
UC Irvine
UC Irvine Previously Published Works

Title
Electric field enhancement in ɛ-near-zero slabs under TM-polarized oblique incidence

Permalink
https://escholarship.org/uc/item/78w7x5dw

Journal
Physical Review B, 87(3)

ISSN
2469-9950

Authors
Campione, Salvatore
de Ceglia, Domenico
Vincenti, Maria Antonietta
et al.

Publication Date
2013-01-15

DOI
10.1103/physrevb.87.035120

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/78w7x5dw
https://escholarship.org/uc/item/78w7x5dw#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


1 
 

Electric Field Enhancement in ε-near-zero Slabs under TM-Polarized 

Oblique Incidence 

Salvatore Campione,1 Domenico de Ceglia,2,3 Maria Antonietta Vincenti,2,3 
Michael Scalora,3 and Filippo Capolino1,* 

1Department of Electrical Engineering and Computer Science, University of 
California Irvine, CA, 92697, USA 

2Aegis Technologies Inc., 410 Jan Davis Dr., Huntsville, AL, 35806, USA  
3US Army Charles M. Bowden Research Center, RDECOM, Redstone Arsenal, 

Huntsville, AL, 35898, USA 
*f.capolino@uci.edu (http://capolino.eng.uci.edu) 

Abstract: We investigate local field enhancement phenomena in subwavelength, ε-near-

zero (ENZ) slabs that do not exploit Fabry-Pérot resonances. In particular, we study the 

linear response of engineered metamaterial slabs of finite thickness based on plasmonic 

nanoshells that show an ENZ band in the visible range, and naturally occurring materials 

(e.g., SiO2) that also display ENZ properties, under oblique, TM-polarized plane wave 

incidence. We then introduce active gain material in engineered metamaterial slabs that 

adds peculiar spectral and angular features to transmission, reflection, and absorption 

properties, and leads to a further local field enhancement. These findings are supported 

by two theoretical studies: First, a simple interface between two semi-infinite media, 

namely free space and a generic ENZ medium; then, an ENZ slab of finite thickness, with 

the aim of understanding the system's behavior when varying the ENZ properties as well 

as the incident angle. For either case we report three distinct physical conditions for 

which we explain spectral and angular features that might result in strong field 

enhancement. The gain-assisted metamaterial implementation has the potential of 

triggering and enhancing low-threshold nonlinear phenomena thanks to the large local 

fields found at specific frequency and angular bands.  
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1. Introduction 

In view of their potential applications, artificial composite materials that exhibit ε-near-zero 

(ENZ) properties [1-3] have attracted a great deal of attention. A limited list of such applications 

includes tunnelling of electromagnetic energy [4-5], highly directional beaming [6-12], optical 

nanocircuits [13], lenses [14], cloaking devices [15-16], boosting of optical nonlinearities [17] 

and low-threshold nonlinear effects [18-19].  

A theoretical discussion of electromagnetic tunnelling through thin, ENZ channels 

without phase accumulation is reported in [4], where tunnelling is also implemented in 

anisotropic, artificial material made of wires. Theoretical predictions of artificial materials made 

of wire media exhibiting refractive indices less than unity have also been reported in reference 

[3]. An experimental demonstration of microwave tunnelling between two waveguides 

connected by a thin ENZ channel was discussed in [5]. The ENZ channel consisted of a planar 

waveguide where complementary split ring resonators were patterned on the lower surface. 

Experimental results were found to be in agreement with theory and numerical simulations.  

The properties of ENZ materials and their applications are numerous. A notable example 

is their ability to radiate highly directional beams. References [8-11] have shown radiation with 

enhanced directivity of a transverse dipole (parallel to the interface) embedded in an ENZ slab. 

For example, in [8] an experimental demonstration of directional radiation through ENZ 

materials at microwave frequencies was carried out. The metamaterial was made of copper grids 

with a square lattice excited by a monopole antenna. A precise physical explanation of directive 

radiation of a dipole inside an ENZ material slab was established in [9-11], revealing the role of 

the excited leaky wave in the radiation mechanism. Based on the above discoveries, by 

reciprocity, one may ask if a large transverse field arises when an ENZ slab is illuminated with a 
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plane wave close to normal incidence; however, in this paper, we will show that under plane 

wave illumination, in the (low-loss) ENZ condition the longitudinal field intensity (normal to the 

ENZ surface) is larger (up to orders of magnitude) than the transverse one. In [10], both effective 

medium theory (including spatial dispersion phenomena) and full-wave simulations of wire 

media confirmed the highly directional nature of the radiation from the low permittivity medium 

excited by a dipole. In [12], the use of ENZ metamaterials was proposed to tailor the phase of 

radiation pattern of arbitrary sources in planar layers and cylindrical shells.  

ENZ materials have also been shown to prevent leakage of the optical electric 

displacement current in the field of metatronics [13]. In a completely different framework, 

stacked subwavelength hole arrays characterized either by an effective ENZ or a μ-near-zero 

material parameter were analyzed both theoretically and experimentally [14] in order to realize 

lenses. Another exotic application of ENZ metamaterials is to cloaking devices. In [15], for 

example, an experimental implementation of a microwave frequency cloak based on scattering 

cancellation technique was analyzed. The cloak was composed of an array of metallic fins 

embedded in a high dielectric constant environment, and was shown to cloak a dielectric cylinder 

by reducing 75% of the total scattering amplitude. Full-wave simulations of a cloaking device 

whose constituents are plasmonic nanoshells were recently implemented in [16]. 

Materials exhibiting ENZ properties were also recently proposed as an effective solution 

to stimulate nonlinear processes because of the strong field enhancement values that may be 

achieved when ( )Re ε  crosses zero. The use of narrow apertures at cutoff in a plasmonic screen 

to design ENZ channels was used in [17] to enhance optical nonlinearities. The introduction of 

Kerr nonlinearities can trigger bistable and self-tunable response achieved with low threshold 

intensities. The effective response of a homogenized multilayered medium including Kerr 
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nonlinearities was analyzed in [18] in the ENZ regime, showing hyperfocusing and field 

compensation properties, as well as propagation of nonlinear waves even if the medium linear 

properties would, in principle, not allow it. The field enhancement capabilities of micrometer-

thick, uniaxially anisotropic ENZ slabs have been analyzed in [20], with the goal of achieving 

efficient second harmonic generation. The authors of [20] showed the dependence of 

transmissivity and field enhancement on the incident angle of a TM-polarized plane wave and on 

the thickness of the slab at a fixed frequency. They also investigated the role of losses in the 

second harmonic generation process.  

These contributions notwithstanding, we believe that currently there is a need to better 

understand the origin of strong field enhancement effects occurring when the ENZ slab has 

subwavelength thickness, i.e., far from any Fabry-Pérot resonance of the ENZ etalon. In this 

sense, singularity-driven second and third harmonic generation in subwavelength ENZ slabs 

have been shown to originate from strong electric field enhancement [19]. Although  

transmission properties of ENZ slabs of finite thickness under oblique incidence were briefly 

analyzed in [12] by varying thickness and permittivity values, here we provide a thorough 

analysis of transmission, reflection and absorption coefficients for varying slab permittivity and 

incident angles, characterizing spectral and angular features for three distinct physical conditions 

which might result into large field enhancements inside the slab that boost nonlinear optical 

processes, for example.  

Metamaterial implementations with ENZ properties at optical frequencies have been 

reported with a focus on the limitation of losses [16, 21-25]. For example, in reference [16] the 

authors employed plasmonic nanoshells to engineer a low-loss optical ENZ material using silver 

or gold. Silver-based designs yielded effective parameters with lower losses compared to gold-
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based designs, partly due to the fact that at optical frequencies silver is less lossy than gold [26]. 

