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Bid and Guess: A Nested Mechanism for King
Solomon’s Dilemma∗

Cheng-Zhong Qin† Chun-Lei Yang‡

March 21, 2006

Abstract

In this paper we propose a mechanism to resolve King Solomon’s dilemma
about allocating an indivisible good at no cost to the participating agents.
A distinctive feature of our mechanism is the design of a two-part contest
that makes the agents guess each other’s bids in a second-price auction. The
accuracy of an agent’s guess of the other agent’s bid endogenously determines
how much she pays for participating in the contest. The truthfully bidding
Bayesian-Nash equilibrium of the contesting game results in a reduced game,
which has a unique and strict Bayesian-Nash equilibrium that implements the
efficient outcome.

KEYWORDS: King Solomon’s dilemma, Nash equilibrium, Bayesian-Nash
equilibrium, subgame-perfect equilibrium. (JEL C72, C79, D82)

1 Introduction

King Solomon’s dilemma refers to a story of the wisdom of King Solomon (I Kings 3:
16-28). In this story, two women appear before King Solomon seeking for judgement.
Having a baby with them, they each claim to be its mother. King Solomon wishes
to give the child to the true mother at no cost to either woman. The difficulty is,
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however, that while the women know whose baby the child is King Solomon does
not. King Solomon’s solution, which consisted in threatening to cut the baby in
two, is not foolproof: What would he have done if the fake mother had had the
presence of mind to scream like a real mother?

Glazer and Ma (1989) provide a simple and elegant multi-stage mechanism,
which implements the efficient outcome of King Solomon’s dilemma in a unique
subgame-perfect equilibrium without causing any of the women to pay. The infor-
mation assumption in their paper is that the women’s valuations of the baby are
common knowledge among the women and King Solomon, with the only missing
information being that King Solomon does not know which woman has the higher
valuation.1 They also provide another mechanism in an appendix to cover the case,
in which it is commonly known that only the women are aware of each other’s valu-
ations of the child, while King Solomon knows only that the true mother values the
child more than the fake mother does. Moore (1992) provides a simpler mechanism
for resolving the dilemma in this general case. Glazer and Ma (1989) also consider
several examples of economics relevance that resemble the features King Solomon
dilemma.

The King Solomon’s dilemma is generally about allocating an indivisible good
to the agent with the highest valuation at no cost to any of the participating agents.
In this paper, we propose a mechanism for resolving the dilemma under general
information assumptions. We only assume that the agents are informed of whose
valuation of the good is higher besides their own valuations of the good.

Because bidding one’s true valuation is weakly dominant, it is natural to consider
the second-price auction as the mechanism to resolve the allocation problem. The
second-price auction alone, however, cannot succeed as it involves payment from the
winner to the auctioneer. Furthermore, it is not at all harmful to the less deserving
agent to participate in the auction, and hence, leaves her with no good reason not
to participate. The next natural step is then to add an endogenous fee for each
participant to participate in a second-price auction, such that (i) it maintains weak
dominance to truthfully bid; (ii) it is always positive for the less deserving agent so as
to deter participation by her; and (iii) it is small enough to guarantee participation
by the more deserving agent.

In this paper we show by an explicit design that such endogenous participation
fees exist. In a simple form, each agent simultaneously bids and guesses how much
the other will bid. She pays as a participation fee a fraction of the difference between

1It is assumed that the true mother has a higher valuation of the child than the fake mother
does.
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her guessed amount and the latter’s actual bid. To the extent that the agent is
uncertain about the other’s exact valuation, this endogenous fee always takes a
positive value. In an extended form, at random one agent’s participation fee is
modified from the simple form, with her guess about the opponent’s bid in excess
of the latter’s guess of her bid as an additional component of the participation fee.
Since the more deserving agent’s bid is greater than her guess of the less deserving
agent’s bid, the latter’s extended-form participation fee is always positive, even when
she has complete information about the more deserving agent’s valuation.

Our mechanism works as follows. First, the agents decide individually whether
to demand the good. When only one of them does, the good is allocated to whoever
demands. If neither does, the good is randomly allocated among the two in the usual
way. When both agents demand, however, they will subsequently participate in a
second-price auction with endogenous participation fees to determine the allocation.

