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Abstract. We present a simulation study of population and coher-
ence relaxation dynamics in the third-order nonlinear responses of the
Fenna–Matthews–Olson (FMO) light-harvesting photosynthetic complex.
Three-exciton correlations have been incorporated and the relevant six-point re-
laxation superoperator is calculated to second order in coupling to a phonon bath.
The dynamics of three-exciton correlations induce new peaks that are absent or
much weaker when the three-exciton variables are factorized. Such features were
observed in a recent experiment (Engel G S et al 2007 Nature 446 782–6).
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1. Introduction

The extremely efficient solar–chemical energy conversion in photosynthetic systems [1]–[3] has
triggered intensive activity aimed at new energy solutions [4]–[19]. Exciton couplings ensure
the efficient transfer of energy from light-capturing antenna pigments to the reaction center
where charge separation occurs [1]–[3], [14]. The exciton coupling pattern in these systems is
critical to understanding the mechanism of solar to chemical energy conversion.

Third-order nonlinear optical techniques [6]–[8], [20] are most suitable for probing energy
transfer [13, 14]. However, although tremendous progress has been made in recent years, there
is still a long way to go in order to achieve a clear physical picture of the energy and coherence
transfers in the photosynthetic process. The nonlinear optical responses are usually modeled
either by analytical methods based on response functions or by numerically solving equations
of motion (also referred to as a quasi-particle approach) [26]. The response-function method is
more suitable for cases where coherent dynamics are dominant. For example, in the photon-
echo technique, there are three response functions in the coherent limit with rotating wave
approximation. The key advantage of the response-function-based approach is that it provides
an intuitive picture of the third-order nonlinear response in the coherent limit.

When incoherent dynamics, such as coherence and energy transfer, are included, the
nonlinear responses become more complicated and cannot be one-to-one mapped with the
three response functions. In this situation, employing response functions to understand these
responses is only qualitatively valid. The alternative type of quasi-particle approach is thus
more desirable to handle this complicated situation. This approach involves solving the equa-
tions of motion numerically [27]–[29] with finite pulses, or quasi-analytically in the impulsive
limit [26]. However, when solving the equations of motion, such as the nonlinear exciton
equations (NEE) [21], with this approach, people usually have to make approximations to keep
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calculations tractable. For example, in the NEE formalism, a local-basis three-exciton correla-
tion variable is explicitly factorized into lower-order correlations. In other cases, the variable is
formally included but the relevant relaxation operator is constructed from low-order relaxation
matrices. It can be shown that three-exciton correlations are equally missing when either
factorizing the three-exciton variable or using a simplified or constructed relaxation operator.

In this work, we employ a numerical approach to solving the NEE without factorizing the
three-exciton variable. Furthermore, we follow [21] and calculate the three-exciton relaxation
operators using Markovian second-order perturbation theory with respect to system–bath
coupling, instead of using simplified or constructed relaxation operators. Our simulations
show that the three-particle correlations play critical roles in the relaxation dynamics of
Fenna–Mathews–Olson (FMO) [22]–[25]. Some new peaks arise from the inclusion of the three-
exciton correlations and the relevant relaxations. These qualitatively reproduce some features
in recent experiments [14]. Because three-exciton correlations are always present in third-
order nonlinear response, we expect that the full incorporation of three-point correlations also
significantly modifies the nonlinear responses of other condensed matter systems, particularly
when system excitons are strongly coupled.

2. Hamiltonian and equations of motion

2.1. Hamiltonian

The Frenkel exciton Hamiltonian [21], which describes the third-order optical response of
aggregates, is given by the sum of the electronic part He, the phonon Hamiltonian Ĥph, the
exciton/phonon coupling Ĥint and the system–field interaction:

Ĥ = Ĥe + Ĥph + Ĥint −

∫
drP̂(r) · E(r, t), (1)

Ĥe =

∑
mn

hmn B̂†
m B̂n +

∑
mnkl

Umn,kl B̂
†
m B̂†

n B̂k B̂l, (2)

Ĥph =

∑
α

(
p2
α

2mα

+
mαω

2
αq2

α

2

)
, (3)

Ĥint =

∑
mnα

h̄mn,α B̂†
m B̂nqα +

∑
mnklα

Ūmn,kl;α B̂†
m B̂†

n B̂k B̂lqα. (4)

Here, B̂n (B̂†
n) are exciton annihilation (creation) operators on site n, qα and pα are respectively

nuclear coordinates and momenta, hmn represents the one-exciton Hamiltonian, Umn,kl describes
the exciton–exciton scattering potential, mα and ωα are respectively the reduced mass and
frequency of the α phonon mode, and h̄mn,α and Ūmn,kl;α denote exciton/phonon interactions
originating from the qα-dependence of hmn and Umn,kl , respectively. We shall represent the
optical electric field in equation (1) as

E(r, t)=

3∑
α=1

[
Eα(r, t)+ E∗

α(r, t)
]

=

3∑
α=1

[
eαE+

α (t − tα)e
i(kα ·r−ωα t) + eαE−

α (t − tα)e
−i(kα ·r−ωα t)

]
. (5)
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Here, E+
α (E−

α = (E+
α )

∗) is the envelope of the positive (negative)-frequency component of the
αth pulse (α = 1, 2, 3, 4) centered at time instant tα, with carrier frequency ωα, polarization unit
vector eα and wavevector kα.

The commutation relations for the exciton operators are

[B̂m, B̂†
n ] = δmn − 2

∑
kl

Pmk,nl B̂
†
k B̂l, (6)

where Pmk,nl is a tetradic matrix describing the deviation of the exciton commutation relations
from those of bosons (Pmk,nl = 0). It follows from the Jacobi identity for the commutators that

Pmn,kl = Pnm,kl = Pmn,lk. (7)

For two-level chromophores (hard-core bosons), we have

Pmn,kl = δmkδknδnl . (8)

Equation (6) then becomes

[B̂m, B̂†
n ] = δmn − 2

∑
kl

δmkδknδnl B̂
†
k B̂l

= δmn(1 − B̂†
m B̂n). (9)

For bosons (e.g. vibrations)

Pmn,kl = 0 (10)

and for Wannier excitons in semiconductors

Pmn,pq = δm1q1δp1n1δm2 p2δn2q2 + δm2q2δp2n2δm1 p1δn1q1, (11)

where m = (m1,m2), n = (n1, n2), p = (p1, p2) and q = (q1, q2) denote electron–hole pairs.
Finally, the polarization that is directly related to the signal in nonlinear response is

given by

P̂ =

∑
n

δ(r − rn)µ
(1)
n B̂n +

∑
mkl

µ
(2)
m,kl B̂

†
m B̂k B̂l + h.c., (12)

where µ(1)n is the transition dipole moment vector of the chromophore located at rn and µ(2)n,kl is
the transition dipole moment correction for the creation of two excitons. For hard-core bosons,
we usually accept µ(2)n,kl = 0 and thus the second term in equation (12) is irrelevant.

