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Sensory and Motor Systems
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Abstract

Intracortical brain-computer interfaces (iBCIs) have the potential to restore hand grasping and object interac-
tion to individuals with tetraplegia. Optimal grasping and object interaction require simultaneous production of
both force and grasp outputs. However, since overlapping neural populations are modulated by both parame-
ters, grasp type could affect how well forces are decoded from motor cortex in a closed-loop force iBCI.
Therefore, this work quantified the neural representation and offline decoding performance of discrete hand
grasps and force levels in two human participants with tetraplegia. Participants attempted to produce three
discrete forces (light, medium, hard) using up to five hand grasp configurations. A two-way Welch ANOVA
was implemented on multiunit neural features to assess their modulation to force and grasp. Demixed
principal component analysis (dPCA) was used to assess for population-level tuning to force and grasp
and to predict these parameters from neural activity. Three major findings emerged from this work: (1)
force information was neurally represented and could be decoded across multiple hand grasps (and, in
one participant, across attempted elbow extension as well); (2) grasp type affected force representation
within multiunit neural features and offline force classification accuracy; and (3) grasp was classified

Significance Statement

Intracortical brain-computer interfaces (iBCIs) have emerged as a promising technology to potentially re-
store hand grasping and object interaction in people with tetraplegia. This study is among the first to quanti-
fy the degree to which hand grasp affects force-related, or kinetic, neural activity and decoding
performance in individuals with tetraplegia. The study results enhance our overall understanding of how the
brain encodes kinetic parameters across varying kinematic behaviors, and in particular, the degree to which
these parameters have independent versus interacting neural representations. Such investigations are a
critical step to incorporating force control into human-operated iBCI systems, which would move the tech-
nology toward restoring more functional and naturalistic tasks.
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more accurately and had greater population-level representation than force. These findings suggest that
force and grasp have both independent and interacting representations within cortex, and that incorpo-
rating force control into real-time iBCI systems is feasible across multiple hand grasps if the decoder
also accounts for grasp type.

Key words: brain-computer interface; force; grasp; kinetic; motor cortex

Introduction
Intracortical brain-computer interfaces (iBCIs) have

emerged as a promising technology to restore upper limb
function to individuals with paralysis. Traditionally, iBCIs
decode kinematic parameters from motor cortex to con-
trol the position and velocity of end effectors. These iBCIs
evolved from the seminal work of Georgopoulos and
colleagues, who proposed that motor cortex encodes
high-level kinematics, including continuous movement di-
rections and three-dimensional hand positions, in a global co-
ordinate frame (Georgopoulos et al., 1982, 1986). Kinematic
iBCIs have successfully achieved control of one-dimensional
and two-dimensional computer cursors (Wolpaw et al., 2002;
Leuthardt et al., 2004; Kübler et al., 2005; Hochberg et al.,

2006; Kim et al., 2008, 2011; Schalk et al., 2008; Hermes et
al., 2011; Simeral et al., 2011), prosthetic limbs (Hochberg et
al., 2012; Collinger et al., 2013; Wodlinger et al., 2015), and
paralyzed arm and hand muscles (Bouton et al., 2016;
Ajiboye et al., 2017).
While kinematic iBCIs can restore basic reaching and

grasping movements, restoring the ability to grasp and in-
teract with objects requires both kinematic and kinetic
(force-related) information (Chib et al., 2009; Flint et al.,
2014; Casadio et al., 2015). Specifically, sufficient contact
force is required to prevent object slippage; however, ex-
cessive force may cause mechanical damage to objects
(Westling and Johansson, 1984). Therefore, introducing
force calibration capabilities during grasp control would
enable iBCI users to perform more functional tasks.
Early work by Evarts and others, which showed correla-

tions between cortical activity and force output (Evarts,
1968; Humphrey, 1970; Fetz and Cheney, 1980; Evarts et
al., 1983; Kalaska et al., 1989), and later work, which de-
coded muscle activations from neurons in primary motor
cortex (M1; Morrow and Miller, 2003; Sergio and Kalaska,
2003; Pohlmeyer et al., 2007; Oby et al., 2010), suggest
that cortex encodes low-level dynamics of movement
along with kinematics (Kakei et al., 1999; Carmena et al.,
2003; Branco et al., 2019). However, explorations of ki-
netic parameters as control signals for iBCIs have only
just begun. The majority have characterized neural modu-
lation to executed kinetic tasks in primates and able-bod-
ied humans (Filimon et al., 2007; Moritz et al., 2008;
Pohlmeyer et al., 2009; Ethier et al., 2012; Flint et al.,
2012, 2014, 2017; Schwarz et al., 2018). Small subsets of
M1 neurons have been used to command muscle activa-
tions through functional electrical stimulation (FES), to
restore one-dimensional wrist control and whole-hand
grasping in primates with temporary motor paralysis (Moritz
et al., 2008; Pohlmeyer et al., 2009; Ethier et al., 2012). More
recent intracortical studies demonstrated that force repre-
sentation is preserved in individuals with chronic tetraplegia
(Downey et al., 2018; Rastogi et al., 2020).
Intended forces are usually produced in the context of

task-related factors, including grasp postures used to
generate forces (Murphy et al., 2016). The representation
and decoding of grasps, independent of forces, has been
studied extensively in primates (Stark and Abeles, 2007;
Stark et al., 2007; Vargas-Irwin et al., 2010; Carpaneto et
al., 2011; Townsend et al., 2011; Hao et al., 2014;
Schaffelhofer et al., 2015) and humans (Pistohl et al.,
2012; Chestek et al., 2013; Bleichner et al., 2014, 2016;
Klaes et al., 2015; Leo et al., 2016; Branco et al., 2017).
Importantly, previous studies suggest that force and
grasp are encoded by overlapping populations of neural
activity (Sergio and Kalaska, 1998; Carmena et al., 2003;
Sergio et al., 2005; Milekovic et al., 2015; Sburlea and
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Müller-Putz, 2018). While some studies suggest that force
is encoded at a high level independent of motion and
grasp (Chib et al., 2009; Hendrix et al., 2009; Pistohl et al.,
2012; Intveld et al., 2018), others suggest that it is en-
coded at a low level intertwined with grasp (Hepp-
Reymond et al., 1999; Degenhart et al., 2011). Thus, the
degree to which intended hand grasps and forces interact
within the neural space, and how such interactions affect
force decoding performance, remain unclear. To our
knowledge, these scientific questions have not been ex-
plored in individuals with tetraplegia, who constitute a tar-
get population for iBCI technologies.
To answer these questions, we characterized the extent

to which three discrete, attempted forces were neurally
represented and offline-decoded across up to five hand
grasp configurations in two individuals with tetraplegia.
Our results suggest that force has both grasp-independ-
ent and grasp-dependent (interacting) representation in
motor cortex. Additionally, while this study demonstrates
the feasibility of incorporating discrete force control into
human-operated iBCIs, these systems will likely need to
incorporate grasp and other task parameters to achieve
optimal performance.

Materials and Methods
Study permissions and participants
Study procedures were approved by the United States

Food and Drug Administration (Investigational Device
Exemption #G090003) and the Institutional Review Boards
of University Hospitals Case Medical Center (protocol #04-
12-17), Massachusetts General Hospital (2011P001036), the
Providence VA Medical Center (2011-009), Brown University
(0809992560), and Stanford University (protocol #20804).
Human participants were enrolled in the BrainGate2 Pilot
Clinical Trial (ClinicalTrials.gov number NCT00912041).
Informed consent, including consent to publish, was ob-
tained from the participants before their enrollment in the
study.
This study includes data from two participants with

chronic tetraplegia. Both participants had two, 96-chan-
nel microelectrode intracortical arrays (1.5-mm electrode
length, Blackrock Microsystems) implanted in the hand
and arm area (“hand knob”; Yousry et al., 1997) of domi-
nant motor cortex. Participant T8 was a 53-year-old right-
handed male with C4-level AIS-A spinal cord injury
eight years before implant, and T5 was a 63-year-old

right-handed male with C4-level AIS-C spinal cord injury.
More surgical details can be found at (Ajiboye et al., 2017)
for T8 and (Nuyujukian et al., 2018) for T5.

Participant task
The goal of this study was to measure the degree to

which various hand grasps affect decoding of grasp force
from motor cortical spiking activity. To this end, partici-
pants T8 and T5 took part in several research sessions in
which they attempted to produce three discrete squeeze
forces (light, medium, hard) using one of four designated
hand grasps (closed pinch, open pinch, ring pinch,
power). Squeeze force, defined here as the amount of
force needed to deform an object, is distinct from grip
force, which is the amount of force needed to grasp an
object of particular weight and friction (Westling and
Johansson, 1984). In this study, participants were in-
structed to produce squeeze forces as opposed to grip
forces. This was because participants could not receive
somatosensory feedback about the object properties that
usually inform grip force production, yet retained the ca-
pacity to emulate squeeze forces in response to audio
and visual cues.
The four hand grasps used to emulate squeeze forces

were chosen to study force representation within multiple
grasp-related contexts. The open and closed pinch
grasps were included to determine how forces were rep-
resented when emulated with grasps of similar function
(thumb-index precision grasp) but different posture. The
ring pinch grasp was included to determine the effects of
using different fingers to produce similar forces. Finally, the
power grasp was included to determine the influence of
power versus precision grasping on force representation.
Participant T8 completed six sessions between trial

days 735–956 relative to the date of his microelectrode
array placement surgery; and T5 completed one session
on trial day 390. During session 5, participant T8 emulated
discrete forces using attempted elbow extension in addi-
tion to the four distal hand grasps. This enabled the study
of force representation across the entire upper limb. Table
1 lists all relevant sessions and their associated task
parameters.
Each research session consisted of multiple 4-min data

collection blocks, which were each assigned to a particu-
lar hand grasp or elbow movement, as illustrated in Figure
1B. Blocks were presented in a pseudorandom order, in

Table 1. Session information

Session
Number Participant

Post-Implant
Day

Number of Blocks per Grasp
Closed
Pinch

Open
Pinch

Ring
Pinch Power Elbow

1 T8 Day 735 11 — — 10 —

2 T8 Day 771 5 5 5 5 —

3 T8 Day 774 6 5 5 5 —

4 T8 Day 788 5 5 5 5 —

5 T8 Day 802 4 4 4 4 5
6 T8 Day 956 4 4 4 4 —

7 T5 Day 390 4 4 4 4 —

Session information for participants T8 and T5, including the number of blocks per grasp type.
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which hand grasps were assigned randomly to each set of
two (session 1), four (sessions 2–4, 6–7), or five (session 5)
blocks. This allowed for an equal number of blocks per hand
grasp, distributed evenly across the entire research session.