The truthfully bidding Bayesian-Nash equilibrium for the corresponding second-
price auction with endogenous participation fees turns out to imply that given
agents’s valuations, it is strictly dominant for the more deserving agent to demand,
to which the unique best response for the less deserving agent is not to demand the
good. It follows that our mechanism yields the desired implementation in a strict
and unique Bayesian-Nash equilibrium in a reduced game, which results from the
truthfully bidding Bayesian-Nash equilibrium for the modified second-price auction.
It is worth mentioning that since the more deserving agent has a strictly dominant
strategy, all the results remain valid if the agents’ choices are made sequentially.
With the extended-form participation fees, both the strictness and the uniqueness
of Bayesian-Nash equilibrium for the reduced game are robust with respect to in-
formation settings, in the sense that they remain valid with or without complete
information about each other’s valuations. Moreover, the results generalize easily
to the n-person case.

There have been several papers in the literature on King Solomon’s dilemma un-
der general information assumptions. Most of them involve nontrivial refinements
of Nash equilibrium. For example, the mechanisms in Yang (1991) and Perry and
Reny (1999) implement the efficient outcome in iteratively undominated strategies.
The mechanism in Yang (1997) implements the efficient outcome in trembling-hand
perfect equilibrium. Olszewski (2003) proposes a mechanism with endogenous side
transfers that implements the efficient outcome in iteratively undominated strate-
gies. His mechanism requires the designer to withhold the good in certain situations
and to subsidize the agents when they both claim the good. Withholding the baby
is arguably a non-credible option for King Solomon. The subsidies, on the other
hand, make collusion beneficial to the agents at the designer’s cost. The magnitude
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of the cost to the designer as a result of agents’ collusion is bounded above only by
the maximum bid the mechanism allows.2

In contrast, we assume the same general information structure as in Perry and
Reny (1999). Our implementation, however, involves an equilibrium concept which
results from backward induction together with weak dominance in the second stage,
and is simpler and more natural than those applied in the literature for resolving
the dilemma under general information conditions, such as iteratively undominated
strategies in Perry and Reny (1999).

The rest of the paper is organized as follows. The next section introduces our
nested mechanism in both extended and simple forms. Section 3 briefly extends the
mechanism to more than 2-person cases. Section 4 concludes the paper.

2 The Nested Mechanism

In this section we introduce our nested mechanism and we show that the mechanism
resolves King Solomon’s dilemma under general information assumptions.

2.1 The Nested Mechanism in Extended Form

Consider the problem of efficient allocation of an indivisible good among two agents.
Agents’ valuations of the good are randomly drawn by nature from [0, 1]. (Normalize
the agents’ valuations so that the maximum valuation for the good is 1.) Nature
informs each agent i of her own valuation vi but not the valuation of her opponent.
As characteristic to King Solomon’s Dilemma, nature also informs each agent i of
whose valuation is higher as well as a posterior Fj(·|vi) about agent j’s valuation,
which is consistent with the information on the ranking of the agents’ valuations.

Our mechanism involves the following messages. The agents simultaneously
choose between demanding the good and not demanding it. We denote the first
choice by “Mine” and the second by “Hers”. Without any cost to either agent, the
good will be allocated to agent 1 at choice combination (Mine, Hers), to agent 2 at
(Hers, Mine), and to each with equal probability at (Hers, Hers). At (Mine, Mine),
however, the agents’ choices are in real conflict. To decide who gets the good (the
baby) at this combination, a contest is applied in which each agent simultaneously
announces a bid and a guess. The bids are used to determine the winner and the

2More precisely, let b̄ be the maximum bid the mechanism allows and let a be the true mother’s
valuation. Then, in the 2-person case the highest total payoff that the agents can get by colluding
is a + b̄.
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winning price as in second-price auction. The guesses, on the other hand, are used
together with the bids to determine how much each agent pays for participating in
the contest, which we specify in the following paragraph.

At the beginning of the contest, a lottery with two equally probable states,
s = 1, 2, is drawn. The states of the lottery are made known to the agents before
they bid and guess. The agents thus can condition their bids and guesses on the
states of the lottery. The determination of participation fees for the agents depends
on the states of the lottery. Since the incentive structure of second-price auction is
independent of the lottery states which will become clear in the next paragraph, we
can write agent i’s bid-guess choice as (βi, γi1, γi2), where βi represents agent i’s bid
irrespective of the states of the lottery and γis represents her guess in state s = 1, 2.
Set γi = (γi1, γi2). We restrict βi, γi1, and γi2 to be all in [0, 1].