2.2. The nonlinear exciton equations (NEE)

Using the Hamiltonian equation (1) and the Heisenberg equation of motion, we obtain the NEE
for the following exciton variables relevant to third-order optical response [21]:

Bn ≡ 〈B̂n〉, Ymn ≡ 〈B̂m B̂n〉,
(13)

Nmn ≡ 〈B̂†
n B̂m〉, Zmn, j ≡ 〈B̂†

j B̂m B̂n〉,

where Bn and Ymn describe respectively single- and two-exciton dynamics, Nmn contains exciton
populations and Zmn, j describes three-exciton correlations. The equations of motion for these
variables are given by

i
dBm

dτ
=

∑
n

hmn Bn +
∑
nkl

Vmn,kl Zkl,n − E (1)m −

∑
kl

E (2)m,kl Nlk −

∑
E (3)m,klYkl + Ḃm, (14)
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i
dYmn

dτ
=

∑
kl

h(2)mn,klYkl − BmE (1)n − BnE (1)m −

∑
k

E (2)n,mk Bk + Ẏmn, (15)

i
dNi j

dτ
=

∑
m

(him Nmj − Nimhmj)− E (1)i B∗

j + E (1)j Bi + Ṅi j , (16)

i
dZmn, j

dτ
=

∑
kl

h(2)mn,kl Zkl, j −

∑
i

hi j Zmn,i − E (1)m Nnj − E (1)n Nmj −

∑
k

E (2)m,nk Nk j + E (1)j Ymn +Żmnj ,

(17)

where

h(2)mn,kl ≡ δmkhnl + hmkδnl + Vmn,kl, (18)

Vmn,kl ≡ 2Umn,kl − 2
∑

p

Pmn,pkh pl − 2
∑

pq

Pmn,pqUpq,kl, (19)

E (1)m ≡ µ(1)m · E, (20)

E (2)m,kl ≡ 2µ(2)l,km · E − 2
∑

n

Pmk,nlµ
(1)
n · E − 2

∑
rs

Pmk,rsµ
(2)
l,rs · E, (21)

E (3)m,kl ≡ µ
(2)
m,kl · E . (22)

Ḃ, Ẏ , Ṅ and Ż in equations (14)–(17) denote relaxation terms induced by coupling with
phonons. We assume that phonons induce simple time-local (Markovian) dephasing and
transport. We then have

Ḃm = −i
∑

n

0mn Bn, (23)

Ẏmn = −i
∑

kl

RY
mn,klYkl, (24)

Ṅi j = −i
∑
mn

RN
i j,mn Nmn, (25)

Żmn, j = −i
∑

m′n′, j ′

Rm′n′, j ′

mn, j Zm′n′, j ′, (26)

where 0mn, RY
mn,kl , RN

i j,mn and Rm′n′, j ′

mn, j are the local-basis relaxation matrices for the NEE
variables Bm , Ymn, Nmn and Zmn, j , respectively. Here, the most complicated and lengthy
calculation arises from the relaxation matrices Rm′n′, j ′

mn, j . It contains 16 terms within our
approximation. A sample calculation for one of the 16 terms is given in appendix B. All other
relaxation matrices can be obtained in a similar way but with far fewer calculations. These can
be found in [26].
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3. Solving the NEE at different levels of approximation

3.1. Factorization schemes for NEE variables [20, 26]

Computing the Z -variable dynamics is the most expensive task in solving the NEE. By
factorizing the Z variable in different ways, we obtain different approximate NEE with different
numbers of NEE variables. A major motive for various factorization schemes is to simplify the
calculation at the price of losing some types of exciton correlations. We shall compare five levels
of approximations. In the lowest level, mean-field factorization (i), the three-point correlation
in equation (14) is factorized as

〈B̂†
n B̂m B̂l〉 = 〈B̂†

n 〉〈B̂m〉〈B̂l〉 (27)

and the Y and N variables are similarly factorized into products of single-exciton quantities. All
correlations among excitons are neglected in this level and the equations for the B variables,
equation (14), are now closed.

In the second, exciton coherent dynamics limit (ii), the three-point correlation is factorized
according to

〈B̂†
n B̂m B̂l〉 = 〈B̂†

n 〉〈B̂m B̂l〉, 〈B̂†
n B̂m〉 = 〈B̂†

n 〉〈B̂m〉, (28)

and thus only the B and Y variables are relevant. In this limit, the correlation among two excitons
is taken into account but population transport dynamics is missed.

The simplest factorization that incorporates population transport is (iii)

〈B̂†
n B̂m B̂l〉 = 〈B̂†

n B̂m〉〈B̂l〉, 〈B̂m B̂l〉 = 〈B̂m〉〈B̂l〉, (29)

where only B and N variables survive but two-exciton correlations, Y , are ignored. A
more general factorization that includes mean-field interaction, two-exciton correlation and
population dynamics is given by (iv)

〈B̂†
n B̂m B̂l〉 = 〈B̂†

n B̂m〉〈B̂l〉 + 〈B̂†
n B̂l〉〈B̂m〉 + 〈B̂†

n 〉〈B̂m B̂l〉 + 〈B̂†
n 〉〈B̂m〉〈B̂l〉. (30)

In this case, we retain only B, Y and N variables and eliminate only Z . The fifth-type NEE (v)
fully incorporates the Z variable without additional factorizations. We had also considered an
alternative approach that keeps the Z variable but uses a simplified relaxation matrix. However,
it can be shown (see appendix A) that using a simplified relaxation matrix is equivalent to
factorizing the Z variable. Thus exciton correlations are still neglected even if we retain the Z
variables in NEE.

3.2. Solving the NEE with three-exciton correlations

To retain the three-point correlation, we next calculate the three-point relaxation operator
Ż microscopically. We calculate other relaxation operators Ḃ, Ẏ , Ṅ in equations (23)–(26)
according to the method described in [21] and summarized in [26] [equations (355), (359) and
(362)]. For the three-point relaxation operator Ż , we have [21]

Żmn, j =

∑
klα

(h̄(2)mn,kl;αZ (q)
kl, j;α − Z (q)

mn,i;αh̄i j,α). (31)

New Journal of Physics 12 (2010) 065046 (http://www.njp.org/)

http://www.njp.org/


7

The equation of motion for the phonon-assisted variables Z (q)
kl, j;α ≡ 〈B̂†

j B̂k B̂lqα〉 is given by

i
dZ (s)

mn, j;α

dτ
−

∑
(h(2)mn,kl Z

(s)
kl, j;α − Z (s)

mn,i;αhi j)

= ivαZ (−s)
mn, j;α +

∑
w(s)
α (h̄

(2)
mn,kl;αZkl, j − Zmn,i h̄i j;α)− iδsp

∑
h̄k j;αZmn,k − E (1)m N (s)

nj;α − E (1)n N (s)
mj;α

−

∑
Em,nk N (s)

k j;α + E (1)j Y (s)
mn;α, (32)

where s can be either bath coordinate q or momentum p. Here, v(q)α ≡ m−1
α , v(p)α = −mαω

2
α,

w(q)
α =

1
2mαωα

coth(βωα2 ) and w(p)
α = −

i
2 , where mα and ωα are the reduced masses and

frequencies of nuclear modes. β is defined as 1/(kBT ). N (s)
mj;α and Y (s)

mn;α are respectively the
phonon-assist variables for other NEE variables Nnm and Ynm .

