
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
An Empirical Examination of Planted Clique Heuristics

Permalink
https://escholarship.org/uc/item/78v2m19w

Author
Weeton, Krystopher

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/78v2m19w
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

An Empirical Examination of Planted Clique Heuristics

A thesis submitted in partial satisfaction of the
requirements for the degree Master of Science

in

Computer Science

by

Krytopher Wayne Ashley Weeton

Committee in charge:

Professor Russell Impagliazzo, Chair
Professor Shachar Lovett
Professor Ramamohan Paturi

2022

Copyright

Krytopher Wayne Ashley Weeton, 2022

All rights reserved.

The Thesis of Krytopher Wayne Ashley Weeton is approved, and it is acceptable

in quality and form for publication on microfilm and electronically.

University of California San Diego

2022

iii

TABLE OF CONTENTS

Thesis Approval Page . iii

Table of Contents . iv

List of Figures . v

Acknowledgements . vi

Abstract of the Thesis . vii

Introduction . 1

Chapter 1 Definitions and Notation . 2
1.1 Cliques and Random Graphs . 2
1.2 Planted Clique Problem . 2
1.3 Search Graphs . 3

Chapter 2 Heuristics . 4
2.1 Go With the Winners . 4
2.2 Successive Augmentation . 5

Chapter 3 Empirical Results . 7
3.1 Experimental Structure . 7
3.2 Successive Augmentation . 7

3.2.1 Effectiveness of Successive Augmentation . 8
3.2.2 Consistency of Successive Augmentation . 11

3.3 Go With the Winners . 14

Chapter 4 Next Steps . 17

Bibliography . 18

iv

LIST OF FIGURES

Figure 3.1. Size and Intersection of Successive Augmentation h = 0 8

Figure 3.2. Size and Intersection of Successive Augmentation h =−5 9

Figure 3.3. Size and Intersection of Successive Augmentation h = 1 10

Figure 3.4. Size and Intersection of Successive Augmentation h = 5 11

Figure 3.5. Intersection and Size for Invariant Maintaining Successive Augmentation
Runs . 12

Figure 3.6. Final Solution Sizes for Successive Augmentation Runs 13

Figure 3.7. % of Vertices in Final Solution also in Planted Independent Set 14

Figure 3.8. Intersection Sizes of final solutions for GWW Heuristic 15

Figure 3.9. Subset Sizes of final solutions for GWW Heuristic . 16

v

ACKNOWLEDGEMENTS

I would like to acknowledge Professor Impagliazzzo for his support and help throughout

my entire time at UCSD. In both this research and in my broader academic goals, his advice

continues to be irreplaceable.

I would also like to thank Pawan Pajela, Sam Mcguire, and Jiazheng Liu for their

indispensable help with background material and ideas. Additionally, I want to acknowledge and

thank my family for their continued support, without which I would not have been able to finish

this work.

vi

ABSTRACT OF THE THESIS

An Empirical Examination of Planted Clique Heuristics

by

Krytopher Wayne Ashley Weeton

Master of Science in Computer Science

University of California San Diego, 2022

Professor Russell Impagliazzo, Chair

Local search heuristics provide generalized ways of solving difficult computational

problems. In this research we examine a few simple heuristics applied to the Planted Clique

Problem, a problem for which there are a number of lower bounds for sophisticated algorithmic

techniques. The heuristics run were able to solve the problem at a well known threshold,

providing support for the efficacy of simple heuristics.

vii

Introduction

The question of how to deal with NP-Hard problems in practice is a well studied one

in the topic of theoretical computer science. A common approach is to use techniques geared

towards average case complexity, using the fact that the same instances which make a problem

NP-Hard are often instances which almost never arise in practice.

As one specific technique geared towards solving average case problems in general,

heuristics present a simplistic, generalized, and, often, highly effective approach towards devel-

oping real world algorithms to problems we can not solve efficiently in the worst case.

Although the term ’heuristic’ is fairly ambiguous, in this paper it will be used in

reference to the algorithms studied below. These algorithms represent different techniques of

accomplishing the same intuitive goal: visualizing the possible solutions to a problem as a ’search

space’, and then efficiently traversing this search space in order to find the optimal solution.

The goal of this research is to work towards developing concrete and unified ways

of demonstrating and explaining the efficacy of heuristics that are commonly used every day.