Given the agents’ bid-guess combinations (βi, γi) and (βj, γj), their participation
fees in state s = i are ∆ii(γii; βj, γji) for agent i and ∆ji(γji; βi) for agent j, where 3

∆ii(γii; βj, γji) =
δ

2
{|γii − βj|+ (γii − γji)

+}, ∆ji(γji; βi) = δ|γji − βi|, i 6= j (1)

for some constant proportion δ ∈ (0, 1). Our analysis does not depend on the choice
of proportion δ. In state s = i, agent j pays a simple-form fee that depends only on
the deviation of her guessed amount of i’s bid from i’s actual bid. Agent i, on the
other hand, pays an extended-form fee which depends not only on the deviation of
her guessed amount of j’s bid from j’s actual bid, but also on the deviation of this
guessed amount from j’s guess of her bid. Evidently, the agents’ bidding incentives
remain unaffected by the guesses and the states of the lottery.

The expected participation fees for the agents over the states of the lottery are:

∆i(γi; βj, γji) =
1

2
∆ii(γii; βj, γji) +

1

2
∆ij(γij; βj), j 6= i. (2)

It follows that given actual valuation vi, agent i’s payoff at bid-guess pairs (βi, γi)
and (βj, γj) is:

Ui(β, γ, vi) = κi(β)[vi − βj]−∆i(γi; βj, γji), j 6= i, (3)

where κi(β) is i’s winning probability at bid profile β = (βi, βj); κi(β) = 1 if βi > βj,
κi(β) = 1/2 if βi = βj, and κi(β) = 0 if βi < βj.

A (pure) strategy for an agent in the contesting game is a mapping that maps
her information into a bid-guess pair. Since the agent’s information depends on

3Given a real number x, x+ = x when x ≥ 0 and x+ = 0 when x < 0.
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her valuation, as usual we write a strategy for the agent simply as a function of
her valuation only. Specifically, a strategy for agent i in the contesting game is
a pair (bi, gi), where bi : [0, 1] −→ [0, 1] specifies a bid bi(vi) ∈ [0, 1] for each
valuation vi ∈ [0, 1] and gi : [0, 1] −→ [0, 1] × [0, 1] specifies a pair of guesses
gi(vi) = (gi1(vi), gi2(vi)) for each valuation vi ∈ [0, 1].

Given valuation vi, agent i’s expected payoff, Ui(b, g, vi), at strategy profile
((bi, gi), (bj, gj)) in the contesting game is the expected value of Ui(b(vi, v

′
i), g(vi, v

′
j), vi)

in (3) over agent j’s valuations v′j with respect to posterior Fj(v
′
j|vi), where b(vi, v

′
j) =

(bi(vi), bj(v
′
j)) and g(vi, v

′
j) = (gi(vi), gj(v

′
j)).

By (1), (2), and (3), agent i’s guesses only affect her participation fee. Given
valuation vi and given agent j’s bid-guess strategy (bj, gj), to maximize expected
payoff in the contesting game, agent i’s optimal guesses must minimize the expected
participation fee ∫

∆i(γi; bj(v
′
j), gji(v

′
j))dFj(v

′
j|vi).

By the Dominated Convergence Theorem (see, e.g., Rudin, 1964, p. 246), the
integration

∫
∆i(γi; bj(v

′
j), gji(v

′
j))dFj(v

′
j|vi) is continuous in agent i’s guesses γi. The

minimum is thus well-defined. Denote the minimum expected participation fee for
agent i by ∆i(bj, gji, vi).

4 When the agents bid truthfully (i.e., when bi(v
′
i) = v′i for

v′i ∈ [0, 1] and bj(v
′
j) = v′j for v′j ∈ [0, 1]), we suppress bidding strategies from the

minimum expected participation fees, so as to shorten the notation to ∆i(gji, vi) for
i 6= j.