Z (q)
mn, j;α in equation (32) was calculated by employing a Green’s function technique

(see appendix B). Substituting Z (q)
mn, j;α into equation (31) and employing the Markovian

approximation, we recast equation (31) as

Żmn, j (t)= −i
∑

m′n′, j ′

16∑
s=1

Rm′n′, j ′

mn, j (s) Zm′n′, j ′ (t), (33)

where the relaxation matrix Rm′n′, j ′

mn, j is a sum of 16 terms when Ūmn,kl;α are neglected. The

detailed procedure for calculating Rm′n′, j ′

mn, j is given in appendix B.

4. Simulations and comparison with experiment

4.1. Two-dimensional (2D) spectroscopy

In this section we demonstrate the signatures of three-point correlations in 2D spectroscopy [26].
It is a coherent four-pulse phase-locked time-domain approach, where two of the three time
delays t1, t2 and t3 between the three excitation pulses k1, k2, k3 and the detection heterodyne
pulse k4 are varied to give 2D signals. Two techniques, SI and SII (detected respectively along
−k1 + k2 + k3 and k1 − k2 + k3 directions), involve population dynamics and thus are suitable
for probing population transfers. We focus on the SI (rephasing) signal represented by three
Feynman diagrams, as shown in figure 1. These pathways are ground-state bleaching (GSB),
excited-state emission (ESE) and excited-state absorption (ESA), where ei and fi (i = I, II, . . .)
represent respectively single- and two-exciton manifolds and g represents the ground state. The
vertical arrows indicate coherence transfer during t1 or t3, and population/coherence transfer
or coupling during t2. These diagrams reduce to the coherent-limit diagrams (i.e. no vertical
arrows) when there is only free propagation during each time delay. We now examine the
relation between the three pathways of SI to the NEE formalism. For hard-core bosons, we
have µ(2)m,kl = 0 and therefore, according to equation (12), the time-domain SI signals can be
written as

SI(t1, t2, t3)=

∑
m

µ(1)m B(3)
m (t1, t2, t3), (34)
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GSB (i)

gg
1k-

Ie

2k

IIe

3k

1t

2t

3t
IIIe

IVe
4k

gg

ESE (ii)

gg
1k-

Ie

3k

IIe
2k 1t

2t

3t

IVe

Ve

4k

gg

IIe

IIIe
Ve

VIe

ESA (iii)

gg
1k-

Ie

3k

IIe
2k 1t

2t

3t

IVe

Ve

4k
VIVI ee

IIe

IIIeIf

IIf

IIIe

VIe

Figure 1. Coherent and incoherent pathways for photo-echo 2DCS signals.
Vertical arrows indicate coherence and population transfer. All pathways reduce
to conventional coherent pathways when the vertical arrows are removed.

where B(3)
m is the Bm variable calculated to third order in the external field. The signal SI(t1, t2, t3)

is dominated by the three-point correlation function Z . Equation (14) does not depend on the
two-exciton variable Y . We have numerically shown that the dependence on the N variable is
weak (it enters only via interaction with the field due to Pauli blocking). For soft-core bosons,
the signal only depends on the Z variable. The dependence of the signal on Y and N variables
is only through the Z variable, as in equation (17). The dynamics of the Z variable therefore
contain all three pathways.

We shall show in the next sections that the three-point correlations strongly affect the
relative weights of three pathways. Our simulations show that the conventional ESE-type
population transfer pathway is overestimated when the three-point correlations are factorized.
However, a new ESA-type population transfer pathway can be identified. Different treatments
of three-point correlations assign different weights to the three pathways. These pathways
interfere and completely or partially cancel each other. The absence of a certain type of
population/coherence transfer signal (e.g. the ESE signal below the diagonal line) does not
necessarily indicate their real absence. The physical processes are indeed there but the signals
might have been canceled by signals with opposite signs from other pathways (e.g. the ESA
pathway).

4.2. Comparison with experiment

We have calculated the 2D signals by solving the NEE perturbatively in the optical field.
Alternative numerical nonperturbative schemes are possible [27]–[29]. In this work, we
calculate the 2D signals by solving the equations of motion for four NEE variables and
by directly selecting the relevant spatial Fourier components [30]. The method employed is
applicable to any pulse sequence, whether well separated or overlapping, and includes the
pulse shapes. An approximate numerical orientational averaging scheme was employed to
significantly reduce the calculation effort. Inhomogeneous broadening is added by introducing
disorder to the diagonal elements of the Hamiltonian. The Hamiltonian parameters were taken
from previous publications [31, 32]. The Gaussian optical pulses are centered at 12 362 cm−1

with a 16 fs FWHM.
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(i) (j) (k) (l)

(p)(o)(n)(m)

(f)
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2.
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2.
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.4
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,0
  

12
.4

 1
2.

8

- Ω1/1000   (1/cm) 

 Ω
3
/1

00
0 

  (
1/

cm
) 

Figure 2. Comparison among experiment (top row), full theory (without
factorization of three-exciton correlation, 2nd row) and two different lower-
order theories (3rd and 4th rows). The spectra in the 3rd row are calculated by
factorizing the Z -variable Green’s function into single-exciton and two-exciton
Green’s functions [26]. The spectra in the 4th row are calculated according to the
factorization scheme in equation (30). Only the full theory (2nd row) reproduces
the strong ESA-type blue peaks appearing in the experiments.

For comparison, the 2D signals [14] (SI + SII) measured in recent experiments are shown
in panels (a)–(d) of figure 2. The calculated 2D spectra are shown in panels (e)–(h). Each
panel is first normalized to the strongest peak and displayed from −1 (blue) to 1 (red), and
then is shown in an arcsinh scale [14]. We are most interested in the cross peaks in each 2D
spectrum. One set of cross peaks is above the diagonal line (mainly negative) and the other set
is below the diagonal line (mainly positive). The striking feature is the appearance of strong
negative cross peaks (A)–(C) in panels (e)–(h), which qualitatively agree with the experiments
in panels (a)–(d). These negative peaks are actually the dominant cross peaks in almost all the
experimental results presented. The strong inhomogeneous feature in the experiments is not
reproduced. We attribute this to the simple model of diagonal disorder used here.