Specifically, this paper will present the results gathered so far towards understanding the con-

ditions where, and extent to which, different heuristics are able to efficiently solve the Planted

Clique Problem.

1

Chapter 1

Definitions and Notation

1.1 Cliques and Random Graphs

For a graph G = (V,E) a clique is defined to be a subset of vertices S ⊆ V , where

every possible edge between vertices in S is present in G. Formally for each u,v ∈ S, {u,v} ∈ E.

Further, for the remainder of this paper we sample random graphs from two distributions. The

first distribution is the standard Erdos-Renyi random graph model, Gn,p where a graph with a

fixed number, n, of vertices is generated by connecting each pair of vertices with an edge with an

independent probability p.

For notation purposes, we denote the number of edges in a subset S⊆V as E(S), and

the degree of some vertex v ∈V in the graph as d(v). We also use the notation dS(v) to denote

the number of edges between a vertex v and a subset S. Formally,

dS(v) = ∑
u∈S

I{u,v}∈E

1.2 Planted Clique Problem

We define the planted clique problem similarly to [5]. The inputs we consider are

generated through a two-step process. Firstly, a graph is sampled from Gn,p. Then a uniformly

chosen subset of vertices of some size k is fixed as a clique in the graph. We denote the probability

2

space from which these graphs are sampled as Gn,p,k. Specifically, for the remainder of this

paper we make use of the probability space Gn,1/2,k.

We denote the planted clique placed in the sample as K.

1.3 Search Graphs

Before we begin to explain heuristics, we first need to rigorously define the term

’search graph’, which is fundamental to the heuristics for which we present analytical results.

Abstractly, a search graph is a graph whose vertices represent either solutions or near solutions

to a problem, and whose vertices are connected based on a well defined condition of ’adjacency’

for solutions.

For the planted clique problem, the search graph we use, with respect to an input

G = (V,E) sampled from Gn,p,k, is a graph whose vertices are arbitrary subsets of V , and an

edge exists between two subsets S,K ⊆V if and only if |S/K|= 1 and |K/S|= 1. Intuitively if S

can be converted to K by removing an element of S and adding an element not in S. Note that

this definition if symmetric so the search graph we consider is undirected.

3

Chapter 2

Heuristics

2.1 Go With the Winners

Go with the Winners as a heuristic was originally introduced independently by Dim-

itriou and Impagliazzo [4], and Aldous and Vazirani [2]. The original application in [2] was to

develop an algorithm to find deep vertices in a tree. To accomplish this the GWW algorithm

was defined as an iterative algorithm which generates B particles at the root of the tree, and then

moves each particle to a random child, deleting particles which are at leaves. The process then

randomly replicates the particles until it has B again and repeats this process until all particles

are at a leaf.

Dimitriou and Impagliazzo [4] expand on this algorithm and give a rigorous definition

of Go With the Winners that works directly on search graphs, rather than applied to the abstracted

problem of finding the deepest node in a tree. This Version of Go with the Winners generates a

number of random particles in the search graph, then takes a thresholded random walk, a random

walk across the subgraph of the solution graph with only the vertices that have at least a specified

payoff value.

For this specific problem, we traverse the search graph defined in the prior section,

with the payoff value of a subset of vertices S being the number of edges in S. Intuitively, this

corresponds to restricting our search space to denser subgraphs as the heuristic runs. We restrict

the density of edges in each generation to be the median of the prior generation’s particles

4

densities.

2.2 Successive Augmentation

We consider a successive augmentation algorithm, in the context of the planted clique

problem, to be an algorithm which begins with a constant size subset of the planted clique and

then performs a single pass on all other vertices in the graph, and adds each vertex independently

according to a predicate f : P(V)×V →{true, f alse}.