All blocks consisted of ;20 trials, which were pre-
sented in a pseudorandom order by repeatedly cycling
through a complete, randomized set of force levels until
the end of the block. During each trial, participants used

Figure 1. Data collection scheme for research sessions. A, Experimental setup (adapted from Rastogi et al., 2020). Participants
had two 96-channel microelectrode arrays placed chronically in motor cortex, which recorded neural activity while participants com-
pleted a force task. TC and SBP features were extracted from these recordings. Figure 1A is reprinted by permission from Springer
Nature as indicated in the Terms and Conditions of a Creative Commons Attribution 4.0 International license (https://www.nature.
com/srep/). B, Research session architecture. Each session consisted of 12–21 blocks, each of which contained ;20 trials (see
Table 1). In each trial, participants attempted to generate one of three visually-cued forces with one of four grasps: power, closed
pinch, open pinch, ring pinch. During session 5, participant T8 also attempted force production using elbow extension. Each trial
contained a preparatory (prep) phase, a go phase where forces were actively embodied, and a stop phase where neural activity was
allowed to return to baseline. Participants were prompted with both audio and visual cues, in which a researcher squeezed or lifted
an object associated with each force level. During pinch blocks, the researcher squeezed the pinchable objects (cotton ball, eraser,
nasal aspirator tip) using the particular pinch grip dictated by the block (ring pinch, open pinch, closed pinch). Here, only closed
pinches of objects are shown.
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kinesthetic imagery (Stevens, 2005; Mizuguchi et al.,
2017) to internally emulate one of three discrete force lev-
els, or rest, with the dominant hand. Participants received
simultaneous audio and visual cues indicating which
force to produce, when to produce it, and when to relax.
Participants were visually cued by observing a researcher
squeeze one of nine graspable objects corresponding to
light, medium, and hard forces (no object was squeezed
during “rest” trials), as shown in Figure 1B. The partici-
pants were asked to “follow along” and attempt the same
movements that the researcher was demonstrating. The
graspable objects were grouped into three sets of three,
corresponding to forces embodied using a power grasp
(sponge = light, stress ball = medium, tennis ball = hard),
a pincer grasp (cotton ball = light, nasal aspirator tip = me-
dium, eraser = hard), or elbow extension (5-lb dumbbell =
light, 10-lb dumbbell = medium, 15-lb dumbbell = hard).
These visual cues, which were included to make the con-
cept of light, medium, and hard forces seem less abstract
to participants after years of deafferentation, were
deemed unlikely to be reflected within the go-phase neu-
ral response based on previous investigations (Rastogi et
al., 2020). Objects were chosen to be of similar weight,
size, and shape to minimize the effects of visual con-
founds within the neural data.
During the prep phase, which lasted a pseudo-ran-

domly determined period between 2.7 and 3.3 s to re-
duce confounding effects from anticipatory activity, the
researcher presented an object indicating the force level
to be attempted. The researcher then squeezed the ob-
ject (or lifted the object, in the case of elbow extension)
during the go phase (3–5 s), and finally released the ob-
ject at the beginning of the stop phase (5 s). When
squeezing (or lifting) objects, the researcher used the
grasp type dictated by the block. For example, to visually
cue hard forces, the researcher used a ring pinch to
squeeze the eraser during ring pinch blocks, but used an
open pinch grasp to squeeze the eraser during open
pinch blocks.

Neural recordings
Preprocessing
In both participants, each intracortical microelectrode

array was attached to a percutaneous pedestal connec-
tor on the head. A Blackrock shielded Patient Cable con-
nected the pedestals to front-end amplifiers and a
NeuroPort System (Blackrock Microsystems) that band-
pass filtered (0.3Hz to 7.5 kHz) and digitized (30 kHz) the
neural signals from each channel on the microelectrode
array. These digitized signals were preprocessed in
Simulink using the xPC real-time operating system (The
MathWorks Inc.). Each channel was bandpass (BP) fil-
tered (250–5000Hz), common average referenced
(CAR), and down-sampled to 15 kHz in real time. CAR
was implemented by selecting 60 channels from each
microelectrode array that exhibited the lowest variance,
and then averaging these channels together to yield an
array-specific CAR. This reference signal was subtracted
from the signals from all channels within each of the
arrays.

Extraction of neural features
From each filtered, CAR channel, two neural features

were extracted in real time using the xPC operating sys-
tem from non-overlapping 20-ms time bins. These
features, as illustrated in Figure 1A, included unsorted
threshold crossing (TC) rate and spike band power (SBP)
features. Each TC feature, which was equivalent to multiu-
nit activity (Stark and Abeles, 2007) was defined as the
number of times a channel’s recorded voltage time series
crossed a predefined noise threshold [�4.5 � root mean
square (RMS) voltage], divided by the width of the time
bin (Christie et al., 2015) . The RMS voltage on each chan-
nel was calculated from 1 min of neural data recorded at
the beginning of each research session. Additionally,
each SBP feature was computed as the average signal
power of the spike band (250–5000Hz) within each time
bin. Thus, SBP features were computed in the same man-
ner as local field potentials (LFPs) and EEG signal power
bands.
These calculations yielded 384 neural features per par-

ticipant, which were used for offline analysis without spike
sorting (Trautmann et al., 2019). TC features were labeled
from 1 to 192 according to the recording electrodes from
which they were extracted. Corresponding SBP features
were labeled from 193 to 384. All features were normal-
ized by subtracting the block-specific mean activity of the
features within each recording block, to minimize non-
stationarities in the data.
Unless otherwise stated, all subsequent offline analyses

of neural data were performed using MATLAB software
within a Windows 64-bit operating system.

Characterization of individual neural feature tuning
The first goal of this study was to determine the degree

to which force-related and grasp-related information are
represented within individual TC and SBP neural features.
Specifically, neural activity resulting from three discrete
forces and two (session 1), four (sessions 2–4, 6–7), or five
(session 5) grasps, resulted in 6, 12, or 15 conditions of in-
terest per session, respectively. See Table 1 for a list of
grasps included for each individual research session. To
visualize individual feature responses to force and grasp,
each feature’s peristimulus time histogram (PSTH) was
computed for each of these conditions by averaging the
neural activity over go-cue-aligned trials. These trials
were temporally smoothed with a Gaussian kernel (100-
ms SD) to aid in visualization.
To determine how many of these individual features

were tuned to force and/or grasp, statistical analyses
were implemented in MATLAB and with the WRS2 library
in the R programming language (Wilcox, 2017), as in
Rastogi et al. (2020). Briefly, features were preprocessed
in MATLAB to compute each feature’s mean go-phase
deviation from baseline during each trial. Baseline activity
was computed by averaging neural activity across multi-
ple rest trials.
In R, the distribution of go-phase neural deviations was

found to be normal (analysis of Q-Q plots and Shapiro–
Wilk tests, p,0.05) but heteroskedastic (Levene’s test,
p, 0.05), necessitating a two-way Welch ANOVA
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analysis to determine neural tuning to force, grasp, and
their interaction (p, 0.05). Features exhibiting an interac-
tion between force and grasp were further separated into
individual grasp conditions (closed pinch, open pinch,
ring pinch, power, elbow), within which one-way Welch-
ANOVA tests were implemented to find interacting fea-
tures that were tuned to force. All p values were corrected
for multiple comparisons using the Benjamini–Hochberg
procedure (Benjamini and Hochberg, 1995).

Neural population analysis and decoding
The second goal of this study was to determine the de-

gree to which force and grasp are represented within, and
can be decoded from, the neural population. Here, the
neural population was represented using both traditional
and demixed principal component analysis (dPCA).

Visualizing force representation with traditional PCA
In order to visualize how consistently forces were repre-

sented across different grasps, neural activity collected
during individual sessions were graphically represented
within a low-dimensional space found using PCA. Notably,
during session 5, participant T8 attempted to produce
three discrete forces not only with several grasps, but also
with an elbow extension movement. Therefore, two sets of
PCA analyses were implemented on the data. The first,
which was applied to all sessions, performed PCA on all
force and grasp conditions within the session. In the sec-
ond analysis specific to session 5 only, PCA was applied
solely on power grasping and elbow extension trials to elu-
cidate whether forces were represented in a consistent
way across the entire upper limb. For both analyses, the
PCA algorithm was applied to neural feature activity that
was averaged over multiple trials and across the go phase
of the task.
The results of each decomposition were plotted in a

low-dimensional space defined by the first two principal
components (PCs). The force axis within this space, given
by Equation 1, was estimated by applying multiclass line-
ar discriminant analysis (LDA; Juric, 2020) to the centered,
force-labeled PCA data, and then using the largest LDA
eigenvector as the multidimensional slope m of the force
axis. Here, PCscore is the principal component score, or
representation of the neural data in PCA space, and f is
the intended force level. A consistent force axis across
multiple grasps within PCA space would suggest that
forces are represented in an abstract (and thus grasp-in-
dependent) manner.

