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Abstract—There has been increasing attention to virtual real-
ity applications in recent years, especially to immersive or 360-
degree videos that typically consume much more bandwidth than
traditional ones. Though all produced data is transferred, only
a small part (denoted as Field of View or viewport) is watched
by users due to the nature of immersive videos. Obviously, this
causes a large waste of network resources. Hence, it is important
to define a viewport-dependent streaming transmission strategy
by detecting where the user is gazing and the movement of the
user’s head. Unfortunately, there are few datasets providing this
information. In this paper, we propose a tile-based simulation
approach to generate the distribution of the user’s behavior and
to provide information that can be used to optimize future view-
dependent streaming protocols. We first characterize the users’
viewport pattern from datasets gathered from real users by
decomposing the 360-degree stream into tiles and analyzing the
frequency and time-interval distribution for each tile. Then, we
devise a hierarchical Markov model that incorporates the beta
distribution of each tile time interval to predict tile transition.
The results show that the simulation tool characterizes the tile
sequences of users accurately, performing close to the empirical
results.

Index Terms—AR/VR, 360-degree video, Markov Model, User
behavior, Simulation

I. INTRODUCTION

Video streaming is increasingly moving towards immersive
experiences. In an immersive stream, the user is placed in the
middle of the video and can observe the action from multiple
points of view by rotating the device or moving the eyes. Since
the immersive stream contains views from multiple directions,
it involves far more data than a regular video stream with the
same resolution. Some studies [4] [11] show that the increase
in the amount of data with immersive video is 6× compared
with a regular video.

It is estimated that immersive videos (or 360-degree videos)
will grow to a market of 8.2 billion by 2020. Users can
now experience 360-degree videos on portable devices from
several manufacturers. These head-mounted displays (HMD)
are able to freely adjust head orientations (i.e., changing the
pitch, yaw, and roll) to watch panoramic views. After that,
based on the field of view (FoV) and the orientation of the
user, the 360-degree video player displays the visible area

on a screen. For the current devices, the FoV is about 90◦

vertically and slightly wider horizontally.
The increasing market of immersive video requires the

underlying network infrastructure to evolve to support the
distribution of 360-degree video streaming seamlessly. Ma-
jor challenges in 360-degree video streaming are its high
bandwidth requirement and low delay tolerance. Recently,
most 360-degree videos have been encoded at 4K resolution.
According to Netflix [2], it is recommended that the Internet
download speed reach at least 25 Mbps for streaming Ultra
HD quality video (i.e., 4K quality), whereas the average
download speed of the mobile Internet is only 19.27 Mbps
recently.

In virtual-reality (VR) streaming, the user is immersed in
a virtual environment and can dynamically and freely decide
the preferred viewing position, called viewport [9], [10], [19],
[21]. As Fig. 1 illustrates, the 360-degree video uses motion
sensors and gyroscopes to detect the position of the HMD,
allowing the device to continually update a scene according
to head movement and rotation.

Headset

Sensor

Fig. 1: Positioning of the sensor and headset, adapted from [1]

In order to reduce the bandwidth consumption over the
network, viewport-dependent solutions have often been pro-
posed for VR streaming. Namely, the client attempts to fetch
only the views that the user will actually observe, and tries
not to download directions that the user will not watch.
Winnowing strategies have been devised to identify which
FoVs will be watched. Similarly, pre-fetching strategies have
been designed to carefully balance two contrasting objectives,ISBN 978-3-903176-16-4 © 2019 IFIP



namely maximizing quality and avoiding stalls in the played
stream and pre-fetching viewports only in the direction that
the user will actually watch. In-network caching also would
benefit from predicting what views the users will watch.

Obviously, these techniques reduce the bandwidth required
to stream the 360-degree video. However, it is difficult to
design new algorithms without a prediction model that is easy
to simulate. Currently, there are some small-scale datasets [8]
[20] [15] [23]; however, to the best of our knowledge, no
convenient simulation model exists that describes the motion
of the user’s field of view as a function of time. We believe
this is necessary for proper network evaluation of prefetching
and caching algorithms.

