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Wind is a critical factor in the ecology of pollinating insects such as bees.
However, the role of wind in determining patterns of bee abundance and
floral visitation rates across space and time is not well understood. Orchid
bees are an important and diverse group of neotropical pollinators that
harvest pollen, nectar and resin from plants. In addition, male orchid bees
collect volatile scents that they store in special chambers in their hind legs,
and for which the wind-based dispersal of odours may play a particularly
crucial role. Here, we take advantage of this specialized scent foraging
behaviour to study the effects of wind on orchid bee visitation at scent
sources in a fragmented tropical forest ecosystem. Consistent with previous
work, forest cover increased orchid bee visitation. In addition, we find that
temporal changes in wind speed and turbulence increase visitation to scent
stations within sites. These results suggest that the increased dispersal of
attractive scents provided by wind and turbulence outweighs any bio-
mechanical or energetic costs that might deter bees from foraging in these
conditions. Overall, our results highlight the significance of wind in the
ecology of these important pollinators in neotropical forests.
1. Introduction
Animal pollinators such as bees provide critical ecosystem services that support
biodiversity [1] and global crop yields [2]. The composition and abundance of
pollinator communities can vary substantially in both space [3] and time [4],
likely as a result of both stochastic fluctuations and small-scale variation in
the biotic and abiotic environment [5].

Wind strongly affects flying insects and may be an important factor in spatio-
temporal heterogeneity of pollinator visitation. Wind affects macroecological
patterns of insect dispersal and migration [6,7]. Mean wind flow [8] and fluctu-
ations (i.e. turbulence) pose biomechanical challenges [9–13] that push
manoeuvrability limits in flying insects [14] and can impose energetic costs on
flight [15]. The mechanical and physiological challenges posed by wind may
have important effects on insects’ interactions with plants, including herbivory
[16,17], and pollinator visitation and landing [18]. Wind also indirectly impacts
flying insects by inducing plant movements [19], which can impose additional
manoeuvrability challenges [14]

In addition to biophysical challenges, wind disperses chemical cues and
signals critical for interactions between insects (e.g. attracting mates [20], or
locating prey [21,22]), as well as between insects and plants (e.g. pollinator
attraction [23–25] and herbivory [26]). Turbulence (i.e. fluctuations in wind
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on top of mean flow speed and direction) is a critical factor in
olfactory navigation, as it disperses odours into complex
plumes [27,28].

While wind is known to have many effects on pollinator
behaviour and ecology, our understanding of its influence on
bee abundance and plant visitation rates is limited. While
extreme wind speeds restrict bee flight and foraging (reviewed
in [29]), recent studies have found that wind can have either
positive [30] or negligible [10,31] effects on bee abundance
and activity. Some of the variable effects of wind could be
explained by differences in sensory ecology, particularly the
importance of olfactory cues for locating floral resources.

Orchid bees (Apidae: Euglossini) are a key group of polli-
nators for which wind-borne odours likely play a uniquely
critical role. The approximately 200 species (across four
genera) of orchid bees are important neotropical pollinators
of orchids and several other plant families [32], in addition to
pollinating important crop plants such as tomato [33,34].
In this group, foraging behaviour intersects with mating strat-
egies, as male orchid bees gather species-specific combinations
of volatile compounds from a wide variety of flower species
[35]. These fragrance ‘bouquets’ are thought to play a key
role in attracting mates [36]. Orchid bees are primarily forest
associated, and they collect fragrances from flowers and
other sources that are often sparsely distributedwithin tropical
rainforests. Accordingly, male orchid bees show strong pat-
terns of long-distance movement and dispersal across the
landscape [37–40] and are thought to locate floral scent
resources in dense vegetation using olfactory cues.

Despite its likely importance in dispersing scents, the role
of wind in orchid bee ecology is not well understood, although
previous observers have noted temporary increases in orchid
bee arrivals at baits after wind gusts [41]. Recent work has
also shown that male orchid bees performing mating displays
strongly prefer to orient on the downwind side of trees,
presumably to maximize the dispersal of odour plumes [42].
However, to our knowledge, quantitative studies of the
impacts of wind (or turbulence) on spatial or temporal vari-
ation in orchid bee abundance and visitation rates at scent
sources have not been made.

Local wind patterns can be strongly affected by forest
fragmentation [43], which is increasingly characteristic of the
Neotropical range of orchid bees. Previous work has shown
that forest fragmentation significantly alters orchid bee commu-
nities (compared to continuous forest [44]), and some studies
have found that fragment traits (such as size and shape)
significantly affect orchid bee abundance and community com-
position [45–47] (although other studies have not found
evidence for such a relationship [48,49]). In addition tovariation
across fragments, abundance and composition of orchid bee
communities can vary locally within fragments, for example
as a result of microhabitat variation [47,50,51] and edge effects
[52,53]. Recent work has also shown that local landscape struc-
ture (e.g. forested area within 1000 m) can have significant
effects on bee community structure and abundance [54].

