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ABSTRACT: The role of Fe in biological and industrial
N2 fixation has inspired the intense study of small
molecule analogues of Fe−(NxHy) intermediates of
potential relevance to these processes. Although a number
of low-coordinate Fe−(N2) featuring varying degrees of
fidelity to the nitrogenase active site are now known, these
complexes frequently feature strongly donating ligands
that either enforce low- or intermediate-spin states or
result in linear Fe−(N2)−Fe bridging motifs. Given that
the nitrogenase active site uses weak-field sulfide ligands to
stabilize its reactive Fe center(s), N2 binding to high-spin
Fe is of great interest. Herein, we report the synthesis and
characterization of the first terminal N2 complex of high-
spin (S = 3/2) Fe(I) as well as a bridging Fe−(N2)−Fe
analogue. Electron paramagnetic resonance and solution
magnetic moment determination confirm the high-spin
state, and vibrational experiments indicate a substantial
degree of activation of the NN bond in these complexes.
Density functional theory calculations reveal an electronic
structure for the terminal adduct featuring substantial
delocalization of unpaired spin onto the N2 ligand.

The fixation of atmospheric N2 is an essential process in
both the natural world and modern human society.1

Given the kinetic challenges of activating the N−N triple bond
and the inherent chemical complexity of such a process, the
systems responsible for biological2 and industrial3 N2 fixation
have been subjected to intense scrutiny. Despite recent
advances in the field, the detailed mechanism of N2 fixation
by nitrogenase has yet to be fully elucidated.4 Indeed, some of
the proposed elementary steps of this mechanism are without
synthetic precedent. Inspired by the FeMoco active site of
nitrogenase (Figure 1B) (and its non-Mo congeners),5 the
synthetic inorganic community has targeted model complexes
to reveal the fundamental chemistry of N2 activation at
transition-metal centers,6 culminating in the discovery of
synthetic molecular systems based on Mo7 and Fe8 for the
catalytic reduction of N2 to NH3.
Although an N2 adduct of the FeMoco has not yet been

characterized, biochemical studies have provided compelling
evidence for Fe as the likely site(s) of N2 binding.4

Concurrently, a wealth of model chemistries for N2 and related
nitrogenous substrates have been discovered with Fe-based
molecular systems,9 including systems capable of facile,
reversible NN cleavage.10 Although the coordination
chemistry of N2 with Fe has been studied since the 1970s,11

most Fe−(N2) complexes are diamagnetic, 18-electron species,
9

and only recently have paramagnetic Fe−(N2) complexes been
fully characterized.12 Many of these complexes are supported by
sterically demanding, strong-field ligands such as phosphines or
redox-active pyridine-diimine (PDI) ligands resulting in spin
states of S = 1/2 or 1 at Fe. These species stand in contrast to a
hypothetical N2 adduct of a belt Fe of FeMoco. Given the
weak-field nature of sulfide ligands, such a complex would likely
feature a locally high-spin Fe (Figure 1B). Targeting synthetic
models of N2 coordination to high-spin Fe in weak ligand fields
is therefore an important area of study. The only Fe−(N2)
complexes thought to have local spin states greater than S = 1
are linear Fe−(μ-N2)−Fe bimetallic complexes supported by β-
diketiminate (NacNac),12a tris(phosphinomethyl)borate
(PhBPiPr

3),
12b or hybrid phosphine/amide12c ligands (Figure

1A). The bimetallic nature of these complexes complicates the
analysis of the local ligand field and spin state at Fe, and while
these complexes are capable of substantial N2 activation, the
bridging N2 ligand does not experience the polarization of both
spin and electron density expected for a terminal N2 adduct.
Prior to this work, terminal high-spin Fe(I)−(N2) complexes
had not been isolated. Herein, we report the synthesis and
characterization of such a complex along with its bridging
analogue.
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Figure 1. (A) Examples of previously reported Fe−(μ-N2)−Fe
complexes that possess local spin states of S > 1. (B) The FeMoco
active site of nitrogenase with a potential N2 binding site highlighted.
(C) A terminal N2 complex of S = 3/2 Fe(I) (this work).
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With sufficiently bulky substituents at the 3-position of the
pyrazole rings, four-coordinate TpFe complexes can be
isolated.13 Of these complexes, (PhTptBu)Fe(CO) prepared
by Parkin et al. is the lone example of a monovalent TpFe
complex.14 We were curious to ascertain if an analogous N2
complex could be prepared and if such a complex might adopt a
high-spin state. To wit, reduction of the known complex
TpPh,MeFeCl15 (1) with potassium naphthalenide in toluene
gave the deep burgundy N2-bridged dimer (TpPh,MeFe)2(N2)
(2, Scheme 1). Single-crystal X-ray diffraction (XRD)

performed on 2 reveals a staggered orientation of the two Tp
ligands with an essentially linear Fe−(N 2 )−Fe linkage (∠Fe−
N−N = 177.7°) which sits on a crystallographically imposed
inversion center (Figure 2). The N−N bond length of
1.1804(19) Å for 2 is similar to that found in [(NacNac)-
Fe]2(N 2) complexes and indicative of substantial backbonding
from the Fe centers.
The IR spectrum of 2 is featureless in the region containing

N−N stretching bands; however, Raman spectroscopy reveals

an absorption at 1779 cm−1, consistent with a strongly activated
N2 unit. Solution magnetic moment determination by the
method of Evans gives a value for μeff of 6.9 ± 0.2 μB, consistent
with a well-isolated S = 3 ground state at ambient temperature
(spin-only value for S = 3:6.9 μB). Either strong ferromagnetic
superexchange coupling between two S = 3/2 Fe(I) centers or a
three-spin ferrimagnetic interaction involving two S = 2 Fe(II)
centers coupled antiferromagnetically to a triplet (N2)

2− ligand
would be consistent with these data. However, ferromagnetic
superexchange coupling via N2 is typically weak,

16 at odds with
the effective magnetic moment observed for 2 at ambient
temperature. The latter three-spin model has been used to
explain magnetic Mossbauer data collected on the related
[(NacNac)Fe]2(μ-N2).