Based on the observation of empirical data, we present
such a model here. Namely, we show that the user’s FoV
can be mapped to a tile view (which is commonly used to
distribute only the tiles of the 360-degree stream that the
user is watching) and that the tiles that the user is watching
at any point of time can be modeled by a combination of
a Markov model for the transitions from tile to tile, and a
beta distribution for the time spent on a specific tile. We then
evaluate the properties of our model when compared with the
actual datasets to show that our model presents a sample path
for the user’s perspective that is similar to the empirical data.

The contributions of our paper are the following:
• We present a study of the empirical data for the user’s

viewport evolution in immersive video streams.
• We derive a model from this study that describes the

evolution of the tile at which the user is looking over
time. This model is simple enough to be used and is built
upon a hierarchical Markov model for the tile transitions,
combined with a beta distribution for the time spent on
a tile.

• We show how to extract the input parameters into our
model to generate some traces that correspond to several
basic types of videos.

• We evaluate this model to validate that its output process
is similar to that of the empirical data.

• We make our model available for others to use and
improve at [3].

One benefit of our model is that it allows for mathematical
analysis of the processes that take as input the user’s FoV.
For instance, an algorithm that predicts the user’s future views
could mathematically verify its accuracy by using our model
as it is easily tractable.

The rest of this paper is organized as follows: We present
related work in Section II. Then we observe the properties
of empirical data in Section III. We present our model in
Section IV and evaluate how close the output is from the
empirical data in Section V. Finally, we offer concluding
remarks in Section VI.

II. BACKGROUND AND RELATED WORK

With the rapid increase in the number of immersive video
streaming applications, the network for delivering the content
can potentially become a bottleneck. [22] and [13] survey the

relationship between immersive video streaming and network-
ing.

A. User behavior Analysis for Immersive Videos

Many prediction algorithms have been designed to antic-
ipate the content that the user will gaze at. Such prediction
helps by transmitting only the views that the user will watch.

Machine learning techniques, including neural networks,
have been adopted for better feature extraction and prediction
accuracy in fixation detection [5], [7], [18]. Mavlankar et
al [17] perform fixation prediction in videos using features
like motion vectors and navigation trajectories. Chaabouni et
al [7] build a Convolutional Neural Network architecture and
use residual motion as the features for predicting saliency
in videos. Alshawi et al [5] observe the correlation between
the eye-fixation maps and the spatial/temporal neighbors.
This provides another way to quantify viewer attention on
videos. Nguyen et al [18] propose to adopt the information of
static saliency in images and then take camera motions into
consideration for prediction of dynamic saliency in videos.
Fan et al [11] tackle the problem of fixation prediction
for 360-degree video streaming to HMDs using two neural
networks. It uses content-related (an image-saliency map and
a motion map) and sensor-related (viewer orientation) features
as inputs to predict future viewing probability of each tile.

Using available big data and analytical tools, Liu et al [14]
employ an approach guided with Field-of-View (FoV) that
fetches only the portions of a scene the users will look at. Xie
et al [24] illustrate a cross-user behavior analysis for predict-
ing the users preference on content. They find that the different
users are sharing the region-of-interest (ROI) when watching
immersive videos. Bao et al [6] predict head movement in
360-degree video delivery. They collect motion data for some
subjects watching 360-degree videos and observe a strong
short-term auto-correlation in viewer motions, which indicates
that viewer motion can be well predicted based on motion
history. Other works use prediction mechanism to perform
rate adaption for network distribution. For instance, He et
al [12] propose a joint rate and FoV adaptation that varies the
anticipation window based upon the network response.

As we could conclude from these studies, user behaviors
(e.g. head movement, viewer motion) follow a similar pattern
which could be predicted according to the historical record-
ings. Therefore, it is possible and necessary for developing
a tool to simulate the user behaviors for immersive video
streaming.

