UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Multicases: A Case-Based Representation for Procedural Knowledge

Permalink
https://escholarship.org/uc/item/7903258f
Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 14(0)

Authors
Zito-Wolf, Roland J.
Alterman, Richard

Publication Date
1992

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/7903258f
https://escholarship.org
http://www.cdlib.org/

Multicases: A Case-Based Representation for Procedural
Knowledge*

Roland J. Zito-Wolf and Richard Alterman
Computer Science Department — Center for Complex Systems
Brandeis University, Waltham MA 02254
rjz@cs.brandeis.edu; alterman@cs.brandeis.edu

Abstract

This paper focuses on the representation of procedures
in a case-based reasoner. It proposes a new method, the
maulticase, where several examples are merged without
generalization into a single structure. The first part of
the paper describes multicases as they are being imple-
mented within the FLOABN project (Alterman, Zito-
Wolf, and Carpenter 1991) and discusses some proper-
ties of multicases, including simplicity of use, ease of
transfer between episodes, and better management of
case detail. The second part presents a quantitative
analysis of storage, indexing and decision costs based
on a decision-tree model of procedures. This model
shows that multicases have significantly reduced storage
and decision costs compared to two other representation
schemes.

Introduction

A currently popular reasoning paradigm for Al sys-
tems is case-based reasoning (CBR: Rissland and Ashley
1986; Stanfill and Waltz 1986; Alterman 1988, Kolodner
1983). CBR proposes to de-emphasize reasoning from
general principles in favor of a more memory-intensive
approach. The representation of large numbers of cases
is crucial to practical applications of CBR. However,
to date case representation alternatives have not been
explored in a systematic way.

This paper examines representations for procedures
in a case-based reasoner. Two basic organizations have
been proposed: individual cases and microcases. Indi-
vidual cases (e.g., Kolodner 1983; Lebowitz 1983; Ham-
mond 1990; McCartney 1990) equate the unit of knowl-
edge presentation, the ezample, with the unit of retrieval
from memory, the case. Under this method, case re-
trieval returns a single complete example episode for the
target task. Microcases (e.g., Stanfill and Waltz 1986;
Langley and Allen 1990; Goodman 1991) convert each
example into multiple cases, one for each step of the
episode. Procedure retrieval occurs incrementally, one

*This work was supported in part by the Defense Ad-
vanced Research Projects Agency, administered by the
U.S. Air Force Office of Scientific Research under contract
#F49620-88-C-0058.

331

retrieval per procedure step. Hybrids of these methods
have also been proposed (e.g., Redmond 1990; Robinson
and Kolodner 1991).

Although many representations have been proposed,
no serious analysis of these alternatives has been at-
tempted. Intuitively, individual cases suffer from re-
dundancy and fragmentation of knowledge, while mi-
crocases suffer from increased retrieval effort due to the
expanded number of cases.

This paper advocates a new representational method,
the multicase, in which related examples are merged
into a single structure. This paper will take a first step
toward quantifying the consequences of different case
representation and indexing methods. Multicase orga-
nization reduces both storage and retrieval costs, facil-
itates transfer, and helps manage the accumulation of
case detail.

The Multicase

A multicase representation for a procedure is similar to
a decision tree, in that it describes sequences of actions
and decisions that achieve a given result. A multicase
for making photocopies is shown in Figure 1. We define
a decision point (DP) as any point in a plan requiring
selection among alternatives: choices of action, expecta-
tions about events, or determination of values for step
parameters. Each decision point contains the knowl-
edge relevant to making a single decision, represented
in terms of cases. For example, the branch to the get
copy card step (marked A in the figure) would be asso-
ciated with example episodes in which that action was
appropriate. To make a decision at a DP, the features
of the current situation are matched against the cases
stored with each alternative. (For simplicity, the cases
associated with each DP are not shown.)

Contrast this to the individual-case representation,
where each (distinct) photocopying episode would be
stored in memory as a separate case. To represent all
the possibilities captured in Figure 1, one would have
to store a case for every possible path through the mul-
ticase, or at least a high proportion of them (e.g., Mc-
Cartney 1990; cf. Hammond 1990). For individual
cases, procedure execution basically consists of a single

mailto:rjz@cs.brandeis.edu
mailto:alterman@cs.brandeis.edu

Note need ©

Get naen cad Festart
card fin ounment plan
siuation)
Femove,
Mot/ copy
- Fd__ insen, Ao Roorl/ card
Paper COPY
Rem dept. {Done |
origina Moe?
Tum
o bght?
po daik? OFF
LTI — P p—]
Lighness copy COPY

Figure 1: A Multicase for Photocopying

up-front decision among alternative cases (Figure 2a).