17 Given its similarity to these com-
plexes, the three-spin model is a compelling description for 2.
This analogy is further supported by the presence of an intense
near IR band (903 nm, 3300 M−1cm−1) observed for 2 (see
Supporting Information, SI) similar to that observed in the
neutral [(NacNac)Fe]2(μ-N2) complexes.18 Detailed spectro-
scopic and magnetic studies are underway to further character-
ize these interactions.
The successful synthesis of 2 led us to explore the possibility

of stabilizing an analogous terminal Fe−(N2) complex through
the introduction of vertically oriented steric bulk at the 3-
position of the pyrazole donors. We therefore prepared the
complex TpAd,MeFeCl (3) that was then reduced by KC8 in
toluene to give pale purple TpAd,MeFe(N2) (4) (Scheme 1).
XRD on single crystals of 4 grown from toluene reveals an
approximately three-fold symmetric pseudotetrahedral coordi-
nation sphere at Fe,19 with a NN distance of 1.1187(17) Å
(Figure 2). In contrast to 2, solid samples of 4 possess an
intense IR absorption at 1959 cm−1, consistent with a strongly
activated, terminally bound N2 ligand. Evans’ method data on 4
give a value for μeff of 3.8 ± 0.2 μB, consistent with an S = 3/2
Fe(I) center. The most compelling evidence for the assignment
of a high-spin state for 4 comes from X-band EPR
spectroscopy. A frozen toluene solution of 4 at 106 K reveals
prominent features at geff = 4.0 and geff = 2.0 consistent with
transitions within the mS ± 1/2 doublet of an axial S = 3/2
system (Figure 3).20 Under the conditions investigated, no
hyperfine structure was resolved.
Density functional theory (DFT) calculations (M06L21 with

a custom Alrichs22 basis set via ORCA,23 see SI) were carried
out on the model complex TpFe(N2) in order to gain insight
into the electronic structure of 4. Geometry optimization on
the quartet surface reproduced the experimental geometry well,
yielding an essentially C3v structure in the absence of any
symmetry constraints. Optimization on the doublet surface
resulted in a higher energy structure (by ∼0.035 Eh) that
deviated substantially from three-fold symmetry, lending
further support for an S = 3/2 assignment for 4 (see SI).
Interestingly, Mulliken spin population analysis designates only
two atoms in the molecule with significant spin density
(>0.05): Fe (3.31) and the distal nitrogen of the N2 ligand (Nβ,
−0.24) (Figure 4).
The one-electron frontier molecular orbitals calculated for

TpFe(N2) provide some insight into the origin of this spin
distribution (Figure 5). While care should be taken in the
interpretation of canonical orbitals,24 the orbital structure
shown in Figure 5 is not readily described in terms of five, two-
electron d-orbitals that are filled according to the Aufbau
principle in either a low- or high-spin configuration. The
lowest-energy d-orbital has dz2 parentage followed by a

Scheme 1

Figure 2. Thermal ellipsoid plots (50% probability) of the solid-state
structures of 2 (left) and 4 (top view, top right; side view, bottom
right). Orange, blue, pink, and gray ellipsoids represent Fe, N, B, and
C atoms, respectively. Hydrogen atoms bonded to carbon and
cocrystallized solvent molecules are omitted for clarity.
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degenerate set that is essentially nonbonding with respect to
the σ-bonding framework of the molecule. A second e set
higher in energy is antibonding with respect to the Tp−Fe σ-
bonds with some delocalization on to the N2 ligand. The
remaining two β-spin electrons reside in a pair of approximately
degenerate orbitals that exhibit substantial backbonding to the
N2 ligand. The spin density found on the distal nitrogen of the
bound N2 ligand is presumably a result of this differential
backbonding in the α- and β-spin manifolds. One interpretation
of these results would place 4 on a continuum in between
Fe(I)−(N2) and Fe(III)−(N2)

2−, by analogy to the N2-bridged
diiron complex 2 and related complexes,25 although the latter
formulation would admittedly be extreme. More detailed
computational study of these complexes will accompany further
spectroscopic investigations.
In summary, through the use of a bulky Tp supporting

ligand, we have synthesized the first example of a terminal N2
complex of high-spin Fe(I). EPR studies unequivocally indicate
an S = 3/2 ground state for 4. This assignment is further
substantiated by magnetic moment determination and DFT
calculations, the latter of which indicate substantial spin

polarization of the N2 ligand. This work definitively establishes
the viability of terminal N2 coordination to high-spin Fe(I), and
the weak-field nature of 4 renders it a compelling model for
hypothetical N2 binding in a terminal mode to an unsaturated
Fe site in nitrogenase. Future studies are directed toward
spectroscopic corroboration of the spin-polarization of the N2
ligand of 4 and the potential ramifications of this electronic
structure on subsequent N2 functionalization reactivity.
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