B. Available Datasets

There are some public content and datasets for 360-degree
video. Some researchers have built 360-degree video testbeds
for collecting traces from real viewers watching 360-degree
videos using HMDs. The collected datasets can be used to
(i) empirically find out some key problems and properties of
immersive video, and (ii) validate and evaluate new systems
and algorithms.



Wu et al [20] present a new dataset of 60 omnidirec-
tional images with the associated head and eye movement
data recorded for 63 viewers. A subjective experiment was
conducted in which users are asked to explore the images
for 25 seconds as naturally as possible. In addition, an
image/observer agnostic analysis of the results from this
experiment is also performed, which considers both head and
eye tracking data. Furthermore, they also provide guidelines
and tools to evaluate and compare saliency maps in such
omnidirectional scenarios.

Lo et al [15] present the dataset collected from ten YouTube
360-degree videos and 50 subjects. Their dataset has two
parts, consisting of both content data, such as image saliency
maps and motion maps, and sensor data, such as positions
and orientations.

Wu et al [23] present a head tracking dataset composed
of 48 users watching 18 sphere videos from five categories.
In order to better assess the users’ behavior, they record
how users watch the videos, how their heads move in each
session, what directions they focus, and what content they can
remember after each session.

Corbillon et al [8] present a dataset that includes the head
positions of 59 users recorded while they are watching five
70s-long 360-degree videos using the Razer OSVR HDK2
HMD. They have published the dataset alongside the used
videos and the open-source software that they develop to
collect the dataset. Finally, they also introduced examples of
statistics that can be extracted from the dataset to provide an
overview of the users behavior and the videos characteristics,
focusing on the viewport adaptive streaming scenario.

III. EMPIRICAL DATASET STUDY FOR MODELING HEAD
MOVEMENT

We consider Corbillon’s dataset [8] mentioned above in
order to investigate the users’ behavior in this paper. The
dataset has the following properties: (1) It collects the user
head movement data in watching 360-degree videos, which
directly matches our requirements; (2) the dataset contains 59
users, which is almost sufficient for analysis and modeling;
and (3) each video is classified according to a set of categories
that could be used to describe the different viewing behaviors.

Among the different types of 360-degree videos, we use the
following four different video types to analyze the features
of user behaviors: Exploration (Paris), Static Focus (Rhino),
Rides (Rollercoaster), and Moving Focus (Timelapse).

We ask the following question: can we find a simple
common model to describe the properties of these videos?

A. Raw Data analysis

Fig. 2 displays the distribution of user head movement
measured in a spherical coordinate system. θ (the polar
angle, showed in Fig. 2(b) ) is measured from a fixed zenith
direction, and γ (the azimuth angle, showed in Fig. 2(a)) is
of its orthogonal projection on a reference plane that passes
through the origin and is orthogonal to the zenith. The sample
video selected from the dataset is “Paris”. From this pair of
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Fig. 2: Distribution of the users’ head movement

TABLE I: Distance variance with increasing of time

100ms 250ms 500ms 750ms 1000ms
95% 0.147 0.433 3.012 3.093 3.107
90% 0.096 0.255 0.567 1.11 2.983
85% 0.073 0.19 0.401 0.645 0.956

coordinates (and the corresponding Fig. 2), we can observe
that the variations of the angles θ and γ are quite random.
It indicates that it is hard to apply the time series model for
predicting the change of the user behaviors in a global view.

Corbillon et al [8] measure the position of the user’s gaze
direction projected on a unit sphere as a function of time.
Because the distance is measured on the unit sphere, the most
the user’s gaze can move within a period of time is π (where
it would find itself at the antipode from the initial position).
The considered distance is the orthodromic (or Haversine or
great-circle) distance.