One popular variant of the individual-case method
includes systems such as CYRUS (Kolodner 1983) and
IPP (Lebowitz 1983) in which cases are organized via
hierarchies of generalizations (MOPS, Schank 1982) as
shown in Figure 3. A major disadvantage of this
method is that it entails redundant index hierarchies
having large storage requirements (which we will quan-
tify later). Multicases reduce the need for generalization
hierarchies by conditionalizing parts of the procedure -
e.g., its steps and step parameters. A multicase cor-
responds to a generalized procedure, but it is not a
generalization in the usual sense, as all of the details
of its constituent examples are retained. While pro-
cedures containing branches are not new (e.g., Turner
1989, Robinson and Kolodner 1991) the substitution of
conditionalization for generalization is novel.

The microcase approach breaks up the example mul-
ticase into many subcases, one (at least) for each step.
The subcases will contain sufficient information to iden-
tify when each step should be executed, so that the
structure of the photocopying procedure is encoded im-
plicitly in the applicability conditions for the steps. Us-
ing microcases, procedure execution is a sequence of de-
cisions, where each decision must decide among all the
known steps (Figure 2b).

(b) Microcases

(a) Individual Cases

Figure 2: Procedure Representations

332

A Multicase Implementation

FLOABN (Alterman Zito-Wolf, and Carpenter 1991)
is a project exploring the acquisition of plans for us-
ing everyday mechanical and electronic devices, such as
photocopiers and telephones. FLOABN acquires and
revises plans via adaptation and through the interpre-
tation of instructions and messages read or received
during interaction with a simulated environment. The
core of FLOABN is an adaptive planner SCAVENGER
(Zito-Wolf and Alterman 1991) which uses a multicase
plan representation. The multicase provides SCAV-
ENGER with background knowledge for operationaliz-
ing instructions or messages received during execution.

The multicase is well-suited to this type of applica-
tion. It is simple to execute as it is in a directly proce-
dural form. Incorporating knowledge from new episodes
is simplified because the multicase is stored in a com-
patible (i.e., episode-like) form. New episodes are first
assimilated to an appropriate multicase through adapta-
tion (Alterman 1988), after which the multicase is elab-
orated by adding DP’s to account for any elements or
decisions of the episode not already present in the mul-
ticase. An interesting feature of this domain is that over
time the multicase becomes customized to the agent's
normal situations of action. For photocopying, the plan
becomes habituated to the photocopiers the agent nor-
mally uses.

The algorithm SCAVENGER uses to act and to learn

Figure 3: Individual Cases Plus MOPs

Given: a multicase-base and a goal
1. Select a multicase appropriate to the goal
2. Execute the next step specified by multicase

c. else i. if multiple step alternatives exist

ili. Execute step

3. Check for unexpected events: if found then

a. Add decision point

c. Call this the relevant context

a. if no steps remain to execute, then return(success)
b. if type(current step(s))=EVENT then wait for one of the events to occur
if excessive time passes (based on previous experience at this step), adapt or return(event failure).

then select one whose context best matches the current situation
i1. Check preconditions (if missing then adapt, subgoal, or fail)

iv. Check post-conditions (either adapt, subgoal, or fail)
a. if adaptation limit exceeded then return(fail: situation too unfamiliar)
b. if event is receipt of instructions relevant to current plan
then interpret instructions (Alterman et al. 1991)
4. Whenever adding a step or alternative to the plan:

b. Find a way to discriminate from other alternatives at that point

Figure 4: Pseudo-Code for Multicase-Based Activity with Learning

using a multicase is summarized in Figure 4. The sys-
tem begins with a skeleton procedure such as an agent
might acquire by having the task explained to it or see-
ing it performed. The boxed steps in Figure 1 indicate
this initial copying procedure. Each additional detail
arises from some specific experience. Some experiences
add new paths (e.g. running out of paper), some add de-
tail to existing paths (e.g. observing lighting and move-
ment as copies are made), and some modify existing
steps or decision criteria (e.g., learning where to look
for a power switch). Most paths through the multicase
reflect contributions from several experiences.

