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Abstract 

It is well-known that for high dimensional data cluster
ing, standard algorithms such as EM and the K-means 
are often trapped in local minimum. Many initialization 
methods were proposed to tackle this problem , but with 
only limited success. In this paper we propose a new 
approach to resolve this problem by repeated dimen
sion reductions such that K-means or EM are performed 
only in very low dimensions. Cluster membership is uti
lized as a bridge between the reduced dimensional sub
space and the original space, providing flexibility and 
ease of implementation. Clustering analysis performed 
on highly overlapped Gaussians, DNA gene expression 
profiles and internet newsgroups demonstrate the effec
tiveness of the proposed algorithm. 

1 Introduction 

In many application areas, such as information retrieval, 
image processing, computational biology and global cli
mate research, analysis of high dimensional datasets is 
frequently encountered. For example, in text process
ing, typical dimension of a word vector is of the size 
of the vocabulary of a document collection and tens 
of thousands of words/phrases are used routinely; in 
molecular biology, human gene expression profile anal
ysis typically involves thousands of genes; and in image 
processing, a typical 2-dim image has 1282 = 16,384 
pixels or dimensions. 

Developing effective clustering methods to handle 
high dimensional dataset is a challenging problem. Pop
ular clustering methods such as the K-means and EM 
methods suffer from the well-known local minima prob
lem: as iterations proceed, they are often trapped in 
the local minima in the configuration space, due to the 
greedy nature of these algorithms. In high dimensional 
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space, the equi-potential (cost function) surface is very 
rugged. The iterations almost always get trapped some
where close to the initial starting configuration. In other 
words, it is difficult to sample through a large config
uration (parameter) space. The conventional approach 
is to do a large number of runs with random initial 
starts and pick up the best one as the result [24, 26}. 
Besides random starts, there are a number of initial
ization methods, most of which concentrate on how to 
intelligently choose the starting configurations (the K 
centers) in order to be as close to the global minima as 
possible [5, 25, 22, 17]. However, these approaches are 
limited by the inherent difficulty of finding global min
ima in high dimensional space in the first place. Monte 
Carlo methods are also used (28]. 

In this paper, we propose a new approach to solve 
this problem. Our approach utilizes the idea of di
mension reduction. Dimension reduction is often used 
in clustering, classification, and many other machine 
learning and data mining applications. It usually re
tains the most important dimensions (attributes), re
moves the noisy dimensions (irrelevant attributes) and 
reduces computational cost. 

In most applications, dimension reduction is carried 
out as a preprocessing step. The selection of the dimen
sions using principal component analysis (PCA) (20, 14} 
through singular value decomposition (SVD) (15] is a 
popular approach for numerical attributes. In infor
mation retrieval, latent semantic indexing uses SVD 
to project textual documents represented as document 
vectors [7]; SVD is shown to be the optimal solution 
for a probablistic model for document/word occurrence 
(12]. Random projections to subspaces have also been 
used [13, 6]. 

In all those applications, however, once the dimen
sions are selected, they stay fixed during the entire clus
tering process. The dimension reduction process is de-



coupled from the clustering process. If the data distri
bution is far from Gaussian, for example, the dimensions 
selected using PCA may deviate substantially from the 
optimal. 

Here (i) we approach dimension reduction as a dy
namic process that should be adaptively adjusted and 
integrated with the clustering process; (ii) we make ef
fective use of cluster membership as the bridge connect
ing the clusters defined in the reduced dimensional space 
(subspace) and those defined in the full dimensional 
space; (iii) using this connection, clusters are discov
ered in the low dimensional subspace to avoid the curse 
of dimensionality (27] and are adaptively re-adjusted in 
the full dimension space for global optimality. This pro
cess is repeated until convergence. 

In this paper we focus on the K-means and EM algo
rithms using the mixture model of spherical Gaussian 
components. Using marginal distributions, the gaus
sian mixtures retain identical model parameters in re
duced low-dimensional subspace as in the original high 
dimensional space, providing a theoretical justification 
for dimension reduction. The objective function for the 
K-means has the same property. 

K -centroid classification on text are studied via di
mension reduction in (18], where K centroids are used 
to define the subspace projection. Dimension reduction 
in text processing has been extensively studied (4, 12, 
9, 21]. All of above studies use dimension reduction as 
preprocessing; while in our approach, dimension reduc
tion is performed adaptively. 

