulate this scenario using a Monte Carlo simulation, we can define a 

probability distribution for each attempt based on the distance from the starting point. For 

example, the probability of making the next bar might be relatively constant, to begin with, 

and then begin to decrease after some number of bars. At each attempt to reach the next 

bar, we could calculate the probability of reaching the next bar based on this probability. 

By comparing this probability to a random number, we can determine whether the kid 

makes it to the next bar or falls off. 

If we repeat this simulation 100 times, we can then determine the percentage of 

kids who make it across the monkey bars. An example, of this simulation is provided below.  

 

from numpy.random import rand 

import numpy as np 

 

# Define the probability distribution for each attempt 

# Based on the distance (in bars) crossed so far. 

def success_prob(distance, p0, bars_at_p0, prob_drop_rate): 

      

    # p0 : Starting probability of success. 

    # bars_at_p0 : The bar the probability starts decreasing.   

    # Prob_drop_rate : rate probability decreases. 

     

    if distance <= bars_at_p0: 

      # probability steady  

      return p0; 

    else: 

      # probability decreasing 

      prob = p0 + bars_at_p0*prob_drop_rate - prob_drop_rate*distance 

       

      return max(prob,0); 

 

# Define the simulation parameters 

num_trials = 100  # Number of times to run the simulation 

p0 = 0.9 

bars_at_p0 = 5;    
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prob_drop_rate = 0.01 

bars_reached_list = np.zeros(num_trials); 

total_bars = 10; 

kids_reached = 0; 

 

# Run the simulation 

for trial in range(num_trials): 

    reached_bar = True; 

    bars_reached = 0; 

    while reached_bar: 

      # Calculate the success probability for this attempt 

      prob = success_prob(bars_reached, p0, bars_at_p0, prob_drop_rate) 

      if rand() <= prob: 

        bars_reached += 1; 

      else: 

        reached_bar = False; 

     

    if bars_reached >= total_bars: 

      kids_reached += 1; 

 

percent_accross = kids_reached/num_trials      

print("Percent of kids who make it accross: %0.1f"%percent_accross)
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Chapter 8 Appendix 

8.1 Kinesin simulation code 

 

# Multi-motor Kinesin transport on a single microtubule 

# Date : 03/09/2023 

 

from os import path 

from numpy import zeros, sqrt, random, sign, sum, save, ceil, floor, exp, 

pi 

 

def kinSim( simDir, sampleSize, fileNum_start, numMots, Pon, L0_nm, 

delta_hind, velStdev, extForce ): 

   

  KBT = 4.11 # (pN*nm) 

   

  L0 = L0_nm*1e-6; # Unloaded run length of the motor (m) 

  kmot = 0.32; #pN/nm 

  Kmotor= kmot*1e-3  #motor stalk stiffness (N/m) 

  Lmot= 40e-9  # Rest length of the motor (m) 

  v_mean = 8*1e-7; # Mean unloaded motor velocity (m/s) 

  velStdev  = velStdev*1e-6; 

  dx = 8e-9  # Motors step size (m) 

  Fs = 7.0e-12  # Stall force of single Kinesin (N)  

  w = 2  # Power-law for loaded kinesin can be either [1/2 ,1 ,2] 

  delta_assist = 2 # (nm) 

  Fd_hind = KBT/delta_hind*1e-12; # (N) 

  Fd_assist = KBT/delta_assist*1e-12; # (N) 

  R = 2.5e-7 #cargo of radius (m) 

 

  dt = 1e-5 # (s) 

  t_max = 50000000; # Max time steps 

  sampleRate = 1000; # How often to write to the file 

   

  extForce_pN = extForce*1e-12 #pN (positive for hindering forces) 

 

  etaFactor = 1; #1 for the viscosity of water 

  #viscosity is twice bulk near surface and three times right at the 

surface 

  ksi = 6*pi*1e-3*R*3*etaFactor   

  D = (1.38e-23)*295/ksi  # Einstein Diffusion constant 

   

  notAttached = -100; 

  takeStep = 1; 

  pMotNum = False; # Is the motNums the mean number of motors? 

