
UC San Diego
UC San Diego Previously Published Works

Title
Computational Prediction of the Binding Pose of Metal-Binding Pharmacophores

Permalink
https://escholarship.org/uc/item/78s0w98r

Journal
ACS Medicinal Chemistry Letters, 13(3)

ISSN
1948-5875

Authors
Karges, Johannes
Stokes, Ryjul W
Cohen, Seth M

Publication Date
2022-03-10

DOI
10.1021/acsmedchemlett.1c00584
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/78s0w98r
https://escholarship.org
http://www.cdlib.org/


Computational Prediction of the Binding Pose of Metal-Binding
Pharmacophores
Johannes Karges, Ryjul W. Stokes, and Seth M. Cohen*

Cite This: ACS Med. Chem. Lett. 2022, 13, 428−435 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Computational modeling of inhibitors for metalloenzymes in
virtual drug development campaigns has proven challenging. To overcome
this limitation, a technique for predicting the binding pose of metal-binding
pharmacophores (MBPs) is presented. Using a combination of density
functional theory (DFT) calculations and docking using a genetic algorithm,
inhibitor binding was evaluated in silico and compared with inhibitor−
enzyme cocrystal structures. The predicted binding poses were found to be
consistent with the cocrystal structures. The computational strategy
presented represents a useful tool for predicting metalloenzyme−MBP
interactions.

KEYWORDS: Bioinorganic chemistry, docking, metalloenzyme inhibitors, medicinal inorganic chemistry, metalloenzymes

Approximately 40−50% of all enzymes are metal-ion-
dependent.1,2 Typically, the metal ion(s) in these

metalloenzymes play either a structural or a catalytic/
functional role. For structural purposes, the metal ion ensures
proper folding of the protein and allows it to achieve the
required three-dimensional shape. Functional metal ions are
typically found in the active site where they facilitate catalysis,
promote electron transfer, or support substrate binding.3,4

Despite their diverse biological roles and potential value as
drug targets, the development of metalloenzyme inhibitors has
lagged. Only ∼7% of FDA-approved drugs in the United States
target a metalloenzyme.5

Substantial progress has been made to improve the
computational algorithms and scoring functions used to find
and identify the energetic minimum of an inhibitor−protein
complex.6−9 Despite advancements in computational techni-
ques, predicting accurate binding affinities and geometries of
metalloenzyme−inhibitor interactions remains challeng-
ing.10−12 A recent computational study compared the perform-
ance of several commonly used docking programs (Auto-
Dock4, AutoDock4Zn, AutoDock Vina, Quick Vina 2, LeDock,
PLANTS, and UCSF DOCK6) with metalloenzymes. While
some of these programs could predict the correct binding
geometry of a ligand, none of them were able to successfully
rank docking poses.13 Some attention has also been devoted
toward molecular dynamics (MD) strategies. One study
demonstrated the docking of inhibitors with a hydroxamic
acid metal-binding pharmacophore MBP to Zn2+-dependent
matrix metalloproteinase 9 upon dividing the computational
process into several tasks: (i) docking with the requirement to
generate a metal−MBP interaction of the hydroxamic acid

using the FlexX program, (ii) optimization of the geometry of
the MBP−metalloenzyme complex by quantum mechanical
and molecular mechanical (QM/MM) calculations, (iii)
conformational optimization of the MBP−metalloenzyme
complex without changes in the metal−MBP interaction by
MD calculations, and (iv) a single-point QM/MM energy
calculation. Using this complex workflow, the authors were
able to correlate the calculated and experimentally determined
binding affinity.14 However, the aforementioned methods are
complex and require significant computational resources and
expertise, making them unsuitable for routine virtual screening,
docking, and modeling. More user-friendly and accessible
methods for predicting metalloenzyme−inhibitor/MBP inter-
actions are needed.
Herein, a readily accessible method for the prediction of

MBP−metalloenzyme interactions is presented. The binding
pose of the MBP fragment was predicted using a combination
of DFT calculations and a genetic algorithm with GOLD. The
resulting MBP pose was then extended with Molecular
Operating Environment (MOE) and energetically minimized.
The method was evaluated against several structurally
characterized metalloenzymes from the Protein Data Bank
(PDB) with different metal ion active sites and a variety of
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bound inhibitors. The predicted binding poses were found to
be in good agreement with the crystallographically determined
structures, providing an accessible tool for computational drug
discovery campaigns against metalloenzymes.
To ensure the generality of the approach, metalloenzymes

were examined that contain different metal ions, different
numbers of metal ions in the active site, and varying
coordination geometries. The following enzymes were selected