In references [21-25]) the use of active ideal [21-22] and realistic gain materials embedded inside 

the nanoshell cores (fluorescent dye molecules in [23] and quantum dots in [24-25]) was 

analyzed and found to provide promising ways to design loss-compensated ENZ metamaterials.  

The latter realistic scenario has motivated us to inspect field enhancement capabilities in 

metamaterial slabs composed of plasmonic nanoshells that exhibit an ENZ band in the visible 

range [23], and of materials that naturally exhibit an ENZ band (Sec. 3). Note however that 

alternative metamaterial implementations based on the use of low-loss plasmonic materials [27-

29] may in principle be adopted and for this reason our work continues by dealing with low-loss 

ENZ slabs. For example, we will show that losses greatly affect the maximum achievable 

enhancements. For this reason we introduce an active gain material in the metamaterial design 

(Sec. 4). Our findings are supported by two theoretical studies (Sec. 5), namely the interface 

between two semi-infinite media (free space and an ENZ medium) and an ENZ slab of finite 

thickness in free space, which will be used in Sec. 6 to justify the behavior of the linear response 

observed in Sec. 4.  

We demonstrate that in the absence of any active medium, the metamaterial structure 

may induce a field enhancement for wide frequency and angular bands. Instead, when material 

losses are partly compensated by introducing an active material in the nanocomposite structure 

we observe a much stronger field enhancement for extremely narrow frequency and angular 

bands. This result may for example pave the way to the development of exotic and extreme 

nonlinear optical phenomena. 



6 
 

2. Definition of the optical setup under consideration  

We consider an optical setup composed of an ENZ slab with thickness h along the z direction 

illuminated by an obliquely incident TM-polarized plane wave, as shown in Fig. 1(a). Therefore, 

the incident electric field lies on the x-z plane, i.e., ( ) 1
1 1 cos sin i

i iˆ ˆE eθ θ ⋅= − k rE x z , where 1E  is 

the amplitude, ˆ ˆx z= +r x z  is the observation point, iθ  is the incident angle, and 

( )1 1 1 sin cosx z i iˆ ˆ ˆ ˆk k k θ θ= + = +k x z x z  is the wavevector, assumed here in the x-z plane, with xk  

the transverse (to the z-axis) wavenumber, 1zk  the longitudinal wavenumber in medium 1, 

1 0 1k k ε= , where 0k  is the free space wavenumber and 1ε  the relative permittivity in medium 

1. A monochromatic, time harmonic convention ( )exp i tω−  is implicitly assumed. In the ENZ 

medium 2, with relative permittivity 2ε , we define the wavevector 

( )2 2 2 sin cosx z t tˆ ˆ ˆ ˆk k k θ θ= + = +k x z x z , where 2 0 2k k ε=  and 2 2 2z z zk iβ α= +  is the 

longitudinal complex wavenumber. It is useful to define the dielectric contrast 2 2 1ˆ /ε ε ε=  that 

will play an important role in the subsequent analysis. Accordingly, Snell’s law is written as 

2sin sini tˆθ ε θ= , and 2 2 2
2 2 1 2 1 2ˆ ˆcos sinz x t ik k k k kε θ ε θ= − = = − , with 2 1 2ˆk k ε= .  

      

Fig. 1. (a) ENZ setup under analysis, with 2 1ε̂ << . (b) Metamaterial implementation (x-z plane). 
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We define the critical incident angle C
iθ  as the angle where the vanishing longitudinal 

wavenumber condition 2
2 1 2 sin 0C

z iˆk k ε θ= − =  is verified. This means that, when both the slab 

and the incident medium are lossless, an increase in the incident angle above C
iθ  produces a 

purely evanescent wave inside the slab. The critical angle may be expressed as 

       2arcsinC
i ˆ .θ ε=    (1) 

Note that the critical angle is purely real if 2 0ε̂ > , and purely imaginary if 2 0ε̂ < . In a more 

general scenario, C
iθ  is a complex number when 2ε̂  is complex. In addition one may also define 

the Brewster incident angle B
iθ , the angle that yields no reflection at the interface, which will be 

used in what follows. The Brewster angle is characterized by the condition 2 2 1z zˆk kε= , leading 

to  

        2arctanB
i ˆ .θ ε=    (2) 

Even though a Brewster transmission condition with zero reflection is possible only for lossless 

media, a minimum reflection angle may also be defined for lossy media and it depends on the 

imaginary part of the permittivity [30-31]. We note that for lossless media B C
i iθ θ< , and for 

ENZ materials 2
B C
i i ˆθ θ ε≈ ≈ . 

The most important physical parameter analyzed in this paper is the field enhancement in 

ENZ materials, and the conditions that lead to it. Because of the field continuity requirement at 

the ENZ interface, it is the z component of the electric field 2zE  in the ENZ medium 2 that 

experiences the largest enhancement, as it will be shown next. Therefore, it is convenient to 

define the field intensity enhancement (FIE), evaluable at various positions z, as  
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2 2
2 1FIE zE / E=    (3) 

that will be used and analyzed throughout the paper. Note that when 0i = °θ , i.e., normal 

incidence, both 1zE  (the z component of the total field in medium 1) and 2zE  are identically 

equal to zero. In principle, one may define a field enhancement also for the transverse field 

component 2xE  analogously to what is done in Eq. (3) for 2zE . However, we will show that in 

the case of (low-loss) ENZ slabs, a much larger FIE related to 2zE  is attained. Therefore, unless 

otherwise specified, by FIE we mean the longitudinal field intensity enhancement in Eq. (3). 

 

3. Field enhancement in ENZ slabs 

We consider two metamaterial slabs made of four periodic layers of plasmonic nanoshells, 

whose physical parameters are shown in Table I, that exhibit effective ENZ properties around 

525 THz (slab 1) and 422 THz (slab 2), as previously reported in [23] via modal analysis. The 

nanoshell’s inner core has radius cr  and relative permittivity cε ; the shell has outer radius sr  and 

relative permittivity sε . The system is embedded in a homogeneous environment having relative 

permittivity hε , as schematically reported in Fig. 1(b). The nanoshells are periodically spaced 

with periodicities ,  ,  a b c  along the x, y and z directions, respectively. Here we consider silver 

(Ag) or gold (Au) shells, whose permittivity is modeled according to the Drude model 

( )2 /s p iε ε ω ω ω γ∞ ⎡ ⎤= − +⎣ ⎦  ( 5ε∞ = , 161.37 10  rad/spω = × , 1227.3 10  1/sγ = ×  for silver;  

9.5ε∞ = , 161.36 10  rad/spω = × , 141.05 10  1/sγ = ×  for gold) also reported in [23]. It has been 

demonstrated that for thin metallic shells, the Drude model should be modified to account for the 

dependence on metal thickness, surface effects and interband transitions, as for example shown 

in [22]. However, even a more realistic metal permittivity does not alter the qualitative analysis 

and the results on field enhancement in ENZ slabs shown in this paper nor does it undermine our 

discussion and conclusions. Metamaterial slabs are assumed to be homogeneous and to have a 

finite thickness 4h c=  along the z direction (Fig. 1). The effective permittivities of the two slabs 
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shown in Fig. 2 (solid curves, tagged as without gain) were retrieved at normal incidence by 

employing the method outlined in [32] that uses reflection and transmission from a finite 

thickness slab computed via a full-wave simulation based on the finite element method (high 

frequency structure simulator, HFSS by Ansys Inc., and COMSOL Multiphysics, both in good 

agreement). Slab 1, made of silver shells, exhibits an effective relative permittivity effε  that has 

a smaller imaginary part than the one of slab 2, which is made of gold shells, across the entire 

frequency range. The presence of a smaller amount of losses across the ENZ frequency region 

makes us infer that slab 1 will exhibit better performance than slab 2, as explained in the 

following.   