Note that we allow our successive augmentation algorithm to begin with a constant

size subset of the planted clique because in practice we can achieve this through exhaustive

search. We simply loop over all constant size subsets of vertices and run successive augmentation

on each, returning the largest clique found in any of the runs. We further define f (S,v) to be,

dS(v)≥
|S|− |S∩K|

2
+ |S∩K|+h =

|S|+ |S∩K|
2

+h

The motivation for this specific predicate lies in the fact that the edges between v and

S are only ever considered when this predicate is evaluated for v. This simplifies the probabilistic

analysis, as we can consider the graph to be generated as we run the successive augmentation

algorithm. Thus for a vertex v we have two possible distributions for dS(v),

dS(v)∼

Bin(|S|,1/2) v /∈ K

Bin(|S|− |S∩K|,1/2)+ |S∩K| v ∈ K

It is also worth noting that we make use of the value |S∩K| in the predicate, which, to

compute, requires the use of a powerful oracle that can find the intersection of a given subset with

the planted clique. Intuitively, this is essentially the precise problem the successive augmentation

algorithm attempts to solve. The goal in using such a powerful oracle for the predicate is to

provide a simplistic predicate for analysis. In doing so, we hope to develop probabilistic bounds

on precisely the intersection of the partial solution with K as the algorithm runs. These bounds

5

could then be used to remove the reliance on |S∩K| in the predicate.

The other feature of note here is the value h. We consider h to be a hyper-parameter

provided. To motivate it’s usage it is worth considering the following

P[v added to S] =

P[Bin(|S|,1/2)≥ |S|2 + |S∩K|

2 +h v /∈ K

P[Bin(|S|− |S∩K|,1/2)≥ |S|−|S∩K|
2 +h v ∈ K

Using simpler chernoff bounds,

P[v added to S] =

≤ exp(−(|S∩K|+2h)2/(4|S|) v /∈ K

≥ exp(−h2/(|S|− |S∩K|)) v ∈ K

Intuitively h represents the level of confidence we need for a vertex v to add it to our

solution. It is formally represented in these exponential chernoff bounds.

6

Chapter 3

Empirical Results

The experimental results gathered are exploratory and represent an initial dive into the

questions presented above. Further work is planned to continue and expand upon the results

presented here.

3.1 Experimental Structure

All empirical results were gathered on a Macbook Pro with a 2.2 GHz Quad-Core Intel

Core i7 processor. Experiments were written using Python 3.9.6 and all code is accessible at [1]

Note that all experiments were written and carried out for the planted independent set

problem. This problem is analogous to the planted clique problem for the specific distribution

Gn,1/2,k as finding a clique in G corresponds to finding an independent set in GR where an edge

is present in GR if and only if it is not present in G, and performing this operation on samples

doesn’t change the input distribution.

3.2 Successive Augmentation

Overall, successive augmentation proved to be an effective heuristics for finding

planted cliques of size
√

n, for graphs up to size 20,000. Our results suggested not only that

successive augmentation was able to find such planted cliques, but it could do so consistently.

Additionally, our experiments suggested that h played a pivotal role in the effectiveness of the

7

heuristic, int hat it balances the size of the final solution and the size of the intersection in the

final solution.

3.2.1 Effectiveness of Successive Augmentation

The first experiment we ran, and the first results presented are simply individual runs

of the successive augmentation algorithm described above. For these algorithms we provided

the heuristic with a small subset of the planted clique, which could be accomplished through

exhaustive testing in practice.

The reasoning for this is successive augmentation in this form fundamentally builds on

a partial solution, and as such requires an initial solution to begin with. With these experiments

the goal was to understand, at a baseline, how related the size of the partial solution and it’s

intersection with the planted independent set was. In an ideal situation these values would be the

same as the successive augmentation heuristic would only add vertices in the planted independent

set.

Figure 3.1. Size and Intersection of Successive Augmentation h = 0
n = 20000 vertices and a planted size of

√
n = 142. Gray line is Subset size of partial solution,

blue line is the size of the intersection with the planted independent set.

In 3.1, we track the progress of a successive augmentation algorithm throughout a

single run on a larger graph, (10000 vertices) by graphing the size of the partial solution, in gray,

8

Figure 3.2. Size and Intersection of Successive Augmentation h =−5
n = 20000 vertices and a planted size of

√
n = 142.

and the size of that subsets intersection with the planted independent set in blue. The horizontal

axis of this graph being the step of the algorithm, where each ’step’ corresponds to the algorithm

considering a single vertex.

Along with these results, we mapped runs that varied the hyper-parameter h attempting

to understand if the hyper-parameter would sufficiently cause the successive augmentation

algorithm to be more selective about the vertices it chose to add to the final solution.

In figure 3.2 we set h to a negative value, effectively making it so vertices which were

in the planted independent set were added with larger than a 50% chance. As expected, the size

of the subset increases significantly over the course of the run, where the intersection with the

planted subset remains roughly constant.

