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Abstract

We present a united-atom model (gb-fb15) for the molecular dynamics simulation of hydrated 

liquid-crystalline dipalmitoylphosphatidylcholine (DPPC) phospholipid bilayers. This model was 

constructed through the parameter-space minimization of a regularized least-squares objective 

function via the ForceBalance method. The objective function was computed using a training 

set of experimental bilayer area per lipid and deuterium order parameter. This model was 

validated by comparison to experimental volume per lipid, X-ray scattering form factor, thermal 

area expansivity, area compressibility modulus, and lipid lateral diffusion coefficient. These 

comparisons demonstrate that gb-fb15 is robust to temperature variation and an improvement 

over the original model for both the training and validation properties.
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INTRODUCTION

Because of varying local concentrations of proteins, saturated fatty acids, unsaturated fatty 

acids, and sterols, biological membranes exhibit complex, composition-dependent phase 

behavior.1-4 Even in heterogeneous model systems, the coexistence of multiple gel and 

liquid phases, as well as the segregation of different membrane components into domains, 

has been observed.5-8 Bilayer phases can be characterized by the lipid acyl chain rotational 

disorder, SCD, and lateral diffusion rate, Dl. Under physiological conditions, phosphocholine 

type lipid bilayers typically exist in a disorder liquid-crystalline phase, referred to as the Ld 

or Lα phase, in which SCD is low (high lipid tail disorder) and Dl is fast (on the order of 1 

μm2 s−1).9-14

As the boundary of the cell and cellular organelles, membranes are involved in many 

intra- and intercellular sensory, signaling, transport, and regulatory processes.15-19 A 

growing body of evidence suggests that lipids play a direct, functional role in many 

of these phenomena. Two areas of research related to membrane functional regulation 

are the theories of mechanosensitivity, and lipid-rafts. Mechanosensitivity describes a 

protein’s ability to respond to the mechanical forces imposed by its local and global 

lipid environment.20,21 The lipid-raft hypothesis posits that, in true biological membranes, 

cholesterol and sphingomyelin lipids associate to form rigid raft-like structures. These rafts 

are potentially involved in trafficking where they may surround and transport membrane 

components to different regions of the membrane, and also in signal transduction, where 

they may, for example, isolate receptors from enzymes involved in nontargeted signaling 

pathways.22-24 Although of scientific interest, the time scales over which these processes 

occur are on the order of nano- to milliseconds. These time scales tend to be faster than what 

is currently accessible by experiment. It is thought that the method of Molecular Dynamics 

(MD) simulations can be usefUl for studying the specifics of biological processes, due to its 

atomistic spatial and temporal resolution.25-27

The validity of an MD simulation is predicated on the accuracy of its underlying model. 

Here the term “model” refers to the system’s atomistic description, as well as the functional 

form and parameters of its potential energy function, or force field.28 The accuracy of the 

model is evaluated by comparing structural, thermodynamic, and kinetic properties of the 

simulated system to reference data, which come from experimental measurements or other 
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theoretical models. This evaluation is valuable because it could be used to optimize the 

model or validate its ability to make predictions outside of the training data.

Atomistic descriptions of phospholipids fall into three primary categories: “all-atom” (AA), 

“united-atom” (UA), and “coarse grained” (CG). AA models represent every atom explicitly. 

Current, widely used versions of these models include Slipids,29 Lipid14,30 CHARMM36,31 

and GAFFlipids.32 UA and CG models are structurally approximate, grouping atoms 

together for computational efficiency. UA models remove all nonpolar hydrogen atoms. 

Within this type of model are the Berger lipids,33 GROMOS family (43A1-S3,34 53a6L,35 

and 53a6 Kukol36), C36-UA,37 as well as the model presented here (gb-fb15). CG models 

map the atoms of a particular structural motif into a smaller number of beads. Of this model 

variety, MARTINI38 and the SDK models39 are among the most widely used. The AA and 

UA models mentioned here have quantitatively comparable accuracy, having very low error 

with respect to the ability to reproduce a standard set of bilayer thermodynamic and kinetic 

properties. The CG models are qualitatively accurate but tend to have higher quantitative 

error.40 Structural coarse-grained approximations decrease the number interactions of a 

system, and have a smoothing effect on the system’s free energy landscape. This allows 

for faster phase space sampling, but also can result in an underestimation of system 

entropy.41,42 As is generally the case, the optimal model is going to be application and 

resource dependent. For detailed comparisons of most AA, UA, and CG lipid force fields in 

use today, see refs 43-47.