 

Table I: Physical parameters of the nanoshells composing the metamaterial slabs. 

Slab cε  sε  hε  
[nm]

cr
[nm]

sr , ,  
[nm]
a b c

1 2.25 Ag 2.25 20 25 75 

2 2.25 Au 2.25 30 35 100 

 

  

Fig. 2. Relative effective permittivity, retrieved at normal incidence, versus frequency for (a) slab 1 and (b) slab 2 in 
Table I, without and with gain (as explained in Sec. 4). Note the largely compensated material loss [i.e.,

 ( )effIm 0ε → ] near 525 THz and 422 THz, respectively, in the case with gain. 
 

We assume slabs 1 and 2 are composed of homogeneous materials described by the 

functions shown in Fig. 2 (solid curves, tagged as without gain). The surrounding material in Fig. 



10 
 

1(a) has relative permittivity 1 2 25.ε = . In Fig. 3 we show the absorption coefficient 

2 21A T= − − Γ , where 2T  is the transmittance, 2Γ  is the reflectance (equations for T and Γ  

are found in Sec. 5.2), and the FIE in Eq. (3) calculated at 0z += , i.e., slightly inside the slab, 

and at / 2z h= . All calculations were performed by assuming TM-polarized plane wave 

incidence and varying frequency and incident angle for the two cases in Table I. 
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Fig. 3. Absorption coefficient A as a function of frequency and incident angle for (a) slab 1 and (b) slab 2 in Table I. 
The FIE in Eq. (3) computed at 0z +=  and 2z h /=  as a function of frequency and incident angle for (c), (e) slab 1 

and (d), (f) slab 2 in Table I. The ENZ slab thickness is 4h c= .  

Two properties may be observed in Fig. 3: (i) absorption is larger in the case of slab 2 

compared to slab 1, and has broader frequency and angular bands due to the larger ( )effIm ε ; (ii) 

the maximum FIE in slab 1 is ≈ 2.5 times larger than the maximum FIE achieved in slab 2 at 

0z += , due to the lower ( )effIm ε  and lower losses. However, losses are still relatively large for 

the ENZ condition, and field intensity drops when evaluated inside the slab at / 2z h= . These 

results suggest that field enhancement in an ENZ subwavelength slab is sensitive to the 

imaginary part of the effective permittivity. The introduction of a gain material (discussed in Sec. 

4) may then boost the local field intensity and eventually support strong nonlinear phenomena. 

Next we excite the metamaterial slab using a TM-polarized plane wave incident at 19iθ = °  (slab 

1) and 30iθ = °  (slab 2) to maximize absorption losses and field enhancement (refer to Fig. 3), 

and retrieve reflection, transmission and absorption coefficients (Fig. 4). From an inspection of 

Fig. 4 one may note a dip in the magnitude of the transmission coefficient near 522 THz for slab 

1, and the absence of spectral features for slab 2, probably due to higher losses. The FIE in Eq. 

(3) calculated at 0z +=  and 2z h /=  is shown in Fig. 5 by varying the frequency. We observe a 
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field enhancement for both slabs 1 and 2 when evaluated at 0z += , whereas field enhancement 

is still present at 2z h /=  only for slab 1. Note that the peak tends to be located around the 

minimum of ( )effIm ε  (see Fig. 2). For completeness, we also show the FIE related to the 2xE  

component of the field, which is lower but of a comparable order to that in Eq. (3) for 2zE . 

Simple calculations reveal that in the ENZ condition, the maximum attainable FIE for 2xE  is 

equal to 4. In this case, the presence of metal losses limits the longitudinal FIE, and as it will be 

shown in the next section, FIE for 2zE  can be largely enhanced by resorting to low-loss ENZ 

materials. 

    

Fig. 4. Transmission, reflection and absorption coefficients as a function of frequency for (a) slab 1 and (b) slab 2 in 
Table I, for a TM-polarized plane wave incident at 19iθ = °  for slab 1 and 30iθ = °  for slab 2. The ENZ slab 

thickness is 4h c= . 
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Fig. 5. The FIE in Eq. (3) computed at 0z +=  and 2z h /=  for the two cases and parameters described in Fig. 4. 
Also, the thin blue and green lines refer to the FIE related to the x component of the field 2xE . The FIE related to 

2zE  is stronger, even for this case without gain.   
 

Behavior similar to that shown in Figs. 3-5 also occurs in materials that exhibit ENZ 

characteristics naturally, due to bound electron resonances. For example, silicon dioxide (SiO2) 

displays an ENZ crossing point at ≈ 37 THz [see inset in Fig. 6(b)]. A 400 nm-thick slab 

surrounded by free space ( 1 1ε = ) then exhibits large absorption and longitudinal electric field 

enhancement, as shown in Fig. 6. However, while absorption in the band 30-35 THz is due to 

increased ( )Im ε  [see inset in Fig. 6(b)], the absorption band centered at 37 THz and 60°  is due 

to the condition ( )Re 0ε ≈ , and yields FIE ≈ 3.5.    
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Fig. 6. (a) Absorption coefficient and (b) FIE in Eq. (3) computed at 0z +=  as a function of frequency and incident 
angle for a slab of SiO2. Slab thickness is 400 nmh = . 

 
 

4. Super field enhancement in gain-assisted ENZ slabs 

Following our discussion in the previous sections one may infer that losses and field 

enhancement are intimately related and that they are mutually exclusive. However, large losses 

are usually associated with the product ( ) 2Im ε E , and thus may arise either from large local 

field enhancement, or large ( )Im ε , or both. These observations motivate our analysis of a gain-

assisted ENZ slab. Hence, we again consider the two composite-material slabs described in 

Table I, but now the nanoshells have silica-like dielectric cores that include 10 mM of 

Rhodamine 6G (slab 1) and Rhodamine 800 (slab 2) fluorescent dye molecules to provide gain 

[23]. The chosen molecular concentration is quite large and may thus impact the overall 

compensation due to the presence of fluorescence quenching and other non-radiative phenomena 

[33]. This drawback may be alleviated by using fluorescent molecules that exhibit larger 

emission cross section compared to those considered above, or by using alternative approaches, 

such as the inclusion of quantum dots [24, 34]. The effective permittivity of a sample composed 

of 4 layers of such nanoshells (slab thickness is 4h c= ) is reported in Fig. 2 for normal 

incidence (dashed curves, tagged as with gain). We note that ( )effRe ε  is affected only slightly 

by the introduction of gain, as may be ascertained by comparing solid and dashed curves in Fig. 