On the other hand, as we moved h to a small positive constant we began to see the

successive augmentation algorithm perform better. In 3.3 we saw a small improvement; however,

the primary improvement came from 3.4 where we began to see a significant intersection with

the final subset found and the planted independent set in the graph.

One thing worth noting is that these results only run the first ’phase’ of a successive

augmentation algorithm. The goal in this analysis is to show that the successive augmentation

algorithm finds a subset with a sufficiently large intersection with the planted independent set to

9

Figure 3.3. Size and Intersection of Successive Augmentation h = 1
n = 20000 vertices and a planted size of

√
n = 142.

allow for existing techniques to recover the planted independent set from the subset.

In the run provided in 3.4 for example, the size of the planted clique in the entire graph

is precisely
√

n; however, the final subset chosen by the successive augmentation algorithm has

size 17 with intersection of 12≈ 3
√

17.

The results of these experiments can be summarized as providing a suggestion of the

effectiveness of successive augmentation. With larger values of h, corresponding to the heuristic

being more selective about the vertices it chooses to add to the partial solution, the size and

intersection of the partial solution remain fairly correlated with each other. This suggests that it

is reasonable to prove these observed results may be able to be converted to analytical proofs of

correlation.

The other important note here is that, expectedly, the hyper-parameter h is fundamental

to the behavior of successive augmentation. With h set to a larger value we get a stronger

correlation between the size of the final solution and it’s intersection with the planted independent

set; however, with smaller h we observe a much larger final solution. Because the goal of the

heuristic is to find a ’large’ subset with high correlation, this suggests that any analytical results

will need to balance this hyper-parameter h, finding an optimal range for both strong correlation

and provably large final solution.

10

Figure 3.4. Size and Intersection of Successive Augmentation h = 5
n = 20000 vertices and a planted size of

√
n = 142.

Although these results suggest the broad effectiveness of successive augmentation

and begin to answer questions about what values h should take, they left open the important

question of consistency. Is successive augmentation able to find a subset with high intersection

with the planted clique with high probability, a constant amount of the time, or with vanishing

probability? Although the experiments were run with 20,000 vertices, only a single run was

done.

3.2.2 Consistency of Successive Augmentation

To address the question of successive augmentation’s ability to consistently recover the

planted clique we repeated the simple experiment of running successive augmentation with h = 5,

an initial subset of only size 5, on G20000,1/2,
√

20000 graphs 100 times and compared these runs

to see if, on average, we observed the successive augmentation algorithm successfully finding a

subset of vertices that has a large intersection with the planted independent set.

Specifically, we segmented the runs in all permutations of two possible conditions that

we expected may be useful in improvements to the heuristic and in analysis of the heuristic. The

first of which was those satisfying an invariant throughout the run of the heuristic. The invariant

we required to include a run in this category is that, at every step of the heuristic, the subset

11

(with some size s) has intersection at least
√

s with the planted independent set. Thus setting the

requirement that the relative size of the planted independent set in the partial solution not shrink.

The second classification we gave for runs as we analyzed them was that of runs which

didn’t satisfy a specific threshold near the beginning of the run. The intuitive motivation for

such a classification was to empirically analyze whether random restarts would be useful for

successive augmentation.

Throughout the 100 runs of the heuristic, every single run satisfied the invariant

throughout the entire run, and 80 out of the 100 satisfied the threshold of having intersection at

least 2sqrts after analyzing 1/4 of the vertices, where s is the size of the subset at that point.

It is worth noting here that the decision for this threshold was fairly arbitrary and more

specific experiments would need to be done to analyze whether this was an optimal point in

the algorithm to consider restarting. This avenue was not pursued as the experiments suggested

that successive augmentation was, broadly, successful in recovering a significant subset of the

planted independent set.

Figure 3.5. Intersection and Size for Invariant Maintaining Successive Augmentation Runs
100 runs with n = 20000 vertices and a planted size of

√
n = 142, with h = 5

In our analysis of this we began to also observe the fundamental tradeoff of this

approach. As h grows larger, the intersection size of our final solution increases. As shown in

figure 3.6 the average size our final solution was fairly small, only increasing from an initial size

12

Figure 3.6. Final Solution Sizes for Successive Augmentation Runs
100 runs with n = 20000 vertices and a planted size of

√
n = 142, with h = 5

of 5 to an average final size of 21.52.