PCscore ¼ mf: (1)

dPCA
The remainder of population-level analysis was imple-

mented using dPCA. dPCA is a dimensionality reduction
technique that, similarly to traditional PCA, compresses
neural population activity into a few components that cap-
ture the majority of variance in the source data (Kobak et
al., 2016). Unlike traditional PCA, which yields PCs that
each capture signal variance from multiple parameters of
interest, dPCA performs an ANOVA-like decomposition of

data into task-dependent dimensions of neural activity.
That is, the resulting dPCs are tuned to individual task pa-
rameters; thus, they are much easier to interpret than tra-
ditional PCs. Additionally, because dPCA performs an
ANOVA-like decomposition of data, it serves as a popula-
tion-level analog to the two-way Welch ANOVA analysis
implemented on individual neural features.
Briefly, the matrix X of neural data is decomposed into

trial-averaged neural activity explained by time (t), various
task parameters (p1, p2), their interaction (p1p2), and
noise, according to Equation 2. Next, dPCA finds sepa-
rate decoder (D) and encoder (E) matrices for each mar-
ginalization M by minimizing the loss function L exhibited
in Equation 3.

X ¼ Xt 1Xp1 1Xp2 1Xp1p2 1Xnoise ¼
X

M

XM 1Xnoise

(2)

L ¼
X

M

XM � EMDMX
2: (3)

The resulting dPCs, obtained by multiplying the neural
data X by the rows of each decoder matrix DM, are, in
theory, de-mixed, in that the variance explained by each
component is because of a single, specific task parameter
M. These dimensions of neural activity not only reveal
population-level trends in neural data, but they can also
be used to decode task parameters of interest. Critically,
dPCA can be used to decode task parameters from the
data while still preserving its original geometry. Thus, a
single technique can be used to analyze the underlying
structure of neural data as it relates to the encoding of
task parameters, and to simultaneously quantify how well
these parameters can be decoded for use in an iBCI sys-
tem (Kobak et al., 2016).

Single dPCA component implementation
In the present study, the task parameters of interest

were force and grasp. Here, one goal was to use variance
as a metric to quantify the degree to which force and
grasp were represented within the neural population as a
whole. Therefore, for each research session listed in
Table 1, the neural data X was temporally smoothed using
a Gaussian filter (100-ms SD) and decomposed into neu-
ral activity that varied with four marginalizations XM, as
per Equation 2: time (condition independent), force,
grasp, and an interaction between force and grasp. The
variance that each marginalization accounted for was
computed as the sum of squares of the mean-centered
neural data contained within the marginalization.
An additional goal was to isolate neural components

that contained useful information about force and grasp,
i.e., components that would enable discrimination be-
tween individual force levels and grasp types. First, dPCA
was used to reduce each of the four, 384-dimensional,
mean-centered marginalizations XM into 20 dPCs, as de-
scribed by Equation 3. This yielded 80 dPCs across all
four marginalizations. Second, the variances accounted
for by each of the 80 components were computed as the
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sum of squares. Third, the top 20 out of 80 components
with the highest variance were selected as representing
the majority of variance in the neural dataset and were as-
sembled into a decoder matrix D. Finally, each of these
top 20 components was assigned to one of the four mar-
ginalizations of interest according to the marginalization
from which it was extracted. For example, dPCs that were
extracted from the force marginalization Xforce were
deemed as force-tuned dPCs; those extracted from the
grasp marginalization Xgrasp were deemed as grasp tuned
dPCs, and those extracted from the marginalization XF/G
representing an interaction between force and grasp were
deemed as interacting dPCs.
Each dPC’s information content was further quantified

in two ways. First, to assess the degree to which dPCs
were demixed, each dPC’s variance was subdivided into
four sources of variance corresponding to each of the four
marginalizations of interest, as per Equation 2. Second,
the decoder axis associated with each dPC was used as a
linear classifier to decode intended parameters of interest.
Specifically, each force-tuned dPC was used to decode
force at every time point of the behavioral task, while each
grasp-tuned dPC was used to decode grasp, but not
force. Likewise, components that exhibited an interaction
between force and grasp were used to decode force-
grasp pairs. Condition-independent dPCs, which were
tuned to time, were not used to decode force or grasp
from the neural activity.
Linear classification was implemented using 100 itera-

tions of stratified Monte Carlo leave-group-out cross-vali-
dation (Kobak et al., 2016). During each iteration, one
random group of F x G test “pseudo-trials,” each corre-
sponding to one of the several force-grasp conditions,
was set aside during each time point (F = number of in-
tended forces, G = number of intended grasps). Next,
dPCA was implemented on the remaining trials, and the
decoder axes of the resulting dPCs were used to predict
the intended forces or intended grasps indicated by the
test set of pseudo-trials at each time point. This was ac-
complished by first computing mean dPC values for each
force-grasp condition, separately for each time point; pro-
jecting the F x G pseudo-trials onto the decoder axes of
the dPCs at each time point; and then classifying the
pseudo-trials according to the closest class mean (Kobak
et al., 2016). The proportion of F x G pseudo-trials cor-
rectly classified across 100 iterations at each time point
constituted a time-dependent classification accuracy.
Chance performance was computed by performing 100
shuffles of all available trials, randomly assigning force or
grasp conditions to the shuffled data, and then perform-
ing the same cross-validated classification procedure
within each of the 100 shuffles. Classification accuracies
that exceeded the upper range of chance performance
were deemed significant.

Force and grasp decoding using multiple dPCs
Two additional goals of this study were to determine

whether intended forces could be accurately predicted
from neural population data and whether these predic-
tions depended on hand grasp configuration. To this end,
dPCs that were tuned to force, grasp, and an interaction

between force and grasp were used to construct multidi-
mensional force and grasp decoders within each session.
Specifically, the force decoder was constructed by com-
bining the decoding axes of force-tuned and interacting
components into a single, multidimensional decoder DF;
likewise, the grasp decoder DG was constructed by com-
bining the decoding axes of grasp-tuned and interacting
components.
Each of these decoders was used to perform 40 runs of

linear force and grasp classification for each of S research
sessions per participant, implemented using the afore-
mentioned stratified Monte Carlo leave-group-out cross-
validation procedure (S =6 for T8; S= 1 for T5). As in the
single component implementation (Kobak et al., 2016),
each run was accomplished in multiple steps. First, the
mean values of all dPCs included within the multidimen-
sional decoder were computed for each force-grasp con-
dition, separately for each time point. Second, at each
time point, the F x G pseudo-trials were projected onto
the multidimensional decoder axis and classified accord-
ing to the closest class mean. The proportion of test trials
correctly classified at each time point over 100 iterations
constituted a time-dependent force or grasp classification
accuracy.
The aforementioned computations yielded 40 � S

time-dependent force and grasp classification accura-
cies per participant. Session-averaged, time-dependent
force and grasp classification accuracies were com-
puted by averaging the performance over 240 session-
runs for participant T8 (40 runs � six sessions) and 40
session-runs for participant T5 (40 runs � one session).
These averages were compared with chance perform-
ance, which was computed by performing 100 shuffles
of all trials, randomly assigning force or grasp conditions
to the shuffled data, and then performing force and
grasp classification on each of the shuffled datasets
using the multidimensional decoders DF and DG. Time
points when force or grasp classification exceeded the
upper bound of chance were deemed to contain signifi-
cant force-related or grasp-related information.
To visualize the degree to which individual forces and

grasps could be discriminated, confusion matrices were
computed over go-phase time windows during which the
neural population contained significant force-related and
grasp-related information. The time window began when
session-averaged, time-dependent classification accuracy
exceeded 90% of maximum achieved performance within
the go phase, and ended at the end of the go phase. First,
classification accuracies for each of the S � 40 session-
runs were approximated by averaging classification per-
formance across the prespecified go-phase time window.
These time-averaged accuracies, which are henceforth re-
ferred to as mean force and grasp accuracies, were next
averaged over all S � 40 session-runs to yield confusion
matrix data. In this way, confusion matrices were com-
puted to visualize force-related discriminability across all
trials, force-related discriminability within individual grasp
types, and grasp-related discriminability across all trials.
Classification performances for individual forces and

individual grasps were statistically compared using
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parametric tests implemented on mean force and
grasp accuracies. Specifically, for each participant,
mean classification accuracies for light, medium, and
hard forces were compared by implementing one-way
ANOVA across mean force accuracies from all S � 40
session runs. The resulting p values were corrected for
multiple comparisons using the Benjamini–Hochberg
procedure (Benjamini and Hochberg, 1995). Likewise,
mean classification accuracies for closed pinch, open
pinch, ring pinch, power, and elbow “grasps” were
compared by implementing one-way ANOVA across all
mean grasp accuracies. These comparisons were im-
plemented to determine whether offline force and grasp
decoding yielded similar versus different classification
results across multiple forces and multiple grasps.
Statistical analysis was also used to determine the de-