2. A careful comparison of such curves reveals that ( )effIm ε  is reduced considerably near the 

zero-crossing point (525 THz for slab 1 and 422 THz for slab 2). 
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In Fig. 7 we show the gain-assisted absorption coefficient A  and the FIE in Eq. (3) 

computed at 0z +=  and 2z h /=  under TM-polarized plane wave incidence as a function of 

frequency and incident angle for the two cases in Table I. The surrounding material in Fig. 1(a) 

has relative permittivity 1 2 25.ε = . A comparison of Figs. 3 and 7 reveals that the angle of 

maximum FIE decreases as ( )effIm ε  decreases, fact that may be ascertained by observing that 

the FIE reaches ≈ 35 for slab 1 ( 3
eff 0.12 3 10iε −≈ + ×  at about 526 THz) and ≈ 180 for slab 2 

( 4
eff 0.03 10iε −≈ +  at about 422 THz). When compared to the maps in Fig. 3, the FIE remains 

nearly constant inside both gain-assisted slabs. In general, adding gain to the metamaterial 

response lowers the damping of the system and thus the losses. Nevertheless, the simultaneous 

availability of a ( )effRe 0ε = crossing point and smaller imaginary part leads to a large 

enhancement of the longitudinal field at low incident angles, a condition in which the system 

experiences absorption rates similar to absorption rates found in the absence of gain. The high 

absorption band centered at about 435 THz in Fig. 7(b) is due to the first-order Fabry-Pérot 

resonance in slab 2 (where the real part of the effective permittivity is about 0.75). Fabry-Pérot 

resonators require a π-phase accumulation through the slab, so that larger thicknesses h or larger 

permittivity values should be considered for the etalon. This resonant feature occurs in a similar 

way also for TE-polarized incident illumination. 
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Fig. 7. As in Fig. 3, for the two gain-assisted metamaterials slabs in Table I. Note the logarithmic scale 
[ ( )1010log FIE ] is used for slab 2, in (d), (f), due to the large FIE values. 

 

We then excite the two gain-assisted slabs with TM-polarized plane waves incident at 6iθ = °  for 

slab 1 and 3iθ = °  for slab 2, i.e., at the angles that maximize absorption losses and field 
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enhancement (refer to Fig. 7), and retrieve reflection, transmission and absorption coefficients 

(Fig. 8). In both cases, around the 0ε ≈  frequency range, the transmission coefficient is strongly 

asymmetric (i.e., a dip followed by a peak for increasing frequency) as absorption increases, 

conditions that are not observed in the absence of gain (Fig. 4). We will discuss these features in 

Sec. 6. 

    

Fig. 8. Magnitude of transmission, reflection and absorption coefficients as functions of frequency for gain-assisted 
(a) slab 1 and (b) slab 2 in Table I, assuming a TM-polarized plane wave incident at 6iθ = °  for slab 1 and 3iθ = °  

for slab 2. The ENZ slab thickness is 4h c= .  
 

The FIE in Eq. (3) computed at 0z +=  and 2z h /=  is shown in Fig. 9, where a FIE ≈ 35 in the 

case of slab 1, and ≈ 180 in the case of slab 2 is predicted. Compared to Fig. 5, we note that this 

enhancement remains nearly constant when evaluated inside the slab, especially for slab 2 

because it exhibits a smaller ( )effIm ε  with respect to slab 1. The peak does not move as in Fig. 

5 because here the conditions ( )effRe 0ε ≈  and ( )effIm 0ε ≈  occur at nearly the same frequency 

(Fig. 2). The enhancements observed here are promising for applications to exotic and extreme 

nonlinear optical phenomena. We also show that the FIE related to the x component of the field, 

2xE , is now negligible (especially for Slab 2) with respect to the one achieved via the super-

enhancement of 2zE  due to the low-loss ENZ condition. Indeed, Fig. 9 shows that in this case 
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the FIE for 2zE  is much higher than what shown in Fig. 5. This explains why the main focus of 

this paper is the longitudinal FIE in Eq. (3).  

 

Fig. 9. The FIE in Eq. (3) computed at 0z +=  and 2z h /=  for the two cases and parameters described in Fig. 8. 
Also, the blue and green thin lines refer to the FIE related to the x component of the field 2xE . The FIE related to 

2zE  is much stronger than the one observed in Fig. 5, due to the low-loss ENZ condition.   
 
 
 
 

5. Analytical model 

The field enhancement observed in ENZ metamaterial slabs (Figs. 3-5), which is further 

improved in gain-assisted systems (Figs. 7-9), may be adopted for efficient second and third 

harmonic generation schemes or other applications where the presence of large fields is 

critical[35]. The next subsections will be devoted to the introduction of the model required to 

explain the field enhancement associated to gain-assisted ENZ slabs observed in Sec. 4. This 

model is an effective tool that may be used to predict field enhancement, spectra features and the 

effect of losses.    

5.1. Interface between two half spaces 

We begin by analyzing the case of an interface between two half spaces, obtained by assuming 

h → +∞  (see Fig. 1). Following the formulation in reference [36], the incident and transmitted 
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fields into the ENZ medium are ( ) 1
1 1 cos sin i

i iˆ ˆE eθ θ ⋅= − k rE x z , and 

( ) ( ) 2
2 1 0cos cos cos sin i

i t t tˆ ˆE / T eθ θ θ θ ⋅= − k rE x z , where the transmission coefficient 0T  is 

defined as 0 2 1/x xT E E= , using the transverse field components. Assuming 1
r
xE  is the x 

component of the reflected field, the reflection coefficient is defined as 0 1 1/r
x xE EΓ = . Both 

( )0 2ˆ , iε θΓ  and ( )0 2ˆ , iT ε θ  are functions of 2ε̂  and iθ , and are given by  

( ) 2 2 1
0 2

2 2 1

z z
i

z z

ˆk kˆ ,
ˆk k
εε θ
ε

−Γ =
+       

( ) 2
0 2

2 2 1

2 z
i

z z

kˆT , .
ˆk k

ε θ
ε

=
+     

(4)
 

The values of ( )0 2ˆ , iε θΓ , ( )0 2ˆ , iT ε θ , and of the z component of the field 

2 2 tanz x tE E θ= −  are examined in what follows under certain parameter and incidence 

conditions. For what concerns the reflection coefficient in the general lossy case, only two sets of 

parameters lead to total reflection (i.e., ( )0 2ˆ , 1iε θΓ = ): (i) 2 0ε̂ =  and 0iθ ≠ , treated in Sec. 

5.1a and referred to as epsilon equal zero (EEZ) condition; (ii) 2 0ε̂ ≠  and C
i iθ θ= , discussed in 

Sec. 5.1c and referred to as critical angle condition (CAC). If we limit the analysis to the lossless 

case, then the sets of parameters that produce total reflection may be summarized as follows: 

2

2

2

2

ˆ 0,  0 1
ˆ 0,  0 1

ˆ 0,  1

ˆ 0,  1

i

i
C

i i
C

i i

ε θ
ε θ

ε θ θ

ε θ θ

< ≠ → Γ =
= ≠ → Γ =

> = → Γ = −

> > → Γ =

.  (5) 

The z component of the field evaluated at the boundary ( 0z += ) may be also computed 

as 2 1 2z z ˆE E / ε= , where 1zE  is the z component of the total field in medium 1 ( 0z −= ), 
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accounting also for reflection. Three important limiting conditions are investigated in subsections 

5.1a-c stressing the enhancement of the 2zE  field component. 

a. Epsilon equal zero condition 

The epsilon equal zero (EEZ) condition is defined by 2 0ε̂ =  for any 0iθ ≠ , and it results in 

( )0 0 1i,θΓ =  and ( )0 0 2iT ,θ = . This condition thus leads to total reflection. Note that since 

2
2 1 2ˆ sinz ik k ε θ= − , when 2 0ε̂ →  one then has 2 1 sinz ik ik θ→ . The square root sign satisfies 

the boundary conditions at z → ∞  [37],  i.e., decaying amplitude for increasing z. Indeed, given 

the expression for the field 2zE  in Sec. 5.1, one observes that when performing the limit for 

2 0ε̂ → , 2zE  is given by 

 ( ) 1sin ( )
2 1, 2cos .ik ix z

z iE x z i E e θθ −=   (6) 

Expression (6) suggests that light propagation in the ENZ medium is forbidden. Moreover, 

( )2 1, 2zE x z i E→  when 0θ →i , in contrast to what happens for a finite thickness slab in Sec. 