2.11 A Characterization of Expected Participation Fees when Agents
Bid Truthfully

For ease of exposition, we assume without loss of generality that it is commonly
known to the agents that nature draws a higher valuation for agent 1. That is, we
assume

suppF1(·|v2) ⊆ (v2, 1] and suppF2(·|v1) ⊆ [0, v1), v1, v2 ∈ [0, 1] with v2 < v1 (4)

where suppF1(·|v2) and suppF2(·|v1)denotes the supports of F1(·|v2) and F1(·|v2),
respectively.

It turns out that under information assumption (4), the truthfully bidding
Bayesian-Nash equilibrium for the contesting game results in a positive expected

4Given agent i’s own valuation vi and given that agent i anticipates that agent j bids according
to bj and guesses in state i according to gji, ∆i(bj , gji, vi) is the expected participation fee agent
i’s optimal guesses in both states generate to her.
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participation fee for agent 2 and a positive expected participation fee for agent 1
smaller than her expected value net the expected payment from winning the auction,
given valuations of the agents.5

THEOREM 1 Assume posteriors F1(·|·) and F2(·|·) satisfies (4). Then, bidding
one’s true valuation is consistent with Bayesian-Nash equilibrium for the contesting
game. Furthermore, in the truthfully bidding Bayesian-Nash equilibrium ((b∗1, g

∗
1), (b

∗
2, g

∗
2)):

(i) ∆1(g
∗
21, v1) < δ

∫
(v1 − v′2)dF2(v

′
2|v1)

and
(ii) ∆2(g

∗
12, v2) > 0

for v1, v2 ∈ [0, 1] such that v2 < v1.

PROOF: For each agent, her participation fee does not depend on her bid. On the
other hand, neither her winning probability nor her winning price depends on her
guess in either state of the lottery. It follows from the properties of second-price
auction that truthfully bidding is weakly dominant for each agent. Consequently,
bidding one’s true valuation is consistent with Bayesian-Nash equilibrium for the
contesting game.

Let (b∗1, g
∗
1) and (b∗2, g

∗
2) be the Bayesian-Nash equilibrium for the contesting game

with b∗1(v
′
1) = v′1 for all v′1 ∈ [0, 1] and b∗2(v

′
2) = v′2 for all v′2 ∈ [0, 1]. By (1) and (2),

for v1, v2 ∈ [0, 1] such that v2 < v1,

∆1(g
∗
21, v1) = δ

2

∫
|g∗12(v1)− v′2|dF2(v

′
2|v1)

+ δ
4

∫
{|g∗11(v1)− v′2|+ (g∗11(v1)− g∗21(v

′
2))

+}dF2(v
′
2|v1)

(5)

and

∆2(g
∗
12, v2) = δ

2

∫
|g∗21(v2)− v′1|dF1(v

′
1|v2)

+ δ
4

∫
{|g∗22(v2)− v′1|+ (g∗22(v2)− g∗12(v

′
1))

+}dF1(v
′
1|v2).

(6)

Given that agent 2 truthfully bids, it follows easily from information assumption
(4) and the first term in (5) that, in state s = 2 of the lottery, agent 1’s optimal
guessing strategy satisfies g∗12(v

′
1) < v′1 for all v′1 ∈ (0, 1]. This shows∫

|g∗12(v1)− v′2|dF2(v
′
2|v1) <

∫
(v1 − v′2)dF2(v

′
2|v1).

5Though subsequently we tacitly assume that off-equilibrium beliefs are given by the posteriors,
it is evident from the proofs that this assumption is not essential for our results. In fact, the only
restriction needed for the off-equilibrium beliefs is the same as (4) for the posteriors.
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By definition, (g∗11(v1) − g∗21(v
′
2))

+ is nondecreasing in g∗11(v1). Consequently, from
information assumption (4) and the last two terms in (5), it also follows g∗11(v1) < v1.
Thus,∫

{|g∗11(v1)− v′2|+ (g∗11(v1)− g∗21(v
′
2))

+}dF2(v
′
2|v1) <

∫
(v1 − v′2)dF2(v

′
2|v1).

Putting the above inequalities together, we have 6

∆1(g
∗
21, v1) < δ

∫
(v1 − v′2)dF2(v

′
2|v1).