gree to which grasp affected force decoding accuracy.
This was achieved by implementing two-way ANOVA on
mean force accuracies that were labeled with the grasps
used to emulate these forces. The results of the two-way
ANOVA showed a statistically significant interaction be-
tween force and grasp. Therefore, the presence of simple
main effects was assessed within each force level and
within each grasp type. Specifically, one-way ANOVA was
implemented on mean accuracies within individual force
levels to determine whether light forces, for example,
were classified with similar degrees of accuracies across
all grasp types. Similarly, one-way ANOVA was imple-
mented on mean accuracies within individual grasps to
see whether intended forces affected grasp classification
accuracy; p values resulting from these analyses were
corrected for multiple comparisons using the Benjamini–
Hochberg procedure.
Finally, this study evaluated how well dPCA force de-

coders could generalize to novel grasp datasets in T8
session 5 and T5 session 7. Specifically, within each ses-
sion, a multidimensional force decoder DF was trained
on neural data generated during all but one grasp type,
and then its performance was evaluated on the at-
tempted forces emulated using the left-out “novel”
grasp. To establish the generalizability of force decoding
performance across many novel grasps, this analysis
cycled through all available grasps attempted during
session 5 (closed pinch, open pinch, ring pinch, power,
elbow extension) and session 7 (closed pinch, open
pinch, ring pinch, power). For each novel grasp, the
trained decoder DF was used to perform 40 runs of
stratified Monte Carlo leave-group-out cross-validated
linear force classification on two sets of test data: the
“initial grasp” dataset, which originated from the grasps
on which the force decoder was trained; the novel grasp
dataset, which originated from the leave-out test grasp.
The resulting time-dependent, “initial grasp” and “novel
grasp” decoding performances from the go-phase time
window during above-90% maximum classification ac-
curacy were averaged over 40 runs, and then compared
using a standard t test. P values resulting from the statis-
tical analysis were corrected for multiple comparisons
across forces and test grasps using the Benjamini–
Hochberg procedure.

Comparison of force encoding models
The overarching goal of this study, which is to deter-

mine the extent to which force representation within
motor cortex depends on grasp, arose from two conflict-
ing hypotheses indicating that force representation is ei-
ther grasp-independent (Chib et al., 2009; Hendrix et al.,
2009; Pistohl et al., 2012; Intveld et al., 2018) or grasp-de-
pendent (Hepp-Reymond et al., 1999; Degenhart et al.,
2011). The grasp-independent and grasp-dependent force
encoding hypotheses can be mathematically modeled as
per Equations 4, 5, respectively:

xij ¼ agi 1bfsj 1d (4)

xij ¼ csjgi 1d (5)

In these equations, xij is an N � T � TR matrix of neural
activity generated within N neural features over T time
points, during TR trials of a particular grasp i and force j.
The term gi is an N� T � TRmatrix of baseline feature ac-
tivity during the grasp i, f is an N � T � TR matrix of base-
line activity feature activity during force generation, and sj
is a discrete scalar force level. Finally, the coefficients a,
b, c, and d are constants. In Equation 4, the overall neural
activity xij consists of an addition of independent force-re-
lated and grasp-related terms, as is thus referred to as the
additive model of force encoding. In contrast, Equation 5
models the neural activity xij as a multiplication of the
force level sj with baseline grasp activity gi, and is hence
referred to as the scalar model of force encoding.
An additional model, indicated by Equation 6, incorpo-

rates terms from both the additive and scalar models of
force encoding, and is thus referred to as the combined
model:

xij ¼ agi 1bfsj 1 csjgi 1d (6)

The additive (grasp-independent) and scalar (grasp-de-
pendent) hypotheses of force encoding were graphically
illustrated with a toy example of expected grasp-independ-
ent versus grasp-dependent (interacting) representations of
force within the neural space. In the toy example, the model
coefficients a, b, and c were set to one, and the model
coefficient d was set to zero. The neural activity xij was a
vector of trial-averaged activity from 100 simulated neu-
ral features during a single time point, generated during
a particular grasp i and force j. The variable gi was a
100� 1 vector of normalized baseline feature activity
during the grasp i, f was a 100� 1 vector of normalized
baseline neural feature activity during force generation,
and sj was a discrete, scalar force level (1, 2, or 5). The
vectors gi and f contained values drawn from the standard
normal distribution.
Additionally, cross-validated ordinary least squares re-

gression was used to quantify the degree to which the ad-
ditive, scalar, and combined models explained the neural
data xij recorded from participants T8 and T5. Here, the
neural data xij consisted solely of force, grasp, and inter-
acting components; condition-independent components
of xij were omitted. Thus, the matrix xij was computed by
compressing the 384-dimensional neural feature data
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using the dPCA decoder matrix D, eliminating CI-tuned
dPCs, and then transforming the data back to feature
space using the encoder matrix E (see Eq. 3). Baseline
grasp activity gi was estimated by isolating grasp-tuned
components from the neural data, transforming these
components back to feature space using the encoder ma-
trix Egrasp, and then averaging the resulting activity over
force conditions. Similarly, the baseline force activity f
was estimated by isolating force-tuned dPCs, transform-
ing these components back to feature space using the en-
coder matrix Eforce, and then averaging the resulting data
over all force-grasp conditions. All three neural activity
variables consisted of 384 � T � TR matrices, where T
was the number of go-phase time points and TR was the
number of trials emulated with an individual force-grasp
combination. As in the toy example, sj was a discrete sca-
lar force level (1, 2, or 5).
Cross-validated regression analysis for each model

was performed using 100 iterations of a stratified Monte
Carlo leave-group-out scheme. Notably, the regression
was performed on the data x generated during all combi-
nations of forces and grasps, as opposed to xij, generated
during a particular grasp i and force j. During each iteration
of cross-validation, one random group of F x G pseudo-tri-
als, each corresponding to one of the several force-grasp
conditions, was set aside as a test dataset. Next, model co-
efficients were trained via ordinary least squares regression
on the remaining data. Finally, the trained model was used
to predict the neural activity generated during the emulated
pseudo-trials, resulting in an R2 value for each iteration. The
distributions of R2 values generated from each model were
statistically compared by implementing a multiple compari-
sons test (Tukey method) on the results of a one-way
ANOVA analysis.

Data and code accessibility
This study made use of several computational algo-

rithms implemented using publicly available source code
packages. Code for the WRS2 R package, which was used
to characterize single features, is available at https://
CRAN.R-project.org/package=WRS2. Source code for the
dPCA algorithm can be implemented either in MATLAB or
Python and is available at https://github.com/machenslab/
dPCA. The dPCA source code was modified to perform
multidimensional decoding of force and grasp; these modi-
fied scripts can be made available on reasonable request
by contacting the lead or senior authors. Finally, MATLAB
code for the multiclass LDA algorithm used to compute
low-dimensional force axes within PCA space is available
on the MATLAB file exchange at https://www.mathworks.
com/matlabcentral/fileexchange/31760-multiclass-lda.
The data presented in this study can be made available

on reasonable request by contacting the lead or senior
authors.

Results
Characterization of individual neural features
Figure 2 shows the activity of four exemplary features

from session 5 chosen to illustrate tuning to force, grasp,

both force and grasp independently, and an interaction
between force and grasp, as evaluated with two-way
Welch-ANOVA (corrected p, 0.05, Benjamini–Hochberg
procedure). These features demonstrate neural modula-
tion to forces that T8 attempted to produce using all five
grasp conditions: closed pinch, open pinch, ring pinch,
power grasp, and elbow extension. Extended Data Figure
2-1 shows the activity of four additional features from par-
ticipant T5. TC features are labeled from 1 to 192 accord-
ing to the recording electrodes from which they were
extracted. Corresponding SBP features are labeled from
193 to 384.
For each feature, column 1 shows neural activity that

was averaged across grasp types (within force levels), re-
sulting in trial-averaged feature traces whose differences
in modulation were due to force alone. Similarly, column 2
shows neural activity averaged within individual hand
grasps. Here, SBP feature 302 exhibits modulation to
force only (row 1), as indicated by statistically significant
go-phase differentiation in activity across multiple force
levels, but not across multiple grasp levels. This force-
only tuning is what might be expected for a “high-level”
coding of force that is independent of grasp type.
Similarly, TC feature 190 is statistically tuned to grasp
only, in that it exhibits go-phase differentiation across
multiple grasps, but not across multiple forces. SBP fea-
ture 201, in which multiple forces and multiple grasps are
statistically discriminable, is tuned to both force and
grasp.
Figure 2, column 3, displays a graphical representation

of the simple main effects of the two-way Welch-ANOVA
analysis, as shown by mean go-phase neural deviations
from baseline feature activity during the production of
each individual force level using each individual grasp
type. Here, SBP features 302 and 201, which were both
tuned to force independent of grasp, showed similar pat-
terns in modulation to light, medium, and hard forces
within individual grasp types. In contrast, TC feature 83
was tuned to an interaction between force and grasp; ac-
cordingly, its modulation to light, medium, and hard
forces varied according which grasp type the participant
used to emulate these forces. This type of interaction is
what might be expected for a more “motoric” encoding of
force and grasp type. If each grasp requires a different set
of muscles and joints to be active, then a motoric encod-
ing of joint or muscle motion would end up representing
force differently depending on the grasp.
Figure 3 summarizes the tuning properties of all 384 TC