5.2. One may also look at the continuity of the component of displacement field normal to the 

0z =   boundary 1 2 2z zˆE Eε= . This condition seems to suggest that 2 → ∞zE  as 2 0ε →ˆ . 

However, we note that at 0z −=  one has that ( )1 1 0sin 1 0 0z i iE E ,θ θ⎡ ⎤= − − Γ →⎣ ⎦  because 

( )01 0 0i,⎡ ⎤− Γ →⎣ ⎦θ  as 2ε̂ , and the value of  2zE  at 0z +=  is obtained by a limiting operation, 

leading to (6). 
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b. Total transmission condition 

Total transmission condition (TTC) is defined by ( )20 0ˆ i,ε θΓ = . The condition that leads to 

TTC is 2 0ε̂ ≠  and B
i iθ θ=  so that ( )20 0Bˆ i,ε θΓ = and ( )20 1Bˆ iT ,ε θ = . The z component of the 

field 2zE  is 

( )
( )

( )2
1 2

2

22

1
2 1

1

1
ˆ

ˆik x z
ˆ

z
ˆ ˆ

E x,z E e .

ε
ε

ε
ε ε

+
+

+
= −  (7) 

which in general is a wave traveling while decaying along x and z. The field in (7) has an inverse 

dependence on 2ε̂ , a relationship that is important for the attainment of large field enhancement. 

If we now assume that 2ˆ 0ε → , Eq. (2) imposes that 0B
i iθ θ= →  and Eq. (7) predicts infinite 

field values, in contrast with Eq. (6). This apparent ambiguity on the 2zE value for 

( ) ( )2ˆ , 0,0iε θ →  critically depends on the path selected on the ( )2ˆ , iε θ  space to approach ( )0,0 . 

If 2ˆ 0ε →  at the TTC, iθ  goes to 0 as ( )2arctan ε̂ . At 0z −=  one has that 

( )1 1 0 2 1sin 1 sinB
z i i iˆE E , Eθ ε θ θ⎡ ⎤= − − Γ = −

⎣ ⎦  goes to 0 as 2ε̂  so that, from the field continuity 

equation, 2 1 2z z ˆE E / ε=  at 0z +=   goes to infinity as 21 ˆ/ ε , as shown in Eq. (7).  

c. Critical angle condition 

As mentioned at the beginning of Sec. 5.1, the critical angle condition (CAC) occurs when 

2 0ε̂ ≠  and C
i iθ θ= , leading to ( )20 1Cˆ i,ε θΓ = −  and ( )20 0Cˆ iT ,ε θ = . The transmission 

coefficient goes to zero as cos tθ  in correspondence of the critical angle, 
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thus ( ) ( )0 2 2lim 2cos cos
C

i i
i t iˆ ˆT , /

θ θ
ε θ θ θ ε

→
= . This result is used to compute the z component of 

the electric field in medium 2, given by 

( ) 1 2
2 1

2

2 ˆik x
zE x,z E e

ˆ
ε

ε
= − ,              (8) 

which in general represents a wave traveling while decaying along x. Similarly to TTC, the field 

in (8) depends inversely on 2ε̂ , thus emphasizing the importance of ENZ capabilities of medium 

2 for field enhancements. If we now consider that 2ˆ 0ε → , Eq. (8) predicts an infinite value for 

the field, in contrast to Eq. (6). Similarly to what happens at the TTC, if 2ˆ 0ε →  at the CAC, iθ  

goes to 0 as ( )2arcsin ε̂ . At 0z −=  one has that ( )1 1 0 2 1sin 1 2 sinC
z i i iˆE E , Eθ ε θ θ⎡ ⎤= − − Γ = −

⎣ ⎦  

goes to 0 as 2ε̂ , so that 2 1 2z z ˆE E / ε=  at 0z +=  goes to infinity as 21 ˆ/ ε , as shown in Eq. 

(8). 

d. Representative example 1: Analysis by varying the permittivity of the ENZ slab 

We now suppose to have a TM-polarized plane wave incident at 20iθ = °  at 400 THz. 

Transmission, reflection, and the FIE in Eq. (3) calculated at 0z +=  as a function of the 

dielectric contrast ranging in the interval 20 1 0 3ˆ. .ε− < <  are shown in Fig. 10. When 2 0ε̂ = , 

0iθ ≠ , ( )0 0 1i,θΓ =  and ( )0 0 2 6 dBiT ,θ = ≡ , as predicted in Sec. 5.1a, and FIE 3 5.≈ , as 

expected from Eq. (6). The CAC at 20C
iθ = °  is verified when 2 0 117ˆ .ε ≈  [Eq. (1)], and 

( )20 1Cˆ i,ε θΓ =  and ( )20 0Cˆ iT ,ε θ = , as predicted in Sec. 5.1c; interestingly, the FIE in Eq. (3) 

peaks at C
iθ  ( FIE 34≈ ) as dictated by Eq. (8). When 2 0 1325ˆ .ε ≈  the TTC at the Brewster angle 
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corresponds to 20B
iθ = °  [Eq. (2)], and one has ( )20 0Bˆ i,ε θΓ =  and ( )20 1Bˆ iT ,ε θ =  , as predicted 

in Sec. 5.1b; the FIE in Eq. (3) is about 6.6 as in Eq. (7). Note also that in view of Eq. (5), when 

2 0ε̂ <  or 20 0 117ˆ .ε< <  (i.e., C
i iθ θ> ) the reflection coefficient has unit magnitude because we 

are considering a lossless framework.  

 

Fig. 10. (a) Transmission and reflection, and (b) the FIE in Eq. (3) computed at 0z +=  as a function of the dielectric 
contrast 2ε̂  assuming a TM-polarized plane wave incident at 20iθ = °  at 400 THz, in the case of the interface 

between two half spaces. 
 

e. Representative example 2: Analysis by varying the angle of incidence 

To verify all the conditions in Eq. (5) in the lossless case, we consider now a TM-polarized plane 

wave incident with an angle in the range 0 30iθ° < < °  at 400 THz for the same setup described 

in Fig. 10, for different values of the dielectric constrast 2ε̂ . In Fig. 11 we show reflection and 

the FIE in Eq. (3) calculated at 0z +=  as a function of the incident angle iθ . When 2 0 1ˆ .ε = − , 

one observes ( )20 1ˆ i,ε θΓ =  for any iθ , and the FIE is quite limited. When 2 0ε̂ = , one observes 

again ( )20 1ˆ i,ε θΓ =  for any iθ , and the FIE follows a cos iθ  envelope for 0iθ ≠ °  as dictated 

by Eq. (6). Finally, when 2 0 117ˆ .ε =  (same case as in Fig. 10 for which 20C
iθ = ° ) and when 
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2 0 05ˆ .ε =  (for which 12 92C
i .θ = ° ), one observes that ( )20 1ˆ i,ε θΓ =  for C

i iθ θ≥ ; we note that 

maximum FIE occurs in correspondence of the critical angle, as observed in Fig. 10. Notably, the 

smaller the parameter 2ε̂  is, the larger the FIE will be (Fig. 11), as previously mentioned in Secs. 

5.1b and 5.1c, where we demonstrated the longitudinal field component to have an inverse 

dependence on 2ε̂  [Eqs. (7) and (8)]. The dip in the reflection coefficient in Fig. 11 for the cases 

with 2 0 117ˆ .ε =  and 2 0 05ˆ .ε =  is in correspondence of the Brewster angles 18 88B
i .θ = °  and 

12 6B
i .θ = ° , respectively.   

