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ABSTRACT OF THE DISSERTATION

Operator Splitting Methods for Convex and Nonconvex Optimization

by

Yanli Liu

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2020

Professor Wotao Yin, Chair

This dissertation focuses on a family of optimization methods called operator split-

ting methods. They solve complicated problems by decomposing the problem structure

into simpler pieces and make progress on each of them separately. Over the past two

decades, there has been a resurgence of interests in these methods as the demand for

solving structured large-scale problems grew. One of the major challenges for split-

ting methods is their sensitivity to ill-conditioning, which often makes them struggle

to achieve a high order of accuracy. Furthermore, their classical analyses are restricted

to the nice settings where solutions do exist, and everything is convex. Much less is

known when either of these assumptions breaks down.

This work aims to address the issues above. Specifically, we propose a novel acceler-

ation technique called inexact preconditioning, which exploits second-order information

at relatively low computation cost. We also show that certain splitting methods still

work on problems without solutions, in the sense that their iterates provide information

on what goes wrong and how to fix. Finally, for nonconvex problems with saddle points,

we show that almost surely, splitting methods will only converge to the local minimums

under certain assumptions.
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CHAPTER 1

Introduction

This dissertation focuses on solving structured optimization problems. Specifically, we

consider the composite optimization problem of the following form:

minimize f(x) + g(x), (1.1)

where f and g are functions with special structures and can be nonsmooth or noncon-

vex. Common examples include the ℓ1−norm ‖x‖1, the indicator function δC(x) of a

nonempty convex set C, and the finite sum f(x) = 1
n

∑n
i=1 fi(x). Formulation (1.1)

captures problems in numerous research areas such as statistical and machine learning,

medical imaging, compressed sensing, and control theory.

In these applications, the problem dimension (e.g., the size of the optimization

variable x) is often very large, and the per-iteration computation cost of second-order

methods (e.g., interior-point methods) is prohibitively high. Therefore, to solve (1.1)

efficiently, first-order methods are widely applied. Among them, operator splitting meth-

ods are popular choices since they can decompose complicated problem structures into

smaller pieces, and lead to simple algorithms that are easy to implement and have

low per-iteration cost. This dissertation aims to accelerate the convergence of operator

splitting methods and to analyze their behavior in the pathological1 and nonconvex

settings.

1Loosely speaking, pathological problems are the problems without a solution.
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1.1 Background

Since the 1980s, a family of second-order methods called interior-point methods (IPMs)

have been studied intensively by the optimization research community. In these meth-

ods, the key feature is the use of logarithmic barrier function to incorporate the problem

constraints, and the logarithmic function serves well as a barrier function due to its self-

concordance property [161]. IPMs were first applied for linear programs [98]. Soon after

the important role of logarithmic barrier functions was understood, IPMs were general-

ized to quadratic and nonlinear problems [222]. Today, IPMs have been implemented

efficiently in popular software packages [5, 166], and are often very suitable to solve

problems of small or medium size. However, for many very large-scale problems that

arise in modern machine learning, IPMs are often inefficient since at each iteration,

IPMs require solving a linear system that involves second-order information of the ob-

jective. This linear system scales as the problem dimension and leads to a prohibitive

per-iteration computation cost.

In view of this, much attention in optimization research has been directed to first-

order methods in the past two decades. These methods only use first-order information

such as gradient, subgradient, and proximal mapping1, which are often cheap to obtain,

and their cost scales well with the problem dimension. As a result, these methods

are often easy to implement and enjoy low per-iteration cost. Two most prototypical

examples are gradient descent and proximal point method [192], which only require

evaluations of gradient or proximal mapping at each iteration. This makes them distinct

from Newton’s method, which is a classical second-order method. Aside from the

aforementioned advantages, first-order methods are also amenable to parallelization,

which is preferable for training large-scale models. One of the most notable examples is

the widely applied Stochastic Gradient Descent (SGD) [189] for neural network training.

1The proximal mapping for a function f is defined as Proxf (x) = arg miny{f(y) + 1
2‖y − x‖2}, a

formal definition can be found at Sec. 1.4.
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Based on gradient descent and proximal point method, numerous first-order algo-

rithms have been developed. Some of the most popular prominent examples are, accel-

erated gradient methods [163, 29], stochastic gradient methods [189, 115], subgradient

methods [205, 181, 205], mirror descent [159, 51, 28], coordinate descent [182, 113, 75],

conditional gradient methods [93, 123, 79], and operator splitting methods that include,

proximal gradient methods [133], Alternating Direction Method of Multipliers (ADMM)

[94, 104], and Primal-Dual Hybrid Gradient (PDHG) [244, 49], and many other exten-

sions. These methods are designed for different problem settings, but are related to

each other in different ways. Furthermore, combining their features may lead to new

algorithms that can solve more chanllenaging problems.

1.2 Operator Splitting Methods

Operator splitting methods are a family of first-order methods as they only rely on the

first-order information of the objective. Their study originated from the seminal work

by Sophus Lie on the Lie scheme in the 1890s [128]. At first, they were designed to

solve the PDEs arising from computational physics. Later in the 1970s, the theory

of monotone operators came into play, and these optimization methods were related

to certain operator splitting schemes. For example, the projected gradient method

corresponds to forward-backward splitting (FBS) [133], and the Alternating Direction

Method of Multipliers (ADMM) corresponds to Douglas-Rachford splitting (DRS) [94].

This interpretation provides a unified view for these methods and has inspired the

design and analysis of new optimization methods [69, 62, 235, 218, 45]. An overview of

several common splitting methods can be found in Section 1.5.

The underlying principle of splitting methods is to decompose complicated problem

structures into simple components, and deal with them separately by solving subprob-

lems that only involve individual components. Another feature is that some of these

components are allowed to be nonsmooth. In the past 15 years or so, optimization mod-
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els in numerous research areas require solving nonsmooth optimization problems that

are built up from simple components. To name a few, compressed sensing [76], Lasso

[217], logistic regression [117] and image denoising [151] all involve sums of multiple

functions and require an ℓ1−norm penalty term to promote sparsity in their solutions.

Therefore, the aforementioned advantages have led to the recent resurgence of interest

in operator splitting methods.

However, splitting methods often suffer from their sensitivity to ill-conditioning,

which is a common challenge for other first-order methods as well, due to the lack of

second-order information. Furthermore, The classical analyses of splitting methods are

constrained to non-pathological settings, where a primal-dual solution pair is assumed

to exist, and strong duality holds. While in fact, even simple convex problems may not

satisfy these assumptions1. Finally, the classical theory of splitting methods heavily

relies on the monotonicity of the individual operators, which is lacking under nonconvex

settings.

This dissertation aims to accelerate the convergence of operator splitting algorithms

for convex problems and to analyze their behaviors in the pathological and nonconvex

settings. The contributions are listed as follows.

1.3 Contributions

1.3.1 Acceleration by inexact preconditioning

As first-order algorithms, operator splitting methods suffer from slow (tail) convergence,

especially on poorly conditioned problems. They may take thousands of iterations and

still struggle to reach four digits of accuracy. While they have many advantages such

as being easy to implement and friendly to parallelization, their sensitivity to problem

conditions is their main disadvantage.

1For example, consider the following two problems: (i) minx≤1 x, and (ii) Find x ∈ [−2,−1]∩ [0, 1].
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To improve their performance of on ill-conditioned problems, researchers have tried

to apply preconditioning, which is an idea first proposed for solving linear systems, and

later applied to simple algorithms such as gradient descent. Recently, it has also been

widely applied on splitting methods such as forward-backward splitting (FBS) [224,

61, 45, 230], Douglas-Rachford splitting (DRS) [42, 43], Primal-Dual Hybrid Gradient

(PDHG) [179], and alternating directions method of multipliers (ADMM).[99, 100].

Depending on the application and how one applies splitting, these preconditioned

algorithms may or may not have subproblems with closed-form solutions. When they

do not, the cost of solving subproblems has to be taken into consideration. Previous

works either assume the existence of an oracle that returns the exact solution of the

subproblems, or allow approximate subproblem solutions with quickly diminishing er-

rors [185, 83, 164, 126, 87, 86]. In either of these two cases, the total cost is prohibitive

under realistic settings.

In Part II of this dissertation, we present a new preconditioning technique called in-

exact preconditioning and apply it to PDHG, ADMM, and Stochastic Variance-Reduced

Gradient (SVRG). Conceptually, this technique involves two steps. First, one selects ap-

propriate preconditioners based on specific problem structures and splitting algorithms.

Then, one applies the preconditioned algorithms and solve the subproblems highly inex-

actly by warmstart and a fixed number of simple subroutines. Efficient subroutines can

be chosen based on different subproblem structure and in particular, one does not need

to enforce the errors to be diminishing in certain ways as in previous works. Theoreti-

cally, We show that this inexact preconditioning strategy brings significant acceleration

to PDHG, ADMM, and SVRG. In practice, the efficacy of inexact preconditioning is

demonstrated on several popular models such as logistic regression, graph cut, and

computed tomography (CT) reconstruction, where a 4–95× speedup is observed.
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1.3.2 Convergence behavior on pathological problems

Many convex optimization algorithms have strong theoretical guarantees and empirical

performance, but they are often limited to non-pathological problems1; under patholo-

gies often the theory breaks down and the empirical performance degrades significantly.

In fact, the behavior of convex optimization algorithms under pathologies has been

studied much less, and many existing solvers often simply report “failure” without in-

forming the users of what went wrong upon encountering infeasibility, unboundedness,

or other pathologies. Pathological problems are numerically challenging, but they are

not impossible to deal with. As pathologies can arise in practice (see, for example,

[141, 140, 225, 229, 78]), designing a robust algorithm that behaves well in all cases is

important to the completion of a robust solver.

In Part III of this dissertation, we study the behavior of DRS and ADMM for

pathological convex programs. Perhaps surprisingly, we show that although the iterates

of DRS and ADMM diverge for pathological problems, the precise manner in which

they diverge still provides useful information regarding the type of pathology that we

encounter. Specifically, for a class of convex programs called conic programming, many

pathologies can be identified by investigating the divergence pattern of the iterates.

Furthermore, for certain types of pathologies, this divergence pattern informs us how to

modify the pathological program to remove the pathology. For general convex problems,

certain pathologies can still be identified, and we establish that DRS and ADMM only

require strong duality to work even when the primal and/or dual solution does not exist,

in the sense that the objective values of the iterates are asymptotically optimal.

1Problems that have both primal and dual solutions, and strongly duality holds.
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1.3.3 Convergence behavior on nonconvex problems

Operator splitting methods are traditionally analyzed under the assumption that the

subdifferentials of the objective functions are maximally monotone. While for non-

convex functions, their subdifferentials are generally non-monotone. Therefore, the

majority of the existing results on splitting methods apply only to convex objective

functions. Recently, FBS and DRS are found to numerically converge for certain non-

convex problems [209, 215, 125, 6, 54]. Theoretically, their iterates have been shown to

converge to stationary points under some nonconvex settings [10, 125, 216, 108]. How-

ever, it remains possible that the limits of their convergent sequences are saddle points

instead of local minimums.

In Part IV of this dissertation, we show that under some smoothness conditions,

FBS and DRS can avoid the strict saddle points1 almost surely, in the sense that the

probability for DRS and FBS iterations with random initializations to converge to

strict saddle points of their respective objectives is zero. The main technical tools to

achieve this are (i) Forward-Backward Envelope (FBE) [215], Douglas-Rachford Enve-

lope (DRE) [171] from nonconvex analysis, and (ii) Stable-Center Manifold Theorem

[206] from dynamical systems.

FBE and DRE are functions with nice properties even in the nonconvex settings.