MD is a classical theory. The force field is determined through the fitting of empirical data 

and/or results of quantum mechanical (QM) calculations. It is hoped that by fitting this 

potential function to experiment, equilibrium ensemble properties and mean-field quantum 

effects will be accurately described. Many of the original force fields were developed 

via manual parameter search techniques. Since then, several tools for automatic parameter 

optimization have been developed. Some major packages used for this purpose include 

GAFF48,49 and CGenFF50-53 for small molecules, and ParamFit,54 Wolf2 Pack,55 GROW,56 

and our methodology, ForceBalance,57,58 for general force field optimization.

In this study, we report the systematic training and validation of an united-atom 

phospholipid bilayer force field using experimental thermodynamic data. A pure bilayer 

consisting of dipalmitoylphosphatidylcholine (DPPC) lipids, hydrated by simple point 

charge (SPC) water59 molecules, was chosen for our first model because it has been studied 

in the greatest detail in both theory and experiment. This allows for the most thorough 

optimization, characterization, and quality evaluation. A united-atom description was chosen 

for computational efficiency. It was found that our united-atom approximation is capable of 

capturing the relevant physical and chemical properties of the lipid bilayer, while improving 

sampling efficiency when compared to AA models. This new model will be referred to as 

gb-fb15.
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METHODS

The Model.

The model presented here follows a standard functional form, given by a classical piece-wise 

summation over bonded and nonbonded interaction potentials.

V (rN; Λ) = V bonded(rN; Λ) + V nonbonded(rN; Λ) (1)

Note that the potential terms are given as a function of system configuration, rN, and force 

field parameter values, λ, represented by the set Λ.

The bonded terms describe the interaction between covalently bonded atoms, and they 

consist of bond and bond-angle terms, as well as improper and proper torsional dihedral 

angle terms. The acyl chain torsional dihedral terms are uniquely treated using a Ryckaert–

Bellemans potential.

V bonded(rN; Λ) = V bond(rN; Kbn, b0n) + V angle(rN; Kθn, θ0n)
+ V dihedralim(rN; Kξn, ξ0n)
+ V dihedralpropernon−acyl(r

N; Kϕn, δ, mn)
+ V dihedralproperacyl(r

N; Kϕn, δ, mn)

(2)

= ∑
n = 1

Nb 1
4Kbn(bn − b0n)2 + ∑

n = 1

Nθ 1
2Kθn[cos(θn) − cos(θ0n)]2

+ ∑
n = 1

Nξ 1
2Kξn(ξn − ξ0n)2

+ ∑
n = 1

Nϕ
Kϕn[1 + cos(δn) cos(mnϕn)]

+ ∑
n = 0

6
Cn(cos(ϕ − π))n

(3)

The in variables (where i = b, θ, ξ, ϕ) describe the time-dependent simulation values. 

The nonbonded terms consist of a Lennard-Jones potential and a Coulombic electrostatic 

potential.

V nonbonded(rN; Λ) = V LJ(rN; C6, C12) + V Coulomb(rN; q) (4)

= ∑
j = 1

N − 1
∑

i = j + 1

N Cij
(12)

rij12 −
Cij

(6)

rij
6 + qiqj

4πϵ0rij
(5)
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For this study, the initial parameter set consisted of the GROMOS 53a6 (G53a6) force 

field, modified to include Berger lipid Lennard-Jones (LJ) and tail dihedral parameters. 