 
One may conclude that the CAC gives the maximum longitudinal field intensity 

enhancement for interfaces with ENZ media. Indeed, referring to (6)-(8) for 0z += , one can 

observe that EEZ
2 12cosz iE Eθ= , ( ) ( )TTC

2 2 1 2 11 sin 1 sin B
z t iˆ ˆE / E / Eε θ ε θ= = , and

 

( )CAC
2 2 12z ˆE / Eε= , that imply TTC CAC EEZ

2 2 2z z zE , E E>

 

in ENZ condition. If we now 

analyze the ratio CAC TTC
2 2z zE / E  in ENZ condition then 

( )CAC TTC
2 2 2 22 /sin 2 1 2B

z z iˆ ˆE / E ε θ ε= = + ≈ , which shows that the z component of the field 

at the CAC condition is the largest. In summary, the physical properties of the interface between 

two half spaces, one of which exhibits near-zero permittivity, are highly dependent on the 

illumination incident angle and the value of the ENZ permittivity itself.  
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Fig. 11. (a) Magnitude of reflection coefficient and (b) the FIE in Eq. (3) computed at 0z +=  as a function of the 
incident angle iθ  for different values of the dielectric contrast 2ε̂ , assuming a TM-polarized plane wave incidence at 

400 THz, in the case of the interface between two half spaces. 
 

5.2. Finite thickness slab with ENZ properties 

We now analyze a slab with finite thickness h  (see Fig. 1). In this case, the transmitted field is 

( ) 3
3 1 cos sin i

i iˆ ˆE T eθ θ ⋅= − k rE x z , and both reflection and transmission coefficients are functions 

of 2ε̂  and iθ . For simplicity it is useful to define ( )2sinh zs k h=

 

and ( )2cosh zc k h= . The 

reflection and transmission coefficients are then given by [36-37] 

( )
( )

( )
( ) ( )

2 2 2
2 1 2

2 2 2 2
1 2 2 2 1 2

1 2 2
2 2 2 2

1 2 2 2 1 2

2

2

2

z z h
i

z z h z z h

z z
i

z z h z z h

ˆi k k s
ˆ , ,

ˆ ˆk k c i k k s

ˆk kˆT , .
ˆ ˆk k c i k k s

ε
ε θ

ε ε

εε θ
ε ε

− −
Γ =

− +

=
− +

 (9) 

The field inside the slab may be expressed as a superposition of forward and backward waves as
  

( )

( ) ( )

2

2 2

sin
2 1

cos cos

cos
cos

cos sin cos sin

t

t t

ik x i

t
ik z ik z

f t t b t t

x,z E e

ˆ ˆ ˆ ˆA e A e

θ

θ θ

θ
θ

θ θ θ θ −

= ×

⎡ ⎤× − + +
⎣ ⎦

E

x z x z  
(10) 

where 
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0 0

0 0

1     
1 1f bA , A ,− Γ Γ Γ − Γ

= =
− Γ − Γ

(11) 

with 0Γ

 

as in Eq. (4) and Γ

 

as in Eq. (9). 

Expressions (9)-(11) will be used in some of the next subsections to estimate the value of 

transmission, reflection and field enhancement in correspondence of EEZ, TTC and CAC 

conditions. 

 

a. Epsilon equal zero condition 

The set of parameters that leads to EEZ is 2 0ε̂ =  and 0iθ ≠  for which 

( ) ( )
2

2
0

0 lim 1i iˆ
ˆ, ,

ε
θ ε θ

→
Γ = Γ =

 

and ( ) ( )
2

2
0

0 lim 0i iˆ
ˆT , T ,

ε
θ ε θ

→
= = . Looking at the expression of the 

z component of the field 2zE  given in (10) one may observe that when performing the limit for 

2 0ε̂ → , 2zE  is

 

 
( ) ( )

( )
1 1sin

2 1
1

cos sin
2cos   

sin sin
i iik x

z i
i

ik z h
E x,z E e .

ik h
θ θ

θ
θ

⎡ ⎤−⎣ ⎦= −

 

(12) 

Alternatively and similarly to what already described in Sec. 5.1a, the condition at the 0z =  

boundary 1 2 2z zˆE Eε=  seems to imply that the longitudinal component of the electric field 2zE  

inside the ENZ slab becomes singular when 2 0ˆ →ε . However, we note that at 0z −=   one has 

that ( )1 1 0sin 1 0 0z i iE E ,θ θ⎡ ⎤= − − Γ →⎣ ⎦  because ( )01 0 0i,⎡ ⎤− Γ →⎣ ⎦θ  as 2ε̂ , and the value of  2zE   

at 0z +=  is obtained by a limiting operation, leading to (12). The field in Eq. (12) is a function 

of the thickness h and the incident angle iθ , and tends to infinity as either h or iθ  (or both) tends 

to zero, as it will be shown next. This behavior is dramatically different from the situation 
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described for an interface between two half spaces in Sec. 5.1a, where the field was limited as in 

Eq. (6). Under EEZ conditions, evanescent waves are excited even for very small incident angles 

above the critical angle. While for a single interface evanescent waves only attenuate in the EEZ 

medium, the presence of a second interface at z = h allows multiple reflections of these waves 

that add in phase inside the EEZ slab and lead to the singular behavior in Eq. (12). Indeed the 

field in Eq. (12) is a superposition of two evanescent waves, represented by the term 

( )1cos sin iik z hθ⎡ ⎤−⎣ ⎦ , whose amplitude ( )11 sin sin i/ ik h∝ θ  is inversely proportional to both iθ  

and  h. Moreover, we point out that Eq. (12) tends to Eq. (6) when h → +∞ , whereas at 0z +=  it 

can be rewritten as ( )1 sin
2 1 2 1 12 cos   coth siniik x

z z i iˆE E / i E e k hθε θ θ= = . In the approximation of 

small iθ , it follows that 2zE ~ ( )11 12 /iik x
iiE e k hθ θ , whereas for small h it is 

2zE ~ ( )1 sin
1 12 cos / siniik x

i ii E e k hθθ θ . In either case, we observe a singular FIE with respect to 

both small thickness and small incident angle. This is a general condition valid for ENZ slabs, 

and it means that if we empirically assume that the slabs shown in Sec. 3 and Sec. 4 exhibit 

2 0ε̂ =  and are illuminated at iθ ≈ 0° , then 2zE  will be almost singular. Likewise, we predict that 

the same singularity will occur even for an extremely thin EEZ slab, i.e., 0 nmh ≈ , illuminated 

at 0iθ ≠ . A viable way to achieve a very thin layer of EEZ metamaterial may involve the use of 

transformation optics techniques in order to tailor the effective optical properties of one-atom-

thick materials, e.g., graphene, by properly patterning its surface [38].           

b. Total transmission condition 

The set of parameters that leads to TTC is B
i iθ θ=  and 2 0ε̂ ≠ , for which 

( ) ( )2 2lim 0
B

i i

Bˆ ˆi i, ,ε ε
θ θ

θ θ
→

Γ = Γ =  and ( ) ( ) 2
2 2lim z

B
i i

ik hBˆ ˆi iT , T , eε ε
θ θ

θ θ
→

= =  which implies that 
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( )2 1Bˆ iT ,ε θ = in the lossless case. The value of 2zE  is obtained via Eq. (10) with B
i iθ θ=   and 

2 0ε̂ ≠ , leading to  

( )
( )

( )2
1 2

2

22

1
2 1

1

1
ˆ

ˆik x z
ˆ

z
ˆ ˆ

E x,z E e .