In particular, they share the same stationary points, local minimizers, and strict saddle

points with the objectives of FBS and DRS, respectively. Furthermore, the FBS and

DRS iterations can be written as (preconditioned) gradient descent iterations on FBE

and DRE. By analyzing these gradient descent iterations with the Stable-Center Man-

ifold Theorem, one can show that whenever FBS and DRS converge, their limits will

not be the strict saddles of FBE and DRE almost surely, which are exactly the strict

saddles of their corresponding objective functions. Consequently, for many practical

models that satisfy the strict saddle property2, FBS and DRS will almost always avoid

1I.e., saddle points with a negative curvature.
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the strict saddle points whenever they converge.

1.4 Notations and Preliminaries

In this section, we review standard notions of convex analysis, state several known

results, and set up the notation. For the sake of brevity, we omit proofs or direct

references of the standard results and refer interested readers to standard references

such as [190, 195, 17]. Other relevant results will be provided at the beginning of each

chapter.

We use ‖ · ‖ for ℓ2−norm, ‖ · ‖1 for ℓ1−norm, and 〈·, ·〉 for dot product. We use In

to denote the identity matrix of size n × n. M � 0 means M is a symmetric, positive

definite matrix, and M � 0 means M is a symmetric, positive semidefinite matrix.

We write λmin(M) and λmax(M) as the smallest and the largest eigenvalues of M ,

respectively, and κ(M) = λmax(M)
λmin(M) as the condition number of M . For M � 0, let ‖ · ‖M

and 〈·, ·〉M denote the semi-norm and inner product induced by M , respectively, i.e.,

〈x, y〉M = xTMy, ‖x‖M =
√
xTMx. If M � 0, then ‖ · ‖M is a norm.

A function f is convex if f(θx+(1−θ)y) ≤ θf(x)+(1−θ)f(y) for all x, y ∈ Rn and

θ ∈ [0, 1]. A function f is closed if its epigraph
{
(x, α) ∈ Rn+1 | f(x) ≤ α

}
is a closed

subset of Rn+1. We say f : Rn → R ∪ {∞} is proper if f(x) < ∞ for some x. In this

work, we focus our attention on proper, closed, and convex (PCC) functions most of the

time. If f and g are PCC functions, then f+g is PCC or f+g =∞ everywhere. If γ > 0,

then γf is PCC. Define the (effective) domain of f as dom f = {x ∈ Rn | f(x) < ∞}.

For any γ > 0, we have dom γf = dom f .

For a proper closed convex function f : Rn → R ∪ {+∞}, its subdifferential at

x ∈ dom f is written as

∂f(x) = {v ∈ Rn | f(z) ≥ f(x) + 〈v, z − x〉, ∀z ∈ Rn},

2That is, the stationary points of the objective are either local minimizers or strict saddle points.
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and its convex conjugate as

f ∗(y) = sup
x∈Rn
{〈y, x〉 − f(x)}.

We have y ∈ ∂f(x) if and only if x ∈ ∂f ∗(y).

If f is convex and proper, then f ∗ : Rn → R ∪ {∞} is PCC. If f is PCC, then

(f ∗)∗ = f . For any γ > 0, we have (γf)∗(x) = γf ∗(x/γ) and dom (γf)∗ = γdom f ∗. If

h(x) = g(−x), then h∗(y) = g∗(−y).

We say that f : Rn → R is Lf−smooth, if it is differentiable and satisfies

f(y) ≤ f(x) + 〈∇f(x), y − x〉+ Lf
2
‖y − x‖2, ∀x, y ∈ Rn .

Note that a smooth function f may be nonconvex.

We say that f is σf−strongly convex, if

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ σf
2
‖y − x‖2,∀x, y ∈ Rn .

A set C is convex, if x, y ∈ C and θ ∈ [0, 1] implies θx+ (1− θ)y ∈ C. Write C for

the closure of C. If C is convex C is convex. The Minkowski sum and differences of A

and B are

A+B = {a+ b | a ∈ A, b ∈ B}, A−B = {a− b | a ∈ A, b ∈ B},

respectively. If A and B are convex, then A + B and A − B are convex. However,

neither A+B nor A−B is guaranteed to be closed, even when A and B are nonempty

closed convex sets.

For the distance between x ∈ Rn and the set A, write

dist(x,A) = inf{‖x− a‖ | a ∈ A}.

For the distance between A and B, write

dist(A,B) = inf{‖a− b‖ | a ∈ A, b ∈ B}.
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Note that dist(A,B) = 0 if and only if 0 ∈ A−B.

Define the projection onto C as ΠC(x0) = arg minx∈C ‖x − x0‖. When C is closed

and convex, ΠC : Rn → Rn is well-defined, i.e., the minimizer uniquely exists.

Define the indicator function with respect to C as

δC(x) =


0 if x ∈ C,

∞ otherwise.

When C is closed convex, δC : Rn → R ∪ {∞} is PCC.

Define the support function of C as

σC(y) = sup
x∈C
{〈x, y〉}.

σC : Rn → R ∪ {∞} is PCC. When C is convex, we have σC = σC . If A and B are

convex, then σA+B = σA + σB. If C is closed and convex, then (σC)∗ = δC .

Define the proximal operator Proxf : Rn → Rn as

Proxf (z) = arg min
x∈Rn

{
f(x) + (1/2)‖x− z‖2

}
.

When f is PCC, the arg min uniquely exists, and therefore Proxf is well-defined. When

C is closed and convex, ProxδC
= ΠC . When f is PCC, Proxf + Proxf∗ = I, where

I : Rn → Rn is the identity operator.

A mapping T : Rn → Rn is nonexpansive if ‖T (x)−T (y)‖ ≤ ‖x−y‖ for all x, y ∈ Rn.

Nonexpansive mappings are, by definition, Lipschitz continuous with Lipschitz constant

1. T : Rn → Rn is firmly-nonexpansive if

‖T (x)− T (y)‖2 ≤ 〈x− y, T (x)− T (y)〉

for all x, y ∈ Rn. Proximal and projection operators are firmly-nonexpansive.

1.5 Common Operator Splitting Schemes

Now let us list some common operator splitting schemes. All of them can be cast as

fixed point iterations of the form zk+1 = Tzk, where T is a firmly-nonexpansive operator,
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and zk belongs to some Hilbert space H.

Forward-backward splitting (FBS) [133] FBS solves the following problem:

minimize
x∈H

f(x) + g(x),

where f is PCC and smooth, and g is PCC.

Define T = Proxγg(I − γ∇f). Then, the iteration of FBS can written as

xk+1 = Txk = Proxγg
(
xk − γ∇f(xk)

)
.

Or equivalently,

yk = xk − γ∇f(xk),

xk+1 = Proxγg(yk),

where γ > 0 is a stepsize.

From the above iteration, we can see that FBS "splits" the problem by dealing with

f and g separately.

Later, we will also work on another algorithm called Stochastic Variance-Reduced

Gradient (SVRG) [114], which extends FBS to the following setting:

minimize
x∈H

f(x) + g(x) =
n∑
i=1

fi(x) + g(x).

Here, f admits a finite sum structure, and its full gradient ∇f(xk) may be expensive

to obtain when n is large. In SVRG, a cheaper semi-stochastic gradient ∇̃k at xk is

applied instead. Specifically,

∇̃k = ∇f(xk′) +
(
∇fik(xk)−∇fik(xk′)

)
,

where ∇f(xk′) is a previous full gradient at some iteration, and it will be recycled for

some later iterations k ≥ k′. ik is picked uniformly at random from {1, 2, ..., n}.
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SVRG iteration can be then written as

xk+1 = Proxγg
(
xk − γ∇̃k

)
.

Douglas-Rachford Splitting (DRS) [77] DRS solves the following problem

minimize
x∈H

f(x) + g(x),

where f and g are PCC.

Define T = 1
2I+ 1

2(2 Proxγg−I)(2 Proxγf −I), where γ > 0 is a stepsize. Then, DRS

iteration can be written as

zk+1 = Tzk,

or equivalently,

xk+1/2 = Proxγf (zk),

xk+1 = Proxγg(2xk+1/2 − zk),

zk+1 = zk + xk+1 − xk+1/2.

We will also work on another closely related algorithm called Alternating Direc-

tion Method of Multipliers (ADMM) [94, 104], which solves the following problem

minimize
x∈Rp,y∈Rq

f(x) + g(y)

subject to Ax+By = c,

where f : Rp → R ∪ {∞} and g : Rq → R ∪ {∞} are PCC, A ∈ Rn×p, B ∈ Rn×q, and

c ∈ Rn,

xk+1 ∈ arg min
x∈Rp

{
f(x) + 〈νk, Ax+Byk − c〉+ 1

2γ
‖Ax+Byk − c‖2

}

yk+1 ∈ arg min
y∈Rq

{
g(y) + 〈νk, Axk+1 +By − c〉+ 1

2γ
‖Axk+1 +By − c‖2

}

νk+1 = νk + (1/γ)(Axk+1 +Byk+1 − c).
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Under mild regularity assumptions, it can be shown that DRS and ADMM are

equivalent [82, 84, 236].

Primal-Dual Hybrid Gradient (PDHG) [49] The method of Primal-Dual Hybrid

Gradient or PDHG for solving solves

minimize
x∈Rn

f(x) + g(Ax),

where f : Rn → R∪{∞}, g : Rm → R∪{∞} are PCC, and A ∈ Rm×n. PDHG refers

to the iteration

xk+1 = Proxτf (xk − τAT zk),

zk+1 = Proxσg∗(zk + σA(2xk+1 − xk)),

where τ, σ > 0 are stepsizes.

Define

A =

 ∂f AT

−A ∂g∗

 ,
and let

M =

 1
τ
In −AT

−A 1
σ
Im

 � 0.

Then, the above PDHG iteration can be written as

yk+1 = Tyk = (I +M−1A)−1yk,

where yk = (xk, zk)T .

The operator T = (I + M−1A)−1 is firmly nonexpansive in ‖ · ‖M , and yk will

converge to a primal-dual solution pair [112].
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Part II

Acceleration by Inexact

Preconditioning
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In this part, we present the inexact preconditioning technique for accelerating several

operator splitting algorithms, the results can also be found in [138] and [136].

The inexact preconditioning technique consists of two steps: (i) find appropriate

preconditioner(s) based on the objective and the specific splitting algorithm, and (ii)

solve the subproblems inexactly by just a fixed number of simple subroutines.

In Chapter 2, we apply this technique to accelerate PDHG and ADMM, the resulting

algorithm is called inexact preconditioned PDHG (iPrePDHG), which is summarized in

Algorithm 2.1. First, we provide a criterion for choosing preconditioners in Lemma 2.3.1

and Theorem 2.3.2. It turns out that most of the time, the optimal preconditioners will

be non-diagonal, and the subproblems will not have closed-form solutions. Therefore,

we propose to solve them until a certain condition is satisfied (see Definition 2.3.1).

Remarkably, this condition is easily satisfied by applying some simple subroutines a

fixed number of times (see Theorems 2.3.3 and 2.3.4). Finally, we prove the global

convergence of iPrePDHG in Theorem 2.3.9, and provide extensive numerical tests in

Section 2.4.

The structure of Chapter 3 is similar. We aim to accelerate SVRG and Katyusha X1

by inexact preconditioning, and the new algorithms are called iPreSVRG and iPreKatX,

respectively (see Algorithms 3.1 and 3.2). The preconditioner M should decrease the

condition number and can vary for different objectives(see Definition 3.2.3). in Section

3.5. To prove acceleration, we first show that it is fine to solve the subproblems by

applying FISTA with restart a small number of times so that a certain error condition

will be satisfied (see Lemmas 3.4.1 and 3.4.4). Furthermore, when this error condition

is satisfied, the global convergence of iPreSVRG and iPreKatX is guaranteed (see The-

orems 3.4.2 and 3.4.3). Finally, we proved the acceleration of iPreSVRG over SVRG,

as well as the acceleration of iPreKatX over Katyusha X in Theorems 3.4.5 and 3.4.6.

This acceleration is also observed numerically on Lasso and logistic regression.