Using their dataset, we are able to generate Table I. Table
I shows the radius r that the user’s FoV will stay within with
probability p during a period of time ξ. Namely, if xt is the



center of the FoV at time t, Table I shows the relationship for
various probabilities p, time interval ξ and the radius r, that
satisfies:

argminrP (||xξ − x0|| < r) > p (1)

For instance, we can see that there is 90% probability that
the user will be viewing an FoV that is within the distance
of less than 0.096 after 100ms from the initial FoV. When
we enlarge the time interval to 750ms, the distance of the
user’s motion is within 1.11 with 90% probability. Even
for a 1s delay, there is 85% chances that the user stays
within the distance of 0.956 to the initial position. Hence,
though the user’s behavior trend is quite random from the
original datasets, the user’s head movement would not vary
dramatically in most cases when they are watching a video.

B. Tile Distribution Analysis

While spherical coordinates perfectly describe the direction
of the user’s gaze within the video stream, most systems
use a projection of the sphere onto a finite set of tiles for
transmission over the network. Equirectangular and cubic pro-
jections are two common approaches used to project the video
sphere to a 2D plane. In this paper, we choose equirectangular
projection while any other projection could also be used. The
idea is to transmit only the tiles that are being viewed by
the users, so as to reduce the bandwidth. For instance, in
the case of a cubic projection (with six tiles, “top”, “left”,
“front”, “right”, “bottom”, “back”), the “back” tile should not
be transferred as it is unlikely to be watched.

For the remainder of this paper, we shift the presentation
of the motion of the user’s gaze from spherical coordinates
to tiles. Tiles are proposed as a unit of transmission for
immersive video streams in order to reduce the bandwidth
usage. Therefore, we are attempting to model the patterns of
user behavior at the tile level.1

By mapping the spherical coordinates to the tile view, we
can leverage the previous data sets.

Tiles have different levels of importance in a 360-degree
video depending on the instant viewport of the user. A video
view sphere would be split into K part: {τi|i = 1, 2, ...,K},
and each part would have the same size. In practice, the
collection of constructed (smaller) video frames for each
tile would be regarded as separate videos after the video
has been partitioned into spatial tiles. The tiles are then
separately encoded and streamed to the user, according to
various optimized strategies.

Tile frequency: it is the frequency, in counts, of the tiles
being watched in center of users’ FoV, measured from all the
users of the same video.

We should mention that we only calculate the tile in the
center of a total viewport, because it reduces the analysis
complexity and computational burden while incurring only
marginal information losses in the data.

1Note that it would converge back to a spherical view for a large number
of smaller and smaller tiles.

Fig. 3 displays the frequency of tiles of all the users
when they watched four videos with a setting of 4 × 6 tiles.
Observing the results, we observe that the users spend most of
the time watching a small percentage of tiles. Tile 2 accounts
for more than 40% of the frequency in the Pairs, Rollercoaster
and Timelapse videos. In the video Rhino, tiles 2, 6, 14, and
17 comprise 90% of the user’s time. Further, only 46% of
the tiles are used in this scenario, leaving half of the tiles un-
watched by the users. Statistical tests show that the statistics
of the data gotten from various sampling methods contain no
significant differences.

Table II provides the tile usage in different partitions of
the sphere when users watch different type of videos. For
example, the usage of the tiles decreases from 0.35 to 0.32
when the tiles number increases from 48 to 144 in the video
of Paris. One exception for the trend is Rollercoaster, the
percentage of tiles used remains 0.31 when increasing the
number of tiles.

TABLE II: The tile usage in different partitions

Tiles Paris Rhino Rollercoaster Timelapse

6× 8 0.35 0.35 0.31 0.40
9× 12 0.34 0.32 0.31 0.36
12× 12 0.32 0.28 0.31 0.33

C. Time Interval Distribution

Once the transition from one tile to the next is obtained,
we need to know how long the user’s gaze will stay within
the same tile.