These strong negative peaks only appear when the three-exciton correlation is fully
included in the simulations and vanish or become much weaker otherwise. Panels (i)–(l)
are calculated by employing the nonequilibrium Green’s function where the Z -variable
Green’s function is factorized into single-exciton and two-exciton Green’s functions [26].
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t2= 0fs       t2=155fs    t2=280fs               t2=600fs

(a b) (c) ( ) (d)

(h)(g)(e) (f)

(i) (j) (k) (l)
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Figure 3. SI (top row), SII (2nd row) and SI + SII (3rd row) calculations with
the full theory. SI and SII provide complementary information to each other.
While SI clearly resolves the ESA-type peaks, SII is more sensitive to population
transfer peaks below the diagonal line. SI + SII provides the simulations to the
experiments.

Peak (A) is significantly underestimated and peaks (B) and (C) almost vanish. Similar results
can be seen in panels (m)–(p), where we employed another lower-order theory where the
three-exciton correlation is factorized according to equation (30). Calculations with other
factorization schemes give similar results (not shown), where top negative blue peaks are either
underestimated or vanish.

In figure 3, we compare the simulated SI, SII signals and their sum, SI + SII. Compared
to the total signals shown in panels (a)–(d), the SI signals shown in panels (e)–(h) still have
dominant ESA peaks arising from the three-exciton correlation. Some negative ESA peaks are
even stronger than those in the total SI + SII signals. For SII signals shown in panels (i)–(l), we
find that, in SII signals, the positive cross peaks below the diagonal line are stronger than their
counterparts in SI signals and thus can clearly show the energy transfer.

To summarize, we showed that the three-point correlations result in strong negative
cross peaks. The positive peaks (ESE pathway) below the diagonal line are commonly used
to reveal the relaxation dynamics of FMO. The negative ESA peaks can provide further
complementary information to the positive ESE peaks. They are related to population transfer
and population/coherence coupling during t2, and to coherence transfer during t3.

4.3. Signatures of three-point correlations

To reveal the origin of the negative cross peaks, we now calculate SI signals by incorporating
different types of elements of the exciton-basis relaxation matrices, RN

e4e3,e2e1
and Re3e2,e1

e6e5,e4
,
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Figure 4. To demonstrate how different types of matrix elements affect the
coherence and population dynamics, calculated SI signals are compared with
and without a certain type of matrix element in the relaxation matrices for N
and Z . (a) Full RN

e4e3,e2e1
and Re3e2,e1

e6e5,e4
. (b) Only population transfer elements

in full RN
e4e3,e2e1

are eliminated. (c) Coherence transfer elements in Re3e2,e1
e6e5,e4

are
eliminated. (d) Population transfer elements within the secular approximation
for RN

e4e3,e2e1
are eliminated. (e) Coherence transfer elements within the secular

approximation for RN
e4e3,e2e1

are eliminated. (f) Secular approximation RN
e4e3,e2e1

.

respectively, for the NEE variables N and Z . Figure 4 shows the calculated 2D signals at
the same delay time t2 = 600 fs. Panel (a) shows the spectrum with full RN

e4e3,e2e1
and Re3e2,e1

e6e5,e4
.

Panel (b) shows the spectrum where we eliminate only the population transfer elements in
RN

e4e3,e2e1
. Comparing panels (a) and (b), we find that the strengths of both peaks (B) and (A) are

considerably changed. This indicates that the ESA peaks are related to the population transfer
during t2. This feature can be understood from the Feynman diagrams in figure 1. Only the ESE-
type peaks, such as peak (D) in all panels, were previously investigated for population transfer.
The origin of this type of positive peak can be understood by the population transfer during t2

in the ESE diagram in figure 1. However, the same population transfer also occurs during t2

in the ESA diagram of figure 1. There is no particular mechanism to block the appearance of
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Figure 5. Calculated 2DCS signals for a dimer at t2 = 0 fs (left column) and t2 =

300 fs (right column). Panels (a)–(d) are calculated with full theory. (a), (b) and
(c), (d) are respectively calculated with Umn,kl = 100 cm−1 and Umn,kl = 0 cm−1.
While the ESE-type peak (C) and ESA-type peak (D) are well resolved in panels
(a) and (b) due to the artificial introduction of a big Umn,kl , the corresponding
peaks (C) and (D) in panels (c) and (d) largely cancel each other due to a zero
Umn,kl . Therefore, the strong negative ESA peaks may cancel the positive ESE-
type population transfer peaks, which leads to an underestimation of population
transfer. Panels (e)–(h) repeat the calculations in (a)–(d) except with a lower-
order theory, where the Z -variable Green’s function is factorized into the product
of single- and two-exciton correlations [26]. Here we do not observe the same
cancelation as described for panels (a)–(d).

such ESA-type peaks (negative) representing the population transfer. Therefore, even from a
simple diagrammatic analysis, we expect that these peaks above the diagonal lines are relevant
to population transfers. However, the neglect of three-point correlations significantly reduces
their strength.
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Panel (c) is obtained by neglecting the coherence transfer elements in Re3e2,e1
e6e5,e4

. The spectrum
is again strongly modified as compared to the full calculation in panel (a). This suggests that
the coherence transfer in three-point correlation relaxation also plays an important role in the
dominant negative peaks above the diagonal line. Comparing with the effect of coherence
transfer during t3, we further find that the largest modification to the full calculation in panel
(a) comes from the secular approximation in RN

e4e3,e2e1
, where peak (B) becomes significantly

stronger, as shown in panel (f).This suggests that the population–coherence couplings neglected
in secular approximation also play an important role in determining the strength of ESA peaks.

Within the secular approximation, if we further eliminate the coherence transfer elements
in RN

e4e3,e2e1
, we obtain panel (e), where the strong negative peaks do not change a lot but the

ESE-type population transfer peaks (D)–(F) become clearly resolved. This implies that the
coherence transfer during t2, as included in panel (f), plays a role in reducing the ESE population
transfer peaks. If we only eliminate the population transfer within the secular approximation for
RN

e4e3,e2e1
, then we obtain panel (d), where the conventional population transfer peaks, such as

peak (D), are almost gone. This is different from panel (b), where we still have a weak peak
(D) due to the inclusion of population and coherence couplings beyond secular approximation.
However, in both panels (b) and (d), the negative ESA peaks exist even when we neglect the
population transfer in RN

e4e3,e2e1
. This indicates that the dominant ESA peaks depend not only

on population transfer during t2, but also on other factors, such as coherences during t2 and
coherence transfers during t3. Therefore, like the conventional ESE-type peaks where population
transfer and coherence are always coupled during t2, ESA peaks also have this property. The
dependence of ESA peaks on coherence during t2 can also be understood intuitively from the
three Feynman diagrams in figure 1. From the diagrams, we know that the third pulse generates
gei (GSB and ESE) and fi ei (ESA) coherences. The generation of these coherences will rely
on initial conditions, i.e. the coherence among different states and the population distribution
at the end of t2. From this perspective, the t2-dependence of the ESA cross peaks can also be
understood, although these cross peaks are mainly introduced by the three-exciton correlation
that is finite only when t3 > 0.