Case Representation Comparisons

Storage Requirements While memory is becoming
increasingly plentiful, it remains a finite resource. Indi-
vidual cases have significant redundancy, as many steps
will recur across cases. Worse, as the case-base fills up
with variant episodes, retrieval becomes more expen-
sive. Qur analysis will show that multicases have the
least storage requirements of the methods discussed.

Retrieval Cost The primary execution-time cost in
case-base reasoning is in finding and processing the rele-
vant examples. Retrieval cost is influenced by the num-
ber of cases searched and the complexity of matching
them to the current situation.

Multicases, and to a lesser degree microcases, reduce
the cost of each retrieval though partitioning of the pro-
cedure and the case-base, as will be shown later. In
addition, the cost is distributed throughout procedure
execution rather than incurred prior to execution.

These problems can not be solved simply though in-
dexing, for two reasons. Indexing may not always be
practical, due to, for example, the type of data involved.
Second, our analysis points out that indexes involve
costs of their own, and that not all indexes are created
equal. Indexes require space on the same order as the
case-base; hence individual cases have the largest index
requirements. Moreover, schemes involving redundant

333

index hierarchies (e.g., MOPs) have indexes much larger
than the case base itself.

Level of Detail How much detail should be stored
when a case is acquired is a perennial CBR dilemma. It
is desirable to make case memory as detailed as possible,
since the system cannot know in advance which features
will prove important and which not. On the other hand,
irrelevant details complicate matching, proliferate cases,
and increase retrieval cost, so that one desires to store
only “relevant” details.

Multicases permit a different approach to the man-
agement of detail, by allowing it to be acquired incre-
mentally through the overlay of old episodes with newer
ones. The learner can postpone the detail decision:
since a multicase is always growing, there is no rush
to recall any one case in complete detail.

Transfer When an exact match to a given situation is
not available, relevant cases (i.e., partial matches) can
usually still be found. Knowledge is in effect distributed
over the relevant cases, and the reasoner needs to be able
to select and transfer the relevant items of knowledge
to the new situation.

Multicase methods facilitate transfer between
episodes because a path through the multicase may be
formed by plan modifications contributed by several dif-
ferent experiences. For the photocopier multicase, one
episode might add the steps for using the ON switch,
another those to fill the paper tray when it runs out,
and a third the steps needed for doing reductions. Since
the relevant information for performing a task is stored
together, the need for patching together that informa-
tion at execution time is largely avoided. Contrast this
to individual cases, where transfer of knowledge across
cases requires additional mechanisms such as abstrac-
tion of specific modifications into repair schema (e.g.,
Hammond 1990).

Microcases facilitate transfer also, by allowing any
known step to be executed at any point in a procedure.

While this may be an advantage in domains that are
described by a few underlying rules, such as a Tower-of-
Hanoi type problem, it has the disadvantage (at least in
domains like commonsense procedures) that each step
selection must differentiate between every known step
rather than the smaller set of steps known to be relevant
in some past example.

Another measure for transfer is the ease of access to
the underlying procedure. A multicase is simple to ac-
cess as it is a single unit. In the other representations,
procedures are represented in a distributed form, and
must be reconstructed during execution.

Analysis of Storage and Decision Cost

This part of the paper presents a more formal compar-
ison of the multicase, individual cases and microcases
focusing on storage and decision cost. The approach
1s to first formally define a model of a procedure and
then show how it would be encoded into cases using
each representation method. Two assumptions of this
model are that each retrieval returns exactly one case,
and that irrelevant features are already “factored out”.

Procedure Model

Let the procedure to be acquired be a complete binary
decision tree T of uniform depth n. Each node i € T
contains a step (or chunk of steps) to be performed plus
a decision selecting the next node to be executed. T
contains [T'| = 2" — 1 steps and 2" ! —1 decisions (those
in the leaves are ignored). Each procedure execution
episode will consist of n steps and decisions along some
path in T" from root to leaf.

Let the input to the decision at a node i be the set
of binary features F;. Then F' = [J;cp Fi is the set of
all features referenced by the proceéure We assume
there exists some upper bound f = maxer |F;| on the
number of features tested by any specific decision, and
that f is small compared to |F'|. We have n—1 < |F| <
(2°~1—1)f since there must be at least n— 1 features for
all the paths in T to be distinguishable, while the upper
bound applies in the case that all the F; are disjoint. A
reasonable estimate for |F’| should be proportional to
f, and should allow for each feature to be referenced in
some significant percentage of paths through the tree.
We therefore estimate |F| as (n — 1) f, which models for
example a procedure containing n — 1 distinct decisions
in a fixed order.