   

  for fileNum in range( fileNum_start , sampleSize + fileNum_start ): 

    # Motor number drawn from a poisson distribution. 

    if pMotNum: 

      Nmean = numMots 

      numMots = random.poisson(Nmean); 
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      while numMots == 0: 

        numMots = random.poisson(Nmean); 

     

    f_index = 1; 

    d_index = 0; 

    trajectory_data = zeros((int(t_max/sampleRate) + 1, numMots+2) ); 

    detach_data = zeros((int(t_max/sampleRate) + 1, numMots+3) ); 

     

    trajectory_file = "%scargoTajectory_%i.npy"%(simDir,fileNum) 

     

    if path.isfile(trajectory_file): 

      continue;   

         

    cargoPosition = 0   

 

    # Keeping track of lattice postioin.  

    motLatPos = zeros(numMots,dtype=int) 

    motLatPos[:] = notAttached 

    vMot = zeros((numMots,1)); 

    motAction = zeros(numMots) # no action, take a step, or fall off 

     

    for motNum in range(numMots): 

      # Motor velocities are pulled from a normal distribution.  

      vMot[motNum] = random.randn()*velStdev+v_mean;     

      # The first row of the trajecory data will contain the velocity 

      # of each motor.  

      trajectory_data[0,motNum+2] = vMot[motNum]; 

 

    engMots = 0 #start with no engMotsaged motors 

     

    # At least one motor needs to attach to the MT 

    # before the cargos trajectory is started.  

    while engMots == 0: 

      for motNum in range(numMots): 

        # See if any motors attach to the microtubule.   

        # If any attached then set the starting locations. 

        if random.rand() < Pon*dt: 

          # Lbind is how far the motor can reach 

          Lbind = min( abs(Lmot/2*random.randn()) ,Lmot); 

          maxLatPos = ceil( (cargoPosition + Lbind)/dx ); 

          minLatPos = floor( (cargoPosition - Lbind) /dx); 

          motLatPos[motNum] = random.randint(minLatPos,maxLatPos+1); 

          engMots += 1; 

     

    #Start of simulation. 

    t_index = 0 

    while t_index < t_max and engMots > 0: 

      Fmot=zeros(numMots) #running tally of motor forces on cargo 

      detachedMot = -1; 

      ################################################## 

      # Loop through motors.  

      # If unattached roll a dice to determine if the should be 

  # reattached. 

      # If they are attached make sure that they don't land on another    

      # motor. 
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      for motNum in range(numMots): 

        if motLatPos[motNum] == notAttached and random.rand() < Pon*dt:  

          # Determine how far the motor is currently stretched.  

          Lbind = min ( abs(Lmot/2*random.rand()),Lmot);     

          maxLatPos = ceil( (cargoPosition + Lbind)/dx ); 

          minLatPos = floor( (cargoPosition - Lbind) /dx); 

          motLatPos[motNum] = random.randint(minLatPos,maxLatPos+1); 

          engMots = engMots + 1 

       

      # Go through all the motors that were attached before this time 

      # step.   

      for motNum in range(numMots): 

         

        if motLatPos[motNum] != notAttached: 

          #Define motor-cargo separation and which direction it is in.  

          dLmot = cargoPosition - motLatPos[motNum]*dx 

          sgn = sign(dLmot) # Negative if the motor is leading. 

 

          # If the motor is longer than the natural length of the motor, 

          # then it is stretched.  

          # Otherwise it is not stretched and will not exert a  

          # force on the cargo.   

          if abs(dLmot) > Lmot: 

            dLmot=(abs(dLmot)-Lmot)*sgn 

          else: 

            dLmot = 0 

               

          Fmot[motNum] = Kmotor*dLmot # Compute the force on the motor 

                   

          if Fmot[motNum] <= 0: 

            # off rate for opposing forces. 

            offrate = exp(abs(Fmot[motNum])/Fd_hind); 

          elif Fmot[motNum] > 0: 

            # off rate for assisting forces larger than 2 pN. 

            offrate = exp(Fmot[motNum]/Fd_assist); 

           

          offrate = offrate*vMot[motNum]/L0; 

          # The probability of the motor falling off the MT. 

    prob = offrate*dt;  

           

          # Determine if detachment occurs 

          if (random.rand()<prob): 

            motAction[motNum] = notAttached 

            engMots = engMots-1 

            detachedMot = motNum; 

              

          # Find the probability of the motor stepping.     

          if sign(Fmot[motNum]) < 0: # Hindering Force 

            pf=1-exp(-(vMot[motNum]*dt/dx)*max(1-

(abs(Fmot[motNum])/Fs)**w,0))  

          else:  

            pf=1-exp(-(vMot[motNum]/dx)*dt) # Assisting Force 

           

          # Roll some dice to see if the motors steps.  

          if (random.rand() < pf) and motAction[motNum] != notAttached: 
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            motAction[motNum] = takeStep; # motor steps 

       

      # Balance forces on the cargo 

      Fcargo = sum(Fmot) + extForce_pN 

      # Compute new cargo position by adding thermal and drift components 

      cargoPosition = cargoPosition+sqrt(2*D*dt)*random.randn() - 

(Fcargo/ksi)*dt  

       