(1) Human carbonic anhydrase II (hCAII): Human
carbonic anhydrase II is a Zn2+-dependent metal-
loenzyme. The active site consists of a tetrahedral Zn2+

ion, bound by three His residues and a capping water
molecule. The enzyme catalyzes the hydration of carbon
dioxide to a bicarbonate anion that modulates carbon
dioxide levels, as well as the pH in the bloodstream.
hCAII inhibitors are used as a treatment for
glaucoma.15−17

(2) Jumonji-domain of histone lysine demethylase (KDM):
Histone lysine demethylases with a conserved Jumonji-
domain are Fe2+-dependent enzymes (crystal structures
often possess Ni2+ or Mn2+ ions as a surrogate for Fe2+).
The enzyme active site consists of an octahedral Fe2+ ion
bound by two His residues and one Glu residue and
three capping water molecules. The enzyme catalyzes
the demethylation of lysine residues using α-ketoglutaric
acid and oxygen. Certain KDMs have been associated
with cancer as well as various mental disorders.18−20

(3) N-terminal domain of the polymerase acidic subunit of
the RNA-dependent RNA polymerase of the influenza
virus (PAN): The N-terminal domain of the polymerase
acidic subunit is a Mn2+- or Mg2+-dependent metal-
loenzyme. The enzyme active site consists of two Mn2+

or Mg2+ ions, bound by one His, one Ile, one Asp, and
two Glu residues and five capping water molecules. The
enzyme cleaves a 5′-mRNA cap, which is necessary for
eukaryotic translation. PAN is considered an important
pharmacological target against the influenza virus with
one compound approved for human use.21−23

The modeling experiment was divided into several tasks for
which different docking programs were used based on their
individual strengths (Figure 1). The three-dimensional
structure of an MBP fragment was generated and energetically

optimized using density functional theory (DFT) calculations
with Gaussian. Other molecule editors (i.e., ORCA, Spartan)
were also found to be suitable to generate an appropriate,
three-dimensional structure of the MBP. Next, the metal-
loenzyme−inhibitor structure was obtained from the PDB.
Using the MOE software suite, water molecules and other
small molecules (e.g., buffer components, cryoprotectant,
inhibitors, counterions) were removed, hydrogen atoms were
added, and side chains protonated at physiological pH.
The optimized MBP fragments were docked with a genetic

algorithm using Genetic Optimization for Ligand Docking
(GOLD). The structure of the protein was considered rigid,
and the metal ions in the active site were set with a predefined
coordination geometry (e.g., tetrahedral, octahedral). The
resulting binding poses were evaluated during docking using
the ChemPLP scoring function. Following this, the binding
poses from the docking experiment were rescored using the
GoldScore scoring function. Previous studies have shown that
rescoring improves the identification of fragment hits
compared to use of a single scoring function.24,25 Because
docking with GOLD requires high computational resources
that would limit virtual screening of large libraries, the docking
process was divided into two tasks. The MBP was docked
using GOLD, followed by virtual MBP “fragment growth” into
a lead-like molecule using MOE. To elaborate the MBP
fragment into the complete inhibitor, the MBP model obtained
from GOLD was loaded into MOE, and the MBP was
manually elaborated to generate the complete inhibitor. The
inhibitor was then energetically minimized, while the pose of
the MBP generated by GOLD was kept fixed.
To ensure that the metalloenzyme structures studied here

are highly homologous, the amino acid sequences and three-
dimensional structures were compared. As expected, each
target was found with a sequence homology of at least ∼93%
and a sequence coverage of at least ∼91% (Table S1). Notably,
portions of the structures that did not align were the termini,
which were not resolved in all structures. To evaluate the
accuracy of the inhibitor docking, the computational and
crystallographic structures were aligned using MOE using a
protein alignment algorithm. The sequences of the structures
were aligned, and then, the three-dimensional structures were
superimposed. While the aligned proteins showed generally a