Here, we explore the effects of local landscape structure,
wind speed and turbulence on male orchid bee visitation
rates to scent sources within and adjacent to a large tropical
forest fragment. In addition to a positive association between
visitation and local forest cover, we predict that wind speed
positively correlates with orchid bee visitation, because
higher wind speeds will further disperse scents and attract
bees from a wider area. Conversely, we hypothesize that
turbulence is negatively correlated with visitation, because
stronger turbulence will result in higher costs of flight and
make odour plumes more challenging for bees to track.
2. Material and methods
(a) Sampling sites and orchid bee collection
We collected male orchid bees from nine different sites within or
adjacent to a large forest fragment at the Las Cruces Biological
Station (8.79°, −82.96°) in Coto Brus, Puntarenas Province, Costa
Rica (figure 1, electronic supplementary material, table S1). The
forested areas in this region are characterized by premontane
forest, with a high abundance and diversity of euglossine bees [45].

Male orchid bees were collected from each site multiple (5–9)
times between 1 October and 16 November 2014 (electronic sup-
plementary material, table S2). All collections occurred between
08.30 and 11.30, roughly corresponding to peak daily abundance.
Bees were sampled by saturating tissue paper with one of two
compounds (cineole or methyl salicylate) and suspending this
scent bait approximately 1.5 m above the ground in a permeable
metal tea infuser. Male orchid bees arriving at the scent bait were
collected by hand netting for 20 min. Bees were identified (elec-
tronic supplementary material, table S1) independently by two
authors (J.B. and J.D.C.) using an established taxonomic key
[55]. Identifications of example specimens for each species were
reviewed and corrected by Dr Santiago Ramírez (UC Davis).

(b) Wind measurement
Simultaneous with bee collections, we characterized the local
wind environment using a three-dimensional sonic anemometer
operating at 10 Hz placed 1 m above the ground and greater
than 4 m away from the scent bait. For each 20 min wind
sample, we calculated the mean wind speed and turbulence.
We estimated the strength of turbulence by measuring the
mass-specific turbulent kinetic energy of wind (TKE), as
0:5 � (s2(u� �u)þ s2(v� �v)þ s2(w� �w)) following [56], where u,
v and w represent wind speeds in the East–West, North–South
and vertical direction, respectively, �u, �v and �w, represent mean
values along those respective axes, and σ2 represents variance.
Overall mean wind speed was calculated as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�u2 þ �v2 þ �w2

p
. As

turbulent kinetic energy correlated strongly with wind speed,
we estimated the relative turbulent kinetic energy (hereafter
‘relative TKE’) as the residuals of a linear model of TKE on
mean wind speed (log10(TKE)∼ log10(mean wind speed)).

(c) Estimation of landscape forest cover
To estimate the local forest cover at each site, we used a manually
digitized GIS layer of small-scale (approx. 2 m resolution) forest
elements in the region [57,58]. We calculated the extent of forest
cover (% area forested) within a 200 m buffer radius around each
site (figure 1). Using alternative buffer distances of 100–500 m
had no qualitative effect on results.

(d) Data analysis and statistics
We built a generalized linear mixed effects model (Poisson family
with a log-link) to assess factors driving orchid bee visitation
(i.e. the total number of male orchid bees visiting a bait during a
collection) using the ‘lme4’ package [59] in R [60]. Forest cover
within 200 m, wind speed and turbulence (relative TKE) were
included as fixed effects in this model, while collection site and
date were included as random effects. p-Values were calculated
using the ‘lmerTest’ package [61]. Interaction effects between
forest cover and wind speed, and forest cover and turbulence,
were not significant, and were removed from the final model.
Excluding collections where methyl salicylate was used as a bait
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Figure 1. Study area and methods. (a) Map of collection sites (N = 9) at Las Cruces Biological Station, Puntarenas Province, Costa Rica. Solid markers show collec-
tion site (with shade indicating average percentage of local forest cover), and dotted lines show buffer zones used for measuring forest cover (radius = 200 m).
(b) Male orchid bees visiting a scent bait. (c) Three-dimensional sonic anemometer deployed in the field. Photos: Julia Brokaw.
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Figure 2. Forest cover and wind drive orchid bee visitation. Marginal effect plots for (a) forest cover (% within 200 m), (b) the effects of wind speed and
(c) turbulence on orchid bee visitation. Solid markers show partial residuals for individual collections. Marker shade in all figures indicates amount of forested
area (equivalent to site colours in figure 1).
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(which represented a minority of collections) had no qualitative
effects on results, so collections made with methyl salicylate and
cineole were pooled. We built a separate generalized linear
model to directly test effects of wind among (versus within) sites
(see electronic supplementary material, figure S1 for details).