In order to model the time interval distribution of users in
a tile, we draw Fig. 4 to illustrate this problem. We select the
tile that has the highest frequency (shown in Fig. 4(a)) and the
tile with relative lowest frequency (shown in Fig. 4(b)) as the
example to show the difference between tiles. The histograms
in the figures present the distribution of time interval of the
tile with the black line. The red (respectively blue) line is
a normal distribution (respectively beta) generated from the
mean value and standard deviation values of the dataset. From
the figure, we find that the blue line fits the black line, while
the red line does not. Hence, in this paper, we choose the beta
distribution to model the time spent in each tile.

The general form of the beta distribution has four parame-
ters, including two shape parameters and the upper and lower
bounds. The standard beta distribution when bounded between
zero and one has only two parameters, and is expressed as:

fb(s) =

{
Γ(α+β)

Γ(α)Γ(β)s
α−1(1− s)(β−1) 0 ≤ s ≤ 1

0 otherwise

where fb(s) is the Beta distribution function of s, and s is
the random variable of relative time interval. Here α and β
are the shape parameters of fb(s) , which are calculated using
the mean (µ) and standard deviation (σ) from the dataset of
each tile.
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(c) Rollercoaster
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(d) Timelapse

Fig. 3: Tile Histogram for Each Video
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(b) Low frequency: Tile 6

Fig. 4: Distribution of the time spent in a tile

Then, we can induce α and β as follows:

β = (1− µ)(
µ(1 + µ)

σ2
− 1) α =

µ× β
1− µ

(2)

The parameters α and β of the beta distribution could be
obtained based on the empirical dataset, through the method of
real user experiments or the maximum likelihood estimation
method. In other words, commonly-used statistical methods
are used to obtain continuous distributions from the observed
data.

Suppose max{τ} is the maximum time interval of tile τ ,
the generated time interval distribution Φ of τ is:

Φ = dBeta(ατ , βτ )×max{τ} (3)

D. Summary

From the above study, we can see that: (1) User behavior
changes randomly with the time distribution; (2) users focus

only on half of the views when they watch the entire 360-
degree video, which might help us reduce the extra state
of watching 360-degree videos when modelling the user
behavior; (3) the time interval of each tile can be described as
a beta distribution from the study of the empirical dataset; and
(4) the behavior of different types of video follows the same
distribution with some variation in different popularity of tiles.
The tiles used and the time interval in each tile essentially
determine the distribution of user behavior in watching a 360-
degree video.

Therefore, to accurately measure user behaviors of 360-
degree videos in terms of tiles transition and time interval in
each tile, we need to consider all the features discussed in
this section. Next, we would present our modeling approach
and the simulation approach based on a Markov model.

IV. MARKOV-PROCESS BASED SIMULATION MODELS

A. Preliminary

In this section, we explain our proposed Markov model
for modeling head movement in 360-degree video streaming.
The movement dataset of a moving object over several users
is obtained by mapping the angles to different tiles. Hence,
the dataset is transformed into a series of tiles, which are
composed of chronologically ordered two-dimensional tile-
spatial points representing the location of the object at each
time stamp, where the time interval between each tile is
variable. We are looking for a model composed of a number
of spatiotemporal rules relating to the noisy and unevenly
sampled movement data to their context-related state. These
states can represent the activity governing the movement.

Our aim is to model the complete movement track in a
way that each state in the model is either a stay-point or the
transition path from one stay-point to another, where spatial
coordinates have some form of spatiotemporal similarity. We
assume that the sequence of tiles requested by the users is
a Markov chain process in which the states are the context
ruling users activities and the tiles that a person watches are
observable two-dimensional spatial points. A possible solution
would be to consider each spatial tile as a state and use a
Markov model to find the most probable sequence of states
that explain the user behavior.
Definition 1 (Tile-State Interval). Let K = {τ1, τ2, ..., τk}
be the set of tiles. Without loss of generality, we define a set
of uniformly-spaced time points based on the natural numbers