Figure 1.Workflow for modeling metalloenzyme−inhibitor interactions. Protein surface (PAN) shown in gray, active site metals shown in cyan, and
MBPs and inhibitors shown as sticks colored by atom type.
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high congruency, some portions of the structures showed
significant discrepancies. To improve the superposition, the
structures were further aligned with a focus on the active site,
specifically on the metal ion(s) and adjacent amino acid atoms
as a reference point (see Supporting Information for details).
As a means to quantify the difference between the computa-
tional and crystallographic binding geometries, the root-mean-
square deviation (RMSD) values were calculated using
LigRMSD 1.0.26

To validate the docking methodology, four structurally
diverse and crystallographically characterized MBPs for each
metalloenzyme target were examined.27−37 Using DFT
calculations and docking with GOLD, the best scoring binding
poses of all MBPs with hCAII and PAN and the majority of
MBPs with KDM were found coordinated to the active site
metal ion(s). In the case of 2,4-pyridinedicarboxylic acid with
KDM (PDB 2VD7), the MBP did not dock to the active site

Figure 2. Comparison of MBP binding poses from crystallographic determined structures (gray carbons, PDB entry codes shown) to
computational docking (green carbons) using GOLD.

Table 1. RMSD Values of Computationally and
Crystallographically Determined Metalloenzyme−MBP
Complexes

enzyme entry RMSD/Å reference

hCAII 2WEJ 0.49 27
3P58 0.86 28
4MLX 0.32 29
6RMP 3.75 30

KDM 2VD7 0.22 31
2XXZ 0.68 32
3ZLI 0.34 33
6ETU 0.94 34

PAN 4E5F 0.23 35
4E5G 0.63 35
4MK1 1.67 36
6E6V 0.34 37
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but rather at a distal site (Figure S1). To address this outlier,
docking was repeated with a box of 20 Å centered around the
KDM active site resulting in 2,4-pyridinedicarboxylic acid
docked to the active site metal ion in KDM.
The computational binding poses were compared to the

crystallographic structures. A visual comparison shows good
alignment for the vast majority of the modeled and
experimentally determined metalloenzyme−MBP complexes
(Figure 2). The only fragment that showed a significant
discrepancy was 3-(dimethylamino)benzohydrazide (PDB
6RMP) bound to hCAII. This MBP was computationally
predicted to bind the metal with the keto hydrazide moiety in
an orientation that was reversed from the crystallographic
structure. The quality of the docking was quantified by
determining the RMSD values between the computational and
crystallographic configurations. As expected, the predicted

binding poses of the MBP fragment were found to be in good
agreement with an average RMSD value of 0.87 Å (Table 1).
Following successful MBP geometry prediction, the

modeling of lead-like inhibitors based on these MBPs was
performed. A total of 47 crystal structures of metalloenzyme−
inhibitor complexes from the PDB were examined. Specifically,
benzenesulfonamide inhibitors with hCAII,38−55 4-pyridine-
carboxylic acid inhibitors with KDM,31,56−63 and 3-hydroxy-4-
oxo-1,4-dihydropyridine-2-carboxylic acid inhibitors with
PAN

35,37,64 were modeled. The bound inhibitors were selected
to have broad chemical composition to test the generality of
the methodology (Figures S2−S4). To verify the binding pose
of the MBP fragment, the computational poses from GOLD
were compared to the crystal structures of bound lead-like
inhibitors, comparing only the MBP moiety (Figure S5).
Overall, the fragments showed good agreement to the
experimental binding geometries with RMSD values of 0.90

Figure 3. Comparison of binding modes of crystallographically determined structures (gray carbons, PDB entry codes shown) to computationally
derived inhibitor poses (green carbons).
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Å for hCAII, 0.52 Å for KDM, and 0.78 Å for PAN (for a
complete list of RMSD values, see Table S2). That stated,
while the crystallographically characterized binding poses for
the fragments bound to hCAII and KDM were very similar, the
MBPs for PAN were found in more varied orientations across
the crystal structures (Figure S5C,D). While the bond
distances for MBPs in PAN were all similar, the MBPs are
bound with orientational differences relative to the active site.
A binding angle was arbitrarily defined between the carbon
atom of the carboxyl group of Asp108, a centroid between
both metal centers, and a centroid of the aromatic MBP
moiety. This angle ranged from 175° (PDB 4E5I, Figure S5) to
145° (PDB 6E3N, Figure S5) across structures and likely
originates from the influence of other interactions that the full-
length inhibitors form with subpockets in the relatively large,
open active site of PAN.
The benzenesulfonamide fragment in hCAII showed the