and SBP neural features in participants T8 and T5, as eval-
uated with robust two-way Welch-ANOVA. Specifically,
Figure 3A shows the fraction of neural features tuned to
force, grasp, both force and grasp, and an interaction be-
tween force and grasp. Features belonging to the former
three groups (i.e., those that exhibited no interactions be-
tween force and grasp tuning) were deemed as independ-
ently tuned to force and/or grasp. As shown in row 1, the
proportion of features belonging to each of these groups
varied considerably across experimental sessions.
However, during all sessions in both participants, a sub-
stantial proportion of features (ranging from 15.4% to
54.7% of the feature population across sessions) were
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Figure 2. Exemplary TC and SBP features tuned to task parameters of interest in participant T8 (TC and SBP features in par-
ticipant T5 are illustrated in Extended Data Fig. 2-1). Rows indicate average per-condition activity (PSTH) of four exemplary
features tuned to force, grasp, both factors, and an interaction between force and grasp, recorded during session 5 from
participant T8 (two-way Welch-ANOVA, corrected p,0.05, Benjamini–Hochberg method). Bolded, starred p values indicate
significant tuning to force (Rows 1 and 3), grasp (Rows 2 and 3), or a force-grasp interaction (Row 4). Neural activity was nor-
malized by subtracting block-specific mean feature activity within each recording block, and then smoothed with a 100-ms
Gaussian kernel to aid in visualization. Column 1 contains PSTHs averaged within individual force levels (across multiple
grasps), such that observable differences between data traces are because of force alone. Similarly, column 2 shows PSTHs
averaged within individual grasps (across multiple forces). Column 3 shows a graphical representation of the simple main ef-
fects as normalized mean neural deviations from baseline activity during force trials within each of the five grasps. (cp, c-
pinch = closed pinch; op, o-pinch = open pinch; rp, r-pinch = ring pinch, pow = power, elb = elbow extension). Mean neural
deviations were computed over the go phase of each trial and subsequently averaged within each force-grasp pair. Error
bars indicate 95% confidence intervals.
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tuned to force, independent of grasp. In other words, a sub-
stantial portion of the measured neural population repre-
sented force and grasp independently.
A smaller subset of features exhibited an interaction be-

tween force and grasp in both T8 (5.2 6 4.2%) and T5
(13.8%). Figure 3, row 2, further separates these interact-
ing features into those that exhibited force tuning within
each individual grasp type, as evaluated by one-way
Welch-ANOVA (corrected p,0.05). Here, the proportion
of interacting features tuned to force appeared to depend
on grasp type, particularly during sessions 2, 4, 5, 6, and
7, in a session-specific manner. In other words, within a
small contingent of the neural feature population, force
representation showed some dependence on intended
grasp. Taken together, Figure 3 suggests that force and
grasp are represented both independently and depend-
ently within motor cortex at the level of individual neural
features.

Neural population analysis and decoding
Simulated force encoding models
The goal of this study was to clarify the degree to which

hand grasps affect neural force representation and de-
coding performance, in light of conflicting evidence of
grasp-independent (Chib et al., 2009; Hendrix et al., 2009;
Pistohl et al., 2012; Intveld et al., 2018) versus grasp-de-
pendent (Hepp-Reymond et al., 1999; Degenhart et al.,
2011) force representation in the literature. Before visual-
izing population-level representation of force, we first il-
lustrate these differing hypotheses with a toy example of
expected grasp-independent versus grasp-dependent
(interacting) representations of force within the neural
space. Figure 4 simulates grasp-independent force en-
coding with an additive model (Eq. 4), and grasp-depend-
ent force encoding with a scalar model (Eq. 5; reproduced
in Fig. 4, row 1).

Within the additive model, the overall neural activity xij
generated during a grasp i and force j is represented as a
summation of independent force-related and grasp-re-
lated contributions. Thus, the additive model simulates in-
dependent neural force representation, in which force is
represented at a high level independent of grasp. In con-
trast, the scalar encoding model simulates the neural ac-
tivity xij as resulting from a multiplication of the force level
sj and the baseline grasping activity gi. Such an effect
might be expected if force were encoded as low-level tun-
ing to muscle activity. In this case, different force levels
would result in the same pattern of muscle activity being
activated to a lesser or greater degree, thus scaling the
neural activity associated with that grasp, resulting in a
coupling between force and grasp. Therefore, the scalar
model simulates an interacting (grasp-dependent) neural
force representation.
Figure 4, row 2, shows simulated neural activity result-

ing from the additive and scalar encoding models within
two-dimensional PCA space. In the independent model,
force is represented in a consistent way across multiple
simulated grasps, as indicated by the force axis. In con-
trast, within the interacting model, force representation
differs according to grasp. These differences are further
highlighted in Figure 4, row 3, in which dPCA was applied
to the simulated neural data (over 20 simulated trials) re-
sulting from each model. While the additive model exhib-
ited no interaction-related neural variance, the scalar
model yielded a substantial proportion of force, grasp,
and interaction-related variance. Note that within these
toy models, the simulated neural activity did not vary over
its time course and, thus, exhibited no condition-inde-
pendent (time-related) variance.

Neural population analysis
Figure 5 shows neural population-level activity patterns

during sessions 5 and 7 from participants T8 and T5,

Figure 3. Summary of neural feature population tuning to force and grasp. Row 1, Fraction of neural features significantly tuned to
force, grasp, both force, and grasp and an interaction between force and grasp in participants T8 and T5 (two-way Welch-ANOVA,
corrected p,0.05). Row 2, Fraction of neural features significantly tuned to an interaction between force and grasp, subdivided
into force-tuned features within each individual grasp (c-pinch = closed pinch, o-pinch = open pinch, r-pinch = ring pinch). Note
that the number of grasp types differed between sessions (see Table 1).
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respectively. Here, session 5 data were shown to illustrate
the neural population response to forces emulated using
all five grasp conditions. Additionally, session 7 data were
shown as the representative dataset from participant T5.
In the first two columns of Figure 5, dPCA and traditional
PCA were applied to all force-grasp conditions in both
participants. In the third column, these dimensionality re-
duction techniques were applied solely to force trials at-
tempted using the power grasping and elbow extension,
to further quantify force representation across the entire
upper limb. Population-level activity patterns for addition-
al sessions are shown in Extended Data Figures 5-1, 5-2.
The 12 dPCs shown in Figure 5A explain the highest

amount of variance within each of the four marginaliza-
tions of interest, for each participant. For example, par-
ticipant T8’s component #4 (row 2, column 1) is the
largest force-tuned component in the dataset and ex-
plains 3.3% of the neural data’s overall variance.
Similarly, T8’s component #2 (row 3, column 1), which
captures grasp-related activity, explains 8.1% of neural
variance. Horizontal black bars on each panel indicate
time points at which individual dPC decoding axes pre-
dict intended forces (row 2), grasps (row 3), and force-
grasp pairs (row 4) more accurately than chance

performance. In both participants, single components
were able to offline-decode intended forces at above-
chance levels solely during the active “go” phase of the
trial, indicated by the vertical gray lines. However, grasp-
tuned components were able to accurately predict in-
tended grasps at nearly all time points during the trial, in-
cluding the prep and stop phases. These trends were
observed when dPCA was applied across all force-grasp
conditions (columns 1 and 2) and across solely power
and elbow trials in participant T8 (column 3).
Figure 5B summarizes the variance accounted for by

the entire set of dPCs extracted from each dataset.
Specifically, the first row shows the cumulative variance
captured by the dPCs (red), as compared with compo-
nents extracted with traditional PCA (black). Here, dPCs
extracted from different marginalizations were not neces-
sarily orthogonal and accounted for less cumulative var-
iance than traditional PCs because the axes were
optimized for demixing in addition to capturing maximum
variance. However, the cumulative dPC variance ap-
proached total signal variance, as indicated by the
dashed horizontal lines in each panel, and were thus
deemed as a faithful representation of the neural popula-
tion data.

Figure 4. Simulated models of independent and interacting (grasp-dependent) neural representations of force. Row 1, Equations
corresponding to the independent and interacting models of force representation. Here, xij represents neural feature activity gener-
ated during a particular grasp i and force j, gi represents baseline feature activity during grasp i, f represents force-related neural
feature activity, and sj is a discrete force level. Row 2, Simulated population neural activity projected into a two-dimensional PCA
space. Estimated force axes within the low-dimensional spaces are shown as blue lines. Row 3, Summary of variances accounted
for by the top 20 dPCs extracted from the simulated neural data from each model. Here, the variance of each individual component
is separated by marginalization (force, grasp, and interaction between force and grasp). Pie charts indicate the percentage of total
signal variance due to these marginalizations.
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Figure 5. Neural population-level activity patterns. A, Demixed principal components (dPCs) isolated from all force-grasp conditions
from T8 session 5, all force-grasp conditions from T5 session 7, and power versus elbow conditions from T8 session 5 neural data.
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Figure 5B, second row, further subdivides the variances
of individual dPCs into per-marginalization variances.
Here, most of the variance in each extracted component
can be attributed to one primary marginalization, indicating
that the extracted components are fairly well demixed. Pie
charts indicate the percentage of total signal variance (ex-
cluding noise) from force, grasp, force/grasp interaction,
and condition-independent signal components. In both
participants, condition-independent components ac-
counted for the highest amount of neural signal variance,
followed by grasp, then force, then force-grasp interac-
tions. In other words, more variance could be attributed to
putative grasp representation than force representation at
the level of the neural population. Additionally, force-grasp
interactions only accounted for a small amount of neural
variance, even when dPCA was applied solely across
power grasping and elbow extension trials (column 3).
Session 5 contained a larger amount of interaction variance
than other sessions, possibly because of the presence of
elbow extension trials that were attempted over a larger
range of forces than those emulated with distal hand
grasps. However, interaction variance was nonetheless
smaller than force-related and grasp-related variance.
Figure 5C visualizes the trial-averaged, go-phase-aver-