Representation of Procedures

Case-based reasoning for procedure execution is the
example-based selection of a sequence of steps to achieve
a given goal. Each occasion for selection is a problem P;,
the process of searching through the case-base to solve
a problem is a retrieval, and and the number of steps
retrieved per problem is the problem size Sp. The solu-
tion to each problem will be encoded in memory as some
set of cases Cp. The case is the unit of memory storage
and retrieval. Each case pairs a problem solution with

334

a conjunction of features for which it applies. Since it
has been stipulated that a given decision references at
most f features, at most 2/ cases will be required to
represent a decision, one for each possible conjunction
of the features and their negations.

We will first consider a linear search model of case
retrieval!, in which the retrieval effort per problem Ep
is proportional to the number of feature tests made.
Ep is the product of the number of cases to be searched
through and the number of features to be tested per
case. (We assume for simplicity that the cases can be
used as retrieved, meaning that we do not attempt to
account for adaptation costs.) Letting |P| be the num-
ber of problems per episode, the total retrieval effort per
episode E = Ep|P|.

The input parameters of the model are the depth n
of the procedure tree T', the maximum number of fea-
tures f referenced by a decision, and the total number
of features | F| referenced by the procedure. |P| and Sp
will vary with the specific representation. The outputs
of the model are estimates for |C|, Ep and E.

Individual cases store each episode of (i.e., path
through) T as a case, so Sp = n, the number of steps
in an episode. Since the entire mapping from situation
features to step sequence is performed in one retrieval,
|P| = 1, with 2! potential outcomes. The number of
cases can be estimated from the total number of features

referenced, yielding |C| = 2(*=1)/,

Microcases represent a procedure as a set of indepen-
dent decisions, making procedure execution a series of
case retrievals, one per step. To encode T as microcases
we make each selection of a step a separate problem.
Then Sp = 1, and |Cp| = 2/ cases per problem. There
are |P| = n problems per episode, but 2" — 1 problems
to be encoded to represent the entire procedure, giv-
ing |C| = 2/(2" — 1). Retrieval effort per problem is
Ep = (|F| + n)2"*/. Note that n additional features
are added to distinguish the 2"~! potential “current po-
sitions” within the represented procedure.

Multicases allow us to represent a procedure as a se-
quence of context relative decisions. The retrieval effort
is divided up according to separate decisions, and the
branching structure of the plan is expressed explicitly
as part of the multicase rather than implicitly as extra
features referenced by the cases. We have Sp =1, |P| =
n — 1 problems per episode, |Cp| = 2/ with 2"~1 — 1
problems overall, for a total? of |C| = (2/ +1)(2" - 1).

Because we focus on only one decision at a time, the
number of cases that must be searched through and fea-
tures needing to be consulted at any given decision point
are greatly reduced. For the multicase, only f features

need be consulted per decision, and only 2/ cases need

'A model for indexed retrieval will introduced shortly.
?Since we are counting case nodes, the leaves of the tree
add another 2"~ steps.

Individual cases Microcases Multicases |
Item formula | example’ formula ex formula ex
Total cases |C| 2 256 o(2"t7) 124 o(2"t7-T) 75
CB size’ nal 1280 o(2"*T) 124 o("FI=T) 75
Effort /problem Ep (unindexed) FaF 2048 o(F2"tnhy 1612 ,'?.} 8
Effort /problem Ep (indexed) F [On+J) 7 I 2
Effort fepisode E (indexed) F 8 O(n? + F) a5 F]
Index size g 512 [| o2t /¥y | 256 o2+ 128
Effort /problem Ep ([C] fixed) log, [C] log, [C] max(log, [CT=n, f)
Notes 1. Example figures are for a complete binary tree withn =5, f=2 F=(n-1)f =8

2. Total case-base size is product of total decisions and case/decision
3. Effort/problem is product of features/problem and number of cases per problem Cp

Table 1: Storage and Retrieval Cost Summary

be examined; the rest of the cases are only relevant to
other decisions. Thus Ep = f -2/,

Indexing

Because case-retrieval via linear search involves effort
exponential in case-base size, most CBR systems use
some form of indezing® for faster retrieval. An index can
be treated as a boolean discrimination network which
tests just enough features to discriminate all the cases.
Assuming that the network is balanced, the decision
cost is proportional to the depth of the index, which
is the log base 2 of the number of cases entering into
a given decision: O(nf) for individual cases, O(n + f)
for microcases, and O(f) for multicases. This simple
index model provides a lower bound on access costs;
more complex retrieval processes — e.g., inexact match-
ing, choosing among multiple retrieved cases, or features
that interact in other than boolean combinations — will
have larger decision costs.