Here we will refer to this model combination as “g53a6-b”. GROMOS 53a6 was originally 

parametrized for the reproduction of small biomolecule densities, enthalpies of vaporization, 

and hydration free enthalpies.60 This force field has been shown to accurately model 

several experimental structural properties for peptides, proteins, and DNA in explicit SPC 

water,61 but it fails to describe the correct phase behavior for hydrated phosphatidylcholine 

bilayers.36 The qualitatively correct phase behavior is recovered when GROMOS 53a6 is 

combined with the aforementioned elements from the Berger lipid parameter set.

Developed in 1997, Berger lipids remain among the most popular lipid bilayer force fields. 

It borrows its Lennard-Jones (LJ) parameters from the united-atom OPLS force field,62 

modifying the values for the hydrocarbon tail group atoms. These OPLS tail group LJ 

sigma and epsilon values were found by fitting to experimental density and enthalpy of 

vaporization measurements.33 The tail group dihedral potential was taken from Ryckaert and 

Bellemans, who fit their potential using spectroscopic data of an n-butane monomer.63

For our parametrization process, we optimized the Lennard-Jones parameters for all lipid 

atom types (as illustrated in Figure 1). These parameters are described by the C12 and C6 

terms in eq 5. The bonded and electrostatic parameters were left unmodified.

Simulation Conditions.

We combined the force field parameters described above following Justin Lemkul’s 

GROMACS membrane-protein tutorial.64 The force field topology, along with an 

equilibrated DPPC bilayer, were obtained from Peter Tieleman’s Web site.65 The simulated 

system consists of 128 DPPC united-atom lipid molecules, arranged in two leaflets, hydrated 

by 3655 water molecules.

Model optimization is an iterative process wherein, at each step, simulations are run using 

an updated parameter set. These simulations were first energy minimized via a steepest 

descent algorithm over 10000 steps, and then equilibrated using a Berendsen barostat for 

200 ps with a time step of 2 fs. An NPT ensemble was enforced during the production 

dynamics via a Nose–Hoover thermostat (τt = 0.5 ps, reft = 323, 333, 338, and 353 K) 

and a semiisotropically coupled Parrinello–Rahman barostat (τp = 2.0 ps, refp = 1.0, kt = 

4.5e–5 bar−1). Electrostatics were calculated using a particle-mesh Ewald scheme of order 

4 and Fourier spacing of 0.16 nm. The Ewald real space and van der Waals cutoffs were 

both set to 0.12 nm. The LINCS algorithm was used to fourth order to constrain all bonds 

to their equilibrium lengths. Note that lipid force fields are highly sensitive to simulation 

parameters, and should be used with the specifications applied during model development. 

A GROMACS parameter file has been supplied with the force field developed in this work, 

available in the GitHub repository described in the Notes. For each temperature point, ten 

parallel simulations with unique initial conditions were run for 3 ns each in a rectangular 

box with periodic boundary conditions using a leapfrog integrator. All simulations were 

performed using the GROMACS 4.6.5 software package.66-69 Training properties were then 

calculated for each production simulation, and property averages were calculated using all 

trajectories belonging to a particular NPT macrostate (40 simulations per iteration, 10 per 
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temperature, resulting in a 30 ns time series for each thermodynamic property at each 

temperature point). Pre-equilibrating the production simulations and parallelizing over a 

range of unique initial conditions was found to drastically accelerate the convergence of the 

training properties. The final frame from each production simulation was used as the initial 

condition for the following iteration of the optimization process. The distribution of jobs was 

facilitated through use of the Work Queue library.70

Optimization.

The ForceBalance method addresses the challenge of finding an optimal approximate 

potential function via a supervised learning method. A set of training data is used to 

compute an objective function which is then iteratively minimized in the space of force field 

parameters. The ForceBalance objective function is of a least-squares form and is given by 

the following expression:

χ2(Λ, α, β) = ∑
i

∣ T ∣
αi(ti − ai(Λ))2 + ∑

i

∣ Λ ∣
βiλi

2
(6)

This objective function is a quantification of model quality, determined by the force field 

parameter set, λi ∈ Λ, through comparison of simulation properties, ai ∈ O, to a training set, 

ti ∈ T, consisting of empirical and/or ab initio data. Residuals are of a least-squares form 

and are guaranteed to be relatively small because parameters of a suitable, existing model 

are used as an initial guess. This ensures that the system’s thermodynamic properties are 

stable and reasonably close to the experimental values. To ensure that each training property 

contributed as evenly as possible to the optimization process, the units of the training data 

were set so that all data was of the same order of magnitude, and the α weights were both 

set to 0.5.