ε
ε

ε
ε ε

+
+

+
= −

 

(13) 

We stress that, for Brewster incidence, FIE is independent of the slab thickness h due to the 

absence of any reflection form the two interfaces, i.e., 1fA =  and 0bA =  in Eq. (11), as can be 

explicitly noted by looking at Eq. (13) [equal to Eq. (7) for the two half space case to remark the 

thickness independence]. Moreover, the field in (13) depends inversely on 2ε̂ , thus emphasizing 

the importance of ENZ capabilities of medium 2 for field enhancements. The same arguments 

regarding the evaluation of 1zE  and 2zE  in the ( )2ˆ , iε θ  space detailed in Sec. 5.1b, and the 

21 ˆ/ ε  singular behavior, apply here. 

c. Critical angle condition 

The critical angle condition (CAC) is defined by 2 0ε̂ ≠  and C
i iθ θ= , which implies that 

2 0zk = . This leads to  

 

   

( )
( )

1 2
2

1 2

2
1 2

2
2

2

C z
i

z

C
i

z

ˆihkˆ , ,
ˆihk

ˆT , .
ˆihk

εε θ
ε

ε θ
ε

Γ =
− +

=
− +

    (14) 

It follows that ( )2 1C
iˆT ,ε θ ≈  and ( )2 0C

iˆ ,ε θΓ ≈  when 2 1 2zˆ k hε << , which is likely to be 

satisfied when considering ENZ slabs of subwavelength thickness. This result suggests that light 

transmission at and above the critical angle for slabs of ENZ media with finite thickness is 
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mediated by tunneling [4-5] of evanescent waves excited at the input interface via frustrated total 

internal reflection [39]. The low permittivity value of the slab tends to merge the CAC and the 

TTC points, as mentioned in Sec. 2. The value of the z component of the field may be obtained 

by using Eq. (10) with C
i iθ θ=  and 2 0ε̂ ≠ , leading to  

( ) ( )
1 21 2 2

2 1
1 2 2 2

2 1 2

1 2
ˆik x

z
ˆ ˆihk

E x,z E e .
ˆ ˆ ˆihk

εε ε
ε ε ε
− −

=
− − +

 

(15) 

Again, we note an inverse dependence on 2ε̂  for the field in (15), thus emphasizing the 

importance of ENZ capabilities of medium 2 for field enhancements. We note that Eq. (15) tends 

to Eq. (8) when h → +∞  and that arguments similar to those used in Sec. 5.1c regarding the 

evaluation of 1zE  and 2zE , and the 21 ˆ/ ε  singular behavior, apply here. 

d. Representative example 1: Analysis by varying the permittivity of the ENZ slab 

As an example, we now suppose to have a TM-polarized plane wave incident at 15iθ = °  at 400 

THz on a slab with thickness h = 400 nm. Transmission, reflection and FIE in Eq. (3) computed 

at 0z +=  are shown in Fig. 12 as a function of the dielectric contrast in the interval 

20 1 0 1ˆ. .ε− < < . When 2 0ε̂ = , ( )0 1i,θΓ =  and ( )0 0iT ,θ = , as predicted in Sec. 5.2a. 

Moreover, the FIE in Eq. (3) is about 7.6 as dictated by the limit in Eq. (12). When 2 0 0718ˆ .ε = , 

the TTC at the Brewster angle occurs at 15B
iθ = °  [Eq. (2)], so that ( )2 0B

iˆ ,ε θΓ =  and 

( )2 1B
iˆT ,ε θ = , as described in Sec. 5.2b, and the FIE 13≈  as in Eq. (13). The CAC condition 

occurs at 15C
iθ = °  when 2 0 067ˆ .ε =   [Eq. (1)] and does not inhibit light transmission, as 

discussed in Sec. 5.2c, leading to the FIE 15 4.≈  [Eq. (15)].  
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However, the maximum FIE does not occur either at the critical angle C
iθ , or at the Brewster 

angle B
iθ , but  occurs at C

i iθ θ> . Indeed, maximum FIE is obtained when 2 0 0477ˆ .ε = , for 

which the critical angle according to Eq. (1) is 12 62 15C
i i.θ θ= ° < = ° . This effect is due to the 

finite thickness of the slab, which implies the presence of two interfaces free space/ENZ and 

ENZ/free space. As shown in Fig. 12(b), maximum FIE approaches the critical angle for 

increasing slab thickness h, consistent with the semi-infinite space results described in Sec. 5.1 

(Fig. 10). This result suggests that thick ENZ slabs provide large FIE in proximity of the critical 

angle, and proves that the CAC condition is important even for layers of finite thickness. The 

FIE peaks at 2 0 09ˆ .ε ≈  for the thicker slab with h = 2500nm [blue dashed-dotted curve in Fig. 

12(b)] is due to the first-order Fabry-Pérot resonance of the slab. Therefore, one may boost 

nonlinear interactions by exciting this kind of resonances in optically thick slabs, as reported in 

Ref. [20] for second harmonic generation in hyperbolic, low permittivity slabs. However, for 

isotropic ENZ slabs as those considered in the present paper, the FIE levels achieved close to the 

CAC condition are much higher than that at the Fabry-Pérot resonance, as displayed in Fig. 12(b) 

as well as Figs. 7(d) and 7(f).    

 

FP 



31 
 

Fig. 12. (a) Magnitude of transmission and reflection coefficients and (b) the FIE in Eq. (3) computed at 0z +=  as a 
function of the dielectric contrast 2ε̂  assuming a TM-polarized plane wave incident at 15iθ = °  at 400 THz. Slab 
thickness is 400 nmh =  for part (a). In part (b), FP indicates the location of the Fabry-Pérot resonance when h = 

2500 nm. 
 

e. Representative example 2: Analysis by varying the angle of incidence 

A TM-polarized plane wave is incident with an angle in the range 0 20iθ° < < °  at 400 THz. As 

before, we assume that slab thickness is 400 nmh = . Transmission and reflection coefficients 

are shown in Fig. 13 as a function of the incident angle iθ  for different values of the dielectric 

contrast 2ε̂ . When 2 0 1ˆ .ε = , Eqs. (1) and (2) yield 17 55B
i .θ ≈ °  and 18 44C

i .θ = ° . Accordingly, 

the TTC at the Brewster angle B
iθ  is verified, and ( )2 0B

iˆ ,ε θΓ =  and ( )2 1B
iˆT ,ε θ = , as 

described in Sec. 5.2b. Also the CAC at C
iθ  is verified, and ( )2 0C

iˆ ,ε θΓ ≈  and ( )2 1C
iˆT ,ε θ ≈ , 

as expected from Eq. (14). Similar behavior occurs for 2 0 01ˆ .ε = , although now Eqs. (1) and (2) 

yield 5 71B
i .θ ≈ °  and 5 74C

i .θ = ° , very close in value [almost superimposed in Fig. 13(b)]. 

When 2 0 1ˆ .ε = − , Eqs. (1) and (2) yield complex angles 18 76B
i i .θ ≈ °  and 17 83C

i i .θ = ° . As a 

result TTC and CAC cannot be observed for any angle of incidence [Fig. 13(c)]. Indeed, 

analyzing the same situation for complex angles of incidence, i.e., using inhomogeneous waves, 

TTC and CAC take place [Fig. 13(d)].  
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Fig. 13. Magnitude of transmission and reflection coefficients as a function of the incident angle iθ  for different 
values of the dielectric contrast 2ε̂ , assuming a TM-polarized plane wave incidence at 400 THz. Slab thickness is 

400 nmh = .  
 