N . We say the triplet (τi, si, fi) ∈ K×N ×N is a Tile-State
Interval, where τi ∈ K, si, fi ∈ N and si < fi. The two time
points si, fi are called end-time points or the occurring times
of state τi, where si is the starting time and fi is the finishing
time. The set of all tile intervals over K is denoted by I .
Definition 2 (Tile Interval Distribution). A Tile Interval Dis-
tribution is a series of tile state interval triplets {(τ1, s1, f1),
(τ2, s2, f2), ... ,(τn, sn, fn)}, where si < si+1 and si < fi.
The Interval Distribution has the following properties:
• τi 6= τi+1, ∀i ∈ K
• si+1 = fi, ∀i ∈ K

B. Tile Transition Model

We assume the varying process of the tile transition when
the users watch a 360-degree video to be a Markov process.
Since it is difficult to deal with a continuous Markov process
in simulation in angles, we map the state to tiles for building
a discrete Markov model. We assume that we have K (equal
to the tile number) possible aggregated states, each of which
represents a certain tile of the video.

Given that the time interval is limited to a given tile, the
transition probability Pτi,τj from state τi to state τj at a certain
time would approach a steady value tτi,τj ∈ (0, 1), τi, τj ∈
{τ1, ..., τK}. It can be calculated as follows:

Pτi,τj =
Hτi,τj∑
k∈KHτi,τk

(4)

where Hτi,τj refers to the frequency of the transition from
the dataset.

We can thus write the one-step transition matrix T of this
Markov process as:

T =


P11 P12 ... P1K
P21 P22 ... P2K
... ... ... ...
PK1 PK2 ... PKK

 (5)

It should be noted that the transition probability matrix above
is stable, given that it is a stochastic matrix that has a
maximum eigenvalue equal to one and the sum of each
column is 1.

Based on the property of a Markov process with a given
transmission matrix, we can directly get the aggregated
steady-state tile distribution τ from

tk+1 = T • tk (6)

where tk+1 is a K × 1 vector, whose element tτj represents
the empirical probability that the spacing falls in state τj .

We use this model to explain and reproduce the tile distri-
bution with a given input. However, the transition matrix T is
not directly estimated from the tile data since there is some
time interval between each tile. Indeed, a combination with
the beta distribution to produce the time interval of each tile
would be the final output of the tile distribution according to
the user’s behavior. The complete procedure is displayed in
Algorithm 1.

Algorithm 1: Computation of the Tile Distribution

1 INPUT:
2 Beta distribution: αt, βt;
3 Transition Matrix T;
4 Initial State τ0, s0, f0;
5 OUTPUT: The generated tile Distribution: τ , s, f ;
/* Set the sequence length L */

6 L = l − f0;
7 k = 0;
8 while L > 0 do
9 sk+1 = fk;

10 tk+1 = T • tk;
11 pick the tile τk+1 = max{tk+1};

/* Based on equation 3. */
12 fk+1 = dBeta(ατk+1 , βτk+1)×max{τ};
13 if fk+1 > l then
14 fk+1 = l;
15 end
16 l = l − fk+1;
17 k = k + 1;
18 end
19 Return τ , s, f ;

From the discussion in the prior section, we can see that
different kinds of videos maintain different popularity of each
tile. Some further improvement of the Markov model would
be made via the following characteristics:

• The user would not move his/her head dramatically
according to the result shown in Table I, and only the
adjacent tiles would be chosen in a short time interval.

• More importantly, if we cut the sphere of 360-degree
video into hundreds of tiles, the transition matrix is very
sparse and it would not be useful to generate the tile
distribution.

Thus, in the next section, we will present a hierarchical
Markov model to solve the above problems.