This method implements an L2 regularization scheme in order to discourage overfitting, 

given by the second summation in eq 6. The regularization term guarantees that the 

parameters only deviate from their initial values by an amount that is small compared to 

the initial parameter values. It is given by

∑
i

∣ Λ ∣
= (λ − λ0)2

Pλ
(7)

where λ0 is the initial value of the parameter and Pλ is a hyperparameter representing 

the allowable deviations of the parameter. To ensure the objective function remains 

dimensionless, Pλ has the same physical units as λ. We chose the values of the 

hyperparameter Pλ by inspection of the initial parameter values. Because the initial values 

of the Lennard-Jones σ and ϵ values were all between 0.2 and 1.0 (in the GROMACS unit 

system), we chose Pσ = 1.0 nm and Pϵ = 1.0 kJ/mol. In practice, the RMS percentage 

change of the parameters from their initial values was 10.9%, and the largest change for any 

parameter was for the LC2 σ parameter, which increased by 28.5%.
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The objective function is minimized using the Levenberg–Marquardt algorithm71,72 with an 

adaptive trust radius,73,74 where parameter shifts are given as follows:

λi + 1 = λi + ∇χ2(Λ, α, β)
∇2χ2(Λ, α, β) + bI

(8)

The objective function parameter-space gradients are calculated analytically, and the 

elements of the Hessian are approximated using the Gauss–Newton approximation. I 
is the identity matrix, and the b term is found by tracking the relative error between 

optimization iterations, and is used to interpolate between gradient descent (large b, far from 

a minimum) and the Gauss–Newton method (small b, close to a minimum, where a quadratic 

approximation is more appropriate).

For high-dimensional small-residual nonlinear least-squares optimization problems, 

gradient-based Newton-type methods, such as Levenberg–Marquardt, have been shown to 

exhibit rapid local convergence.75 When the training properties are not explicitly dependent 

on the system’s potential energy, their parameter-space gradients can be represented 

analytically.58 This can be seen if one considers the ensemble average of an observable, A, 

which is not explicitly dependent on the system’s potential energy, as seen in eq 9. Through 

differentiation, this derivative expression reduces to the analytic fluctuation formula shown 

by eq 10.

〈A〉λ

= 1
Q(λ)∫ A(r, V ) exp[ − β(E(r, V ; λ)) + PV ] dr dV (9)

Q(λ) = ∫ exp[ − β(E(r, V ; λ)) + PV ] dr dV
d

dλ〈A〉λ = 1
Q(λ)∫ A(r, V ) exp[ − β(E(r, V ; λ)) + PV ]

× −β dE(r, V )
dλ dr dV − 1

Q(λ)2
dQ(λ)

dλ

∫ A(r, V ) exp[ − β(E(r, V ; λ)) + PV ] dr dV

= − β 〈AdE
dλ 〉λ − 〈A〉λ

dE
dλ λ

(10)

where Q(λ) is the partition function for the isothermal–isobaric ensemble, r is the system’s 

spatial configuration, V is the volume, β ≡ 1
kBT , where kB is Boltzmann’s constant, T is the 

temperature, and E(r,V; λ) is the potential energy. Analytic computation of these gradients 

is advantageous because numerical finite-difference approximations are resource intensive 

and subject to numerical error. Analytic gradients are still subject to sampling error, but 

as described above, pre-equilibration of the production simulations and analysis across a 

diverse range of initial conditions allowed for fast convergence of the training properties, 

resulting in sampling error of less than 5%.
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For this optimization procedure, area per lipid and deuterium order parameter were 

contained in the training set and, hence, used to train the model. For a homogeneous lipid 

bilayer, area per lipid can be calculated from a simulation using the following equation:

〈AL(t)〉 = 2〈dx(t) ⋅ dy(t)〉
nL

(11)

where di(t) is the time series for the i component of the box volume, and nL is the number of 

lipids in the simulation. The box dimension time series were obtained using the GROMACS 

routine g_energy. The deuterium order parameter, for each tail CH2 carbon node (atomtype 

LP2), SCDi (i ∈ 1, …, 14), is calculated as follows:

SCDi = 1
2〈3 cos2(θi(t)) − 1〉 (12)

where θi(t) is the time series for the angle determined by the Ci–D bond vector and the 

bilayer normal vector. This angle was computed by assuming a tetrahedral geometry for 

each united-atom tail carbon.