1Katyusha X is a Nesterov-accelerated version of SVRG.
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CHAPTER 2

Inexact Preconditioning for PDHG and ADMM

2.1 Introduction

In this chapter, we consider the following optimization problem:

minimize
x∈Rn

f(x) + g(Ax), (2.1)

together with its dual problem:

minimize
z∈Rm

f ∗(−AT z) + g∗(z), (2.2)

where f : Rn → R∪{+∞} and g : Rm → R∪{+∞} are closed proper convex, and

A ∈ Rm×n is a matrix, f ∗ and g∗ are the convex conjugates of f and g, respectively.

Formulations (2.1) or (2.2) are abstractions of many application problems, which

include image restoration [244], magnetic resonance imaging [221], network optimiza-

tion [90], computer vision [180], and earth mover’s distance [127]. For many of them,

primal-dual algorithms such as Primal-Dual Hybrid Gradient (PDHG) and Alternating

Direction Method of Multipliers (ADMM) have been popular choices.

However, as a first-order algorithm, PDHG and ADMM suffer from slow (tail) con-

vergence especially on poorly conditioned problems. They may take thousands of iter-

ations and still struggle reaching just four digits of accuracy. While they have many

advantages such as being easy to implement and friendly to parallelization, their sensi-

tivity to problem conditions is their main disadvantage.

To improve the performance of PDHG and ADMM, researchers have tried using

preconditioners, which has been widely applied for forward-backward type of methods
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[224, 61, 45], as well as other methods [44, 62, 112, 223]. Depending on the application

and how one applies splitting, preconditioned PDHG and ADMM may or may not have

subproblems with closed-form solutions. When they do not, researchers have studied

approximate subproblem solutions to reduce the total running time. In this work, we

propose a new way of applying preconditioning that outperforms the existing state-of-

the-art.

2.1.1 Proposed approach

Simply speaking, we find a way to have both non-diagonal preconditioners (thus much

fewer iterations) and very simple subproblem procedures (thus maintaining the advan-

tages of PDHG and ADMM).

First, we apply preconditioning. We present Preconditioned PDHG (PrePDHG)

along with its convergence condition and a performance bound. We propose to choose

preconditioners to optimize the bound. In the special case where one preconditioner

is trivially fixed as an identity matrix, optimizing the bound gives us the optimal

choice of the other preconditioner, which actually reduces PrePDHG to ADMM. This

observation explains why ADMM often takes fewer iterations than PDHG (as PDHG

sets both preconditioners to identity matrices).

Next, we study how to solve PrePDHG subproblems. In all applications we are

aware of, only one of the two subproblem is (subject to) ill-conditioned. (After all, we

can always apply splitting to gether ill-conditioned components into one subproblem.)

Therefore, we choose a non-diagonal preconditioner for the ill-conditioned subproblem

and a trivial or diagonal preconditioner for the other subproblem. Again, the pair of

preconditioners should be chosen to (nearly) optimize the performance bound. Since

the non-diagonal preconditioner introduces dependence between different coordinates,

its subproblem generally does not have a closed-form solution. In particular, if the

subproblem has an ℓ1-norm, which is often the reason why PDHG or ADMM is used, it
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often loses its closed-form solution due to the preconditioner. Therefore, we propose to

approximately solve it to satisfy an accuracy condition. Remarkably, there is no need

to dynamically stops a subproblem procedure to honor the condition. Instead, the con-

dition is automatically satisfied as long as one applies a common iterative procedure for

some fixed number of iterations, which is new in the literature. Common choices of the

procedure include proximal gradient descent, FISTA with restart, proximal block co-

ordinate descent, and accelerated block-coordinate-gradient-descent (BCGD) methods

(e.g., [132, 3, 109]). We call this method iPrePDHG (i for “inexact”).

Next, we establish the overall convergence of iPrePDHG. To handle the inexact

subproblem, we first transform iPrePDHG into an equivalent form and then analyze an

Lyapunov function to establish convergence. The technique in our proof appears to be

new in the PDHG and ADMM literature.

Finally, we apply our approach on a few applications including image denoising,

graph cut, optimal transport, and CT reconstruction. For the last application, we use

a diagonal preconditioner in one subproblem, which gives it a closed-form solution, and

a non-diagonal preconditioner in the other, which we approximately solve. In each

of the other applications, one subproblem uses no (identity) preconditioner, and the

other uses a non-diagonal preconditioner. We numerically evaluated the performance

of iPrePDHG using these recommended preconditioners and observed speedups of 4–95

times over the existing state-of-the-art.

Since we show ADMM is a special PrePDHG with one trivial preconditioner, our

approach can also accelerate ADMM. In fact, for three of the above four applications,

there are one trivial preconditioner in each, so their iPrePDHG are inexact precondi-

tioned ADMM.
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2.1.2 Related Literature

Many problems to which we apply PDHG have separable functions f or g, or both, so

the resulting PDHG subproblems often (though not always) have closed-form solutions.

When subproblems are simple, we care mainly about the convergence rate of PDHG,

which depends on the problem conditioning. To accelerate PDHG, diagonal precondi-

tioning [179] was proposed since its diagonal structure maintains closed-form solutions

for the subproblems and, therefore, reduces iteration complexity without making each

iteration more difficult. In comparison, non-diagonal preconditioners are much more

effective at reducing iteration complexity, but their off-diagonal entries couple different

components in the subproblems, causing the lost of closed-form solutions of subprob-

lems.

When a PDHG subproblem has no closed-form solution, one often uses an itera-

tive algorithm to approximately solve it. We call it Inexact PDHG. Under certain

conditions, Inexact PDHG still converges to the exact solution. Specifically, [185] uses

three different types of conditions to skillfully control the errors of the subproblems;

all those errors need to be summable over all the iterations and thereby requiring the

error to diminish asymptotically. In an interesting method from [42, 43], one subprob-

lem computes a proximal operator of a convex quadratic function, which can include

a preconditioner and still has a closed-form solution involving matrix inversion. This

proximal operator is successively applied n times in each iteration, for n ≥ 1.

ADMM has different subproblems. One of its subproblems minimizes the sum of

f(x) and a squared term involving Ax. Only when A has special structures does the sub-

problem have closed-form solutions. Inexact ADMM refers to the ADMM with at least

one of its subproblems inexactly solved. An absolute error criterion was introduced

in [83], where the subproblem errors are controlled by a summable (thus diminishing)

sequence of error tolerances. To simplify the choice of the sequences, a relative error

criterion was adopted in several later works, where the subproblem errors are controlled
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by a single parameter multiplying certain quantities that one can compute during the

iterations. In [164], the parameters need to be square summable. In [126], the parame-

ters are constants when both objective functions are Lipschitz differentiable. In [87, 86],

two possible outcomes of the algorithm are described: (i) infinite outer loops and finite

inner loops, and (ii) finite outer loops and the last inner loop is infinite, both guarantee-

ing convergence to a solution. On the other hand, it is unclear how to recognize them.

Since there is no bound on the number of inner loops in case (i), one may recognize it

as case (ii) and stop the algorithm before it converges.

There are works that apply certain kinds of preconditioning to accelerate ADMM.

Paper [99] uses diagonal preconditioning and observes improved performance. After

that, non-diagonal preconditioning is analyzed [42, 43], which presents effective precon-

ditioners for specific applications. One of their preconditioners needs to be inverted

(though not needed in our method). Recently, preconditioning for problems with linear

convergence has also been studied with promising numerical performances [100].

2.1.3 Organization

The rest of this chapter is organized as follows: Section 2.2 establishes notation and

reviews basics. In the first part of Section 2.3, we provide a criterion for choosing

preconditioners. In its second part, we introduce the condition for inexact subproblems,

which can be automatically satisfied by iterating a fixed number of certain inner loops.

This method is called iPrePDHG. In the last part of Section 2.3, we establish the

convergence of iPrePDHG. Section 2.4 describes specific preconditioners and reports

numerical results. Finally, Section 2.5 concludes this chapter.
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2.2 Preliminaries

In addition to the preliminaries introduced in Sec. 1.4, we need the following in this

chapter.

For any M � 0, we define the extended proximal operator of ϕ as

ProxMϕ (x) := arg min
y∈Rn

{ϕ(y) + 1
2
‖y − x‖2

M}. (2.3)

If M = γ−1I for γ > 0, it reduces to a classic proximal operator.

We also have the following generalization of Moreau’s Identity:

Lemma 2.2.1 ([60], Theorem 3.1(ii)). For any proper closed convex function ϕ and

M � 0, we have

x = ProxMϕ (x) +M−1 ProxM−1

ϕ∗ (Mx). (2.4)

We say a proper closed function ϕ is a Kurdyka-ojasiewicz (KL) function if, for each

x0 ∈ domϕ, there exist η ∈ (0,∞], a neighborhood U of x0, and a continuous concave

function φ : [0, η)→ R+ such that:

1. φ(0) = 0,

2. φ is C1 on (0, η),

3. for all s ∈ (0, η), φ′(s) > 0,

4. for all x ∈ U ∩ {x |ϕ(x0) < ϕ(x) < ϕ(x0) + η}, the KL inequality holds:

φ′(ϕ(x)− ϕ(x0))dist(0, ∂ϕ(x)) ≥ 1.

2.3 Main results

This section presents the key results of this chapter. In Sec. 2.3.1 we demonstrate how

to apply preconditioning to PDHG. Then, we establish rules of preconditioner selection
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in Sec. 2.3.2. In Sec. 2.3.3, we present the proposed method iPrePDHG. Finally, we

establish the convergence of iPrePDHG in Sec. 2.3.4.

Throughout this section, we assume the following regularity assumptions:

Assumption 2.3.1.

1. f : Rn → R ∪ {+∞}, g : Rm → R ∪ {+∞} are proper closed convex.

2. A primal-dual solution pair (x⋆, z⋆) of (2.1) and (2.2) exists, i.e.,

0 ∈ ∂f(x⋆) + AT z⋆, 0 ∈ ∂g(Ax⋆)− z⋆.

The problem (2.1) also has the following convex-concave saddle-point formulation:

min
x∈Rn

max
z∈Rm

φ(x, z) := f(x) + 〈Ax, z〉 − g∗(z). (2.5)

A primal-dual solution pair (x⋆, z⋆) is a solution of (2.5).

2.3.1 Preconditioned PDHG

The method of Primal-Dual Hybrid Gradient or PDHG [244, 49] for solving (2.1) refers

to the iteration

xk+1 = Proxτf (xk − τAT zk),

zk+1 = Proxσg∗(zk + σA(2xk+1 − xk)).
(2.6)

When 1
τσ
≥ ‖A‖2, the iterates of (2.6) converge [49] to a primal-dual solution pair

of (2.1). We can generalize (2.6) by applying preconditioners M1,M2 � 0 (their choices

are discussed below) to obtain Preconditioned PDHG or PrePDHG:

xk+1 = ProxM1
f (xk −M−1

1 AT zk),

zk+1 = ProxM2
g∗ (zk +M−1

2 A(2xk+1 − xk)),
(2.7)

where the extended proximal operators ProxM1
f and ProxM2

g∗ are defined in (2.3). We

can obtain the convergence of PrePDHG using the analysis in [50].
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There is no need to compute M−1
1 and M−1

2 since (2.7) is equivalent to

xk+1 = arg min
x∈Rn

{f(x) + 〈x− xk, AT zk〉+ 1
2
‖x− xk‖2

M1},

zk+1 = arg min
z∈Rm

{g∗(z)− 〈z − zk, A(2xk+1 − xk)〉+ 1
2
‖z − zk‖2

M2}.
(2.8)

2.3.2 Choice of preconditioners

In this section, we discuss how to select appropriate preconditioners M1 and M2. As

a by-product, we show that ADMM corresponds to choosing M1 = 1
τ
In and optimally

choosing M2 = τAAT , thereby, explaining why ADMM appears to be faster than

PDHG.

Let us start with the following lemma, which characterizes primal-dual solution

pairs of (2.1) and (2.2).

Lemma 2.3.1. Under Assumption 2.3.1, (X,Z) is a primal-dual solution pair of (2.1)

if and only if φ(X, z) − φ(x, Z) ≤ 0 for any (x, z) ∈ Rn+m, where φ is given in the

saddle-point formulation (2.5).