largest RMSD discrepancy between the docked and exper-
imental structures. These differences could negatively influence
the next stage in the docking the full-length inhibitor, where
ligand extension of the predicted binding pose for the MBP
could lead to inaccuracies in the full ligand pose. Therefore, a
modified MBP docking protocol was used for the benzene-
sulfonamide fragment in hCAII. The binding pose of the MBP
is primarily driven by metal coordination and hydrogen
bonding interactions of the sulfonamide moiety with hCAII.
Therefore, the docking of this fragment was repeated with a
weighting bias that added additional metal-binding terms to
the GoldScore scoring function, as previously described.65

With these adjustments to the scoring function, the binding
pose of benzenesulfonamide was better aligned with the
experimentally determined structures (Figure S6) and
produced a low RMSD value of 0.47 Å (Table S3). This
experiment shows that additional information about expected
MBP−active site interactions can be used to better predict the
binding pose. To avoid adding a user bias in applying our
method (caused by modifying the applied scoring function),
the initial binding pose (Figure S5) was used for the further
ligand extensions.
As described above, the three-dimensional protein structures

of the computationally and experimentally determined
enzyme−inhibitor complexes were superimposed using an
automatic algorithm and then further refined with focus on the
active site with an intentional bias toward the active site metal

ion(s) as well as the coordinating amino acids (Figure S7). As
the inhibitors are expected to coordinate to the metal ion as
part of their mechanism of action, these elements should be
aligned with the highest possible accuracy. This procedure
resulted in average RMSD values of 0.23 Å for hCAII, 0.13 Å
for KDM, and 0.14 Å for PAN for the respective active site
alignments.
Following the protein structure alignment, the computa-

tionally and experimentally determined enzyme−inhibitor
complexes were compared (Figures 3 and S8−S10). Overall,
a high congruency between the docked models and the
experimentally determined binding poses is observed with
average RMSD values of 2.44 Å for hCAII, 1.57 Å for KDM,
and 1.60 Å for PAN (for a full list of RMSD values, see Table
S4). Noteworthily, the discrepancies of the computationally
modeled and experimentally determined binding poses are
within the average resolution of the crystal structure within the
PDB, with most entries having a resolution of 1.8−2.0 Å.66

The RMSD distribution of the structure alignments was
analyzed (Figure 4). While a few of the docked compounds
showed large discrepancies to the experimentally determined
structures (RMSD >4 Å), the majority of docked inhibitors
were in good agreement with the experimental structures, with
RMSD values well within the resolution range of typical
protein−inhibitor cocrystal structures (RMSD <2 Å). These
results suggest that the computational approach described here
could be useful for the developing MBP fragments into lead-
like compounds via fragment growth.
Finally, the docking method was compared with commonly

used docking programs AutoDock Vina (Figure S11) and
SwissDock (Figure S12) under standard docking procedures
using hCAII and PAN as model systems. Upon applying these
methods, MBPs were not found in the active sites, and the
results were not consistent with the crystallographically
characterized structures. These findings further highlight the
value of the methods described here for the prediction of
binding poses of inhibitors in metalloenzymes.
A new computational strategy for modeling the binding of

MBPs in metalloenzymes is presented. The approach uses a
combination of DFT calculations and docking with a genetic
algorithm (GOLD). The method was evaluated by comparing
computational models with experimentally determined metal-
loenzyme−inhibitor complexes. Metalloenzymes with different
metal ions, different numbers of metal ions in the active site,

Figure 4. Distribution of RMSD values of computational and experimental binding poses for metalloenzyme inhibitors. Color-coded by
metalloenzyme: hCAII (blue), KDM (orange), and PAN (green).
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and different metal coordination geometries were examined to
determine the scope and robustness of the approach. Good
agreement was found between the computational models and
experimentally determined structures, well within the reso-
lution of most crystal structures in the PDB. The workflow
described here is a robust method for predicting MBP binding
poses, and further computational methods that address
energetic optimization of complete, lead-like inhibitors would
be useful next steps in improved modeling of metalloenzyme
inhibitors. Overall, the presented methodology may provide a
more accessible approach for the design of novel metal-
loenzyme inhibitors.
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