For each iteration, a set of simulations were run for each unique temperature point. From 

these simulations, the objective function was computed using the training set properties, 

and parameters were modified as described in eq 8. The next iteration was then initialized 

using the updated parameter set. This process was repeated until the objective function was 

minimized.

Validation.

Model validation involves the evaluation of properties contained in a “test set” from 

trajectories generated using the new parameter set. The test set consists of properties not 

used during the training process. Extensibility of model accuracy beyond the properties used 

for model training is the true test of model quality.

Following completion of the optimization process, for each temperature point, continuous 

600 ns long validation simulations were run using the final parameter set. These trajectories 

were first equilibrated for 20 ns, and had simulation conditions identical to those specified 

for the optimization simulations (with the exception of simulation length and parameter set). 

Property uncertainties were calculated using the autocorrelational statistical inefficiency of 

the property time series.76

In this study, our validation set consisted of experimental bilayer isothermal area 

compressibility modulus, kA, lateral lipid diffusion, Dl, volume per lipid, VL, and X-ray 

structure factor, ∣F(q)∣. kA is related to the fluctuations in AL via the following expression:

κAL = 2kBT
nL

〈AL〉
σAL

(13)

Wwhere kB, T, nL, and σAL represent Boltzmann’s constant, temperature, number of lipids 

in the simulation, and the variance in ⟨AL⟩, respectively.
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Lateral lipid diffusion was calculated by first pulling 50 snapshots from the NPT validation 

trajectories, spaced 20 ns apart. These frames were then used as the initial conditions for 

100 ps long double precision NVE simulations. The 2D Einstein relation was then used to 

find the lateral diffusion constant from the slope of the linear regime of the mean square 

displacement time series77 of the headgroup phosphate atom, as in eq 14, where the lateral 

displacement is along the bilayer–water (xy) interface, and the phosphate xy coordinates at 

time t are represented by r(t). The reported lateral diffusion values are averages over the 50 

NVE trajectory results.

Dl = lim
t ∞

1
4t〈 ∣ r(t) − r(0) ∣ 〉2

(14)

Volume per lipid was calculated according to

V L = 〈V box〉 − nwV w
nL

(15)

where ⟨Vbox⟩, nw, and Vw are the average simulation box volume, the number of water 

molecules, and the temperature-dependent volume of one water molecule, respectively. 

Vw was found from separate simulations of pure SPC water with simulations run with 

specifications identical to those applied to the validation simulations.

The electron density profiles were found using the GROMACS routine g_density. The bulk 

water electron densities were then subtracted from these EDPs. The Fourier transform of 

these curves yields the X-ray structure factors.

∣ F(q) ∣ = ∣ ∫−z ∕ 2

z ∕ 2
eiqz(ρ(z) − ρbulk(z)) dz ∣ (16)

where ρ(z) is the electron density profile, and ρbulk represents the electron density of bulk 

water.

RESULTS AND DISCUSSION

Training Set Results.

For this study, the training set consisted of two experimentally measured properties: average 

area per lipid, ⟨AL⟩, and phospholipid acyl chain deuterium order parameter, ∣SCD∣. These 

properties belong to the “training set”, because they were used for model fitting. These 

particular characteristics were chosen for model training because they are structurally 

descriptive in distinct ways, and experimental data for each are available across a wide 

temperature range. Simulations run using the optimized parameters were found to closely 

reproduce training set experimental properties. As illustrated by Figures 2 and 3, our model 

shows an improvement from the original parameter set, across all temperatures.