aged neural activity from each dataset within two-dimen-
sional PCA space. Within these plots, each data point
represents the average neural activity corresponding to
an individual force-grasp condition. In all panels, light,
medium, and hard forces, represented as different shapes
within PCA space, are aligned to a consistent force axis
(shown in blue) across multiple grasps, and also across
power grasping and elbow extension movements.
Finally, Figure 5D quantifies how well the data can be

explained by the additive (grasp-independent) and scalar
(grasp-dependent) encoding models presented in
Equations 4, 5 and illustrated in Figure 4. Fitted model co-
efficients obtained via cross-validated ordinary least
squares regression are indicated within session-specific
tables, while R2 values for the trained models are indi-
cated as bar plots. Here, the additive model significantly
outperformed the scalar model for all sessions (p, 0.001,
one-way ANOVA, Tukey method). In agreement with this
result, Figure 5B,C resemble the simulation results from
the additive force encoding model (Fig. 4; Eq. 4), which
would be expected for grasp-independent force

representation. However, a small amount of interaction-
related variance was also present in Figure 5B, and the
force activity patterns in Figure 5C deviated to a small de-
gree from the force axis, indicating that the additive
model may not fully explain the neural activity. Therefore,
the neural data were also fit to a combined model (Eq. 6),
which incorporated terms from both the additive and sca-
lar models. When fitted to neural data recorded from all
force-grasp conditions (columns 1 and 2), the combined
model performed similarly to the additive model (p.
0.05), likely because the scalar term within the combined
model was assigned a low weighting coefficient c.
However, when applied solely to the power and elbow ex-
tension trials of session 5, the combined slightly outper-
formed the additive model (p, 0.01), in agreement with
the slightly larger force/grasp interaction-related variance
present within this subset of the data.

Time-dependent decoding performance
Figure 6 summarizes the degree to which intended

forces and grasps could be predicted from the neural ac-
tivity using the aforementioned dPCs. Here, offline force
decoding accuracies were computed by using a force de-
coder DF, created by assembling the decoding axes of
multiple force-tuned and interacting components, to clas-
sify light, medium, and hard forces over multiple session-
runs of a 100-fold, stratified, leave-group-out Monte Carlo
cross-validation scheme, as described in the Methods.
Similarly, grasp decoding accuracies in row three were
computed using a grasp decoder DG, created by assem-
bling the decoding axes of grasp-tuned and interacting
dPCs. Figure 6, row 1, shows time-dependent force de-
coding results, averaged over S � 40 session-runs in par-
ticipants T8 (S=6) and T5 (S=1). Row 2 further
subdivides the results of row 1 into force decoding accu-
racies achieved during individual hand grasps. Finally,
row 3, shows time-dependent grasp decoding results for
both participants.
Here, intended forces were decoded at levels exceed-

ing the upper bound of chance solely during the go phase
across all sessions (Extended Data Fig. 6-3), regardless of
the grasp used to emulate the force. The exception to this
trend occurred during elbow extension trials, in which in-
tended forces were decoded above chance during the
stop phase. In contrast, intended grasps were decoded

continued
dPCs were tuned to four marginalizations of interest: Condition-Independent (CI) tuning (i.e., time), Force, Grasp, and an interaction
between force and grasp (FxGrasp). dPCs that account for the highest amount of variance in the per-marginalization neural activity
are shown here. These variances are included in brackets next to each component number. Vertical bars indicate the start and end
of the go phase. Horizontal bars indicate time points at which the decoder axes of the pictured components classified forces (row
2), grasps (row 3), or force-grasp pairs (row 4) significantly above chance. B, Summary of variances accounted for by the top 20
dPCs and PCs from each session. Here, the variance accounted for by the dPCs approaches the variance accounted for by tradi-
tional PCs. Horizontal dashed lines indicate total signal variance, excluding noise. Row 2 shows the variance of each individual
component, separated by marginalization. C, Go-phase activity within a two-dimensional PCA space. Estimated force axes within
the low-dimensional PCA spaces are shown as blue lines. Here, c-pinch = closed pinch, o-pinch = open pinch, r-pinch = ring pinch.
D, Encoding model performances. The task-dependent components of neural feature activity were fit to the additive, scalar, and
combined encoding models via cross-validated ordinary least squares regression. Tables contain the fit model coefficients for each
session. Bar graphs indicate mean R2 values for each model over 100 iterations of Monte Carlo leave-group-out cross-validation.
Error bars indicate SDs across iterations. Stars indicate statistically significant differences between model R2 values; **p , 0.01 and
***p , 0.001.
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above chance during all trial phases, regardless of the
number of grasps from which the decoder discriminated
(Extended Data Fig. 6-2), although go-phase grasp de-
coding accuracies tended to exceed those achieved dur-
ing other trial phases. In summary, both intended forces
and grasps were decoded above chance during time peri-
ods when participants intended to produce these forces
and grasps, and in some cases, during preparatory and
stop periods. Session-averaged, time dependent decod-
ing accuracies for individual force levels and grasp types
are displayed in Extended Data Figure 6-1.

Go-phase decoding performance
Figure 7 summarizes go-phase force and grasp decod-

ing accuracies as confusion matrices. Here, time-depend-
ent classification accuracies for each force level and each
grasp type were averaged over go-phase time windows
(see Fig. 6) that commenced when overall classification
performance exceeded 90% of their maximum, and
ended with the end of the go phase. This time period was
selected to exclude the rise time in classification accuracy
at the beginning of the go phase, so that the resulting
mean trial accuracies reflected stable values. The mean
trial accuracies were then averaged over all session-runs

in each participant to yield confusion matrices of true versus
predicted forces and grasps. Figure 7B further subdivides
overall three-force classification accuracies into force classi-
fication accuracies achieved during each individual grasp
type (columns) in both participants (rows). The confusion
matrices in Figure 7 represent cumulative data across multi-
ple sessions in participant T8, and one session in participant
T5. Extended Data Figures 7-1, 7-2, 7-3 statistically com-
pare decoding accuracies between individual force levels
and grasp types within each individual session.
In Figures 6A, 7A and Extended Data Figure 6-1, over-

all, three-force classification accuracies exceeded the
upper limit of chance in both participants. However, the
decoding accuracies of individual force levels were statis-
tically different. For almost all sessions, hard forces were
classified more accurately than light forces (with the ex-
ception of session 4, during which light and hard force
classification accuracy was statistically similar), and both
light and hard forces were always classified more accu-
rately than medium forces. More specifically, hard and
light forces were decoded above chance across all ses-
sions, while medium force classification accuracies often
failed to exceed chance in both participants.

Figure 6. Time-dependent classification accuracies for force (rows 1–2) and grasp (row 3). Data traces were smoothed with a 100-
ms boxcar filter to aid in visualization. Shaded areas surrounding each data trace indicate the SD across 240 session-runs for most
trials in participant T8, 40 session-runs for elbow extension trials in participant T8, and 40 session-runs in participant T5. Gray
shaded areas indicate the upper and lower bounds of chance performance over S � 100 shuffles of trial data, where S is the num-
ber of sessions per participant. Time points at which force or grasp is decoded above the upper bound of chance are deemed to
contain significant force-related or grasp-related information. Blue shaded regions indicate the time points used to compute go-
phase confusion matrices in Figure 7. Here, c-pinch = closed pinch, o-pinch = open pinch, r-pinch = ring pinch. Time-dependent
classification accuracies for individual force levels and grasp types are shown in Extended Data Figure 6-1. Grasp classification accura-
cies, separated by number of attempted grasp types, are presented in Extended Data Figure 6-2. Force classification accuracies, separated
by individual session, are presented in Extended Data Figure 6-3.
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In contrast, both overall and individual grasp decoding
accuracies always exceeded the upper limit of chance.
According to Figure 7A and Extended Data Figure 7-1B,
certain grasps were decoded more accurately than

others. Specifically, in participant T8, the power and ring
pincer grasps were often classified more accurately than
the open and closed pincer grasps across multiple ses-
sions (corrected p� 0.05, one-way ANOVA). Elbow

Figure 7. Go-phase confusion matrices. A, Time-dependent classification accuracies (shown in Fig. 6) were averaged over go-phase
time windows that commenced when performance exceeded 90% of maximum and ended with the end of the go phase. These yielded
mean trial accuracies, which were then averaged over all session-runs in each participant. Overall force and grasp classification accura-
cies are indicated above each confusion matrix. SDs across multiple session-runs are indicated next to mean accuracies (cp = closed
pinch, op = open pinch, rp = ring pinch, pow = power, elb = elbow extension). Statistical comparisons between the achieved classifica-
tion accuracies are shown in Extended Data Figure 7-1. B, Confusion matrices, now separated by the grasps (c-pinch = closed pinch, o-
pinch = open pinch, r-pinch = ring pinch, power, elbow) that participants T8 (row 1) and T5 (row 2) used to attempt producing forces.
Statistical comparisons between the achieved force accuracies are shown in Extended Data Figures 7-2, 7-3.
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extension, which required the participants to attempt
force production in the upper limb in addition to the hand,
was classified more accurately than any of the grasping
forces during session 5 (corrected p� 0.05). In partici-
pant T5, grasp classification accuracies, in order from
greatest to least, were ring pincer . open pincer . power
. closed pincer. Regardless, grasp decoding perform-
ance always exceeded force decoding performance in
both participants, as seen in Figures 6, 7.
In Figure 7 and Extended Data Figure 7-3, overall and

individual force classification accuracies varied depend-
ing on the hand grasps used to attempt these forces.
Specifically, classification accuracies for forces at-
tempted with different grasps were, with few exceptions,
statistically different (corrected p� 0.05, one-way
ANOVA). For example, in Figure 7B and Extended Data
Figure 7-3, hard forces attempted using the open pincer
grasp were always classified more accurately than hard
forces attempted using the ring pincer grasp in both par-
ticipants. In other words, grasp type affected how accu-
rately forces were decoded.
Finally, Figure 8 summarizes how well force decoders

trained on one set of grasps generalized to novel grasp
types in T8 session 5 (row 1) and T5 session 7 (row 2). A
force decoder was used to discriminate forces among a
set of grasps used for training (“left-in,” gray bars) or a
leave-out novel grasp (white bars). Here, the force de-
coding performance between the leave-in and leave-out
grasps was significantly different in seven out of nine
comparisons, suggesting that grasp affects how well
forces are decoded from neural activity. However, for all
sets of grasps, force decoding performance always ex-
ceeded chance. This was even true when, during T8 ses-
sion 5, the force decoder was trained on four hand
grasps and evaluated on elbow extension data. This is
consistent with the previous population-level analyses
that show that components of force representation in
motor cortex are conserved across grasps and even arm
movements.