Proof. If (X,Z) is a primal-dual solution pair of (2.1), then

−ATZ ∈ ∂f(X), AX ∈ ∂g∗(Z).

Hence, for any (x, z) ∈ Rn+m we have

f(x) ≥ f(X) + 〈−ATZ, x−X〉, g∗(z) ≥ g∗(Z) + 〈AX, z − Z〉.

Adding them together yields φ(X, z)− φ(x, Z) ≤ 0.

On the other hand, if φ(X, z)− φ(x, Z) ≤ 0 for any (x, z) ∈ Rn+m, then

〈AX, z〉+ f(X)− g∗(z)− 〈Ax,Z〉 − f(x) + g∗(Z) ≤ 0 for any (x, z) ∈ Rn+m.

Taking x = X yields 〈AX, z − Z〉 − g∗(z) + g∗(Z) ≤ 0, so AX ∈ ∂g∗(Z); Similarly,

taking z = Z gives 〈AX − Ax,Z〉+ f(X)− f(x) ≤ 0, so −ATZ ∈ ∂f(X). As a result,

(X,Z) is a primal-dual solution pair of (2.1).
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We present the following convergence result, adapted from Theorem 1 of [50].

Theorem 2.3.2. Let (xk, zk), k = 0, 1, ..., N be a sequence generated by PrePDHG (2.7).

Under Assumption 2.3.1, if in addition

M̃ :=

M1 −AT

−A M2

 � 0, (2.9)

then, for any x ∈ Rn and z ∈ Rm, it holds that

φ(XN , z)− φ(x, ZN) ≤ 1
2N

(x− x0, z − z0)

M1 −AT

−A M2


x− x0

z − z0

 , (2.10)

where XN = 1
N

∑N
i=1 x

i and ZN = 1
N

∑N
i=1 z

i.

Proof. This follows from Theorem 1 of [50] by setting Lf = 0, 1
τ
Dx(x, x0) = 1

2‖x−x
0‖2
M1 ,

1
σ
Dz(z, z0) = 1

2‖z − z0‖2
M2 , and K = A. Note that in Remark 1 of [50], Dx and Dz

need to be 1−strongly convex to ensure their inequality (13) holds, which is exactly our

(2.9). Therefore, we do not need Dx and Dz to be strongly convex.

Based on the above results, one approach to accelerate convergence is to choose

preconditioners M1 and M2 to obey (2.9) and minimize the right-hand side of (2.10).

When a pair of preconditioner matrices attains this minimum, we say they are optimal.

When one of them is fixed, the other that attains the minimum is also called optimal.

By Schur complement, the condition (2.9) is equivalent to M2 � AM−1
1 AT . Hence,

for any given M1 � 0, the optimal M2 is AM−1
1 AT .

Original PDHG (2.6) corresponds to M1 = 1
τ
In, M2 = 1

σ
Im with τ and σ obeying

1
τσ
≥ ‖A‖2 for convergence. In Appendix 2.A, we show that ADMM for problem

(2.1) corresponds to setting M1 = 1
τ
In, M2 = τAAT , M2 is optimal since AM−1

1 AT =

τAAT = M2 (This is related to, but different from, the result in [49, Sec. 4.3] stating

that PDHG is equivalent to a preconditioned ADMM). In the next section, we show that

when the z−subproblem is solved inexactly, a choice of M1 = 1
τ
In,M2 = τAAT + θIm

with a small θ guarantees convergence (see Proposition 2.3.7).
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By using more general pairs of M1,M2, we can potentially have even fewer iterations

of PrePDHG than ADMM.

2.3.3 PrePDHG with fixed inner iterations

It wastes total time to solve the subproblems in (2.8) very accurately. It is more efficient

to develop a proper condition and stop the subproblem procedure, which we call inner

iterations, once the condition is satisfied. It is even better if we can simply fix the

number of inner iterations and still guarantee global convergence.

In this subsection, we describe the “bounded relative error” of the z-subproblem

in (2.7) and then show that this can be satisfied by running a fixed number of inner

iterations, uniformly for every outer loop, which is new in the literature.

Definition 2.3.1 (Bounded relative error condition). Given xk, xk+1 and zk, we say

that the z-subproblem in PrePDHG (2.7) is solved to a bounded relative error by some

iterator S, if there is a constant c > 0 such that

0 ∈ ∂g∗(zk+1) +M2
(
zk+1 − zk −M−1

2 A(2xk+1 − xk)
)

+ εk+1, (2.11)

‖εk+1‖ ≤ c‖zk+1 − zk‖. (2.12)

Remarkably, this condition does not need to be checked at run time. For a fixed

c > 0, the condition can be satisfied by a fixed number of inner iterations using, for

example, S being the proximal gradient iteration (Theorem 2.3.3). One can also use

faster solvers, e.g., FISTA with restart [167], and solvers that suit the subproblem

structure, e.g., cyclic proximal BCD (Theorem 2.3.4). Although the error in solving

z-subproblems appears to be neither summable nor square summable, convergence can

still be established. But first, we summarize this method in Algorithm 2.1.

Theorem 2.3.3. Take Assumption 2.3.1. Suppose in iPrePDHG, or Algorithm 2.1, we

choose S as the proximal-gradient step with stepsize γ ∈ (0, 2λmin(M2)
λ2

max(M2) ) and repeat it p
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Algorithm 2.1 Inexact Preconditioned PDHG or iPrePDHG
Input: f, g, A in (2.1), preconditioners M1 and M2, initial (x0, z0), z-subproblem iter-

ator S, inner iteration number p, max outer iteration number K.

Output: (xK , zK)

1: for k ← 0, 1, ..., K − 1 do

2: xk+1 = ProxM1
f (xk −M−1

1 AT zk);

3: zk+1
0 = zk;

4: for i← 0, 1, ..., p− 1 do

5: zk+1
i+1 = S(zk+1

i , xk+1, xk);

6: end for

7: zk+1 = zk+1
p ; ▷ which approximates ProxM2

g∗ (zk +M−1
2 A(2xk+1 − xk))

8: end for

times, where p ≥ 1. Then, zk+1 = zk+1
p is an approximate solution to the z-subproblem

up to a bounded relative error in Definition 2.3.1 for

c = c(p) =
1
γ

+ λmax(M2)
1− ρp

(ρp + ρp−1), (2.13)

where ρ =
√

1− γ(2λmin(M2)− γλ2
max(M2)) < 1.

Proof. The z-subproblem in (2.8) is of the form

minimize
z∈Rm

h1(z) + h2(z), (2.14)

for h1(z) = g∗(z) and h2(z) = 1
2‖z − z

k −M−1
2 A(2xk+1 − xk)‖2

M2 . With our choice of S

as the proximal-gradient descent step, the inner iterations are

zk+1
0 = zk,

zk+1
i+1 = Proxγh1(zk+1

i − γ∇h2(zk+1
i )), i = 0, 1, ..., p− 1, (2.15)

Concerning the last iterate zk+1 = zk+1
p , we have from the definition of Proxγh1 that

0 ∈ ∂h1(zk+1
p ) +∇h2(zk+1

p−1 ) + 1
γ

(zk+1
p − zk+1

p−1 ).
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Compare this with (2.11) and use zk+1 = zk+1
p to get

εk+1 = 1
γ

(zk+1
p − zk+1

p−1 ) +∇h2(zk+1
p−1 )−∇h2(zk+1

p ).

It remains to show that εk+1 satisfies (2.12).

Let zk+1
⋆ be the solution of (2.14), α = λmin(M2), and β = λmax(M2). Then h1(z)

is convex and h2(z) is α-strongly convex and β-Lipschitz differentiable. Consequently,

[18, Prop. 26.16(ii)] gives

‖zk+1
i − zk+1

⋆ ‖ ≤ ρi‖zk+1
0 − zk+1

⋆ ‖, ∀i = 0, 1, ..., p,

where ρ =
√

1− γ(2α− γβ2).

Let ai = ‖zk+1
i − zk+1

⋆ ‖. Then, ai ≤ ρia0. We can derive

‖εk+1‖ ≤ ( 1
γ

+ β)‖zk+1
p − zk+1

p−1‖ ≤ ( 1
γ

+ β)(ap + ap−1) ≤ ( 1
γ

+ β)(ρp + ρp−1)a0. (2.16)

On the other hand, we have

‖zk+1 − zk‖ ≥ a0 − ap ≥ (1− ρp)a0. (2.17)

Combining these two equations yields

‖εk+1‖ ≤ c‖zk+1 − zk‖,

where c is given in (2.13).

Theorem 2.3.3 uses the iterator S that is the proximal-gradient step. It is straight-

forward to extend its proof to S being the FISTA step with restart. We omit the

proof.

In our next theorem, we let S be the iterator of one epoch of the cyclic proximal

BCD method. A BCD method updates one block of coordinates at a time while fixing

the remaining blocks. In one epoch of cyclic BCD, all the blocks of coordinates are

sequentially updated, and every block is updated once. In cyclic proximal BCD, each
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block of coordinates is updated by a proximal-gradient step, just like (2.15) except only

the chosen block is updated each time. When h1 is block separable, each update costs

only a fraction of updating all the blocks together. When different blocks are updated

one after another, the Gauss-Seidel effect brings more progress. In addition, since the

Lipschitz constant of each block gradient of h2 is typically less than than that of ∇h2,

one can use a larger stepsize γ and get potentially even faster progress. Therefore, the

iterator of cyclic proximal BCD is a better choice for S.

In summary, with h1(z) = g∗(z) and h2(z) = 1
2‖z− z

k−M−1
2 A(2xk+1−xk)‖2

M2 , one

epoch of cyclic proximal BCD for the z−subproblem can be written as

zk+1
0 = zk,

zk+1
i+1 = S(zk+1

i , xk+1, xk), i = 0, 1, ..., p− 1,

zk+1 = zk+1
p .

where S is the iterator of cyclic proximal BCD. Define

T (z) = Proxγh1(z)(z − γ∇h2(z)),

B(z) = 1
γ

(z − T (z)),

and the jth coordinate operator of B:

Bj(z) = (0, ..., (B(z))j, ..., 0), j = 1, 2, ..., l.

Then, we have

zk+1
i+1 = S(zk+1

i , xk+1, xk) = (I − γBl)(I − γB2)...(I − γB1)zk+1
i .

Theorem 2.3.4. Let Assumption 2.3.1 hold and g be block separable, i.e.,

z = (z1, z2, ..., zl) and g(z) = ∑l
j=1 gj(zj). Suppose in iPrePDHG, or Algorithm 2.1, we

choose S as the iterator of cyclic proximal BCD with stepsize γ satisfying

0 < γ ≤ min
{

2λmin(M2))
λ2

max(M2))
,
1−

√
1− γ(2λmin(M2)− γλ2

max(M2))
4
√

2γlλmax(M2)
,

1
4lλmax(M2)

,
2lλmax(M2)

17lλmax(M2) + 2(1−
√

1−γ(2λmin(M2)−γλ2
max(M2))

γ
)2

}
,
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and we set p ≥ 1. Then, zk+1 = zk+1
p is an approximate solution to the z-subproblem

up to a bounded relative error in Definition 2.3.1 for

c = c(p) =
(lλmax(M2) + 1

γ
)(ρp + ρp−1)

1− ρp
, (2.18)

where ρ = 1−

(
1−
√

1−γ(2λmin(M2)−γλ2
max(M2))

)2

2γ < 1.

Proof. See Appendix 2.B.

2.3.4 Global convergence of iPrePDHG

In this subsection, we proceed to establishing the convergence of Algorithm 2.1. Our

approach first transforms Algorithm 2.1 into an equivalent algorithm in Proposition

2.3.5 below and then proves its convergence in Theorems 2.3.8 and 2.3.9 below.