To show (ii), notice that by (6),

∆2(g
∗
12, v2) ≥

δ

2

∫
|g∗21(v2)− v′1|dF1(v

′
1|v2). (7)

Consequently, if F1(·|v2) is such that agent 2 cannot correctly guess agent 1’s bid (i.e.
valuation) with probability 1, then (ii) follows directly from (7). Suppose that agent
2 can correctly guess in which case F1(·|v2) has v1 as an atom that has a probability
equal to 1. Then, minimizing the participation fee implies g∗21(v2) = v1 = b∗1(v1).
Hence, in this case, (6) reduces to

∆2(g
∗
12, v2) =

δ

4
{|g∗22(v2)− v1|+ (g∗22(v2)− g∗12(v1))

+}. (8)

Since g∗12(v1) < v1 as shown above, at least one of the terms in (8) is strictly positive.
Consequently, ∆2(g

∗
12, v2) > 0.

Consider the case with complete information about valuations v1 and v2 as in
Glazer and Ma (1989). In this case, the agents under our mechanism can correctly
guess each other’s bids. With v1 > v2, it is not hard to see that in truthfully bidding
Nash equilibrium for the contesting game, agent 1’s guessing strategy satisfies g∗11 =
g∗12 = v2 while agent 2’s satisfies g∗21 = v1 and v2 ≤ g∗22 ≤ v1. The participation
fees are 0 for agent 1 and δ(v1 − v2)/4 > 0 for agent 2. It follows that even with
complete information, agent 1 is not discouraged from entering the contest, while
the positive participation fee is the deterrence against agent 2’s participation.

Let ((b∗1, g
∗
1), (b

∗
2, g

∗
2)) be the truthfully bidding Bayesian-Nash equilibrium for

the contesting game. We shorten the notation for the agents’ expected payoffs at
((b∗1, g

∗
1), (b

∗
2, g

∗
2)) to U1(g

∗, v1) and U2(g
∗, v2) at valuations v1 and v2.

6When agent 2 bids truthfully, agent 1 gains
∫

(v1 − v′
2)dF2(v′

2|v1) from the auction. It follows
that the suboptimal guesses g11(v1) = g12(v1) = v1 already ensures agent 1 a strictly positive
payoff in the contesting game.
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2.12 Implementing the Efficient Outcome in a Unique and Strict Bayesian-
Nash Equilibrium

When information assumption (4) is satisfied, Theorem 1 shows that with the
truthfully bidding Bayesian-Nash equilibrium ((b∗1, g

∗
1), (b

∗
2, g

∗
2)) for the contesting

game:
U1(g

∗, v1) =
∫
[v1 − v′2]dF2(v

′
2|v1)−∆1(g

∗
21, v1)

> (1− δ)
∫
(v1 − v′2)dF2(v

′
2|v1)

> 0
(9)

and
U2(g

∗, v2) = −∆2(g
∗
12, v2) < 0 (10)

for v1, v2 ∈ [0, 1] with v1 > v2. From (9) and (10) it follows that in the reduced game
in Figure 1 that results from the truthfully bidding Bayesian-Nash equilibrium for
the contesting game, Mine is strictly dominant for agent 1 and Hers is the unique
optimal choice for agent 2 given that agent 1 chooses Mine. In particular, the choice
pair (Mine, Hers) is the unique and strict Bayesian-Nash equilibrium outcome for
the reduced game.

Agent 2

Mine Hers

Mine w1, w2 v1, 0
Agent 1

Hers 0, v2
v1

2
, v2

2

Figure 1: The Reduced Game Resulting from the Truthfully Bidding Bayesian-Nash
Equilibrium ((b∗1, g

∗
1), (b

∗
2, g

∗
2)) with w1 = U1(g

∗, v1) and w2 = U2(g
∗, v2) .

In summary, we have shown that the nested mechanism with the extended-form
participation fees implements the efficient outcome in a unique and strict Bayesian-
Nash equilibrium of the reduced game under information assumption (4).

2.2 The Nested Mechanism in Simple Form

From the proof of Theorem 1 it is clear that the only reason for ever using the
extended-form fee is to avoid zero participation fee for the fake mother in case of
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degenerate posteriors. If the posteriors are non-degenerate, a much simpler mecha-
nism can resolve the King Solomon’s dilemma equally successfully. We now simplify
the mechanism by replacing the extended-form fees with fees in a simple form.