In this paper, we consider projection methods in 
which the new projected dimensions are linear combi
nation of old dimensions. Optimal selection of a subset 
of existing dimensions (attributes) is a substantially dif
ferent approach. Selection of a subset of attributes in 
the context of clustering are studied in [2, 1]. In the 
context of classification, subset selection has been ex
tensively studied [19]. 

2 Effective Dimension for 
Clustering 

Our approach is to perf9rm clustering in low dimen
sional subspaces. EM, in essence, is fitting a density 
functional form and is sensitive to local density vari
ations. In the much reduced-dimension subspaces, we 
have a much smoother density (27], therefore reducing 
the chances of being trapped in the local minima. 

We may interpret the low dimensional subspace as 
containing the relevant attributes (linear combinations 
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of coordinates). What is the dimensionality r of the 
reduced-dimension subspace for clustering? We argue 
that r S K - 1 based on linear discriminant analysis: 
Given two gaussian distributions with means J.L1, J.L2, and 
pooled covariance matrix 2.: in d-dim space, a point x is 
classified to belong to class 1 or 2 depending upon 

xT2.:- 1(J.L1 - J.L2) ~threshold 

For spherical Gaussian, 2.: = a 2 I (I is the identity ma
trix), thus the d- 1 subspace perpendicular to the di
rection J.Ll - J.L2 does not enter the consideration. The 
effective dimension for 2 clusters is 1. For K > 2, we 
may consider all pairs of two-class classifications, and 
the dimensions perpendicular to all J.Li - J.Li directions 
(i =/:- j) are irrelevant. Thus the effective clustering di
mensions for the K spherical gaussians are spanned by 
the K centers J.Ll, · · ·, J.LK, for which r = K- 1. We call 
the relevant dimensions passing through all K centers 
the r-dim subspace. This conclusion is essentially a ge
ometric point of view. If Euclidean distances are the 
main factors in clustering, the dimensions perpendicu
lar to the relevant subspace are clearly irrelevant. 

The effective dimensionality of the relevant subspace 
could be less than K - 1. This happens when the K 
cluster centers lie in a subspace with dimension r < 
K- 1. For example, there could be 5 clusters with all 
their centroids lie on a 2-dim plane. In summary, the 
effective dimension for clustering is r S K- 1. 

3 EM in relevant subspace 

Our algorithm can be easily and naturally incorporated 
into Expectation-Maximization (EM) algorithm [8, 23] 
applied to spherical Gaussian mixtures. The idea is that 
the irrelevant dimensions can be integrated out, and the 
resulting marginal distribution follows the same Gaus
sian mixture functional form. Then we can freely move 
between the reduced-dimension subspace and the orig
inal space. In this approach, cluster membership in
formation (posterior probabilities of the indicator vari
ables) plays a critical role. Knowing them in the reduced
dimension subspace we can directly infer the centers in 
the original space. We assume the following mixture 
model 

where each component is a spherical Gaussian distribu
tion, 



and x, JLk are vectors in d-dim space. We denote it as 
N(d)(JLk, O"k)· Note that the spherical gaussian function 
has two invariant properties that will be important later 
on: (i) they are invariant under any orthogonal coordi
nate rotation operation R : x --+ Rx: 

g~(RxJRO) = g~(xJO) 

where R is a d x d orthonormal matrix and 0 = 
{JLh · · ·, JLK, O"!, · · ·, O"K} are the model parameters. (ii) 
they are invariant under coordinate translation (shift) 
operation L : X --> X + e: we have 

g~(LxJLB) = g~(xJO) 

Given the gaussian mixture model, dimension reduc
tion can be properly studied in a probabilistic frame
work using marginal distributions. For this reason, we 
need to split the space into an r-dim space which con
tains all the relevant dimensions (attributes), and an 
s-dim space ( s = d - r) which contains all the irrele
vant dimensions (noises). We split the coordinates into 
y = RT x = (Rr, Rs)T x, or more explicitly, 

(2) 

where yll~vll are in r-dim relevant space, and yl., 111. 

are ins-dim subspace of noise, orthogonal to the r-dim 
relevant space. R is the coordinate rotation, such as 
the coordinate transformation used in PCA, to clearly 
separate :those relevant and noisy dimensions. 

