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Transitions in Strategy Choices
Robert S. Siegler
Carnegie-Mellon University

Traditionally, transitions in children’s thinking have been characterized
in elegantly simple ways. For example, 5-year-olds have been said to
understand conservation in terms of a single dimension, the height of the
liquid columns in the two glasses, whereas 7-year-olds have been said to
understand it in terms of transformations. Similarly, first and second graders
have been said to add small numbers by counting up from the larger addend,
wvhereas those beyond third grade have been said to solve such problems by
retrieving answers from memory (e. g., Groen & Parkman, 1972).

These models of transitions are clean and appealing, but they also are
too simple to capture many of the most interesting changes in children’s
thinking. On a variety of problems, individual children knov and use multiple
strategies, not just one. They choose among these strategies in ways that
produce adaptive combinations of strategy use at any one time and that produce
adaptive changes 1in strategy use over time. They also construct new
strategies, which gain a niche among the existing ones, and change the
situations in which different strategies are used. Concurrent with all of
these changes in strategy use, children become faster and more accurate in
executing each strategy and in solving all problems.

This article is organized into four sections. The first describes some of
the evidence that children actually use multiple strategies in situations
where they previously have been presumed to just use one. The second describes
a model of how children choose strategies at any particular point in
development. The third describes the part of the model that deals with how
children change strategies over time. The fourth describes how <children
construct new strategies.

Evidence that Children Use Diverse Strategies

Here and 1in most of the sections that follow, I describe research on 4-
to 10-year-olds’ strategy choices in arithmetic. My colleagues and I have
obtained similar findings in a number of other areas: word identification,
time-telling, spelling, and serial recall (Siegler, 1986; in press-a). I focus
on the arithmetic research here because the findings are representative of
those we have obtained in other domains, and because the models of transition
processes have progressed the furthest.

For the past 15 years, the min model has been widely accepted as
accurately describing the way that first and second graders solve addition
problems. In this model, children consistently solve addition problems by
counting up from the larger addend the number of times indicated by the
smaller addend. For example, on 3+6, they would think "6, 7, 8, 9". The min
model predicts that solution times on each problem will be a 1linear function
of the smaller addend, because the smaller addend indicates the amount of
counting-on from the larger number that needs to be done to solve the problem.
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This prediction has proved accurate for both groups of children and
individuals, in both Europe and North America, and in both standard and
special education settings.

Despite all this support, the min model is wrong. Siegler (1987) examined
young children’s simple addition, using both the usual solution-time measures
and children’s verbal reports. The results were striking. When data were
averaged over all trials (and over all strategies), as in earlier studies, the
results replicated the previous finding that solution times were a linear
function of the smaller addend. 1If these analyses had been the only ones
conducted, the usual conclusion would have been reached, namely that first and
second graders consistently use the min strategy to add.

However, the <children's verbal reports suggested a quite different
picture. The min strategy was but one of five approaches that they reported
using. This reporting of diverse strategies characterized individual as well
as group performance; most children reported using at least three approaches.
Children reported using the min strategy on only 36% of trials.

Dividing the solution time data according to what strategy children said
they had wused on that trial lent considerable credence to the children’s
verbal reports. On trials where they reported using the min strategy, the min
model was an even better predictor of solution times than in past studies or
in the Siegler (1987) data set as a whole; it accounted for B86% of the
variance in solution times. In contrast, on trials where they reported using
one of the other strategies, the min model was never a good predictor of
performance, either in absolute terms or relative to other predictors. It
never accounted for as much as 40% of the variance. A variety of measures
converged on the conclusion that children used the five strategies that they
reported using, and that they employed them on those trials where they said
they had.

Models of transitions can be no better than the characterizations of
early and later knowledge states that they are attempting to connect. In
arithmetic and many other domains, adequately characterizing these knowledge
states demands recognition of children’s use of diverse strategies over
extended periods of development.

A Model of How Children Choose Which Strategy to Use

Once we recognize that children use diverse strategies to solve many

problems, it becomes essential to identify how they choose among them. For
the past few years, my colleagues and I have been developing a model of how
children choose among their diverse strategies. The model has been

implemented in detail (as a running computer simulation) for addition,
subtraction, and multiplication. In all of these areas, the simulations
produce strategy choices at any given time, changes in strategy use over time,
and improvements in accuracy and speed much like those of the children we have
observed.

The current version of the simulation, which I will describe here, is a
more general version of the addition simulation described by Siegler and
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Shrager (1984). Like the previous version, it includes a representation of
knowledge and a process that operates on that representation to produce
performance and learning.

First consider the representation. Children are hypothesized to have
knowledge of problems, of strategies, and of the interaction between problems
and strategies. Their knowledge of problems involves associations between
each problem and possible answers to that problem, both correct and incorrect.
For example, 5+3 would be associated not only with 8 but also with 6, 7, and
9. These representations of knowledge of each problem can be classified along
a dimension of the peakedness of their distribution of associations. In a
peaked distribution, most associative strength is concentrated in the correct
answer. At the other extreme, in a flat distribution, associative strength is
dispersed among several answers, with none of them forming a strong peak. For
example, in Figure 1, the associative strengths for ansvers to 2+1 form a
peaked distribution (with the associative strength for 3 at the peak) and
those for 3+5 form a flat distribution.