In Fig. 14 we show the FIE in Eq. (3) computed at 0z +=  as a function of the incident 

angle iθ  for the same cases analyzed in Fig. 13. The figure shows that the incident angle is 

pivotal to achieve large FIE. Indeed, the curve that corresponds to 2 0 01ˆ .ε =  yields FIE 9 84.≈  at 

15iθ = ° , in agreement with the result shown in Fig. 12(b); the result in Fig. 14 also shows that 

illuminating at 6 3 5 74C
i i. .θ θ≈ ° > = °  instead of 15°  as in Fig. 12 leads to FIE 110≈ . This result 

motivates our analyses in Sec. 3 and Sec. 4, where we showed color maps as a function of both 



33 
 

frequency and incident angle. Moreover, when comparing the curves for various values of 2ε̂ , 

the FIE angular band gets smaller as 2ε̂  decreases. 

 

Fig. 14. The FIE in Eq. (3) computed at 0z +=  as a function of the incident angle iθ  for the same cases analyzed in 
Fig. 13. 

  
f. Analysis of the effect of losses in ENZ slabs 

We now estimate the effect of losses in the ENZ slab. We assume a complex dielectric contrast 

2 2 2,r ,iˆ ˆ ˆiε ε ε= +  for the 400nm-thick slab and we set 2 0,rε̂ = . The absorption coefficient A  and 

the FIE in Eq. (3) calculated at 0z +=  are plotted in Fig. 15 as a function of the incident angle 

for four different values of 2,iε̂ . We observe that (i) increasing 2,iε̂  increases the incident angle 

of both maximum absorption and FIE; (ii) increasing 2,iε̂  broadens the absorption and FIE 

profiles in the angular domain; (iii) decreasing 2,iε̂  dramatically enhances the FIE inside the slab, 

proving our predictions of Eq. (12) in Sec. 5.2a.  
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Fig. 15. (a) Magnitude of the absorption coefficient and (b) the FIE in Eq. (3) computed at 0z +=  as a function of 
the incident angle iθ  for different values of 2,iε̂ , assuming a TM-polarized plane wave incidence at 400 THz. The 

ENZ slab has 2 0,rε̂ =  and thickness 400 nmh = . 
  

6. Discussion: Correlation between theory and numerical results in case of gain-

assisted ENZ slabs 

The result in Fig. 15 justifies and supports the use of gain-assisted metamaterial ENZ slabs 

discussed in Sec. 4, which provided super field enhancement capabilities. We now have all the 

tools in place to explain the exotic behavior observed in Fig. 8. We first consider the asymmetric 

behavior of the transmission coefficient for slab 1 shown in Fig. 8(a). The fact that the value of 

the slab permittivity varies with frequency (Fig. 2) under oblique incidence at a fixed angle iθ  

resembles the simpler theoretical analysis shown in Fig. 12. In particular, the dielectric contrast 

is ( ) 3
2 1 34 3 35 10ˆ . i .ε −≈ + ×  [ ( ) 3

2 3 01 7 54 10. i .ε −≈ + × ] at f ≈  523 THz. Under these 

circumstances, Eqs. (1) and (2) yield 2 85 1 9B C
i i . i .θ θ≈ = ° + ° . This value is quite different from 

the incident angle 6iθ = °  (i.e., about the angle for which the FIE is maximized, refer to Fig. 7), 

thus the metamaterial is experiencing an EEZ-like condition because 2ε ≈ 0  and 0iθ ≠ ° , for 

which ( )0 0iT ,θ =  and ( )0 1i,θΓ = , as shown in Sec. 5.2a. At f ≈ 523 7 THz. , instead, 
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( ) 3
2 11 1 2 8 10ˆ . i .ε −≈ + ×  [ ( ) 3

2 25 6 3 10i .ε −≈ + × ]. For this value Eqs. (1) and (2) yield 

6 1 0 75B C
i i . i .θ θ≈ = ° + ° , similar to 6iθ = ° . Thus, losses are low enough to allow TTC/CAC-like 

conditions to occur, the transmission ( )2
B ,C
iˆT ,ε θ  to peak and the reflection ( )2

B,C
iˆ ,ε θΓ  to 

drop even for an incident homogeneous plane wave.  

A similar explanation can be provided for slab 2 in Fig. 8(b). The slab dielectric contrast is 

( ) 3
2 1 63 0 47 10ˆ . i .ε −≈ + ×  [ ( ) 3

2 3 659 1 056 10. i .ε −≈ + × ] at f ≈ 421 8 THz. . For these conditions 

Eqs. (1) and (2) yield 2 33 0 33B C
i i . i .θ θ≈ = ° + ° . This value is different from the incident angle 

3iθ = °  (i.e., about the angle for which the FIE is maximized, refer to Fig. 7), thus the 

metamaterial is experiencing an EEZ-like condition because 2ε ≈ 0  and 0iθ ≠ ° , for which 

( )0 0iT ,θ =  and ( )0 1i,θΓ = . At f ≈ 421 85 THz. , instead, ( ) 3
2 2 89 0 4 10ˆ . i .ε −≈ + ×  

[ ( ) 3
2 6 5 0 9 10. i .ε −≈ + × ], which leads to 3 09 0 2B C

i i . i .θ θ≈ = ° + ° , close to 3iθ = ° . Losses are 

thus low enough to allow TTC/CAC-like conditions to take place. In this case however, a smaller 

effective permittivity imaginary part now leads to ( )2
B ,C
iˆT ,ε θ  closer to 1 and ( )2

B,C
iˆ ,ε θΓ  

closer to 0 than the correspondent curves of the case in Fig. 8(a).  

In summary, the presence of EEZ, TTC and CAC conditions leads to the peculiar behavior of 

the linear properties of the metamaterial slabs discussed in Sec. 4, inducing an absorption peak 

and, more importantly, a large boost of the electric field inside the slab. Although the gain-

assisted tunneling we have discussed is extremely selective in both angular and frequency 

domains and its spectral shape resembles a Fano-like resonance typical of systems with 

electromagnetic-induced-transparency, we point out that  this tunneling effect has a non-resonant 
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nature. The selectivity is due to the simultaneous presence of a Brewster-like condition at the 

interface, the zero-crossing point of the slab permittivity’s real part, and the damping 

compensation provided by the gain medium.     

7. Conclusion and final remarks 

We have investigated transmission, reflection and absorption coefficients, as well as local field 

enhancement, in subwavelength ENZ slabs illuminated by TM-polarized plane waves. We have 

analyzed various configurations, including metamaterial implementations, without and with the 

introduction of gain in the system. While the former is strictly dependent on material properties, 

the latter leads to super field enhancement in a very narrow frequency band and for specific 

incident angles. Our study thus shows how control of the slab permittivity enables the field to 

take on very large values and thus improve applications where large fields are required. We have 

demonstrated that the FIE in the case of a single interface may assume large values at the critical 

angle and is singular only under TTC and CAC conditions. A finite thickness, subwavelength 

ENZ slab may also exhibit very large FIE values: besides a singularity similar to the single 

interface case at TTC and CAC conditions, FIE is singular also in the limit for vanishing 

permittivity 2ε̂  and vanishing incident angle that however has to be larger than the  critical angle 

(also vanishing), as predicted by Eq. (12). Interestingly, the finite subwavelength thickness of the 

ENZ slab helps in establishing a FIE enhancement. Moreover, we predict that if damping is 

virtually compensated [i.e., if ( )2Im 0ˆ ≈ε ] near the zero-crossing point of the real part of the 

effective permittivity, any increases in field enhancement may be exploited to significantly lower 

the threshold of nonlinear processes, such as optical switching and bistability, and dramatically 

increase the frequency conversion efficiency in devices for the generation of coherent light 

sources in the UV and extreme-UV. 
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