Discussion
The current study sought to determine how human

motor cortex encodes hand grasps and discrete forces,
how much these representations interacted, and how well
forces and grasps could be decoded. Three major find-
ings emerged from this work. First, force information was
present in, and could be decoded from, intracortical neu-
ral activity in a consistent way across multiple hand
grasps. This suggests that force is, to some extent, repre-
sented at a high level in individuals with tetraplegia, inde-
pendent of motion and grasp. However, as a second
finding, grasp affected force representation and classifi-
cation accuracy, suggesting a simultaneous, low-level,
motoric representation of force in individuals with tetra-
plegia. Finally, hand grasps were classified more accu-
rately and explained more neural variance than forces.
These three findings and their implications for future on-
line force decoding efforts are discussed here.

Force and grasp representation in motor cortex
Force information persists across multiple hand grasps in
individuals with tetraplegia.

Overall force representation. Force was represented in
a consistent way across multiple hand grasps within the
neural activity. In particular, a substantial contingent of
neural features was tuned to force independent of grasp
(Fig. 3), force-tuned components explained more popula-
tion-level variance than components tuned to force-grasp
interactions (Fig. 5), and intended forces were accurately
predicted from population-level activity across multiple
grasps (Figs. 6-8). The study results suggest that in indi-
viduals with tetraplegia, to a large extent, force is repre-
sented at a high level within motor cortex, distinct from
grasp, in accordance with the grasp-independent force
encoding model described by Equation 4 (Figs. 4, 5D).
This conclusion agrees with previous motor control stud-
ies (Mason et al., 2004; Chib et al., 2009; Casadio et al.,
2015), which suggest that at the macroscopic level, force

Figure 8. Go-phase force classification accuracy for novel (test) grasps. Within each session (rows), dPCA force decoders were
trained on neural data generated during all grasps, excluding a single leave-out grasp type (columns). The force decoder was then
evaluated over the set of training grasps (gray bars), as well as the novel leave-out grasp type (white bars). Stars indicate statistically
significant differences in performance between training and novel grasps; **p, 0.01, ***p, 0.001. Error bars indicate the 95% confi-
dence intervals. The horizontal dotted line in each panel indicates upper bound of the empirical chance distribution for force classifi-
cation. Here, c-pinch = closed pinch, o-pinch = open pinch, r-pinch = ring pinch.
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and motion may be represented independently. In particular,
Chib and colleagues showed that descending commands
pertaining to force and motion could be independently dis-
rupted via transcranial magnetic stimulation (TMS), and that
these commands obeyed simple linear superposition laws
when force andmotion tasks were combined.
Furthermore, intracortical non-human primate studies

(Mason et al., 2006; Hendrix et al., 2009; Intveld et al.,
2018) suggest that forces are encoded largely independ-
ently of the grasps used to produce them. However, in
these studies and within the present work, hand grasps
likely recruited overlapping sets of muscle activations.
Thus, the relatively low degree of interactions observed
here and in the literature could actually be because of
overlapping muscle activations rather than truly grasp-in-
dependent force representation. For this reason, partici-
pant T8 emulated forces using elbow extension in
addition to the other hand grasps during session 5. The
elbow extension task, which recruited both proximal and
distal muscle activations, was chosen to overlap less with
the other hand grasps, which recruited distal muscle acti-
vations only. In Figure 5, column 3, dPCA was imple-
mented solely on force trials emulated using elbow
extension and power grasping. The resulting dPCA com-
position yielded a slightly larger interaction variance (4%)
that was nonetheless smaller than variance due to force
(;12%) or grasp (;35%). Furthermore, discrete force
data, when represented within two-dimensional PCA
space, aligned closely with a force axis that was con-
served over both power grasping and elbow extension
movements, providing further evidence that force may be
encoded independently of movements and grasps.

Representation of discrete forces. While overall force
accuracies exceeded chance performance (Fig. 6), hard and
light forces were classified more accurately than medium
forces across all hand grasps, sessions, and participants.
Medium forces often failed to exceed chance classification
performance (Fig. 7A; Extended Data Figs. 6-1B, 6-3).
Notably, classification performance depended on partici-
pants’ ability to kinesthetically attempt various force levels
and grasps without feedback, despite having tetraplegia for
several years before study enrollment. Anecdotally, partici-
pant T8 reported that light and hard forces were easier to at-
tempt than medium forces, because they fell at the extremes
of the force spectrum and could thus be reproduced consis-
tently. Although his confidence with reproducing all forces
improved with training, it is conceivable that without sensory
feedback, medium forces were simply more difficult to emu-
late, and thus yielded neural activity patterns that were less
consistent andmore difficult to discriminate.
Additionally, prior studies suggest that neural activity

increases monotonically with increasing force magnitude
(Evarts, 1969; Thach, 1978; Cheney and Fetz, 1980;
Wannier et al., 1991; Ashe, 1997; Cramer et al., 2002).
Therefore, by virtue of being intermediate to light and hard
forces, medium forces may be represented intermediate
to light and hard forces in the neural space, and may thus
be more easily confused with forces at the extremes of
the range evaluated (Murphy et al., 2016; Downey et al.,
2018). To this point, population-level activity during

medium and light forces exhibited similarities (Fig. 5;
Extended Data Fig. 5-1); accordingly, medium forces
were most often confused with light forces during offline
classification (Fig. 7).

Hand posture affects force representation and force clas-
sification accuracy

Single-feature versus population interactions between
force and grasp. As previously stated, force information
was neurally represented, and could be decoded,
across multiple hand grasps (Figs. 3, 5–8). However,
hand grasp also influenced how force information was
represented within (Fig. 5) and decoded from (Fig. 7;
Extended Data Fig. 7-3) motor cortex. Furthermore,
despite small force-grasp interaction population-level
variance (Fig. 5B; Extended Data Fig. 5-1B), as many
as 12.0% and 13.8% of neural features exhibited tun-
ing to these interaction effects in participants T8 and
T5, respectively (Fig. 3), providing further evidence
that the force and grasp representation are not entirely
independent.
When considering the relatively large number of interacting

features and the small population-level interaction variance,
one might initially conclude that a discrepancy exists be-
tween feature-level and population-level representation of
forces and grasps. However, the amount of variance ex-
plained by a parameter of interest may not always corre-
spond directly to the percentage of features tuned to this
parameter. Here, the interaction effects within individual fea-
tures likely reached statistical significance with small effect
size. In other words, while real interaction effects were pres-
ent within the feature data (Fig. 3), the overall effect was
small, as exhibited within the population activity (Fig. 5). From
this perspective, the seemingly incongruous feature-level and
population-level results actually complement one another
and inform our understanding of how forces are represented
in motor cortex in individuals with tetraplegia.

Force and grasp have both abstract (independent) and
motoric (interacting) representations in cortex. Thus far,
studies of force versus grasp representation have
largely fallen into two opposing groups. The first pro-
poses that motor parameters are represented inde-
pendently (Carmena et al., 2003; Mason et al., 2006;
Hendrix et al., 2009; Intveld et al., 2018). Such repre-
sentation implies that the motor cortex encodes an ac-
tion separately from its intensity, then combines these
two events downstream to compute the EMG patterns
necessary to realize actions in physical space.
In contrast, the second group suggests that force, grasp,

and other motor parameters interact (Hepp-Reymond et al.,
1999; Degenhart et al., 2011). They propose that motor pa-
rameters cannot be fully de-coupled (Kalaska, 2009; Branco
et al., 2019) and that it may bemore effective to use the entire
motor output to develop a comprehensive mechanical
model, rather than trying to extract single parameters such as
force and grasp (Ebner et al., 2009).
The current study presents evidence supporting both

independent and interacting representations of force and
grasp in individuals with tetraplegia. These seemingly
contradictory results actually agree with a previous non-
human primate study that recorded from motor areas
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during six combinations of forces and grasps (Intveld et
al., 2018). Intveld and colleagues found that, while force-
grasp interactions explained only 0–3% of population var-
iance, roughly 10–20% of recorded neurons exhibited
such interactions, which is highly consistent with the
present study results (Figs. 3, 5). Thus, in individuals with
tetraplegia, the neural space could consist of two contin-
gents: one that encodes force at a high level independent
of grasp and motion, and another that encodes force as
low-level tuning to muscle activity, resulting in interac-
tions between force and grasp. The second contingent,
however small, significantly impacts how accurately
forces and grasps are decoded (Fig. 7B; Extended Data
Fig. 7-3) and should not be discounted.