The marginal distribution is defined as 

p(yll) =: j p(x)Jdyl. = j p(yil,yl.)Jdyl.. 

where J = det(&x/&y) = det(R) is the Jacobian re
lated to coordinate transformation. For orthonormal 
rotations such as U and V in PCA, RT R = RT R = h 
and det(R) = 1. Splitting coordinates, we have 

JJx- JLII~ = 

Thus we have gt(x- JL) = gk(yil - 11~) • gk(Yl. - v{ ). 
The marginal distribution of g~(x) becomes 

(4) 

which is exactly the standard spherical Gaussian in the 
r-dim subspace. For this reason, we simply use y for 
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yll and 11 for vii in the r-dim,subspace. Therefore we 
conclude that 
Theorem 1. In EM clustering using spherical Gaussian 
mixture models in d-dimensions, after integrating out 
irrelevant dimensions, the marginal probability becomes 

(5) 

exactly the same type of Gaussian distribution as in 
r-dim space. All relevant attributes for clustering are 
retained in the r-dim subspace. 

4 Adaptive Dimension Reduction 
for EM 

For real-world clustering problems where clusters are 
not well-separated, the r-dim subspace initially obtained 
using PCA does not necessarily coincide with the sub
space spanned by the K cluster centers. Therefore, the · 
centers, and cluster memberships, in the usual dimen
sion reduction clustering are not necessarily the correct 
(or accurate) results. One can correct this by adaptively 
modifying the r-dim subspace using the most current 
clustering results, and do another round of clustering 
in the modified subspace. One can repeat this process 
several times to improved the results. 

Gheen a point or-a cluster centroid in the r-dim sub
space, mapping back to the original d-dim space is not 
unique. In fact, there are infinite number of points in 
the d-dim space, all of which project into one point in 
the r~dim subspace (all points on a vertical line project 
into a single point in x-y plane). However, the centers 
(or centroids in the K-means) obtained in clustering in 
the r-dim subspace can be uniquely traced back to the 
original d-dim space by using the cluster membership 
of each data point. This observation is the basis of our 
ADR-EM clustering. 

The cluster membership information is contained in 
the posterior probability h7, 

h~ = Pr(e; = kJyi, B) 

the probability of point i belongs to cluster Ck given cur
rent model (parameters) and the evidence (value of Yi)· 
EM algorithm is the following: (i) initialize model pa
rameters {1rk,vk,O"k}; (ii) compute {h7}, hf = 
1l"kgk(y)/ L:k 1l"k9k(y); (iii) update: (1) compute the num
ber of points belonging to cluster Ck: nk = L:i hf; (2) 
update priors: 1l"k = nk/N; (3) update centers: Ilk = 
L:i hfyi/nk; (4) update covariances: O"k 
L:i hfllYi- JLkll 2 Jrnk. Steps (ii) and (iii) are repeated 



until convergence. Once EM converges, the final clus
ter information is contained in { hn. Using this infor
mation, the centers in the original d-dim space can be 
computed as 

Once the locations of the K cluster centers in the orig
inal d-dim space are known, expressed as the d x K 
matrix 

(6) 

and we can easily find the new r = K - 1 dimensional 
subspace spanned by these K centers. The new sub
space is defined by a set of K - 1 orthonormal vectors 
Ur = (u1,u2,··',ur)· Note that this orthonormal basis 
is not unique: any rotation of it is an equally good ba
sis. Here we present two methods to compute the basis. 
Both have the same O(r2 ·N) computational complexity 
where N is the number of data vectors in the dataset. 

4.1 SVD Basis 

We compute the singular value decomposition (SVD) 
[15] of C :as: C = L:e ue>..ev'[. Since the data is cen
tered, Ek 1rkJ.Lk = I:i xdn = 0, {J.LI · · · J.Ld are linearly 
dependent. Therefore C has rank r = K - 1. The d x r 
matrix U.r = ( U1, u2, · · ·, Ur) is the orthogonal basis of 
the new subspace. The SVD basis has a useful property 
that it automatically orders the dimensions according 
to their importance. For example, the last dimension 
Ur is not .as important as the first sub-dimension u 1 , as 
in principal component analysis. 

Now we project the original data into the new sub
space using Yi = U'[ Xi and do another round of EM 
clustering, with the starting cluster centers from the 
projections Vi = U'[ J.Li and information on priors { 1rk}. 

4.2 QR basis 

Another way to build the orthogonal basis is to use QR 
or Gram-Schmidt on the K centroids '[18]. Without 
loss of generality, we let J.LK be the one with the smallest 
magnitude, and form ad x (K -1) matrix 

Note that vectors in Cr are not necessarily orthogonal 
to each other. We use the Gram-Schmidt procedure, or 
equivalently, the QR factorization in linear algebra, 
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where the d x r matrix Qr = ( q1, · · · , Qr) is the or
thonormal basis for the subspace. P is an r x r upper 
triangle matrix, containing the projections of compo
nents in the Cr basis.· This QR basis has the property 
that Qk will be close to the J.Lk centers if they are rea
sonably orthogonal to each other. 