      # Keep track of detachment events, to latter store in a file. 

      # This needs to be done before the motors lattuce position is  

      # updated 

      # so we know where the detachmed motor was before it detached. 

      if  detachedMot >= 0: 

        detach_data[d_index,0] = t_index*dt; 

        detach_data[d_index,1] = cargoPosition*1e9; 

        detach_data[d_index,2] = detachedMot; 

        for motNum in range(numMots): 

          if motLatPos[motNum] == notAttached: 

            detach_data[d_index,motNum+3] = notAttached; 

          else: 

            detach_data[d_index,motNum+3] = motLatPos[motNum]*dx*1e9; 

        d_index = d_index+1; 

       

      # Update motor lattuce position.             

      for motNum in range(numMots): 

        if motAction[motNum] == notAttached: 

          motLatPos[motNum] = notAttached; 

        elif motAction[motNum] == 1: 

          motLatPos[motNum] = motLatPos[motNum]+1;                                                            

        motAction[motNum] = 0; 

       

      #Store trajectory info to latter be written to a file. 

      if t_index%sampleRate == 0 and engMots > 0: 

        trajectory_data[f_index,0] = t_index*dt; 

        trajectory_data[f_index,1] = cargoPosition*1e9; 

        for motNum in range(numMots): 

          if motLatPos[motNum] == notAttached: 

            trajectory_data[f_index,motNum+2] = notAttached;                     

          else: 

            trajectory_data[f_index,motNum+2] = motLatPos[motNum]*dx*1e9 

        f_index += 1 

       

      t_index = t_index+1 

     

    save(trajectory_file, trajectory_data[0:f_index,:]); 

    detach_output_file = "%sdetachment_%i.csv"%(simDir,fileNum); 

    save(detach_output_file, detach_data[0:d_index,:]); 
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8.2 Method Code 

8.2.1 Obtain a list of run length and velocities 

 

def get_vel_Dist_npy(simDir,numSamps, remake = True, RL_cutoff = 0.1): 

 

    if not os.path.exists(simDir): 

        print("does not exist: %s"%simDir); 

        return None; 

     

    vCount = 0; 

    RL_list_file = "%srunLenList.csv"%simDir 

    vel_list_file = '%svelList.csv'%simDir; 

 

    if os.path.exists(vel_list_file) and not remake: 

        velocityList = np.loadtxt(vel_list_file); 

        RL_list = np.loadtxt(RL_list_file); 

        return velocityList,RL_list; 

    velocityList = np.zeros(numSamps); 

    RL_list = np.zeros(numSamps) 

 

    for simNum in range(numSamps): 

        beadFile = '%sdet.%imot.npy'%(simDir,simNum+1) 

         

        if not os.path.exists(beadFile): 

            beadFile = '%stimeOut.%imot.npy'%(simDir,simNum+1)    

        if not os.path.exists(beadFile): 

            print(beadFile) 

            continue; 

 

        beadData = np.load(beadFile); 

        if len(beadData)>5: 

            RL = (beadData[-1,1]-beadData[1,1])/1000; 

            if RL > RL_cutoff: 

                fit = np.polyfit(beadData[1:,0],beadData[1:,1]/1000,1) 

                velocityList[vCount] = fit[0] 

                RL_list[vCount] = RL; 

                vCount = vCount + 1; 

 

    if vCount > 0: 

        np.savetxt(vel_list_file,velocityList[0:vCount]) 

        np.savetxt(RL_list_file,RL_list[0:vCount]) 

              

    return velocityList[0:vCount],RL_list[0:vCount]; 
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8.2.2 Fitting a run length distribution  

 

def fitExpDist(rawData, plot=False,figNum=1): 

    cumDist = binCumDist(rawData); 

    initVals = [1,np.median(cumDist)] 

    fitVals = curve_fit(exp_fit,cumDist[:,0],cumDist[:,1],p0=initVals); 

     

    return fitVals[1] 

 

def exp_fit(x,A,D):     

   return 1-A*np.exp(-(x)/D); 

 

8.2.3 Fitting a velocity distribution 

 

def fit_cumNorm_dist(rawVel_dist): 

    cDist = binCumDist(rawVel_dist); 

    initVals = [np.mean(rawVel_dist),np.std(rawVel_dist)]; 

    fitVals = curve_fit(cumNorm_fit,cDist[:,0],cDist[:,1],p0=initVals); 

    return fitVals 

 

def cumNorm_fit(x,m,stdev): 

    return 0.5*(1+erf((x-m)/(stdev*np.sqrt(2))) ); 

 

8.2.4 Bootstrapping code 

 

def RL_bootStrap(rawData, subSampSize = 200, repSamp = 10): 

    RL_BS_list = np.zeros(repSamp); 

    for ii in range(repSamp): 

        RL_subSample = randSubSamp(rawData,subSampSize) 

        RL_BS_list[ii] = fitExpDist(RL_subSample) 

    RL_mean = np.mean(RL_BS_list) 

    RL_error = np.std(RL_BS_list) 

    return RL_mean, RL_error;  
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