First, let us show that PrePDHG (2.7) is equivalent to an algorithm applied on the

dual problem (2.2). This equivalence is analogous to the equivalence between PDHG

(2.6) and Linearized ADMM applied to the dual problem (2.2), shown in [88]). Specifi-

cally, PrePDHG is equivalent to

zk+1 = ProxM2
g∗ (zk +M−1

2 AM−1
1 (−AT zk − yk + uk)),

yk+1 = ProxM
−1
1

f∗ (uk − AT zk+1),

uk+1 = uk − AT zk+1 − yk+1.

(2.19)

When M1 = 1
τ
I,M2 = λI, (2.19) reduces to Linearized ADMM, also known as Split

Inexact Uzawa [243].

Furthermore, iPrePDHG in Algorithm 2.1 is equivalent to (2.19) with inexact sub-

problems, which we present in Algorithm 2.2.
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Algorithm 2.2 Inexact Preconditioned ADMM
Input: f, g, A in (2.1), preconditioners M1 and M2,

initial vector (z0, y0, u0), subproblem solver S for the z-subproblem in (2.19), number

of inner loops p, number of outer iterations K.

Output: (zK , yK , uK)

1: for k ← 0, 1, ..., K − 1 do

2: zk+1
0 = zk;

3: for i← 0, 1, ..., p− 1 do

4: zk+1
i+1 = S(zk+1

i , yk, uk);

5: end for

6: zk+1 = zk+1
p ; ▷ approximate ProxM2

g∗ (zk +M−1
2 AM−1

1 (−AT zk − yk + uk)).

7: yk+1 = ProxM
−1
1

f∗ (uk − AT zk+1);

8: uk+1 = uk − AT zk+1 − yk+1;

9: end for

Proposition 2.3.5. Under Assumption 2.3.1 and the transforms uk = M1x
k, yk+1 =

uk−AT zk−uk+1, PrePDHG (2.7) is equivalent to (2.19), and iPrePDHG in Algorithm

2.1 is equivalent to Algorithm 2.2.

Proof. Set uk = M1x
k, yk+1 = uk − AT zk − uk+1. Then (2.4) and (2.7) yield

yk+1 = M1x
k − AT zk −M1x

k+1 = ProxM
−1
1

f∗ (uk − AT zk),

and

uk+1 = uk − AT zk − yk+1,

zk+1 = ProxM2
g∗ (zk +M−1

2 AM−1
1 (−AT zk − yk+1 + uk+1)).

If the z-update is performed first, then we arrive at (2.19).

In iPrePDHG or Algorithm 2.1, we are solving the z-subproblem of PrePDHG (2.7)

approximately to the bounded relative error in Definition 2.3.1. This is equivalent to

doing the same to the z-subproblem of (2.19), which yields Algorithm 2.2.
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Let us define the following generalized augmented Lagrangian:

L(z, y, u) = g∗(z) + f ∗(y) + 〈−AT z − y,M−1
1 u〉+ 1

2
‖AT z + y‖2

M−1
1
. (2.20)

Inspired by [231], we use (2.20) as the Lyapunov function to establish convergence

of Algorithm 2.2 and, equivalently, the convergence of Algorithm 2.1. To the best of

our knowledge, this is a new proof technique for inexact PDHG and inexact ADMM.

We first establish subsequential convergence of iPrePDHG in Algorithm 2.1 under

the following additional assumptions.

Assumption 2.3.2.

1. f(x) is µf−strongly convex.

2. g∗(z) + f ∗(−AT z) is coercive, i.e., lim‖z‖→∞ g∗(z) + f ∗(−AT z) =∞.

To establish convergence of iPrePDHG in Algorithm 2.1, we also need the following

assumption.

Assumption 2.3.3. L(z, y, u) is a KL function.

Assumption 2.3.3 is true when both g∗(z) and f ∗(y) are semi-algebraic, or more

generally, definable in an o-minimal structure (more details can be referred to Sec 2.2

of [10] and Sec 2.2 of [233] and the references therein).

Theorem 2.3.6. Take Assumptions 2.3.1 and 2.3.2. Choose any preconditioners M1,M2

and inner iteration number p such that

C1 = 1
2
M−1

1 −
‖M1‖
µ2
f

In � 0, (2.21)

C2 = M2 −
1
2
AM−1

1 AT − c(p)Im � 0, (2.22)

where c(p) depends on the z-subproblem iterator S and M2 (e.g., (2.13) and (2.18)).

Define Lk := L(zk, yk, uk). Then, Algorithm 2.2 satisfies the following sufficient descent
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and lower boundedness properties, respectively:

Lk − Lk+1 ≥ ‖yk − yk+1‖2
C1 + ‖zk − zk+1‖2

C2 , (2.23)

Lk ≥ g∗(z⋆) + f ∗(−AT z⋆) > −∞. (2.24)

Proof. Since the z-subproblem of Algorithm 2.2 is solved to the bounded relative error

in Def. 2.3.1, we have

0 ∈ ∂g∗(zk+1) +M2(zk+1 − zk −M−1
2 AM−1

1 (−AT zk − yk + uk)) + εk+1, (2.25)

where εk+1 satisfies (2.12):

‖εk+1‖ ≤ c(p)‖zk+1 − zk‖. (2.26)

The y and u updates produce

0 = ∇f ∗(yk+1) +M−1
1 (yk+1 − uk + AT zk+1) = ∇f ∗(yk+1)−M−1

1 uk+1, (2.27)

uk+1 = uk − AT zk+1 − yk+1. (2.28)

In order to show (2.23), let us write

g∗(zk) ≥ g∗(zk+1)

+ 〈M2(zk − zk+1) + AM−1
1 (−AT zk − yk + uk)− εk+1, zk − zk+1〉,

f ∗(yk) ≥ f ∗(yk+1) + 〈M−1
1 uk+1, yk − yk+1〉.
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Assembling these inequalities with (2.26) gives us

Lk − Lk+1 ≥ ‖zk − zk+1‖2
M2−c(p)Im

+ 〈AM−1
1 (−AT zk − yk + uk), zk − zk+1〉+ 〈M−1

1 uk+1, yk − yk+1〉

+ 〈−AT zk − yk,M−1
1 uk〉 − 〈AT zk+1 − yk+1,M−1

1 (uk − AT zk+1 − yk+1)〉

+ 1
2
‖AT zk + yk‖2

M−1
1
− 1

2
‖AT zk+1 + yk+1‖2

M−1
1

= ‖zk − zk+1‖2
M2−c(p)Im

+ 〈AM−1
1 (−AT zk − yk), zk − zk+1〉+ 〈M−1

1 uk+1, yk − yk+1〉 (A)

+ 〈−yk,M−1
1 uk〉 − 〈−yk+1,M−1

1 uk〉 (B)

+ 1
2
‖AT zk + yk‖2

M−1
1
− 3

2
‖AT zk+1 + yk+1‖2

M−1
1
,

where the terms in (A) and (B) simplify to

〈AM−1
1 (−AT zk − yk), zk − zk+1〉+ 〈M−1

1 (−AT zk+1 − yk+1), yk − yk+1〉. (2.29)

Apply the following cosine rule on the two inner products above:

〈a− b, a− c〉M−1
1

= 1
2
‖a− b‖2

M−1
1

+ 1
2
‖a− c‖2

M−1
1
− 1

2
‖b− c‖M−1

1
.

Set a = AT zk, c = AT zk+1, and b = −yk to obtain

〈AM−1
1 (−AT zk − yk), zk − zk+1〉 = −1

2
‖AT zk + yk‖2

M−1
1
− 1

2
‖AT zk − AT zk+1‖2

M−1
1

+ 1
2
‖yk + AT zk+1‖2

M−1
1
. (2.30)

Set a = yk+1, c = yk, and b = −AT zk+1 to obtain

〈M−1
1 (−AT zk+1 − yk+1), yk − yk+1〉 = 1

2
‖AT zk+1 + yk+1‖2

M−1
1

+ 1
2
‖yk − yk+1‖M−1

1

− 1
2
‖AT zk+1 + yk‖2

M−1
1
. (2.31)

Combining (2.29), (2.30), and (2.31) yields

Lk − Lk+1 ≥ ‖zk − zk+1‖2
M2− 1

2AM
−1
1 AT −c(p)Im

+ ‖yk − yk+1‖2
1
2M

−1
1

− ‖AT zk+1 + yk+1‖2
M−1

1
. (2.32)
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Since f is µf -strongly convex, we know that ∇f ∗ is 1
µf
−Lipschitz continuous. Conse-

quently,

‖AT zk+1 + yk+1‖2
M−1

1
= ‖uk − uk+1‖2

M−1
1
≤ 1
λmin(M−1

1 )
‖M−1

1 (uk − uk+1)‖2

(2.27)
≤ ‖M1‖

µ2
f

‖yk − yk+1‖2. (2.33)

Combining (2.32) and (2.33) gives us (2.23).

Now, to show (2.24), we use (2.27) and smoothness of f ∗ to get

f ∗(yk) ≥ f ∗(−AT zk) + 〈M−1
1 uk, yk + AT zk〉 − 1

2µf
‖AT zk + yk‖2.

Hence, we arrive at

Lk = g∗(zk) + f ∗(yk) + 〈−AT zk − yk,M−1
1 uk〉+ 1

2
‖AT zk + yk‖2

M−1
1

≥ g∗(zk) + f ∗(−AT zk) + 1
2
‖AT zk + yk‖2

M−1
1
− 1

2µf
‖AT zk + yk‖2. (2.34)

Since C1 � 0 if and only if µf >
√

2‖M1‖, (2.24) follows.

Next, we provide a simple choice of M1,M2, and p that ensures the positive defi-

niteness of C1 and C2 in Theorem 2.3.6.

Proposition 2.3.7. In order to ensure (2.21) and (2.22), it suffices to set M1 = 1
τ
In

where τ < 1√
2µf , M2 = τAAT + θIm with any θ > 0, and p is large enough such that

c(p) < θ.

Proof. Since M1 = 1
τ
In, it is evident that C1 � 0 if and only if τ < 1√

2µf . With

M1 = 1
τ
In and M2 = τAAT + θIm, we have

C2 = 1
2
τAAT + (θ − c(p))Im,

since c(p) decreases linearly in p, we know that there exists p0 such that C2 � 0 for any

p ≥ p0.
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We are now ready to show that (xk, zk) in Algorithm 2.1 converges subsequentially

to a primal-dual solution pair of (2.1) and (2.2).

Theorem 2.3.8. Take Assumptions 2.3.1 and 2.3.2. Then, (xk, zk) in Algorithm 2.1

is bounded, and any cluster point of {xk, zk} is a primal-dual solution pair of (2.1) and

(2.2).

Proof. According to Theorem 2.3.5, it is sufficient to show that {M−1
1 uk, zk} is bounded,

and its cluster points are primal-dual solution pairs of (2.1).

Since Lk is nonincreasing, (2.34) tells us that

g∗(zk) + f ∗(−AT zk) + 1
2
‖AT zk + yk‖2

M−1
1
≤ L0 < +∞.

Since g∗(z)+f ∗(−AT z) is coercive, {zk} is bounded, and, by the boundedness of {AT zk+

yk}, {yk} is also bounded. Furthermore, (2.27) gives us

‖M−1
1 (uk − u0)‖ ≤ 1

µf
‖yk − y0‖.

Therefore, {M−1
1 uk} is bounded, too.

Let (zc, yc, uc) be a cluster point of {zk, yk, uk}. We shall show (zc, yc, uc) is a saddle

point of L(z, y, u), i.e.,

0 ∈ ∂L(zc, yc, uc), (2.35)

or equivalently,

0 ∈ ∂g∗(zc)− AM−1
1 uc,

0 = ∇f ∗(yc)−M−1
1 uc,

0 = AT zc + yc,

which ensures (M−1
1 uc, zc) to be a primal-dual solution pair of (2.1).
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In order to show (2.35), we first notice that (2.20) gives

∂xL(zk+1, yk+1, uk+1) = ∂g∗(zk+1)− AM−1
1 uk+1 + AM−1

1 (AT zk+1 + yk+1),

∇yL(zk+1, yk+1, uk+1) = ∇f ∗(yk+1)−M−1
1 uk+1 +M−1

1 (AT zk+1 + yk+1),

∇uL(zk+1, yk+1, uk+1) = M−1
1 (−AT zk+1 − yk+1).