The above model of indexing applies to an opfimal
index, that is, one which is (a) balanced, and (b) pro-
vides a single path to each case. If the first assumption
is violated, the average access cost will be increased.
In the second case, storage cost will be significantly in-
creased. For example, a fully redundant generalization
hierarchy (such as proposed by MOPs-based systems)
involves F'! > (F/3)F nodes?, a quantity which is much
larger than 2% for any practical value of F.

There are a number of reasons why optimal indexing
of the cases may not be practical in all situations: be-
cause the features to be indexed must be identifiable in
advance for the index to be constructed; because the fea-

3It is important to note that “indexing” is used in the
CBR literature in at least three distinct senses: as a per-
formance method, to accelerate access to a desired case or
cases; as an organizing method, for grouping cases observed
to have similar features, typically in the service of making
generalizations (e.g., CYRUS and IPP); and as a knowledge-
encoding method, for defining sets of cases with related con-
tent. We model the first, we do not model the second, and
we assume the third can be encoded as additional features.

‘Both IPP and CYRUS provide mechanisms for trim-
ming away useless generalizations, but do not evaluate their
effectiveness.

335

ture values must be enumerable (for example, features
containing variables, features derived through calcula-
tions, and continuous features will in general not meet
this requirement); and because efficient indexes require
significant effort to update as new episodes are acquired.
To the extent that indexing falls short, some degree of
actual search through cases is required, and the num-
bers for unindexed decision cost apply.

It might be argued that the above formulas overesti-
mate index costs since no CBR system will ever have
available to it more than, say, 2'° cases, so that in
practice index size is bounded. Let us explore this
assumption. First, the relative costs of the index-
ing schemes are unaffected. Second, for a given |C|,
individual-case and microcases will have decision effort
Ep = log,|C|, while multicases will have on the av-
erage Ep = log,(|C|/2") = log, |C| — n, a significant
improvement. Third, our original estimates for |C| can
now be used to estimate the coverage provided per ad-
ditional example. The larger the space of possible cases,
the harder it is to acquire a representative sample of the
entire procedure T. Viewed this way, multicases yield
the most “knowledge” per example.

Results

The results of this analysis are summarized in Table 1.
The formulas derived here are for a complete case-base
resulting after all of the possible situation configurations
and hence procedure sequences have been observed. Al-
though in general one’s case-base is never complete, pre-
sumably it must contain a significant percentage of the
relevant cases in order to perform adequately, so that
the formulas given are expected to be of the correct or-
der of magnitude. The table includes illustrative values
for a complete decision tree with n =5, f = 2.

Case-Base Storage. The three alternatives use dif-
ferent amounts of case-base storage. A multicase repre-
sentation requires the least cases - O(2"+/~1) - of the
three methods; microcases require 2 times as much, and
individual cases require about 2™/ times as much.

Effort. Two alternatives were evaluated. If complete
indexing is not possible, multicases offer much better

per-problem and per-episode retrieval cost than micro-
cases or individual cases (O(2/) vs. O(2"*/) and
O(2") respectively). If complete indexing is possi-
ble, multicases and individual cases have the same per-
episode retrieval cost of (n — 1) f, but the multicase re-
duces per-step retrieval cost by a factor of O(n). Mi-
crocases are the most costly alternative, with O(n + f)
retrieval cost per problem and O(n?) per episode. This
is a significant difference when executing a procedure
under temporal constraints, where it is desirable to min-
imize computation per step as well as overall. If all the
decision effort is lumped into one large computation, it
may become an execution bottleneck.

Index Size. Multicases require less index space than
the other two methods, though the difference between
multicases and microcases is not large. A more signifi-
cant advantage is that, if f is small compared to n (e.g,
f < 4) multicases may permit one to avoid indexing en-
tirely, saving not only space but the effort to construct
and update them.

Concluding Remarks

A few points deserve drawing out. Representational
choices in CBR systems do have a significant effect on
performance and resource requirements as case-bases in-
crease in size. The multicase embodies two key ideas:
exploiting the underlying structure of the problem do-
main to partition case retrieval into a number of smaller,
cheaper retrievals, and keeping the representation as
“concrete” (episode-like) as possible (cf. McCartney
1990).