As before, agent i bids some amount βi ∈ [0, 1] in the contesting game. However,
unlike before, her participation fee depends on the accuracy of her guess γi ∈ [0, 1]
of agent j’s bid only. Specifically, given agents’ bid-guess pairs (βi, γi) and (βj, γj),
agent i’s participation fee is given by

∆i(γi; βj) = δ|γi − βj|, j 6= i, (11)

where δ ∈ (0, 1] is a constant. Since agent i’s participation fee in (11) does not
depend on agent j’s guess, we now let ∆i(vi) denote the minimum expected partic-
ipation fee for agent i when the agents bid truthfully.

When agent 1 is more deserving and F1(·|v2) is non degenerate, the expected
participation fees ∆1(v1) and ∆2(v2) satisfy the same properties in Theorem 1. We
now summarize this result in Theorem 2 below. Proof of this theorem is omitted as
it follows straightforwardly from the proof of Theorem 1.

THEOREM 2 Assume F1(·|·) and F2(·|·) satisfies (4). Assume further F1(·|v2)
is non degenerate for all v2. Then, bidding one’s true valuation is consistent with
Bayesian-Nash equilibrium for the contesting game. Furthermore, in the truthfully
bidding Bayesian-Nash equilibrium:

(i) ∆1(v1) < δ
∫

(v1 − v′2)dF2(v
′
2|v1)

and
(ii) ∆2(v2) > 0

for v = (v1, v2) such that v1 > v2.

When the agents bid truthfully, Theorem 2 implies that under information as-
sumption (4) and the non degeneracy of F1(·|v2), the nested mechanism with the
simple-form participation fees for both agents also makes it strictly dominant for
the more deserving agent to choose Mine, against which the unique best response
for the less deserving agent is to choose Hers, given the agents’ valuations v2 < v1.
It follows that the simplified mechanism also yields the desired implementation in
a unique and strict Bayesian-Nash equilibrium for the reduced game in Figure 1
under these information and the non degeneracy assumptions.

10



3 A Generalization to the n-Person Case

The mechanism for the 2-person case generalizes naturally to the case with n
agents as follows. Each agent simultaneously chooses between demanding the good
(“Mine”) and not demanding it (“Others”). When all the agents choose Others, the
good is randomly allocated among them in equal probability. When all but only
one agent choose Others, the good is given to the agent who chooses Mine. When
two or more agents choose Mine, those who did not make that choice end their
participation with a zero payoff.

Let k be the number of the remaining agents. A lottery with k equally probable
states is drawn before the agents decide on their bid-guess combinations, so they can
condition their choices on the states of the lottery. Let (βi, γi) with γi = (γii, γio)
denote agent i’s bid-guess pair, where βi is her bid, γii is her guess in state s = i of
the highest bid by the agents other than herself, and γio is her guess of the highest
bid in states s 6= i.

Given the other agents’ bid-guess pairs (βj, γj), let ji 6= i be the agent whose bid
βji

= maxj 6=i βj. When state s = i occurs, agent i’s participation fee is given by

∆ii(γii; βji
, γjio) =

δ

2
{|γii − βji

|+ (γii − γjio)
+},

where γjio is the guess by agent ji in state s 6= ji. When state s 6= i occurs, agent
i’s participation fee is given by

∆io(γi0; βji
) = δ|γio − βji

|.

It follows that the expected participation fee for agent i over the states of the lottery
is:

∆i(βi, γi; β−i, γ−i, k) =
k − 1

k
∆io(γio; βji

) +
1

k
∆ii(γii; βji

, γjio),

where β−i and γ−i denote respectively the collections of bids and guesses by all
participating agents other than agent i. These participation fees together with a
parallel extension of information assumption (4) can carry through the results to
the n-person case.

4 Conclusion

This paper proposes a mechanism for resolving King Solomon dilemma under general
information assumptions. The mechanism involves a second-price auction with en-
dogenous participation fees. In essence, the success of the mechanism is guaranteed
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by the properties that these endogenous participation fees maintain the incentives
for truthfully bidding in second-price auction, they yield a positive participation fee
for the less deserving agent so as to deter participation by her, and they yield a small
enough participation fee for the more deserving agent to guarantee her participation.

All in all, the mechanism enables the more deserving agent to upstage the less
deserving agent by making sufficient use of the fact that the agents know how
deserving they themselves are. This is done by making them guess about each
other’s bids to determine their fees as well as participate in a second-price auction
to determine the winner and the price of the good should a conflict arise.
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