The representation also includes knowledge about strategies. Each time a
strategy is wused, the simulation gains information about 1its speed and
accuracy. This information generates a strength for each strategy, both in
general and on particular problems. The strategies modeled in the current
version of the addition simulation are the three most common approaches that
young children use: counting from one, the min strategy, and retrieval.

One further feature of the representation should be mentioned. Newly
generated strategies possess "novelty points" that temporarily add to their
strength and thus allow them to be tried even when they have little or no
track record. The strength conferred by these novelty points 1is gradually
lost as experience with the strategy provides an increasingly informative data
base about it. This feature was motivated by the view that people are often
interested in exercising newly developed cognitive capabilities (Piagert,
1952), and by the realization that without a track record, a newly-developed
strategy would be unlikely to be chosen.

Now consider the process that operates on this representation to produce
performance. First, the process chooses a strategy. The probability of a
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given strategy being chosen is proportional to its strength relative to the
strength of all strategies. Strength of a strategy on a problem is a joint
function of the 1local value of the strategy (how well it has done on that
problem in the past) and of its global value (how well it has done across all
problems). On problems never previously encountered, the global value of the
strategy is the sole determinant of its strength. Thus, the stronger a
strategy 1in general and on the particular problem that is posed, the more
likely that it will be chosen for use on that problem.

If a strategy other than retrieval is chosen, that strategy is executed.
If retrieval is chosen, the simulation retrieves a specific ansver (e. g., 4)
from the problem’s distribution of associations (Figure 1). The probability
of any given answer being retrieved is proportional to that answver’s
associative strength relative to the strength of all answers to the problem.
Thus, in Figure 1, the connection between "2+1" and "3" has a strength of .80,
the strength of connections between "2+1" and all answers is 1.00, so the
probability of retrieving "3" is 80XZ. If the associative strength of
vhichever answer is chosen exceeds the confidence criterion (a threshold for
stating a retrieved answver), the simulation states that answver. Otherwise, the
simulation again chooses a strategy with probability proportional to the
strength of that strategy relative to those of all strategies. The process
continues until a strategy is chosen and an answer stated.

The simulation generates patterns of accuracy, solution times, and
strategy wuse much like those of children. For example, it uses the min
strategy most often on problems where the smaller of the two addends is very
small and where the difference between the two addends is quite large.
Siegler (1987) found the same pattern in kindergarteners’, first graders’, and
second graders’ performance. Also as with children, the simulation uses
retrieval most often on problems where both addends are small and uses
counting-from-one primarily on problems where both addends are large.
Relative problem difficulty and particular errors that the simulation makes
also parallel those of children. The reason lies in the simulation’s learning
mechanism, which is described in the next section.

Transitions in Strategy Use Over Time

The simulation learns a great deal through its experience with strategies
and problems. As it gains experience, it produces faster and more accurate
performance, more frequent use of retrieval, less frequent use of counting
from one, and closer fitting of when strategies are used to their advantages
and disadvantages on each problem. Such learning is not produced by any
explicit, metacognitive governmental process, but rather through the operation
of the above-described program together with a simple learning mechanism:
children associate answers that they state with the problem on which they
state them, and associate each strategy with the speed and accuracy that the
strategy has produced on each problem and over all problems.

The way that this learning mechanism operates can be illustrated in the
context of why some strategies are assigned to some problems more than others.
Consider two problems, 9:1 and 5+5. Kindergarteners and first graders use the
min strategy considerably more often on 9+1, yet wuse counting-from-one more
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often on 545. The simulation generates similar behavior, and illustrates how
such a pattern might emerge. On 9+1, the min strategy has a very large
advantage 1in both speed and accuracy over the count-all strategy. It requires
only 1/10 as many counts. In contrast, the numbers of counts required to
execute the two strategies are more comparable on 5+5, where the min strategy
requires 1/2 as many counts. If the number of counts were the only
consideration, children might be expected to consistently use the min strategy
on both problems (and on all problems) from the time they learned it. However,
for any given number of counts, counting-on from an arbitrary number is
considerably more difficult for young children (in terms of time and errors
per count) than counting from one Fuson and Richards, 1982). The simulation’s
probability of erring on each count, and its time per count, reflect this
greater difficulty of counting-on from a number larger than one. Thus, the
simulation learns that although the min strategy is generally more effective,
there are some problems, such as 5+5, where counting-from-one works better.
This leads to counting-from-one being the most frequent strategy on such
problems for awhile. It eventually is overtaken by retrieval, however, as the
associative strength of the correct answer becomes sufficiently great that it
is likely to be retrieved and stated.