Average area per lipid describes the expected surface area of each lipid molecule, projected 

onto the membrane xy plane. Of all bilayer properties, this has been studied the most 

extensively by experiment.14,78-80 Consequently, it is also used to fit the majority of 
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phospholipid force fields. However, due to thermal motion of the bilayer, it is difficult 

to measure this quantity with high precision in real systems.79 For this reason, the reported 

experimental values have relatively high uncertainty.

The original model, g53a6-b, results in a bilayer that is too laterally dense, as demonstrated 

by low AL values. For the optimized parameter set, the AL values are closer to experiment. 

For the most thoroughly characterized temperature value, T = 323.15 K, the new model falls 

within the error of the experimental value. Improvement of this property is important for the 

accurate structural description of the bilayer.

The deuterium order parameter quantifies the expected rotational disorder of each lipid tail 

methylene group with respect to the normal of the membrane xy plane.81 As carbon “nodes” 

(acyl groups) are closer to the bilayer center, they become characteristically disordered, 

and ∣SCD∣ tends to zero. Reproducibility of acyl chain deuterium order parameters from 

simulation is highly valued because its experimental values are independent from analysis 

modeling, as they are calculated directly from 2H NMR quadrupole splitting and have low 

uncertainty.

Across all temperatures, the original model displays overly ordered tail rotational dynamics, 

as evidenced by higher ∣SCD∣ values. The acyl groups nearest to the headgroup were found 

to have the highest error, with the error residual decreasing for the acyl groups near the 

bilayer center. For all temperatures, the updated model yields lower error when compared to 

experiment. It can be seen that the errors for the new model remain the greatest for the acyl 

groups nearer to the headgroup, but the magnitude is reduced.

Validation Set Results.

The validation set results are also an overall improvement to the original model. These 

properties were not used to fit the model, and therefore lend unbiased support to model 

quality.

As can be seen in Figure 4, the X-ray structure factor for g53a6-b has better agreement with 

experiment when T = 323.15 K, while the new model has better agreement to experiment for 

T = 333.15 K. At lower temperature, the new models have q-axis zeros shifted to slightly 

higher q values. This means that, on average, the new model produces a bilayer thinner than 

that of the original model. Typically, as AL increases, bilayer xy density decreases, and the 

membrane will compress in the z direction. Considering the degree of increase for AL, the 

structure factor is very modestly affected. At the higher temperature, the new model has very 

good agreement with experiment, showing improvement over the original model.

For the remaining validation properties, experimental data was only available for T = 323.15 

K. These results are given in Table 1. Although the area per lipid is within experimental 

error for T = 323.15 K, volume per lipid shows an improvement, but it is not as drastic. This 

highlights how the bilayer is likely too narrow in the z direction at this temperature, and it 

stands as a direction for future improvement. Isothermal area compressibility has decreased 

for the new model and now lies closer to experiment. This shows that not only is the average 

AL more accurate, but the fluctuation behavior of this behavior has also improved. Lastly, 
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the lateral diffusion constant has also improved. For the available experimental data point, 

the result is very close. This is an important result because no kinetic information was used 

to fit the new model. Optimization using a set of thermodynamic properties has also led to 

an improvement in this critical kinetic property.

Parameter Behavior.

At the heart of the ForceBalance method is the parameter-space minimization of the 

objective function. The objective function, χ2, is considered minimized once Δχ2 begins 

to oscillate within a use-specified window (0.01 in this work, achieved after 10 iterations, 

see SI Figure S1). Because the objective function is computed by summing over the square 

of training set property error residuals, the parameter space derivatives of these terms can 

provide insight into the progression of the optimization procedure.

For this model, the water–lipid interaction has been optimized, while the lipid–lipid and 

water–water interactions remain constant. The was accomplished through the modification 

of the DPPC σ and ϵ components of the water–lipid Lennard-Jones interaction. SI Table 

S1 tabulates the original and final parameter values, as well as the percent difference, for 

each atom type (as illustrated in Figure 1). In Figure 5, the derivatives of the training 

property errors with respect to the modifiable parameters are illustrated for both the final and 

initial models. It can be seen that the original model shows significantly higher derivative 

values. For the new model, the derivatives are, in all cases, nearly zero. This signifies that 

the parameters of gb-fb15 exist in a local minimum. This is corroborated by the improved 

performance of the new model in both the training and validation sets.