Hand grasp is represented to a greater degree than force
at the level of the neural population

Go-phase grasp representation. In the present data-
sets, grasps were decoded more accurately (Figs. 6, 7;
Extended Data Fig. 6-1B) and explained more signal var-
iance (Fig. 5B; Extended Data Fig. 5-1B) than forces. This
suggests that within the sampled region of motor cortex,
grasp is represented to a greater degree than force, which
agrees with prior literature (Hendrix et al., 2009; Milekovic
et al., 2015; Intveld et al., 2018).
In the current work, force may be represented to a

lesser degree than grasp for several reasons. First, force
information may have stronger representation in caudal
M1, particularly on the banks of the central sulcus
(Kalaska and Hyde, 1985; Sergio et al., 2005; Hendrix et
al., 2009) or within the depth of the sulcus (Rathelot and
Strick, 2009), which cannot be accessed using planar mi-
croelectrode arrays. Second, force-tuned neurons in
motor cortex respond more to the direction of applied
force than its magnitude (Kalaska and Hyde, 1985;
Kalaska et al., 1989; Taira et al., 1996). Finally, intracorti-
cal non-human primate studies (Georgopoulos et al.,
1983, 1992) and human fMRI studies (Branco et al., 2019)
suggest that motor cortical neurons respond more to the
dynamics of force than to static force tasks. The present
work, which recorded from rostral motor cortex while
study participants emulated static, non-directional forces,
may therefore have detected weaker force representation
than would have been possible from more caudally-
placed recording arrays during a dynamic, functional
force task.
Additionally, both study participants were deafferented

and received no sensory feedback regarding the forces
and grasps they attempted. In individuals with tetraplegia,
discrepancies may exist between the representation of ki-
nematic parameters such as grasp, which remain rela-
tively intact because of their reliance on visual feedback,
and kinetic parameters such as force (Rastogi et al.,
2020). Specifically, since force representation relies heav-
ily on somatosensory feedback (Tan et al., 2014; Tabot et
al., 2015; Schiefer et al., 2018), whose neural pathways
are altered during tetraplegia (Solstrand Dahlberg et al.,
2018), the current study may have yielded weaker force-
related representation than if this feedback were present.
Therefore, further investigations of force representation

are needed in individuals with tetraplegia during natural-
istic, dynamic tasks that incorporate sensory feedback,
either from intact sensation or from intracortical microsti-
mulation (Flesher et al., 2016), to determine the full extent
of motor cortical force representation and to maximize
decoding performance.

Grasp representation during prep and stop phases.
Unlike forces, which were represented primarily during
the go phase of the trial, grasps were represented
throughout the entire task (Figs. 5, 6), in agreement with
previous literature (Milekovic et al., 2015). However, this
ubiquitous grasp representation may be partially ex-
plained by the behavioral task. Research sessions con-
sisted of multiple data collection blocks, each of which
was assigned to a particular hand grasp, and cycled
through three attempted force levels within each block
(Fig. 1B). Thus, while attempted force varied from trial to
trial, attempted hand grasps were constant over each
block and known by participants in advance. When indi-
viduals have prior knowledge of one task parameter, but
not another other, information about the known parameter
can appear within the baseline activity (Vargas-Irwin et al.,
2018). Therefore, grasp-related information may have
been represented within the neural space during non-ac-
tive phases of the trial, simply by virtue of being known in
advance.
Additionally, the placement of the recording arrays

could have influenced grasp representation in this study.
In each participant, two microelectrode arrays were
placed within the hand knob of motor cortex (Yousry et
al., 1997). These arrays may have recorded from “visuo-
motor neurons,” which modulate both to grasp execution
and to the presence of graspable objects before active
grasp (Carpaneto et al., 2011), or from neurons that are in-
volved with motor planning of grasp (Schaffelhofer et al.,
2015). These neurons have typically been attributed to
area F5, a homolog of premotor cortex in non-human pri-
mates. Recent literature indicates that human precentral
gyrus is actually part of the premotor cortex (Willett et al.,
2020). Thus, the arrays in this study likely recorded from
premotor neurons, which modulate to grasp during both
visuomotor planning and grasp execution, as was ob-
served here.

Implications for force decoding
Hand grasp affects force decoding performance
Our decoding results demonstrate that, in individuals

with tetraplegia, forces can be decoded offline from neu-
ral activity across multiple hand grasps (Figs. 6-8). These
results agree with the largely independent force and
grasp representation within single features (Fig. 3) and the
neural population (Fig. 5). From a functional standpoint,
this supports the feasibility of incorporating force control
into real-time iBCI applications. On the other hand, grasp
affects how accurately discrete forces are predicted from
neural data (Fig. 7B; Extended Data Fig. 7-3). Therefore,
future robust force decoders may need to account for ad-
ditional motor parameters, including hand grasp, to maxi-
mize performance.
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Decoding motor parameters with dynamic neural
representation
The present study decoded intended forces from popu-

lation activity at multiple time points, with the hope that
force representation and decoding performance would be
preserved throughout the go phase of the task. We found
that feature-level (Fig. 2; Extended Data Fig. 2-1) and
population-level (Fig. 5; Extended Data Fig. 5-1) force ac-
tivity exhibited both tonic and dynamic characteristics in
individuals with tetraplegia.
When participants attempted to produce static forces,

the resulting neural activity varied with time to some de-
gree. These dynamics are consistent with previous results
in humans (Murphy et al., 2016; Downey et al., 2018;
Rastogi et al., 2020). In particular, Downey and colleagues
found that force decoding during a virtual, open-loop,
grasp-and-transport task was above chance during the
grasp phase of the task, but no greater than chance dur-
ing static attempted force production during the transport
phase. These results support the idea that deafferented
motor cortex encodes changes in force, rather than (or in
addition to) discrete force levels themselves, as in the
able-bodied case (Smith et al., 1975; Georgopoulos et al.,
1983, 1992; Wannier et al., 1991; Picard and Smith, 1992;
Boudreau and Smith, 2001; Paek et al., 2015).
However, the presence of tonic elements agrees with

intracortical studies (Smith et al., 1975; Wannier et al.,
1991), which demonstrated both tonic and dynamic neu-
ral responses to executed forces; and fMRI studies
(Branco et al., 2019), which demonstrated a monotonic
relationship between the BOLD response and static force
magnitudes. Moreover, despite the presence of dynamic
response elements, offline force classification perform-
ance remained relatively stable throughout the go phase
(Fig. 6; Extended Data Figs. 6-1, 6-3), suggesting that the
tonic elements could allow for adequate real-time force
decoding using linear techniques alone. This may be es-
pecially true when decoding forces during dynamic func-
tional tasks, which elicit stronger, more consistent neural
responses within motor cortex (Georgopoulos et al.,
1983, 1992; Branco et al., 2019).
Nonetheless, real-time force decoding would likely ben-

efit from an exploration of a wider range of encoding mod-
els. For example, the exploration of a force derivative
model, and its implementation within an online iBCI de-
coder, would be of potential utility.

Decoding of discrete versus continuous forces
The present work continues previous efforts to charac-

terize discrete force representation in individuals with pa-
ralysis (Cramer et al., 2005; Downey et al., 2018; Rastogi
et al., 2020) by accurately classifying these forces across
multiple hand grasps – especially when performing light
versus hard force classification (Fig. 7). This supports the
feasibility of enabling discrete (“state”) control of force
magnitudes across multiple grasps within iBCI systems,
which would allow the end iBCI user to perform functional
grasping tasks requiring varied yet precise force outputs.
Perhaps because discrete force control alone would en-
hance iBCI functionality, relatively few studies have

attempted to predict forces along a continuous range of
magnitudes. Thus far, continuous force control has been
achieved in non-human primates (Carmena et al., 2003)
and able-bodied humans (Pistohl et al., 2012; Chen et al.,
2014; Flint et al., 2014), but not in individuals with tetraple-
gia. If successfully implemented, continuous force control
could restore more nuanced grasping and object interac-
tion capabilities to individuals with motor disabilities.
However, during the present work (Fig. 7; Extended

Data Fig. 6-1) and additional discrete force studies
(Murphy et al., 2016; Downey et al., 2018), intermediate
force levels were often confused with their neighbors,
and thus more difficult to decode. Therefore, implement-
ing continuous force control may pose challenges in
individuals with tetraplegia. Possibly, enhancing force-re-
lated representation in these individuals via aforemen-
tioned techniques, including the introduction of dynamic
force tasks, closed loop sensory feedback, and derivative
force encoding models, may boost overall performance
to a sufficient degree to enable continuous force decod-
ing capabilities. Regardless, more investigations are
needed to determine the extent to which continuous
force control is possible in iBCI systems for individuals
with tetraplegia.
In conclusion, this study found that, while force informa-

tion was neurally represented and could be decoded across
multiple hand grasps in a consistent way, grasp type had a
significant impact on force classification accuracy. From a
neuroscientific standpoint, these results suggest that force
has both grasp-independent and grasp-dependent (inter-
acting) representations within motor cortex in individuals
with tetraplegia. From a functional standpoint, they imply
that to incorporate force as a control signal in human iBCIs,
closed-loop force decoders should ideally account for inter-
actions between force and other motor parameters to maxi-
mize performance.
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