Comparing these with the optimality conditions (2.25), (2.27), and (2.28), we have

dk+1 = (dk+1
z , dk+1

y , dk+1
u ) ∈ ∂L(zk+1, yk+1, uk+1), (2.36)

where

dk+1
z = M2(zk − zk+1) + 2AM−1

1 (uk − uk+1)− AM−1
1 (uk−1 − uk)− εk+1,

dk+1
y = M−1

1 (uk − uk+1),

dk+1
u = M−1

1 (uk+1 − uk).

(2.37)

Since (2.23) and (2.24) imply zk − zk+1, yk − yk+1 → 0, (2.27) gives uk − uk+1 → 0.

Combine these with (2.12), we have dk → 0.

Finally, let us take a subsequence {zks , yks , uks} → (zc, yc, uc). Since dks → 0

as s → +∞, [194, Def. 8.3] and [194, Prop. 8.12] yield (2.35), which tells us that

(M−1
1 uc, zc) is a primal-dual solution pair of (2.1).

Following the axiomatic approach developed in [10] for decent algorithms on KL

functions, we can show that the whole sequence (xk, zk) in Algorithm 2.1 converges to

a primal-dual solution pair. This approach has also been applied in [34] for KL-based

Lagrangian optimization.

Theorem 2.3.9. Take Assumptions 2.3.1, 2.3.2, and 2.3.3. Then, {xk, zk} in Algo-

rithm 2.1 converges to a primal-dual solution pair of (2.1).

Proof. By Theorem 2.3.8, we can take {zks , yks , uks} → (zc, yc, uc) as s → ∞. Since L

is a KL function, we can prove the convergence of {zk, yk, uk} to {zc, yc, uc} following
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the approach developed in [10]. Specifically, let us first verify that conditions H1, H2,

and H3 of [10] are satisfied for vk := (zk, yk, uk) and L(vk).

First, (2.23) gives

L(vk+1)+λmin(C1)‖yk − yk+1‖2 + λmin(C2)‖zk − zk+1‖2 ≤ L(vk). (2.38)

By (2.27) and the 1
µf
−Lipschitz differentiability of f ∗, we know that

1
2
‖yk − yk+1‖2 ≥

µ2
f

2
‖M−1

1 uk −M−1
1 uk+1‖2. (2.39)

Combine (2.38) with (2.39), we know that there exists a > 0 such that

L(vk+1) + a‖vk+1 − vk‖2 ≤ L(vk).

which satisfies condition H1 of [10].

From (2.36) and (2.37), we know that dk+1 ∈ ∂L(vk+1) satisfies

‖dk+1‖ ≤ b‖vk+1 − vk‖

for some b > 0, which satisfies condition H2 of [10].

Next, let us verify that condition H3 of [10] also holds true.

Recall that we have taken {zks , yks , uks} → (zc, yc, uc) as s → ∞. Note that

L(zks , yks , uks) is monotonic nonincreasing and lower bounded due to Theorem 2.3.6,

which implies the convergence of L(zks , yks , uks). Since L is lower semicontinuous, we

have

L(zc, yc, uc) ≤ lim
s→∞

L(zks , yks , uks). (2.40)

Since the only potentially discontinuous term in L is g∗, we have

lim
s→∞

L(zks , yks , uks)− L(zc, yc, uc) ≤ lim sup
s→∞

g∗(zks)− g∗(zc). (2.41)

By (2.25), we know that

g∗(zc) ≥ g∗(zks)

+ 〈M2(zks−1 − zks) + AM−1
1 (−AT zks−1 − yks−1 + uks−1)− εks , zc − zks〉,

38



Then, by Theorem 2.3.6, we further get zks−1−zks → 0. Since zks → zc and {zk, yk, uk}

is bounded, we obtain

lim sup
s→∞

g∗(zks)− g∗(zc) ≤ 0.

Combining this with (2.40) and (2.41), we conclude that

lim
s→∞

L(zks , yks , uks) = L(zc, yc, uc),

which satisfies condition H3 of [10].

Finally, since the conditions H1, H2, and H3 are satisfied, we can follow the proof of

Theorem 2.9 of [10] to establish the convergence of vk = (zk, yk, uk) to (zc, yc, uc), which

is a critical point of L(z, y, u). By (2.37), we further now that {M−1
1 uk, zk} converges to

a primal-dual solution pair of (2.1), which is exactly {xk, zk} in Algorithm 2.1 according

to Theorem 2.3.5.

2.4 Numerical experiments

In this section, we compare our iPrePDHG (Algorithm 2.1) with (original) PDHG (2.6)

and diagonally-preconditioned PDHG (DP-PDHG) [179]. We consider four popular ap-

plications of PDHG: TV-L1 denoising, graph cuts, estimation of earth mover’s distance,

and CT reconstruction.

For the preconditioners M1 and M2 in iPrePDHG, we choose M1 = 1
τ
In and M2 =

τAAT + θI as suggested in Proposition 2.3.7, which corresponds to ADMM and M2 is

nearly optimal for small θ (see subsection 2.3.2). The number of inner loops p is taken

from {1, 2, 3}. Although f may not be strongly convex in our experiments, we still

observe significant speedups compared to other algorithms.

When we write these examples in the form of (2.1), the matrix A (or a part of A)

is one of the following operators:
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Case 1: 2D discrete gradient operator D : RM×N → R2M×N :

For images of size M ×N and grid stepsize h, we have

(Du)i,j =

(Du)1
i,j

(Du)2
i,j

 ,
where

(Du)1
i,j =


1
h
(ui+1,j − ui,j) if i < M,

0 if i = M,

(Du)2
i,j =


1
h
(ui,j+1 − ui,j) if j < N,

0 if j = N.

where w ∈ (R+)2MN is a weight vector.

Case 2: 2D discrete divergence operator: div: R2M×N → RM×N given by

div(p)i,j = h(p1
i,j − p1

i−1,j + p2
i,j − p2

i,j−1),

where p = (p1, p2)T ∈ R2M×N , p1
0,j = p1

M,j = 0 and p2
i,0 = p2

i,N = 0 for i = 1, ...,M ,

j = 1, ..., N .

To take advantages of the finite-difference structure of these operators, we let S be

the iterator of cyclic proximal BCD in Algorithm 2.1. We split {1, 2, ...m} into 2 blocks

(for case 3) or 4 blocks (for cases 1 and 2), which are inspired by the popular red-black

ordering [201] for solving sparse linear system.

According to Theorem 2.3.4, running finitely many epochs of cyclic proximal BCD

gives us a bounded relative error in Def. 2.3.1. We expect that this solver brings faster

overall convergence. Specifically, when g∗ is linear (or equivalently, g is a δ function), the

z-subproblem in PrePDHG reduces to a linear system with a structured sparse matrix

AAT . Therefore, Gradient Descent amounts to the Richardson method [188, 201], and

cyclic proximal BCD is equivalent to the Gauss-Seidel method [96, 201]. The following
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two claims tell us that S in Algorithm 2.1 has a closed form, so Algorithm 2.1 is easy

to implement. Furthermore, each execution of S can use parallel computing.

Figure 2.1: two-block ordering in Claim

2.4.1

Figure 2.2: four-block ordering in Claim

2.4.2

Claim 2.4.1. When A = div (i.e. AT = −D) and M2 = τAAT , for z ∈ RM×N , we

separate z into two block zb, zr where

zb := {zi,j | i+ j is even}, zr := {zi,j | i+ j is odd},

for 1 ≤ i ≤ M , 1 ≤ j ≤ N . If g(z) = Σi,jgi,j(zi,j) and proxγg∗
i,j

have closed-form

solutions for all 1 ≤ i ≤ M , 1 ≤ j ≤ N and γ > 0, then S as the iterator of cyclic

proximal BCD in Algorithm 2.1 has a closed form and computing S is parallelizable.

Proof. As illustrated in Fig. 2.1, every black node is connected to its neighbor red nodes,

so we can update all the coordinates corresponding to the black nodes in parallel, while

those corresponding to the red nodes are fixed, and vice versa. See Appendix 2.C for a

complete explanation.

Claim 2.4.2. When A = D (i.e. AT = −div) and M2 = τAAT , for z = (z1, z2)T ∈
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R2M×N , we separate z into four blocks zb, zr, zy and zg, where

zb = {z1
i,j | i is odd}, zr = {z1

i,j | i is even},

zy = {z2
i,j | j is odd}, zg = {z2

i,j | j is even},

for 1 ≤ i ≤ M , 1 ≤ j ≤ N . If g(z) = Σi,jgi,j(zi,j) and all proxγg∗
i,j

have closed-form

solutions for all 1 ≤ i ≤ M , 1 ≤ j ≤ N and γ > 0, then S as the iterator of cyclic

proximal BCD in Algorithm 2.1 has a closed form and computing S is parallelizable.

Proof. In Figure 2.2, the 4 blocks are in 4 different colors. The coordinates correspond-

ing to nodes of the same color can be updated in parallel, while the rest are fixed. See

Appendix 2.C for details.

In Table 2.4.2, Table 2.4.1, Fig. 2.7, and Table 2.4.4, PDHG denotes original PDHG

in (2.6) without any preconditioning; DP-PDHG denotes the diagonally-preconditioned

PDHG in [179], PrePDHG denotes Preconditioned PDHG in (2.7) where the (k+ 1)th

z-subproblem is solved until ‖zk−zk+1‖2
max{1,‖zk+1‖2} < 10−5 using the TFOCS [30] implementation

of FISTA with restart; iPrePDHG (Inner: BCD) and iPrePDHG (S=FISTA) denote our

iPrePDHG in Algorithm 2.1 with the iterator S being cyclic proximal BCD or FISTA

with restart, respectly. All the experiments were performed on MATLAB R2018a on

a MacBook Pro with a 2.5 GHz Intel i7 processor and 16GB of 2133MHz LPDDR3

memory.

A comparison between PDHG and DP-PDHG is presented in [179] on TV-L1 denois-

ing and graph cuts, and in [207] on CT reconstruction. A PDHG algorithm is proposed

to estimate earth mover’s distance (or optimal transport) in [127]. In order to provide

a direct comparison, we use their problem formulations.
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2.4.1 Graph cuts

The total-variation-based graph cut model involves minimizing a weighted TV energy:

minimize ‖Dwu‖1 + 〈u, ωu〉

subject to 0 ≤ u ≤ 1,

where wu ∈ RM×N is a vector of unary weights, wb ∈ R2MN is a vector of binary weights,

and Dw = diag(wb)D for D being the 2D discrete gradient operator with h = 1.

To formulate this problem as (2.1), we take f(u) = 〈u,wu〉 + δ[0,1](u), A = D, and

g as a weighted ℓ1−norm:

g(z) =
2MN∑
i=1

(wb)i|zi|.

In our experiment, the image has a size 660 × 720. We run all algorithms until

δk := |Φk−Φ⋆|
|Φ⋆| < 10−8, where Φk is the objective value at the kth iteration and Φ∗ is the

optimal objective value obtained by running CVX.

The best results of τ ∈ {10, 1, 0.1, 0.01, 0.001} and p ∈ {1, 2, 3} are summarized in

Table 2.4.1, where the step size of cyclic proximal BCD has been chosen as γ = 1
‖M2‖ . We

can see that our iPrePDHG (Inner: BCD) is the fastest. It is also worth mentioning that

its number of outer iterations is close to that of PrePDHG, which solves z-subproblem

much more accurately. In the last row of Table 2.4.1, we also take M2 = τDwD
T
w + θIm

with θ > 0 as suggest in Proposition 2.3.7, the performance is similar to that of θ = 0.