Data and custom scripts are available on Zenodo (https://doi.
org/10.5281/zenodo.3743898).
3. Results
We collected a total of 409 male orchid bees, from 23 different
species (electronic supplementary material, table S3). Orchid
bee visitation varied significantly among sites (Kruskal–
Wallis test, χ2 = 26.2, d.f. = 8, p = 9.7 × 10−4) and was positively
correlated with the percentage of forested area within 200 m of
collection sites (figure 2a, generalized linear mixed model,
d.f. = 64, z = 2.56, p = 0.01). In addition, we found that wind
speed had a significant, positive effect on orchid bee visitation
over time within sites (figure 2b, generalized linear mixed
model, d.f. = 64, z = 3.45, p = 0.0005). Turbulence also had a
significant positive effect on orchid bee visitation (figure 2c,
generalized linear mixed model, d.f. = 64, z = 2.87, p = 0.004).

The same positive effects of wind speed and turbulence
on visitation were not found between sites. Both wind
speed and turbulence also varied significantly between
sites (Kruskal–Wallis test; wind speed, χ2 = 31.3, d.f. = 8,
p = 0.0001; relative TKE, χ2 = 24.1, d.f. = 8, p = 0.02). However,
sites with higher average wind speeds did not have higher
median visitation (electronic supplementary material, figure
S1A). Likewise, sites with higher mean turbulence did not
have higher median visitation (electronic supplementary
material, figure S1B).

https://doi.org/10.5281/zenodo.3743898
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4. Discussion
Our results suggest that both landscape and wind play
important roles in driving male orchid bee visitation rates. In
particular, our findings support previous observations that
orchid bee communities can vary significantly across small
spatial scales (i.e. less than 1 km) [47,50,52] and suggest that
forest cover in particular has important effects on local vari-
ations in orchid bee abundance. This supports previous work
showing that local forested area (within 1000 m) can signifi-
cantly alter the composition and abundance of bee
communities in general [54], and orchid bee communities in
particular [49]. Our findings show that these effects occur on
even shorter spatial scales (i.e. 200 m) and can drive spatial
variation within forested fragments.

We also found a significant, positive effect ofwind speed on
visitation rates over time within sites (figure 2b), despite rela-
tively low wind speeds (median wind speed of 0.122 m s−1,
versus a global terrestrial average of approximately 3.1–
3.4 m s−1 [62]). The simplest explanation of this pattern is that
increased wind speeds disperse attractive scents over greater
distances, attracting male orchid bees from a wider area.

The positive association betweenwind speed and visitation
within sites does not hold true between sites, as windier sites
did not have higher visitation (electronic supplementary
material, figure S1). A possible explanation for this pattern is
that spatial variation (i.e. between sites) in orchid bee male
abundance is primarily driven by local landscape context,
while temporal variation (i.e. within sites) in visitation is
more strongly affected by wind. For example, increased forest
cover may increase the number of individuals located near a
site at any given time, while higher wind speeds may increase
the likelihood of those individuals visiting a scent source.

We found no evidence that turbulence decreases orchid bee
visitation; instead, higher relative turbulence was positively
associated with visitation (figure 2c). While turbulence is
often considered a challenge for olfactory navigation, we
speculate that a possible explanation for this result is that tur-
bulence also plays a role in dispersing attractive odours via
turbulent diffusion, an effect that could be especially important
when mean wind speeds are low.

Overall, our results underscore the importance of wind for
pollinator ecology, particularly in species that rely strongly on
olfactory cues. Previous work has noted that orchid bee
abundance can vary significantly across time within sites
[45]. Our results are consistent with these observations and
suggest that temporal variation within sites is driven, in part,
by variation inwind speed and turbulence, consistentwith pre-
vious anecdotal observations [48]. Future studies investigating
a wider range of environmental conditions and a diversity of
pollinator species will be critical for understanding the general-
ity of the findings here (e.g.whether the positive effects ofwind
are restricted to species that rely primarily on olfactory cues).

These results may also have important implications for
the timing of volatile release in Euglossine bee-attracting
plants. The release of pollinator-attracting fragrances from
many flowers shows strong rhythmicity, likely synchronized
with the activity of pollinating animals [63]. Our findings
suggest that timing and efficacy of scent release by flowering
plants could also be shaped by wind conditions.

More broadly, our results underscore the potentially
important but understudied role of wind in pollinator behav-
iour and ecology. In addition, anthropogenic environmental
change is altering wind conditions at both the local (e.g.
forest fragmentation [43,64]) and global (e.g. planetary
shifts in wind and weather patterns [62,65]) scales. However,
the effects of these changes on pollinators and the ecosystem
services they provide are not well understood and represent
an important direction for future study.

Data accessibility. Raw data and custom scripts are available on Zenodo
https://doi.org/10.5281/zenodo.3743898 [66].
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