C. The Hierarchical Markov Model

Decomposing a target Markov Model into a hierarchy of
smaller Markov processes is straightforward in solving a large
number of tiling. The main idea is that we group the tiles near
into a sub-region, and a set of sub-regions could also group
together into larger regions. This process would keep up until
the number of states within the threshold (e.g., 24). Therefore,
The method of hierarchical Markov model decomposes the
original process M into a set of sub-processes arranged over a
hierarchical structure. Each sub-process is treated as a region
of tiles processing for a high-level process. Specifically, let
the decomposed processes be {M1,M2, ...,Mn}, then the Mn

would be one of a leaf sub-process such that solving all the
sub-processes in the leaf layer gives the final solution of the
original Markov process M . Each sub-process Mi is defined
as a tuple (Ti, Li), where



• Ti is a set of tiles or regions within the sub-process
Mi. According to the definition, Ti also contains one
or multiple Markov processes.

• Li is the termination indicator for transfer the state
to another when combining the states into a total tile
distribution.

M1 M2 M3

τ1 !2 τ3 τ4 τ5 τ6

!

M4 M5 M6 M8M7 M9

Layer 1

Layer 2

Output

! ! ! ! ! !

…

…

…

π2L1 π3L2

π0

π1

Fig. 5: An example of hierarchical Markov model

This hierarchical structure can be represented as a pro-
cess graph, shown in Fig.5. In the figure, the first layer
has three sub-processes: M1,M2, and M3(i.e., Layer1 =
{M1,M2,M3}). Sub-processes M1,M2, and M3 are shar-
ing lower-level primitive actions Mi as their sub-processes.
In other words, a sub-process in the task graph is also a
(macro)action of its parent. Each sub-process must be fulfilled
by a policy, unless it is a primitive action.

Given the hierarchical structure, a set of transmission poli-
cies π is defined for each sub-process as π = {π0, π1, ..., πn},
where πi for sub-process Mi is a mapping from its ac-
tive states to actions πi : Ti → Tj . The function of
termination indicator Lπ(i, S) is defined as the expected
time interval attributed of following a hierarchical policy
π = {π0, π1, ..., πn} starting from upper layer tasks until
Mi terminates at one of its terminal states τ ∈ Li. From
the hierarchical structure of this model, the leaf transmission
policies only contain the corresponding τ .

V. SIMULATION RESULTS AND DISCUSSION

In this section, we present simulation results showing that:
(1) The proposed model can generate the 360-degree video tile
distributions with similar properties as the datasets observed;
and (2) the model can be applied to different types of 360-
degree videos.

The input of this simulation model consists of the setting
of tile partitions for generating the Markov transition matrix
from the real world dataset [8]. Each tile would have its own
beta distribution parameter pair(α, β). The initial state of our
tool is obtained randomly and we run the model 100 times for
each video. We have made the code for the simulation model
available at [3].

A. Simulation Benchmark
As we know, different users might have different head

movement traces when they are watching the same video.

The Kolmogorov-Smirnov hypothesis testing (KS test) [16]
results for the datasets with the same user illustrate that
they are not following the same distribution. However, KS
tests is a universal evaluation tool, which is not effective in
our scenario. Hence, in this paper, we take advantage of all
the data in the datasets to evaluate the effectiveness of the
simulation proposal we designed.

We define the Relative Distance RD metric on tile distri-
bution by:

RD =
∑
i∈E

(pi − (p̂i))
2 (7)

where pi is the popularity for a single user or generated tile
distribution of tile i and p̂i is the average popularity of the
total users from the given datasets. The value of this parameter
indicates the distance between the tested distribution and the
average tile distribution. Ideally, we hope that the simulation
model results in a performance for a single user behavior with
good accuracy when running the model several times.
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Fig. 6: Average relative distance

B. Distribution Test for Small Number of Tiles

Fig. 6 shows the average relative distance for the four kinds
of videos we consider. We observe from this figure that Rhino
has a larger gap between the empirical datasets, which reaches
0.078 of datasets and 0.068 of the generated data. The video
of Timelapse has the lowest average distance to the total
data, which are both below 0.04. The gap of the dataset and
generated distribution are not large, which is around 0.006
to 0.01. From Fig. 6, we observe that the generated data is
closer to the combination of all the user datasets.