Here we have studied the dependence of ESA negative peaks on the various mechanisms
given by the relaxation matrices of NEE variables N and Z . The strength of these peaks strongly
depends on the population/coherence transfers and population–coherence couplings during t2,
and on the coherence transfer during t3. We emphasize that the underlying reason for the
existence of these dominant ESA cross peaks is the three-exciton correlation. If we employ
a simplified relaxation matrix for the Z variable, we can still have coherence transfer during
t3. But we will lose the dominant ESA peaks even with RN

e4e3,e2e1
untouched. In our simulations,

we also find that, with simplified Re3e2,e1
e6e5,e4

, the 2D signals will not be so sensitive to the different
treatments of RN

e4e3,e2e1
.

5. Discussion

We have shown that different approximations to the three-exciton correlations can affect the
relative weights of three pathways of the SI technique. In FMO, the three-point correlations give
the dominant ESA-type cross peaks. However, the fact that one type of cross peak can dominate
has more profound consequences. For coherent dynamics, the ESE and ESA pathways introduce
respectively positive and negative cross peaks both above and below the diagonal lines. These
cross peaks with different signs can thus cancel. Therefore, weak cross peaks do not necessarily
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indicate weak coherence in the system. For incoherent dynamics, the population transfer from
the ESE pathway introduces positive cross peaks only below the diagonal line due to the general
transfer direction from higher excitonic states to the lower ones. The population transfer from
the ESA pathway mainly introduces negative peaks above the diagonal line. However, it is also
possible that ESA population transfer peaks occur below the diagonal line due to the many
two-exciton states available.

From Redfield theory we know that the ESE coherence is coupled with the ESE population
transfer, making it more complicated to probe population transfer in photosynthetic systems.
However, when the negative ESA-type (both coherence and population transfer) peaks become
dominant, the positive population transfer signals from ESE would also be canceled or partially
canceled by the ESA peaks. This will further complicate the probing of energy transfer. This also
indicates that the absence of population transfer peaks for small t2 does not necessarily mean the
absence of population transfer. Thus, if the coherence time is long, then the population transfer
peaks below the diagonal line are more likely to be weak. We shall demonstrate this with a
simple dimer model.

Most simulations of FMO usually only consider the J -coupling (hmn) and neglect the
exciton–exciton coupling Umn,kl . In the following dimer model, we introduce a finite Umn,kl

in order to separate the ESE and ESA pathways. Panels (a) and (b) in figure 5 are calculated
with Umn,kl = 100 cm−1 respectively at t2 = 0 fs and t2 = 300 fs. The Umn,kl renormalizes the
two-exciton state and thus the ESA contribution to cross peaks is shifted down, as given by
peaks (A) and (C). ESE contributions are still at the regular cross peak positions (B) and
(D) with positive signs (note that the GSB contribution overlaps with the ESE contribution
but GSB peaks are not t2 dependent). By setting Umn,kl = 0, we obtain panels (c) and (d). In
(c), peaks (C) and (D) partially cancel. We expect this cancelation to become more evident if
inhomogeneous broadening is added. However, after the cancelation, the resulting weak cross
peak does not indicate the weak coherence in the system. The coherence is strong but the
coherence signals from two pathways partially cancel each other and thus look weak. At finite
t2, population transfer already occurs, as in panel (d). However, the similar cancelation will
let us underestimate the population transfer. We repeat the above calculations with lower-order
theory, as shown in panels (e)–(h). We find that in the lower-order calculation the ESA pathway
is no longer dominant, and the cancelation effect is not obvious. If the dominant ESA peaks
are more realistic in accounting for the dimer dynamics, then the lower-order calculation will
overestimate the population transfer.

In summary, we demonstrated that three-point correlation effects can affect the relative
strength of individual pathways of nonlinear responses of the photosynthetic FMO complex.
Our simulations demonstrate general excitonic properties as long as exciton correlations
are important. The importance of three-exciton correlation also arises from the type of
experiments considered (third-order, weak-field limit), where three-exciton correlation is the
highest correlation involved, and is the only correlation that is directly related to the signal. Our
simulations show that the probing of relaxation dynamics is actually more complicated. More
advanced techniques, such as those based on manipulating polarization configuration and pulse-
shaping techniques, may resolve these issues. We further showed that the negative peaks above
the diagonal line contain more information regarding coherence, energy/coherence transfer, than
the positive peaks below the diagonal line. This is because the latter energy transfer peaks may
have been partially canceled by the ESA peaks.

New Journal of Physics 12 (2010) 065046 (http://www.njp.org/)

http://www.njp.org/


15

Acknowledgments

This research was supported by the National Science Foundation (Grant CHE-0745892).

Appendix A. Simplified relaxation operators for the three-exciton variables

In this appendix, we show that, when using simplified relaxation operators for the Z variable,
the three-point correlation is lost, even if it is formally included in the equations of motion. To
demonstrate this, we consider a typical factorization Zmn, j ≈ B†

j Ymn. The equation of motion

B†
j Ymn can be derived as (in the derivation, we neglect the effect of external field on the

relaxation)

i
d(B†

j Ymn)

dτ
= i

dB†
j

dτ
Ymn + iB†

j

dYmn

dτ

'

(
−

∑
l

B†
l hl j − i

∑
l

B†
l 0l j

)
Ymn + B†

j

(∑
kl

h(2)mn,klYkl − i
∑

kl

RY
mn,klYkl

)

=

∑
kl

h(2)mn,kl B
†
j Ykl −

∑
l

hl j B†
l Ymn − i

∑
l

0l j B†
l Ymn − i

∑
kl

RY
mn,kl B

†
j Ykl . (A.1)

We now examine the equation of motion for the Z variable, equation (17), which is
derived without factorization. If we use a simplified relaxation matrix Żmnj constructed from
the relaxation matrices of lower-order NEE variables B and Y , i.e.

Żmnj = −i
∑

l

0l j Zmn,l − i
∑

kl

RY
mn,kl Zkl, j , (A.2)

then equation (17) becomes

i
dZmn, j

dτ
=

∑
kl

h(2)mn,kl Zkl, j −

∑
l

hl j Zmn,l − i
∑

l

0l j Zmn,l − i
∑

kl

RY
mn,kl Zkl, j , (A.3)

where we again neglect the effect of external field on the relaxation.
Comparing equations (A.1) and (A.3), we see that Zmn, j and B†

j Ymn satisfy the same
equation of motion. Thus, in this case, the use of a simplified relaxation matrix for the Z variable
is equivalent to the factorization of the Z variables. Three-point correlations are therefore lost,
even if we formally retain them in the equation. The simplified relaxation given in equation
(A.2) was used in [21] to replace the full relaxation matrix in equation (26).