Now we use Qr to project the original data into the 
new subspace by Yi = Q'{ Xi, etc. Note that by construc
tion, no centers can coincide with each other in either 
SVD or QR basis. 

4.3 The complete ADR-EM algorithm 

The complete Adaptive Dimension Reduction Expecta
tion Maximization (AD R-EM) algorithm is described as 
follows. 

1. Preprocessing data to fit better the spherical Gaus
sian model. Center the data such that I:i Xi = 0. 
Rescale the data such that the variance in every 
dimension is 1. Choose appropriate K as input 
parameter. Choose dimensionality r for the re
duced dimension subspace. In general, we recom
mend r = K - 1. But r = K or r < K - 1 are 
also appropriate. 

2. Do the first dimension reduction using PCA or 
any other methods, including random starts. 

3. Run EM in the r-dim subspace to obtain clusters. 
Use cluster membership to construct cluster cen
troids in the original space. Check convergence. 
If yes, go to step 5. 

4. Compute the new r-dim subspace spanned by the 
K centroids using either SVD or QR basis. Project 
data into this new subspace. Go to step 3. 

5. Output results and converting posterior probabili
ties to discrete indicators. The relevant attributes 
(coordinates) are also identified. 

If accurate results are necessary, one may run one final 
round of EM in the original data space starting with 
existing parameters (see section 7). 

A key feature of ADR is that no matter how the 
data are projected and transformed (shifted, rotated, 
etc) in subspaces, once the cluster memberships in the 
subspace are computed, we can always use them to con
struct clusters in the original space, no need for book
keeping of the details of data transformations and/or 
reductions. One can easily design hybrid schemes of 
different data projections and use the obtained cluster 
membership as the bridge between them to form an in
tegrated clustering method. 



4.4 Relevant dimensions 

In general, r = K - 1 is the optimal choice. However, 
r = K is also a good choice in many cases: (i) when 
using QR basis, the QR can be applied to CK (cf. Eq.6) 
instead of CK-1 (cf. Eq.7) and obtain K basis vectors; 
(ii) in either SVD basis or QR basis, we can add one or 
even more additional basis vectors which are orthogonal 
to existing basis. These additional basis vectors can 
be either chosen for a particular emphasis or chosen 
randomly. Randomly choosing additional basis vector 
could help to search for broader configuration space, 
making sure we are not stuck in a local minimum. 

Sometimes we can also choose r < K - 1. Although 
K centers define a (K - 1)-dim subspace, they can 
sometimes locate on or near an r-dim subspace where 
r < K - 1. For example, 4 points in a 3-dim space 
could lie on a 2-dim plane or even on a 1-dim line. In 
these cases, C is rank deficient, i.e., the rank of C will 
be less than K- 1 and the singular values in SVD basis 
will drop to near zero; we should choose the appropriate 
r<K-1. 

Even if C is not rank deficient, we may still set r 
to be less than K - 1 for computational efficiency and 
effectiveness. This is especially important if we are deal
ing with a large and complex dataset and somehow we 
believe there should be, for example, K = 10 clusters. 
Due to the curse of dimensionality, 9-dim space may still 
be too high, so we may set r = 3 and find 10 clusters in 
3-dim space where EM or K-means are typically more 
effective .. Also in 3-dim space, computation is more ef
ficient (than in 9-dim) and the results can be inspected 
using 3-dim graphics or other visualization tools. In 
this case, after the best 10 clusters are discovered using 
r = 3, we may further refine the results by setting r = 9 
and re-run the algorithm, using cluster membership as 
the bridge. 

In all the test examples below, we have tested this 
r < K- 1 (over-reduced) method and the results are 
generally the same as the r = K- 1 method. However, 
we do notice the slower convergence of the EM method. 