In practice, we recommend simply taking θ = 0.
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Method Outer Iter Runtime(s) Parameters

PDHG 5529 140.5777 τ = 1, M1 = 1
τ In, M2 = τ‖Dw‖2Im

DP-PDHG 3571 104.5392
M1 = diag(Σi|Dwi,j |),

M2 = diag(Σj |Dwi,j |)

PrePDHG
282 938.3787 τ = 10, M1 = 1

τ In, M2 = τDwDT
w

(ADMM)

iPrePDHG
411 14.9663 τ = 10, M1 = 1

τ In, M2 = τDwDT
w, p = 2

(Inner: BCD)

iPrePDHG
402 14.7687

τ = 10, M1 = 1
τ In, M2 = τDwDT

w + θIm,

(Inner: BCD) θ = 0.1, p = 2

Table 2.1: Graph cut test

Figure 2.3: Input image Figure 2.4: Graph cut by iPrePDHG (In-

ner: BCD)

2.4.2 Total variation based image denoising

The following problem is known as the (discrete) TV-L1 model for image denoising:

minimizeu Φ(u) = ‖Du‖1 + λ‖u− b‖1,

where D is the 2D discrete gradient operator with h = 1, b ∈ RM×N is a noisy input

image, and λ is a regularization parameter.
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To formulate this problem as (2.1), we take f(u) = λ‖u − b‖1, g(z) = ‖z‖1, and

A = D.

In our experiment we input a 1024×1024 image with noise level 0.15 and set λ = 1;

see Fig. 2.5. We run the algorithms until δk := |Φk−Φ⋆|
|Φ⋆| < 10−6, where Φk is the objective

value at kth iteration and Φ∗ is the optimal objective value obtained by calling CVX

[64, 107].

Observed performance is summarized in Table 2.4.2, where the best results for

τ ∈ {10, 1, 0.1, 0.01, 0.001} and p ∈ {1, 2, 3} are presented (Again, the step size of

cyclic proximal BCD has been chosen as γ = 1
‖M2‖). Our iPrePDHG (Inner: BCD) is

significantly faster than the other three algorithms.

When taking θ = 0.1, we get nearly identical results. This is because θ > 0 adds a

proximal term θ
2‖z − z

k‖2 in the z−subproblem(see Equ. (2.8)), whose gradient at zk

is 0. Since p = 1 and cyclic proximal BCD is initialized exactly at zk, we get the same

iterates as that of θ = 0. In practice, we recommend simply taking θ = 0.

Remarkably, our algorithm uses fewer outer iterations than PrePDHG under the

stopping criterion ‖zk−zk+1‖2
max{1,‖zk+1‖2} < 10−5, as this kind of stopping criteria may become

looser as zk is closer to z⋆. In this example, ‖zk−zk+1‖2
max{1,‖zk+1‖2} < 10−5 only requires 1 inner

iteration of FISTA when Outer Iter ≥ 368, while as high as 228 inner iterations on

average during the first 100 outer iterations. In comparison, our algorithm uses fewer

outer iterations while each of them also costs less.

In addition, the diagonal preconditioner given in [179] appears to help very little

when A = D. In fact, M1 = diag(Σi|Ai,j|) will be 4In and M2 = diag(Σj|Ai,j|) will

be 2Im if we ignore the Neumann boundary condition. Therefore, DP-PDHG performs

even worse than PDHG.
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Method Outer Iter Runtime(s) Parameters

PDHG 2990 114.2576 τ = 0.01, M1 = 1
τ In, M2 = τ‖D‖2Im

DP-PDHG 8856 329.7890 M1 = diag(Σi|Di,j |), M2 = diag(Σj |Di,j |)

PrePDHG
963 5706.2837 τ = 0.1, M1 = 1

τ In, M2 = τDDT

(ADMM)

iPrePDHG
541 26.2704 τ = 0.01, M1 = 1

τ In, M2 = τDDT , p = 1
(Inner: BCD)

iPrePDHG
541 26.2951

τ = 0.01, M1 = 1
τ In, M2 = τDDT + θIm,

(Inner: BCD) p = 1, θ = 0.1

Table 2.2: TV-L1 denoising test. PDHG is original PDHG. DP-PDHG uses diago-

nal preconditioning. PrePDHG uses non-diagonal preconditioning. iPrePDHG (Inner:

BCD) is our algorithm that uses both non-diagonal preconditioning and an iterator S

instead of solving the z-subproblem.

Figure 2.5: Noisy image Figure 2.6: Denoising by iPrePDHG (In-

ner: BCD)
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2.4.3 Earth mover’s distance

Earth mover’s distance is useful in image processing, computer vision, and statistics

[122, 153, 174]. A recent method [127] to compute earth mover’s distance is based on

minimize ‖m‖1,2

subject to div(m) + ρ1 − ρ0 = 0,

where m ∈ R2M×N is the sought flux vector on the M × N grid, and ρ0, ρ1 represents

two mass distributions on the M × N grid. The setting in our experiment here is the

same with that in [127], i.e. M = N = 256, h = N−1
4 , and for ρ0 and ρ1 see Fig. 2.8.

To formulate this problem as (2.1), we take f(m) = ‖m‖1,2, g(z) = δ{ρ0−ρ1}(z), and

A = div.

Since the iterates mk may not satisfy the linear constraint, the objective Φ(m) =

I{m|div(m)=ρ0−ρ1} + ‖m‖1,2 is not comparable. Instead, we compare ‖mk‖1,2 and the

constraint violation until k = 100000 outer iterations in Fig. 2.4.3, where we set

τ = 3× 10−6 as in [127], and σ = 1
τ‖div‖2 . In Fig. 2.4.3, we can see that our iPrePDHG

provides much lower constraint violation and much more faithful earth mover’s distance

‖m‖1,2. Fig. 2.8 shows the solution obtained by our iPrePDHG (Inner: BCD), where m

is the flux that moves the standing cat ρ1 into the crouching cat ρ0. For our iPrePDHG,

when M2 = τdiv divT +θIm, one has similar results for a small θ, the results are omitted.

In practice, we recommend simply taking θ = 0.

DP-PDHG and PrePDHG are extremely slow in this example. Similar to 2.4.2, when

A = div, the diagonal preconditioners proposed in [179] are approximately equivalent to

fixed constant parameters τ = 1
2h , σ = 1

4h and they lead to extremely slow convergence.

As for PrePDHG, it suffers from the high cost per outer iteration.

It is worth mentioning that unlike [127], the algorithms in our experiments are not

parallelized. On the other hand, in our iPrePDHG (Inner: BCD), iterator S can be

parallelized (which we did not implement). Therefore, one can expect a further speedup

by a parallel implementation.
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Results on EMD estimation and constraint violation during 100000 outer iterations

Figure 2.7: For PDHG, τ = 3 × 10−6, σ = 1
τ‖div‖2 ; For iPrePDHG (Inner: BCD),

τ = 3× 10−6, M1 = τ−1In, M2 = τdivdivT, γ = 1
‖M2‖ , and p = 2. ‖m∗|‖1,2 is obtained

by calling CVX.
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Figure 2.8: ρ0, ρ1 are the white standing cat and the black crouching cat, respectively.

Both images are 256× 256, and the earth mover’s distance between ρ0 and ρ1 is 0.6718.

2.4.4 CT reconstruction

We test solving the following optimization problem for CT image reconstruction:

minimize Φ(u) = 1
2‖Ru− b‖

2
2 + λ‖Du‖1, (2.42)

where R ∈ R13032×65536 is a system matrix for 2D fan-beam CT with a curved detector,

b = Rutrue ∈ R13032 is a vector of line-integration values, and we want to reconstruct

utrue ∈ RMN , where M = N = 256. D is the 2D discrete gradient operator with h = 1,

and λ = 1 is a regularization parameter. By using the fancurvedtomo function from

the AIR Tools II [111] package, we generate a test problem where the projection angles

are 0◦, 10◦, . . . , 350◦, and for all the other input parameters we use the default values.

Following [207], we formulate the problem (2.42) in the form of (2.1) by taking

g

p
q

 = 1
2
‖p− b‖2

2 + λ‖q‖1, f(u) = 0, A =

R
D

 , (2.43)
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By using this formulation, we avoids inverting the matrices R and D.

Since the block structure of AAT is rather complicated, if we naively choose M1 =
1
τ
In and M2 = τAAT like in the previous three experiments, it becomes hard to find

a fast subproblem solver for the z-subproblem. In Table 2.4.4, we report a TFOCS

implementation of FISTA for solving the z-subproblem and the overall convergence is

very slow.

Instead, we propose to choose

M1 = 2
τ
In, M2 =

τ‖R‖2Im−2n 0

0 τDDT

 (2.44)

or

M1 = diag(Σi|Ri,j|) + 1
τ
In, M2 =

diag(Σj|Ri,j|) 0

0 τDDT

 . (2.45)

These choices satisfy (2.9), and have simple block structures, a fixed epoch of S as

cyclic proximal BCD iterators gives fast overall convergence. Note that (2.45) is a little

slower but avoids the need of estimating ‖R‖.

We summarize the numerical results in Table 2.4.4. All the algorithms are executed

until δk := |Φk−Φ⋆|
|Φ⋆| < 10−4, where Φk is the objective value at the kth iteration and

Φ∗ is the optimal objective value obtained by calling CVX. The best results of τ ∈

{10, 1, 0.1, 0.01, 0.001} and p ∈ {1, 2, 3} are summarized in Table 2.4.4. As in the

previous experiments, θ = 0.1 gives similar performances for iPrePDHG(Inner: BCD).

In practice, we recommend simply taking θ = 0. For iPrePDHG (S=FISTA) with M2 =

τAAT , the result for p = 100 is also reported (here we use the TFOCS implementation

of FISTA).

2.5 Conclusion

We have developed an approach to accelerate PDHG and ADMM in this work. Our

approach uses effective preconditioners to significantly reduce the number of iterations.
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Method Outer Iter Runtime(s) Parameters

PDHG 364366 3663.0348 τ = 0.001, M1 = 1
τ In, M2 = τ‖A‖2Im

DP-PDHG 70783 713.9865
M1 = diag(Σi|Ai,j |),

M2 = diag(Σj |Ai,j |)

PrePDHG
- > 104 τ = 0.01, M1 = 1

τ In, M2 = τAAT

(ADMM)

iPrePDHG
- > 104

τ = 0.001, M1 = 1
τ In,

(Inner: FISTA) M2 = τAAT , p = 1, 2, or 3

iPrePDHG
- > 104

τ = 0.01, M1 = 1
τ In,

(Inner: FISTA) M2 = τAAT , p = 100

iPrePDHG
587 7.5365

τ = 0.01, M1 = 2
τ In, p = 2,

(Inner: BCD) M2 =

τ‖R‖2Im−2n 0

0 τDDT


iPrePDHG

586 7.2112

τ = 0.01, M1 = 2
τ In, p = 2,

(Inner: BCD) M2 =

τ‖R‖2Im−2n 0

0 τDDT + θI2n


iPrePDHG

858 10.3517

τ = 0.01, M1 = diag(Σi|Ri,j |) + 1
τ In, p = 2

(Inner: BCD) M2 =

diag(Σj |Ri,j |) 0

0 τDDT


iPrePDHG

857 10.3123

τ = 0.01, M1 = diag(Σi|Ri,j |) + 1
τ In, p = 2

(Inner: BCD) M2 =

diag(Σj |Ri,j |) 0

0 τDDT + θI2n



Table 2.3: CT reconstruction

51



In general, most effective preconditioners are non-diagonal and cause very difficult sub-

problems in PDHG and ADMM, so previous arts are restrictive with less effective

diagonal preconditioners. However, we deal with those difficult subproblems by “solv-

ing” them highly inexactly, running just very few epochs of proximal BCD iterations.

In all of our numerical tests, our algorithm needs relatively few outer iterations (due to

effective preconditioners) and has the shortest total running time, achieving 4–95 times

speedup over the state-of-the-art.

Theoretically, we show a fixed number of inner iterations suffice for global conver-

gence though a new relative error condition. The number depends on various factors

but is easy to choose in all of our numerical results.