Appendix B. Relaxation operator for the Z variables

The relaxation matrix for the Z variables is given by

Żmn, j =

∑
(h̄(2)mn,kl;αZ (q)

kl, j;α − Z (q)
mn,i;αh̄i j,α). (B.1)

In equation (B.1), h̄(2)mn,kl;α is defined by

h̄(2)mn,kl;α ≡ δmk h̄nl,α + h̄mk,αδnl + V̄mn,kl;α, (B.2)
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where

V̄mn,kl;α ≡ 2Ūmn,kl;α − 2
∑

p

Pmn,pk h̄ pl,α − 2
∑

pq

Pmn,pqŪpq,kl;α. (B.3)

The equation of motion for the phonon-assist variables Z (q)
kl, j;α is

i
dZ (s)

mn, j;α

dτ
−

∑
(h(2)mn,kl Z

(s)
kl, j;α − Z (s)

mn,i;αhi j)− ivαZ (−s)
mn, j;α

=

∑
w(s)
α (h̄

(2)
mn,kl;αZkl, j − Zmn,i h̄i j;α)− iδsp

∑
h̄k j;αZmn,k

−E (1)m N (s)
nj;α − E (1)n N (s)

mj;α −

∑
Em,nk N (s)

k j;α + E (1)j Y (s)
mn;α, (B.4)

where s can be either q or p, and we have used the notation (−p)≡ (q), (−q)≡ (p) and

v(q)α ≡ m−1
α , v(p)α = −mαω

2
α, (B.5)

w(q)
α ≡ Trq[qαqαρ0(q)] =

1

2mαωα
coth

(
βωα

2

)
, (B.6)

w(p)
α ≡ Trq[pαqαρ0(q)] = −

i

2
. (B.7)

By defining Z (q)
kl, j;α = A(q)α , equation (B.4) can be written out in a unified way:

i
dA(q)α

dτ
− h A(q)α −

i

mα

A(p)α = W (q)
α (τ ),

(B.8)

i
dA(p)α

dτ
− h A(p)α + imαω

2
αA(q)α = W (p)

α (τ ),

where W (s)
α is the rhs of the corresponding equation and h are linear operators representing the

free evolution of the Z variable in the absence of relaxation. We further introduce the set of the
Green functions of the Z operator, which satisfy the equations

i
dG
dτ

− hG = iδ(τ ). (B.9)

The solution of equation (B.8) can be represented in the form

A(q)α (τ )= −i
∫

∞

0
dt

[
cos(ωαt)G(t)W (q)

α (τ − t)+
1

mαωα
sin(ωαt)G(t)W (p)

α (τ − t)

]
,

(B.10)

A(p)α (τ )= −i
∫

∞

0
dt
[
cos(ωαt)G(t)W (p)

α (τ − t)− mαωα sin(ωαt)G(t)W (q)
α (τ − t)

]
.
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Using the general formal solution equation (B.10), we have

Z (q)
mn, jα(τ )= −i

∫
∞

0
dt
∑

m′n′, j ′

GZ
mn, j;m′n′, j ′(t)

[
cos(ωαt)W (q)

m′n′, j ′α(τ − t)

+
1

mαωα
sin(ωαt)W (p)

m′n′, j ′α(τ − t)

]
. (B.11)

We also know, by definition, that

W (q)
mn, jα(τ − t)=

∑
w(s)
α (h̄

(2)
mn,kl;αZkl, j − Zmn,i h̄i j;α)− iδsp

∑
h̄k j;αZmn,k

− E (1)m N (s)
nj;α − E (1)n N (s)

mj;α −

∑
Em,nk N (s)

k j;α + E (1)j Y (s)
mn;α

'

∑
w(q)
α (h̄

(2)
mn,kl;αZkl, j − Zmn,i h̄i j;α)− iδqp

∑
h̄k j;αZmn,k

=

[∑
kl

h̄(2)mn,kl;αZkl, j −

∑
i

Zmn,i h̄i j;α

]
w(q)
α

and

W (p)
mn, jα(τ − t)'

∑
w(p)
α (h̄(2)mn,kl;αZkl, j − Zmn,i h̄i j;α)− iδpp

∑
h̄k j;αZmn,k

=

∑
kl

w(p)
α h̄(2)mn,kl;αZkl, j −

∑
i

w(p)
α Zmn,i h̄i j;α − i

∑
i

h̄i j;αZmn,i

= −
i

2

∑
kl

h̄(2)mn,kl;αZkl, j +
i

2

∑
i

Zmn,i h̄i j;α − i
∑

i

h̄i j;αZmn,i

= −
i

2

∑
kl

h̄(2)mn,kl;αZkl, j −
i

2

∑
i

Zmn,i h̄i j;α

= −
i

2

[∑
kl

h̄(2)mn,kl;αZkl, j +
∑

i

Zmn,i h̄i j;α

]
.

Equation (B.11) thus becomes

Z (q)
mn, jα(τ )

= −i
∫

∞

0
dt
∑

m′n′, j ′

GZ
mn, j;m′n′, j ′(t)

[
cos(ωαt)W (q)

m′n′, j ′α(τ − t)+
1

mαωα
sin(ωαt)W (p)

m′n′, j ′α(τ − t)

]

= −i
∫

∞

0
dt
∑

m′n′, j ′

Gm′n′, j ′

mn, j (t)
∑

kl

h̄(2)m′n′,kl;αZkl, j ′C1 − i
∫

∞

0
dt
∑

m′n′, j ′

Gm′n′, j ′

mn, j (t)
∑

i

Zm′n′,i h̄i j ′;αC2,

(B.12)
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where

C1 =
1

2mαωα

[
cos(ωαt) coth

(
βωα

2

)
− i sin(ωαt)

]
,

C2 =
1

2mαωα

[
− cos(ωαt) coth

(
βωα

2

)
− i sin(ωαt)

]

= −
1

2mαωα

[
cos(ωαt) coth

(
βωα

2

)
+ i sin(ωαt)

]
= − C∗

1 .

We use the following simplified version for equations (B.2) and (B.3) for hard-core bosons:

h̄(2)m′n′,kl;α = δm′k h̄n′l,α + h̄m′k,αδn′l − 2δm′n′δn′k h̄m′l,α − δm′n′δm′kδn′l1m′n′,α +1m′n′,αδm′kδn′l

' δm′k h̄n′l,α + h̄m′k,αδn′l − 2δm′n′δn′k h̄m′l,α.