On the other hand, having h be a reasonably large value was fundamental to getting

a large intersection with the planted independent set. In these runs when h was set to 5 we

ended with, on average, 58.76% of the vertices in our final solution being from the planted

independent set. A complete distribution of the relative size of the planted independent set in

the final solution is provided in 3.7. As seen earlier in 3.1, setting h too low could decrease this

relative intersection size.

All of these results suggest some initial trends for the behavior of successive aug-

mentation. Broadly, the simple heuristic seems to be able to find a significantly sized subset of

the planted independent set. Additionally, fundamental to this approach is the balancing of the

hyper-parameter h. Balancing h between low values, which lead to larger subset, and higher

values, which lead to higher relative intersection with the planted independent set, is crucial to

the success of successive augmentation.

13

Figure 3.7. % of Vertices in Final Solution also in Planted Independent Set
100 runs with n = 20000 vertices and a planted size of

√
n = 142, with h = 5

3.3 Go With the Winners

In addition to analyzing the efficacy of successive augmentation, we began to run

experiments to analyze how effective Go With the Winners was at solving the equivalent problem.

We thought it important to include these results for completeness, although the results are only

of an initial experiment running Go With the Winners for a variety of graph sizes n, and broadly

analyzing the final intersection and sizes of the solutions.

As an initial guess, Go With the Winners was run with 2
√

n particles and considered

the solution graph to be all subsets of size n2/3. Each generation removed the 1/2 of particles

with the lowest density, and took a random walk of length log(n). The process stopped when the

density of all solutions was below 0.1.

Very simply, the results in figure 3.9 and 3.8 broadly suggest Go With the Winners

is successful in recovering a significant portion of the planted clique. The results are on fairly

small graphs and any complete justification for the efficacy of Go With the Winners requires

more empirical and analytical justification.

14

Figure 3.8. Intersection Sizes of final solutions for GWW Heuristic

15

Figure 3.9. Subset Sizes of final solutions for GWW Heuristic

16

Chapter 4

Next Steps

The next steps for this research are primarily to expand on the empirical results through

more extensive and granular testing and to concretely apply these results to the analytical world.

Empirically, the goal is to test the Go With the Winners heuristic more through experiments

similar to those found in [3]. These experiments would help analyze the expansion properties of

the search graphs used, and also begin to map out the conditions necessary for local optimization

to be sufficient to find the planted solution.

Analytically, the next steps are to continue analysis of the Successive Augmentation

heuristic. Fundamental to this heuristic is the tradeoff between the size and intersection of the

final solution, and in attempts to proof of efficacy, this has become an issue. Further work is

planned to refine these proofs and begin to map out under what regimes the hyper-parameter h is

able to find large subsets of the planted clique.

Also fundamental to further work is expanding the scope of the experiments already

done. Much of the experimental work points towards success of these heuristics; however, do

not specify under which specific parameters the algorithms succeed. To accomplish this, a more

robust code base is required with more extensive computational testing. In this regard, the next

steps for this experiment is to expand on the code used for testing to optimize it and run larger

and more extensive tests that require more computational power.

17

Bibliography

[1] Independentset github repository. https://github.com/KrystopherWeeton/IndependentSet.

[2] D. Aldous and U. Vazirani. ”go with the winners” algorithms. In Proceedings 35th Annual
Symposium on Foundations of Computer Science, pages 492–501, 1994.

[3] Ted Carson. Empirical and analytic approaches to understanding local search heuristics.
2001.

[4] Tassos Dimitriou and Russell Impagliazzo. Towards an analysis of local optimization
algorithms. 12 2000.

[5] Mark Jerrum. Large cliques elude the metropolis process. Random Structures & Algorithms,
3(4):347–359, 1992.

18

https://github.com/KrystopherWeeton/IndependentSet

	Thesis Approval Page
	Table of Contents
	List of Figures
	Acknowledgements
	Abstract of the Thesis
	Introduction
	Definitions and Notation
	Cliques and Random Graphs
	Planted Clique Problem
	Search Graphs

	Heuristics
	Go With the Winners
	Successive Augmentation

	Empirical Results
	Experimental Structure
	Successive Augmentation
	Effectiveness of Successive Augmentation
	Consistency of Successive Augmentation

	Go With the Winners

	Next Steps
	Bibliography