5 Adaptive Dimension Reduction 
forK-means 

The ADR method can also be applied to the K-means 
clustering as well. Given a set of data vectors X = 
[xt, ... , Xn], the K-means for K clusters seeks to find a 
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set of centers Cp. = [ILb . .. '/LK] so as to minimize 

K 

Jd(X, Cp.) = .2::: .2::: llx; -ILk II~- (8) 
k=l iEq 

Each cluster c; is represented by a center ILi and consists 
of the data vectors that are closest to it in Euclidean 
distance, and the center of a cluster is the centroid of 
its data vectors. The K-means clustering can be viewed 
as a special case of EM with three simplifications (i) 
a1 = ·· · = aK =a; (ii) 7rt = · · · = 1TKi (iii) with a---> 0 
so that h~ = 1 or 0. 

As before, the key is to find the relevant r-dim re
duced space, specified by the projection matrix Rr. We 
have the following. 
Theorem 2. Suppose we somehow know the correct r
dim relevant subspace defined by Rr. Let Y = R'; X = 
R'; (x1, ... , Xn) and Cv = [v1, ... , vK] be K centroids in 
r-dim subspace. Solve the K-means problem in r-dim 
subspace, 

Use the cluster membership H = (hn obtained to re
construct the K centers cz = [IL i, ... , fL ~] in the full 
dimensional space. Then cz are the exact optimal so
lution to the the full-dimension K-means problem. 
Proof Assume the centroid matrix C* are the mini-

11-
mum for K cluster K~means in (8). Construct projec-
tion matrix Rr that spans the subspace for c;. Use 
Gram-Schmit procedure to construct Rs such that R = 
[Rr, Rs] is orthonormal matrix. Since Rr spans the sub
space for c;, R'[; 1-Li. = 0. Using this fact and Eq.(2), we 
have 

llxi -1-Li.ll~ = IIYi- vkll; + IIR:!' x;ll~ 
This indicates that among all K centers, if cj. is closest 
to x; in the d-sim space, then RT c*k is closest to RT x. r r • 
in the r-dim space, independent of R8 • We can write 
Jd(X, C) = Jr(Y, Cv) + const. 0 

If we know the final solution c;, we can easily con
struct Rr· For any r x r orthonormal matrix S, RrS still 
spans the correct subspace. In practice we do not know 
c; until after the problem is solved. By Theorem 2, 
we only need to find the relevant subspace. Because of 
the large flexibility in defining Rr, finding the relevant 
subspace is much easier than finding c; directly. This 
is the usefulness of Theorem 2. Our adaptive dimension 
reduction K-means is based on the theorem. The com
plete ADR-Kmeans algorithm is identical to ADR-EM 
algorithm in §4.3. 
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Figure 1: Three Gaussian clusters in 4-dim space. (A) 
covariances (0.25, 0.25, 0.25). (B) covariances (1, 1.44, 
1.96). Data points are shown in the first 2 PCA com
ponents. From (A) to (B), variance increases (1/0.5)2 

for the 1st cluster (red squares}, (1.2/0.5)2 for the 2nd 
cluster (blue circles), and (1.4/0.5) 2 for the 3rd cluster 
(black triangles). 

6 Applications 

6.1 Highly overlapping Gaussian mixtures 

The first example is a 1000-point synthetic dataset of 3 
gaussians in 4-dim with centers ( Ct, c2, c3), listed below 

[
0 0 1] 0 1 1 
0 1 -1 ' 
0 1 1 

(9) 

covariances (0'~,0'~,0'5) = (1, 1.44, 1.96), and prior dis
tributions (1r1, 1r2, 1r3) = (0.25, 0.35, 0.4). The 3 gaus
sians are highly overlapped (see Fig.l) The results of 
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ADR-EM are shown below, 

0.06 
1.18 
1.02 
1.16 

1.04] 0.99 
-1.32 
1.00 

quite close to the correct results. Repeated runs show 
that the method is quite robust. If we run EM directly 
in 4-dim space, the EM will have difficulty finding the 
correct clusters. Results change for each different run. 
After 10 runs, the best results are shown below 

[ 

0.38 0.12 
0.20 0.97 

-0.69 0.72 
0.30 0.91 

1.44] 1.76 
-1.96 
1.38 

Dimension reduction is essential in this highly-overlapped 
situation. 

6.2 DNA Microarray gene expression pro
filing 

This example is from molecular biology. High density 
DNA microarray technology can simultaneously mon
itor the expression .level of thousands of genes which 
determines different pathological states of the same tis
sue drawn from different patients (16, 3]. Here we study 
gene expression profiles of non-Hodgkin lymphoma can
cer data from (3]. Among the 96 samples of 9 pheno
types (classes), we pick the 4largest classes with a total 
of 76 samples(see Fig.2): (1) 46 samples of diffuse large 
B-celllymphoma ( o ), (2) 10 samples of Activated Blood 
cell B-cell (\7), (3) 9 samples of chronic lymphocytic 
leukemia (.6.), (4) 11 samples of follicular lymphoma 
(+). 
Each sample contains expression levels of 4026 genes 
(variables). The question we ask: could we discover 
these phenotypes from data directly, without human ex
pertise? 