Fig. 7 further displays the results of the comparison be-
tween the user datasets and the distribution generated by
giving the CDF trends of each scenario and the comparison
of a tile frequency distribution. From all these figures, we find
that the generated distribution has a smaller value in relative
error, which indicates that it is closer to the datasets of the
combination of all the users. We build the Markov model of
the transition matrix with the total user datasets because of
this result, and it is normal for the transition state to follow
more accurately the datasets with the data of all the users.
However, we generate the time interval with beta distribution
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Fig. 7: Comparison of tiles in 6× 4 tessellation
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Fig. 8: Comparison of tiles in 12× 12 tessellation

independent with each run, which makes the distribution much
more like every single user. Hence, the trend of the CDF is
also very close to the user dataset. The CDF line in this set
of figures also illustrates that our model is very robust in
generating the distribution with a high matching frequency
with the dataset. Apart from the CDF figures, the rest four
figures represent the difference between the tile frequency
distribution of empirical datasets and the generated results. As
the figures display, the generated tile frequency of the videos
almost matches the distribution of the datasets. In most cases,
the high frequency tiles in the generated sequences often have
a relatively higher ratio compared with the original data. The
reason for this is that the popular tiles could be more easy
to be reached when the model is built with a moderate size
dataset. We can estimate that the gap would be further reduced
when the size of the dataset goes to infinity.

C. Distribution Test of Large Number Tiles

In this section, we evaluate the hierarchical Markov model
for the cases in which there are more than 100 tiles of the
video, for which we cut the video into 12×12 tiles. We divide
the sphere of the video view into 6 groups, which represent
6 directions in the space. Each group contains 24 tiles. Thus,
it yields a two layer hierarchical Markov model for the 144
tiles. We compare the performances with the single layer of
the model and the real user datasets. The results are shown
in Fig. 8.

We observe that the trends of real user datasets of each
type videos are very similar to the cases of 4 × 6 tiles. This
illustrates that the frequency of each tile is not dependent on
the number of tiles in a video, which further supports our
result shown in Section III. From the figures, we see that the
results for the case using the hierarchical Markov model are
much closer to the user generated data. Most of the videos
have very similar performance, with the CDF lines of the
hierarchical model above the real datasets, except the video



of Timelapse. In addition, the curve of the single model is
always below the line of the datasets from a real user. This
result can be explained by the fact that the single model
has a very sparse transition matrix and a very limited state
transformation when running only for a short time. Namely,
the model is not able to transfer the tiles with a relatively
long distance on the sphere of the 360-degree video. Hence,
by using the hierarchical Markov model, the upper layer of the
simulation tool could manage the long distance transmission
of the tiles, which fits better the user’s behavior. The four
box figures further demonstrate the different quality of the
single and hierarchical model. The box areas of the dataset
and hierarchical model are very close in the first three kinds
of the videos, and this observation is also very similar to the
CDF figures.

VI. CONCLUSION

In order to facilitate the evaluation of 360-degree video
distribution over a network, we have presented an approach
to support modeling and simulation of the tile distribution
and the tile evolution in immersive video streaming. Our
model is built upon a hierarchical Markov model. We first
investigate the characteristics of the user’s behavior when
watching different types of videos. We then formulate the
time interval spent on a specific tile as a beta distribution.
By mapping each tile to its state, we build a Markov model
to reproduce the tile transition distribution. A hierarchical
model is proposed to further improve the effectiveness of
the simulation. The simulation is computationally simple and
adaptable by generating the different state transition matrix
and beta distribution parameters. Our model generates se-
quences of tiles that closely match the user-generated data.
Furthermore, it is simple enough to provide a mathematical
analysis of existing prefetching algorithms. We hope that this
model can be applied to the analysis and evaluation of in-
network caching and prefetching mechanisms.
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