Substituting this into equation (B.12) gives

Z (q)
mn, jα(τ )= Z (q)(1)

mn, jα(τ )+ Z (q)(2)
mn, jα(τ ), (B.13)

where

Z (q)(1)
mn, jα(τ )= − i

∫
∞

0
dt
∑

m′n′, j ′

Gm′n′, j ′

mn, j (t)
∑

kl

h̄(2)m′n′,kl;αZkl, j ′C1

= − i
∫

∞

0
dt
∑

m′n′, j ′

Gm′n′, j ′

mn, j (t)
∑

l

(
h̄n′l,αZm′l, j ′ + h̄m′l,αZln′, j ′ − 2δm′n′ h̄m′l,αZn′l, j ′

)
C1,

Z (q)(2)
mn, jα(τ )= − i

∫
∞

0
dt
∑

m′n′, j ′

Gm′n′, j ′

mn, j (t)
∑

i

Zm′n′,i h̄i j ′;αC2.

Substituting equation (B.13) into (B.1) gives

Żmn, j =

∑
kl

h̄(2)mn,kl;αZ (q)(1)
kl, jα (τ )+

∑
kl

h̄(2)mn,kl;αZ (q)(2)
kl, jα (τ )

+

(
−

∑
i

Z (q)(1)
mn,iα(τ )h̄i j,α

)
+

(
−

∑
i

Z (q)(2)
mn,iα(τ )h̄i j,α

)

= Ż (1)
mn, j + Ż (2)

mn, j + (−Ż (3)
mn, j)+ (−Ż (4)

mn, j), (B.14)
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where

Ż (1)
mn, j (τ )= −i

∑
m′n′ j ′

∫
∞

0
dtC1

∑
αl,l ′

h̄nl,α ·

[
Gm′l ′, j ′

ml, j h̄l ′n′,α +Gl ′n′, j ′

ml, j h̄l ′m′,α − 2δm′l ′Gl ′m′, j ′

ml, j h̄II
l ′n′α

]
×Zm′n′, j ′ (τ − t)− i

∑
m′n′ j ′

∫
∞

0
dtC1

∑
αl,l ′

h̄ml,α ·

[
Gm′l ′, j ′

ln, j h̄l ′n′,α +Gl ′n′, j ′

ln, j h̄l ′m′,α − 2δm′l ′Gl ′m′, j ′

ln, j h̄II
l ′n′α

]
×Zm′n′, j ′ (τ − t)− i

∑
m′n′ j ′

∫
∞

0
dtC1

∑
αl,l ′′′

(
−2δmn h̄II

ml,α

)
·

[
Gm′l ′, j ′

nl, j h̄l ′n′,α +Gl ′n′, j ′

nl, j h̄l ′m′,α

−2δm′l ′Gl ′m′, j ′

nl, j h̄II
l ′n′α

]
Zm′n′, j ′ (τ − t) , (B.15)

Ż (2)
mn, j = −i

∑
m′n′ j ′

∫
∞

0
dtC∗

1

∑
ll ′

(−h̄nl,αGm′n′,l ′

ml, j (t)− h̄ml,αGm′n′,l ′

ln, j (t)

+2δmn h̄II
ml,αG

m′n′,l ′

nl, j (t))h̄ j ′l ′;αZm′n′, j ′,

−Ż (3)
mn, j = −i

∑
m′n′ j ′

∫
∞

0
C1dt

∑
ll ′

h̄l j,α

[
−Gm′l ′, j ′

mn,l (t)h̄l ′n′,α −Gl ′n′, j ′

mn,l (t)h̄l ′m′,α

+ 2δl ′m′Gl ′m′, j ′

mn,l (t)h̄
II
l ′n′,α

]
Zm′n′, j ′ h̄l j,α,

−Ż (4)
mn, j = −i

∑
m′n′ j ′

∫
∞

0
C∗

1 dt
∑

ll ′

Gm′n′,l ′

mn,l (t)h̄l j,αh̄ j ′l ′;αZm′n′, j ′ .

Equation (B.14) contains 16 terms and we present a sample calculation for the first three
terms:

Żmn, j = Ż (1)
mn, j + · · ·

= − i
∑

m′n′ j ′

∫
∞

0
dtC1

∑
αl,l ′′′

(
−2δmn h̄II

ml,α

)
·

[
Gm′l ′, j ′

nl, j h̄l ′n′,α +Gl ′n′, j ′

nl, j h̄l ′m′,α

− 2δm′l ′Gl ′m′, j ′

nl, j h̄II
l ′n′α

]
Zm′n′, j ′ (τ − t)

=

∫ +∞

−∞

dω

2π
(cosωt coth

βh̄ω

2
− i sinωt) ·

∑
l,l ′

[
Gm′l ′, j ′

ml, j (t)C ′′

nl,l ′n′ (ω)+Gl ′n′, j ′

ml, j (t)C ′′

nl,l ′m′ (ω)

− 2δm′l ′Gl ′m′, j ′

ml, j (t)C ′′II
nl,l ′n′ (ω)

]
+ · · ·

= − i
∑

m′n′ j ′

∫
∞

0
dt Rm′n′, j ′

mn, j (t) Zm′n′, j ′ (τ − t) , (B.16)

where

C ′′

mnkl (ω)=
1

2mαωα
π
∑
α

h̄mn,αh̄kl,α[δ(ω−wα)− δ(ω +wα)].
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We next employ a simplified bath model where a single-exciton eigenstate is coupled to its
own statistically independent bath with a continuous spectral density. Fluctuations of different
chromophores are uncorrelated and they all have the same spectral density so that

C ′′

mnkl(ω)= δmnδnkδklC̄
′′(ω), (B.17)

where C̄ ′′(ω)= π
∑

αd̄2
mm,α[δ(ω−ωα)− δ(ω +ωα)] is now independent of the system indices.