We use t-test statistic criteria to select top 100 genes. 
The clustering problem is focused on the 76 samples in 
100-dim space with K=4. This is still a high dimen
sional problem. We use ADM-EM algorithm on this 
dataset, setting r=3. The clustering result is shown in 
the following contingency table · 

where T = (tii ), tii is the number of data points which 
are observed to be in cluster i, but was computed via 



the clustering method to belong to cluster j. The accu
racy is 69 /76=0.91% (accuracy is defined as Lk tkk/ N 
[11]). If we perform the clustering directly in the 100-
dim space, the runs are often trapped in local minimum. 
The usefulness of PCA on gene expression analysis were 
noted in [10]. 
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Figure 2: Gene expression profiles for lymphoma can
cer dataset. Shown are the data in the first 2 PCA 
components. 

6.3 Internet newsgroups clustering 

. We use the Internet newsgroups dataset 1 to illustrate 
the process of adaptive dimension reduction. We use 
five news groups NG2/NG9/NG10/NG15/NG18 with 
50 news articles from each group (see [29] for details). 
NG2: comp.graphics; NG9: rec.motorcycles; 
NG10: rec.sport.baseball; NG15: sci.space; 
NG18: talk.politics.mideast. 

Words with document frequency less than 3 are re
moved, and a total of 2731 distinct words are retained. 
Each document is represented by a vector in this d=2731 
dimensional space. We set r = 5 (relevant dimension is 
a 5-dim subspace). We start with a random initial 5-
dim subspace. In Table 1, we list the accuracy and J at 
the end of each adaptive iteration. Repeated adaptive 
dimension reduction gradually converges to the correct 
subspace. As a comparison, we run K-means algorithm 
in the original d=2731 space with the same initial clus
ters and obtain accuracy 50.40% and J=227.83. This 
indicates the effectiveness of our adaptive method. 

1The newsgroups dataset together with the bow toolkit for 
processing it can be downloaded from http:/ /www.cs.cmu.edu 
/ afs/ csfpro ject/theo-11 fwww / naive-bayes.html. 

7 

iteration accuracy min(J) 
1 25.60 235.58 
2 34.40 233.11 
3 44.80 231.01 
4 52.80 229.68 
5 60.40 228.19 
6 63.60 227.47 
7 66.00 227.06 
8 67.20 226.86 

Table 1: Clustering results of ADM-Kmeans algorithm. 

7 Discussions 

We introduced a new method for clustering high dimen
sional data using adaptive dimension reductions. The 
key to the effectiveness of this method lies in (Theorems 
1 and 2) that working in the subspace containing true 
cluster centers is sufficient to find the cluster centers. 
The subspace containing cluster centers is of dimension 
K, far smaller than the original dimension in many ap
plications. Adaptive dimension reduction is an effective 
way to converge to this subspace. Note that finding 
the subspace is much easier than finding cluster centers 
directly, due to the flexibility in defining subspace. 

Although we concentrate on EM and K-means algo
rithm here, the adaptive dimension reduction approach 
could be extended to other clustering methods. Us
ing cluster membership as the bridge to connect sub
spaces of different dimensions makes these extensions 
easy to implement. For example, one may construct a 
number of subspaces based on different feature selec
tion methods and apply different clustering methods on 
these subset of features and move or combine them to 
satisfy some optimal conditions. 

Another interesting subtle point is that although the 
functional form in d-dim space [cf. Eq.(1)] is very much 
the same as that in r-dim subspace [cf. Eq.(5)], the final 
parameters are not the same: the priors 7rk differ in the 
two spaces in the case of highly overlapped clusters with 
different covariances. The reason is that the probability 
can not be separated into a product of P(relevant coor
dinates)*P(irrelevant coordinates): p(x) = p(y, yl.) =/= 
p(y) · p(yl. ), even if each mixture component is sep
arable. Therefore, the standard practice of reporting 
the results directly obtained in the reduced-dimension 
subspace is not accurate enough. For this reason, we 
suggest the EM in the d-dim space be run once using 
those parameters obtained in the r-dim subspace to get 
more accurate final parameters. 
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