Qur formal results depend on our assumption that
f &« F - for procedures, that (a) most choices de-
pend on only a few of the available features, and (b)
most steps are only relevant at certain points in a pro-
cess. Given these, partitioning is very effective. Not all
procedures have this property; for example, the Tower-
of-Hanoi problem can be described using just one rule
which is applied at every step. Issues for future work
include the impact of representation on the process of
case acquisition, and the complexity and consequences
of approximate matching during case retrieval.

The three CBR methods described here can be or-
dered by increasing constraint on the sequencing of
steps. At one extreme, microcases allow any step to
be chosen at any time; at the other extreme, individ-
ual cases fix entire step sequences. Microcases occupy
an intermediate position. Though we have focused on
procedure representation, this distinction may be use-
ful in other areas. Consider a case-based design system
in the domain of electronic amplifiers. The individual-
case approach would correspond to a library of off-the-
shelf designs. Microcases would correspond to general
design rules for building amplifiers out of smaller func-
tional units. Multicases would correspond to a library
of designs plus knowledge of how to adapt them to suit
various requirements. In a sense, each multicase would

336

represent the “procedure” for customizing a particular
design.

In summary, this paper makes several contributions
to the analysis and evaluation of case-based reasoners.
It defines an abstract model of CBR to which a variety
of architectures can be fit and compared, and defines
four criteria on which to evaluate such systems — case-
base size, indexed and unindexed retrieval effort, and
index size. It provides one of the first detailed complex-
ity analyses of case representation and organization, and
uses it to contrast several schemes appearing in the lit-
erature.

Acknowledgements

The first author thanks Marc Goodman for sharing his ex-
pertise in CBR systems in general and indexing in particular.

References

[1] Richard Alterman. Adaptive planning.

12:393-421, 1988,

Richard Alterman, Roland Zito-Wolf, and Tamitha Carpenter.
Interaction, comprehension, and instruction usage. Journal of
the Learning Sciences, 1(4):361-398, 1991.

Marc Goodman. A case-based, inductive architecture for natural
language processing. In AAAI Spring Symposium on Machine
Learning of Natural Language and Ontology, 1991.

Cognitive Science,

(2

3]

(1)

Kristian J. Hammond. Case-based planning: A framework for
planning from experience. Cognitive Science, 14:385-443, 1990.

Janet L. Kolodner. Reconstructive memory: A computer model.
Cognitive Science, 7:281-328, 1983.

Pat Langley and John A. Allen. Learning, memory, and search
in planning. In Proceedings of the Thirteenth Annual Confer-
ence of the Cognitive Science Society, pages 364-369, Chicago,
Illinois, 1991.

Michael Lebowitz. Generalization from natural language text.
Cognitive Science, T:1—40, 1983

Robert McCartney. Reasoning directly from cases in a case-
based planner. In Proceedings of the Twelfth Annual Confer-
ence of the Cognitive Science Society, pages 101-108, Hillsdale,
NJ, 1990. Lawrence Erlbaum Associates.

(s]
(6]

g}
(8

[9] Michael Redmond. Distributed cases for case-based reasoning:
Facilitating use of multiple cases. In Proceedings of the Esghth
National Conference on Artificial Intelligence, pages 304-309,

1990.

Edwina Rissland and Kenneth Ashley. Hypotheticals as heuristic
device, In Proceedings of the Fifth National Conference on
Artificial Intelligence, 1986.

Stephen Robinson and Janet Kolodner. Indexing cases for plan-
ning and acting in dynamic environments: Exploiting hierarchi-
cal goal structures. In Proceedings of the Thirteenth Annual
Conference of the Cognitive Science Society, pages 832-886,
1991.

Roger Schank. Dynamic Memory: A Theory of Reminding
and Learning In Computers and People. Cambridge Univer-
sity Press, Cambridge, 1932,

Craig Stanfill and David Waltz. Toward memory-based reason-
ing. Communacations of the ACM, 29(12):1213-1239, 1986.

Roy M. Turner. A schema-based model of adaptive problem
solving. Technical Report GIT-ICS-89/42, Georgia Institute of
Technology, 1989.

Roland Zito-Wolf and Richard Alterman. Ad-hoc fail-safe plan
learning. In Proceedings of the Twelfth Annual Conference of
the Cognitive Science Society, pages 908-914. Lawrence Erl-
baum Associates, 1990.

(10)

[11]

[12]

[13]

[14])

(18]

	cogsci_1992_331-336