The spectral density has the symmetry C̄ ′′(ω)= −C̄ ′′(−ω). Specific models for the spectral
density (e.g. Ohmic, white noise, Lorentzian, etc) are often used for calculating the nonlinear
responses of molecular systems. We assume that the bath has several collective modes α and
recast the spectral density in the form

C̄ ′′(ω)=

∑
α

λαCα(ω), (B.18)

where Cα(ω) is a dimensionless spectral density of mode α and λα is the coupling strength
between. We define the auxiliary functions

M̄ (±)
α (t)=

∫
∞

−∞

dω

2π
Cα(ω)[coth(βh̄ω/2) cos(ωt)∓ i sin(ωt)]. (B.19)

By performing a one-sided Fourier transform, we have

M̄ (±)
α (ω)=

∫
∞

0
dt exp(iωt)M̄ (±)

α (t). (B.20)

Using these definitions for a simplified bath model, we now consider the first term of
equation (B.16):

Żmn, j(t)= − i
∑

m′n′ j ′ll ′

∫
∞

0
dt ′

∫ +∞

−∞

dω

2π

(
cosωt ′ coth

βh̄ω

2
− i sinωt ′

)
×Gm′l ′, j ′

ml, j

(
t ′
)

C ′′

nl,l ′n′ (ω) Zm′n′, j ′

(
t − t ′

)
= − i

∑
m′n′ j ′ll ′

∫
∞

0
dt ′

∫ +∞

−∞

dω

2π

(
cosωt ′ coth

βh̄ω

2
− i sinωt ′

)
·

∑
m′′n′′ j ′′

Gm′′l ′, j ′′

ml, j (t ′)C ′′

nl,l ′n′′(ω)G
∗m′n′, j ′

m′′n′′, j ′′(t ′)Zm′n′, j ′(t)

= − i
∑

m′n′ j ′

R(1)m′n′, j ′

mn, j Zm′n′, j ′(t),

where

R(1)m′n′, j ′

mn, j =

∑
ll ′

∫
∞

0
dt ′

∫ +∞

−∞

dω

2π

(
cosωt ′ coth

βh̄ω

2
− i sinωt ′

)
·

∑
m′′n′′ j ′′

Gm′′l ′, j ′′

ml, j (t ′)C ′′

nl,l ′n′′(ω)G
∗m′n′, j ′

m′′n′′, j ′′(t ′)

=

∑
α

λα

∫
∞

0
dt ′

∫ +∞

−∞

dω

2π
Cα(ω)

(
cosωt ′ coth

βh̄ω

2
− i sinωt ′

)
New Journal of Physics 12 (2010) 065046 (http://www.njp.org/)

http://www.njp.org/


21

×

∑
αm′′ j ′′

Gm′′n, j ′′

mn, j (t ′)G∗m′n′, j ′

m′′n, j ′′ (t ′)

=

∑
α

λα

∫
∞

0
dt ′M+(t ′)

∑
αm′′ j ′′

Gm′′n, j ′′

mn, j (t ′)G∗m′n′, j ′

m′′n, j ′′ (t ′).

Next we employ a factorization scheme for the Green’s function corresponding to the Z variable
and obtain

R(1)m′n′, j ′

mn, j =

∑
α

λα

∫
∞

0
dt ′M+(t ′)

∑
αm′′ j ′′

Gm′′n, j ′′

mn, j (t ′)G∗m′n′, j ′

m′′n, j ′′ (t ′)

=

∑
α

λα

∫
∞

0
dt ′M+(t ′)

∑
αm′′ j ′′

Gmm′′GnnG∗

j j ′′

(
Gm′′m′Gnn′G∗

j ′′ j ′

)∗
=

∑
α

λα

∫
∞

0
dt ′M+(t ′)

∑
αm′′ j ′′

Gmm′′GnnG∗

j j ′′G∗

m′′m′G∗

nn′G j ′′ j ′ .

In order to calculate this relaxation matrix, we need first to transform it into the exciton basis,

R(1)e3e2,e1
e6e5,e4

=

∑
mn, j;m′n′, j ′

Rm′n′, j ′

mn, j ψme6ψne5ψ je4ψm′e3ψn′e2ψ j ′e1

=

∑
α

λα
∑

mn, j;m′n′, j ′;

∫
∞

0
dt ′M+(t ′)

·

∑
αm′′ j ′′

Gmm′′GnnG∗

j j ′′G∗

m′′m′G∗

nn′G j ′′ j ′ψme6ψne5ψ je4ψm′e3ψn′e2ψ j ′e1

=

∑
α

λα
∑

n

∫
∞

−∞

dt ′θ(t ′)M+(t ′)e
i(Ee2−Ee′2

)t ′
∑

e′

2

(
ψne2ψne5ψne′

2
ψne′

2

)
δe3e6 · δe4e1

=

∑
α

λα
∑

e′

2

M+(ωe2e′

2
)
∑

n

ψne2ψne5ψne′

2
ψne′

2
δe3e6δe4e1 .

This is the first term in the relaxation matrix. The other 15 terms are calculated in a similar way.
The total relaxation matrix for Z is finally given by

Re3e2,e1
e6e5,e4

=

16∑
s=1

R(s)e3e2,e1
e6e5,e4

=

∑
α

λα
∑

e′

2

M+(ωe2e′

2
)
∑

n

ψne2ψne5ψne′

2
ψne′

2
δe3e6δe4e1

+
∑
α

λαM+(ωe3e6)
∑

n

ψne5ψne3ψne6ψne2δe4e1

− 2
∑
α

λα
∑

e′

M+(ωe3e′ +ωe2e6)
∑

n

ψne5ψne6ψne′ψne′ψne3ψne2δe1e4
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+
∑
α

λαM+(ωe2e5)
∑

n

ψne3ψne6ψne2ψne5δe1e4

+
∑
α

λα
∑

e′

M+(ωe3e′)
∑

n

ψne′ψne′ψne6ψne3δe2e5δe1e4

− 2
∑
α

λα
∑

e′

M+(ωe3e′ +ωe2e5)
∑

n

ψne6ψne′ψne′ψne5ψne3ψne2δe1e4

− 2
∑
α

λα
∑

e′

M+(ωe2e′)
∑

n

(
ψne6ψne5ψne3ψne′ψne′ψne2

)
δe1e4

− 2
∑
α

λα
∑

e′

M+(ωe3e′)
∑

n

ψne6ψne5ψne′ψne′ψne2ψne3δe4e1

+ 4
∑
α

λα
∑
e′

1 e′

2

M+(ωe3e′

1
+ωe2e′

2
)
∑

n

ψne6ψne5ψne′

1
ψne′

1
ψne′

2
ψne′

2
ψne3ψne2δe4e1

−

∑
α

λαM−(ωe4e1)
∑

n

ψne5ψne2ψne4ψne1δe3e6

−

∑
α

λαM−(ωe4e1)
∑

n

ψne6ψne3ψne4ψne1δe5e2

+ 2
∑
α

λαM−(ωe4e1)
∑

n

ψne6ψne5ψne3ψne2ψne4ψne1

−

∑
α

λαM+(ωe3e5 +ωe2e6)
∑

n

ψne4ψne1ψne2ψne5δe6e3

−

∑
α

λαM+(ωe3e6)
∑

n

ψne4ψne6ψne1ψne3δe5e2

+ 2
∑
α

λαM+(ωe3e5 +ωe2e6)
∑

n

ψne4ψne6ψne1ψne2ψne5ψne3

+
∑
α

λα
∑

e′

M−(ωe′e1)
∑

n

ψne4ψne′ψne′ψne1δe6e3δe5e2 .

In the numerical calculations, we transformed the above matrix from the exciton to the local
basis.
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