It can be seen that the initial derivatives for each training property residual share many 

similarities. For several of the parameters, when the derivative is high for one training 

property, it is also high for the other training property. This is potentially a reflection of 

coupling between the training properties. It is expected that an increase in AL would result 

in an increase in SCD. If the lipids molecules are less compact, the lipid tails will have 

more space in which to rotate. There are some notable exceptions to this trend. The primary 

differences involve the phosphate moiety of the headgroup (LOS, LOM, and LP), where 

it can be seen that the initial derivatives do not follow an obvious trend. For example, the 

AL sigma derivative for the sigma LOS parameter is much higher than the corresponding 

derivative for SCD. The reverse is true for the epsilon LOM parameter. This moiety is near 

the bottom of the headgroup, and therefore likely important for intramolecular headgroup–

tailgroup interaction, and also intermolecular headgroup–headgroup interactions. For this 

reason, we speculate that the coupling between the training properties is least strong for 

these atom types, and that is why this disparity is seen.

CONCLUSION

A united-atom model for the NPT molecular dynamics simulation of SPC-hydrated DPPC 

bilayers, named gb-fb15, has been presented. We recommend the use of this model in 

simulations of both homo- and heterogeneous DPPC bilayer systems. This model was 

constructed using the ForceBalance method, which uses the Levenberg–Marquardt algorithm 

to minimize a regularized nonlinear least-squares objective function. Our application of this 
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method to the DPPC Lennard-Jones parameters has yielded a model demonstrating clear 

improvements over the original parameter set across a range of thermodynamic and kinetic 

properties contained in an extensive training and validation set. Additionally, results show 

that this new model displays an improved response to temperature variation. The quality 

of our resultant model demonstrates the effectiveness of this optimization technique for the 

improvement of phospholipid bilayer force fields.

Future directions aim to improve model utility and accuracy, while reducing computational 

cost. In particular, we aim to apply this optimization procedure to a wider variety of lipid 

types. We also hope to ensure maximum compatibility of these models with the recent 

release of more accurate water and protein models. Updated parameter sets for a variety 

of united-atom lipid representations will be particularly useful for those interested in the 

simulation of large membrane proteins, for whom structural approximation is especially 

valuable.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic of a united-atom (UA) DPPC lipid, with labeled atom types. This conformation 

was sampled from a simulation trajectory.
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Figure 2. 
DPPC area per lipid as a function of temperature compared to experiment78-80 for the 

original and optimized models.

McKiernan et al. Page 16

J Chem Theory Comput. Author manuscript; available in PMC 2022 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
DPPC deuterium order parameter as a function of temperature compared to experiment79 for 

the original and optimized models.
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Figure 4. 
DPPC X-ray structure factor at the temperatures for which there exists experimental 

data.78,82
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Figure 5. 
Magnitude of the initial (dashed) and final (solid) parameter derivatives for each objective 

function training set residual. The derivatives have been normalized by the L2 norm of the 

starting model derivative values.
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Table 1.

Comparison of Validation Set Results to Experiment

Property T (K) g53a6-b gb-fb15 exp

VL (Å3) 323.15 1171.7 (1) 1191.7 (3) 123214

333.15 1179.6 (1) 1199.0 (3)

338.15 1183.7 (1) 1203.4 (2)

353.15 1194.5 (1) 1214.3 (1)

κAL (mN m−1) 323.15 290 (9) 190 (14) 23114

333.15 294 (13) 172 (3)

338.15 299 (3) 170 (3)

353.15 315 (2) 218 (8)

Dl (10−8 cm2 s−1) 323.15 8.8 (5) 12.8 (5) 12.583

333.15 10.6 (8) 14.4 (5)

338.15 11.9 (7) 15.1 (5)

353.15 16.5 (8) 19.8 (8)
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