The influence of performance on learning also is reflected in relative
problem difficulty and in the particular errors that children make. Early in
learning, children most often use backup strategies (such as counting-from-one
and the min strategy). Early patterns of difficulty in executing such backup
strategies seem to influence later patterns of retrieval difficulty and
particular errors that are made. For example, in multiplication, the most
common backup strategy is repeated addition. Repeated addition generates two
main types of errors: answers in which one multiplicand is added too many or
too few times (e. g., on BX4, adding 7 or 9 4's, and getting 2B or 36) and
small addition errors (e. g., adding 8 4’'s and getting 33). These are the
same types of errors that children make most often when retrieving answers and
that adults make under time pressure. Similarly, third and fourth graders’
probability of correctly executing repeated addition on simple multiplication
problems is highly correlated with their probability of retrieving correctly
(Siegler, in press-a). The same relation between difficulty of solving
problems via backup strategies and via retrieval has been found in addition
and subtraction (Siegler, 1986).

The simulation’s learning mechanism also produces parallels between
backup strategy and retrieval performance. Problems that are more difficult to
solve early in learning via backup strategies become more difficult to solve
later via retrieval. When the simulation errs in using backup strategies, the
result 1is less opportunity to associate the problem with the correct ansver
and more opportunity to associate incorrect answers with it.

Backup strategies also influence their own future wuse, in a somewhat
ironic way. The more accurately that they are executed within the simulation,
the sooner they stop being used. The redason is that accurate execution of
backup strategies leads to peaked distributions of associations between
answers and each problem, which in turn leads to retrieval, inherently the
fastest strategy, also generating accurate performance and therefore being
used increasingly often. Thus, backup strategies contribute to the transition
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process 1in ways that lead to their own demise. Consistent with this view, the
accuracy with which children execute backup strategies is quite strongly
correlated with how often they are able to correctly retrieve answers in
addition, subtraction, and word identification (Siegler, in press-b).

Acquisition of New Strategies

The computer simulations generate a fair range of transitions in
children’s arithmetic, but by no means all of them. Perhaps the most
conspicuous gap is in the account of how new strategies are acquired. To
learn more about this issue, Eric Jenkins, a graduate student at CMU, and I
are currently conducting a longitudinal study of acquisition of the min
strategy. Past studies indicate that children ordinarily acquire this strategy
at age 5 or 6, and that 4-year-olds can learn it if given extensive addition
experience.

To study the acquisition process, Jenkins and I pretested a group of 4-
and 5-year-olds to identify children who gave no evidence of prior knowledge
of the min strategy. Once the children were identified, we presented them 7
problems daily for about 30 sessions. After each problem, we asked the child
how he or she had solved the problem. The verbal statement, together with the
videocassette of the child’s overt behavior while solving the problem, became
our guide for identifying the child’s strategy on each trial. This gave us a
way of identifying the exact trial on which the child discovered the min
strategy, and thus to analyze what 1led up to the discovery and how the
strategy, once discovered, was extended to new problems.

The min strategy was discovered by 7 of the 9 children in the experiment.
Some children constructed the strategy within the first 5 sessions; others did
so between the 25th and 30th sessions. For some children, invention of the new
strategy was accompanied by conscious appreciation that they were doing
something new and that the new way of adding was more efficient. Other
children were unaware that they were doing anything different, even saying
that they had counted from one when they had audibly began counting at the
larger addend.

The most striking finding of the study involved a condition that seemed
to strongly promote both discovery of the min strategy among children who had
not already discovered it and increased use of the strategy among those who
had. This condition involved presentation of problems that would be very
difficult to solve by means of the prior counting-from-one strategy, but that
wvould be quite easy to solve via the min strategy. These problems involved
adding very large and very small numbers, scuh as 24+3 and 2+23. Vithin two
sessions of the introduction of these problems, use of the min strategy
increased from 15% to 65% of trials on which any type of counting was used.
The progress was maintained after the demanding problems were no longer given
and more standard problems (e. g., 7+4) were substituted. Thus, children met
the challenge of the difficult problems by constructing a new strategy, and
then continued to use the new strategy on other problems.

Looking at the present research as a whole, perhaps the most striking
characteristic of cognitive-developmental transitions is their self-regulating

16



SIEGLER

quality. The transitions are self-regulating in at least three senses.
First, children’s choices of strategies adapt to changing circumstances. As
they gain experience with a strategy, they use it increasingly often nn those
problems where its advantages relative to other strategies are greatest.
Second, children’s strategy choices have built into them a kind of
self-righting capability, an ability to recover from errors and initial
unfavorable experiences. The heavy use of backup strategies early in learning
confers this type of stability. Illustratively, the simulation of
multiplication reported in Siegler (in press-a) erred on its first 4 answers
on 8X9 and on 8 of its first 10. Yet by the end of the learning phase, the
simulation was advancing the correct answver on 99% of trials. The reason was
that over trials, the backup strategies produced 72 more often than any other
answer, which led to its associative strength increasing and therefore to its
being retrieved and stated increasingly often.

Third, when existing procedures prove inadequate, children are especially
likely to create new strategies that can overcome the difficulties. The
present models produce the first two types of self-regulation; I hope soon to
incorporate mechanisms into the models, perhaps akin to those in Newell’s Soar
or VanLehn’s Sierra models, that produce the third type of self-regulation as
wvell.
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