There are still open questions left for us to address in the future: (a) Depending

on problem structures, there are choices of preconditioners that are better than M1 =
1
τ
In,M2 = τAAT (the ones that lead to ADMM if the subproblems are solved exactly).

For example, in CT reconstruction, our choices of M1 and M2 have much faster overall

convergence. (b) Is it possible to show Algorithm 2.1 converges even with S chosen as

the iterator of faster accelerated solvers like APCG [131], NU_ACDM [3], and A2BCD

[109]? (c) In general, how to accelerate a broader class of algorithms by integrating

effective preconditioning and cheap inner loops while still ensuring global convergence?

2.A ADMM as a special case of PrePDHG

In this section we show that if we choose M1 = 1
τ

and M2 = τAAT in PrePDHG (2.7),

then it is equivalent to ADMM on the primal problem (2.1).

By Theorem 1 of [237], we know that ADMM is primal-dual equivalent, in the sense

that one can recover primal iterates from dual iterates and vice versa. Therefore, it

suffices to show that M1 = 1
τ

and M2 = τAAT in PrePDHG (2.7) on the primal problem

is equivalent to ADMM on the dual problem (2.2).
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In Theorem 2.3.5 we have shown that, under an appropriate change of variables,

PrePDHG on the primal is equivalent to applying (2.19) to the dual. As a result, we

just need to demonstrate that the latter is exactly ADMM on the dual when M1 = 1
τ
In

and M2 = τAAT .

For the z-update in (2.19), we have

zk+1 = arg min
z∈Rm

{g∗(z)− τ〈z − zk, A(−AT zk − yk + uk)〉+ τ

2
‖z − zk‖2

AAT }

= arg min
z∈Rm

{g∗(z)− τ〈z − zk, A(−yk + uk)〉+ τ

2
‖z‖2

AAT }

= arg min
z∈Rm

{g∗(z) + τ〈z, A(yk − uk)〉+ τ

2
‖AT z‖2}

= arg min
z∈Rm

{g∗(z) + τ〈AT z,−uk〉+ τ

2
‖AT z + yk‖2}

= arg min
z∈Rm

{g∗(z) + τ〈−AT z − yk, uk〉+ τ

2
‖AT z + yk‖2}. (2.46)

and for the y-update we have

yk+1 = ProxM
−1
1

f∗ (uk − AT zk+1)

= arg min
y∈Rn

{f ∗(y) + τ

2
‖y − uk + AT zk+1‖2}

= arg min
y∈Rn

{f ∗(y) + τ〈−AT zk+1 − y, uk〉+ τ

2
‖AT zk+1 + y‖2}. (2.47)

Define vk = τuk, (2.46), (2.47), and the u−update in (2.19) become

zk+1 = arg min
z∈Rm

{g∗(z) + 〈−AT z − yk, vk〉+ τ

2
‖AT z + yk‖2},

yk+1 = arg min
y∈Rn

{f ∗(y) + 〈−AT zk+1 − y, vk〉+ τ

2
‖AT zk+1 + y‖2},

vk+1 = vk − τ(AT zk+1 + yk+1),

which are ADMM iterations on the dual problem (2.2).
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2.B Proof of Theorem 2.3.4: bounded relative error when S

is the iterator of cyclic proximal BCD

The z-subproblem in (2.7) has the form

min
z∈Rm

h1(z) + h2(z),

where h1(z) = g∗(z) = ∑l
j=1 g

∗
j (zj), and h2(z) = 1

2‖z− z
k−M−1

2 A(2xk+1−xk)‖2
M2 . And

zk+1 = zk+1
p is given by

zk+1
0 = zk,

zk+1
i+1 = S(zk+1

i , xk+1, xk), i = 0, 1, ..., p− 1,

Here, S is the iterator of cyclic proximal BCD. Define

T (z) = Proxγh1(z)(z − γ∇h2(z)),

B(z) = 1
γ

(z − T (z)),

and the jth coordinate operator of B:

Bj(z) = (0, ..., (B(z))j, ..., 0), j = 1, 2, ..., l.

Then, we have

zk+1
i+1 = S(zk+1

i , xk+1, xk) = (I − γBl)(I − γB2)...(I − γB1)zk+1
i .

By [18, Prop. 26.16(ii)], we know that T (z) is a contraction with coefficient ρo =√
1− γ(2λmin(M2)− γλ2

max(M2)). We know that for ∀z1, z2 ∈ Rm and µ0 = 1−ρo

γ
,

〈B(z1)−B(z2), z1 − z2〉 = 1
γ
‖z1 − z2‖2 − 1

γ
〈T (z1)− T (z2), z1 − z2〉

≥ µ0‖z1 − z2‖2,

Let zk+1
⋆ = arg minz∈Rm{h1(z) + h2(z)}. For [56, Thm 3.5], we have

‖zk+1
i − zk+1

⋆ ‖ ≤ ρi‖zk+1
0 − zk+1

⋆ ‖, ∀i = 1, 2, ..., p. (2.48)
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where ρ = 1− γµ2
0

2 .

Let yj = (I − γBj)...(I − γB1)zk+1
p−1 for j = 1, ..., l and y0 = zk+1

p−1 . Note that

(zk+1
p )j = (yj)j for j = 1, 2, ..., l, and the blocks of yj satisfies

(yj)t =


(

Proxγg∗

(
yj−1 − γ∇h2(yj−1)

))
t
, if t = j

(yj−1)t, otherwise.

On the other hand, we have

Proxγg∗

(
yj−1 − γ∇h2(yj−1)

)
= arg min

y∈Rm
{g∗(y) + 1

2γ
‖y − yj−1 + γ∇h2(yj−1)‖2}.

Since g∗ and ‖ · ‖2 are separable, we obtain

0 ∈ ∂g∗
j ((yj)j) + 1

γ

(
(yj)j − (yj−1)j + γ

(
∇h2(yj−1)

)
j

)
, ∀j = 1, 2, ..., l,

or equivalently,

0 ∈ ∂g∗
j ((zk+1

p )j) + 1
γ

(
(zk+1
p )j − (zk+1

p−1 )j + γ
(
∇h2(yj−1)

)
j

)
, ∀j = 1, 2, ..., l.

Therefore,

0 ∈ ∂g∗(zk+1
p ) + 1

γ

(
zk+1
p − zk+1

p−1 + γξp

)
, ∀j = 1, 2, ..., l,

where (ξp)j =
(
∇h2(yj−1)

)
j

for j = 1, 2, ..., l. Comparing this with (2.11), we obtain

εk+1 = ξp −∇h2(zk+1
p ) + 1

γ
(zk+1
p − zk+1

p−1 ).

Notice that the first j − 1 blocks of yj−1 are the same with those of yl = zk+1
p , and the

rest of the blocks are the same with those of y0 = zk+1
p−1 , so we have

‖εk+1‖ ≤
l∑

j=1
λmax(M2)‖yj−1 − zk+1

p ‖+ 1
γ
‖zk+1

p − zk+1
p−1‖

≤ lλmax(M2)‖zk+1
p−1 − zk+1

p ‖+ 1
γ
‖zk+1

p − zk+1
p−1‖

≤ (lλmax(M2) + 1
γ

)(‖zk+1
p − zk+1

⋆ ‖+ ‖zk+1
p−1 − zk+1

⋆ ‖)
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Combine this with (2.48)

‖εk+1‖ ≤ (lλmax(M2) + 1
γ

)(ρp + ρp−1)‖zk+1
0 − zk+1

⋆ ‖. (2.49)

Combining

‖zk+1 − zk‖ = ‖zk+1
p − zk+1

0 ‖

≥ ‖zk+1
0 − zk+1

⋆ ‖ − ‖zk+1
p − zk+1

⋆ ‖

≥ (1− ρp)‖zk+1
0 − zk+1

⋆ ‖

with (2.49), we obtain

‖εk+1‖ ≤
(lλmax(M2) + 1

γ
)(ρp + ρp−1)

1− ρp
‖zk+1 − zk‖.

2.C Two-block ordering in Claim 2.4.1 and four-block ordering

in Claim 2.4.2

According to (2.8), when M2 = τAAT , the z-subproblem of Algorithm 2.1 is

zk+1 = arg min
z∈Rm

{g∗(z)− 〈z − zk, A(2xk+1 − xk)〉+ τ

2
‖AT (z − zk)‖2

2}. (2.50)

Let us prove Claim 2.4.1 first. In that claim, A = div ∈ RMN×2MN and z ∈ RMN .

Following the definition of the sets zb and zr, we separate the MN columns of AT = −D

into two blocks Lb, Lr by associating them with zb and zr, respectively. Therefore, we

have AT z = Lbzb + Lrzr for any z ∈ RMN .

By the red-black ordering in Fig. 2.1, different columns of Lb are orthogonal one

another, so LbTLb is diagonal. Similarly, LrTLr is also diagonal.

Define ck = −A(2xk+1−xk), and let b be the set of black nodes and r the set of red

nodes. We can rewrite (2.50) as

zk+1 = arg min
zb,zr∈RMN/2

{g∗
b (zb) + g∗

r(zr) + 〈zb, ckb 〉+ 〈zr, ckr〉 (2.51)

+τ
2
‖Lb(zb − zkb ) + Lr(zr − zkr )‖2

2},
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where g∗
b (zb) = ∑

(i,j)∈b g
∗
i,j(zi,j), g∗

r(zr) = ∑
(i,j)∈r g

∗
i,j(zi,j), and ckb , ckr are the coordinates

of ck associated with zb and zr, respectively.

Applying cyclic proximal BCD to black and red blocks with stepsize γ yields

z
k+ t+1

p

b = Proxγg∗
b

(
z
k+ t

p

b − γ
(
ckb + τLTb Lb(z

k+ t
p

b − zkb ) + τLTb Lr(z
k+ t

p
r − zkr )

))
, (2.52)

z
k+ t+1

p
r = Proxγg∗

r

(
z
k+ t

p
r − γ

(
ckr + τLTr Lb(z

k+ t+1
p

b − zkb ) + τLTr Lr(z
k+ t

p
r − zkr )

))
,

(2.53)

for t = 0, 1, ..., p− 1, where p is the number of inner iterations in Algorithm 2.1.

Since Proxγg∗
b

= ∑
(i,j)∈b Proxγg∗

i,j
, Proxγg∗

r
= ∑

(i,j)∈r Proxγg∗
i,j

and Proxγg∗
(i,j)

are

closed-form, (2.52) and (2.53) have closed-form solutions. Furthermore, the updates

within each block can be done in parallel.

The proof of Claim 2.4.2 is similar. When A = D, we separate the columns of AT

into four blocks Lb, Lr, Ly, Lg by associating them with zb, zr, zy ,zg, respectively.

Therefore, we have AT z = Lbzb + Lrzr + Lyzy + Lgzg for all z ∈ R2MN . Similarly, by

the block design in Fig. 2.2, cyclic proximal BCD iterations have closed-form solutions,

and updates within each block can be executed in parallel.
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CHAPTER 3

Inexact Preconditioning for SVRG and Katyusha X

3.1 Introduction

Empirical risk minimization is an important class of optimization problems that has

many applications in machine learning, especially in the large-scale setting. In this

chapter, we formulate it as the minimization of the following objective

F (x) = f(x) + ψ(x) = 1
n

n∑
i=1

fi(x) + ψ(x), (3.1)

where the finite sum f(x) is strongly convex, each fi(x) in the finite sum is smooth1

and can be nonconvex, and the regularizer ψ(x) is proper, closed, and convex, but may

be nonsmooth. A nonzero ψ(x) is desirable in many applications, for example, ℓ1−

regularization that induces sparsity in the solution. Allowing fi to be nonconvex is also

necessary in some applications, e.g., shift-and-invert approach to solve PCA [200].

3.1.1 Related Work

To obtain a high quality approximate solution x̂ of (3.1), stochastic variance reduction

algorithms are a class of preferable choices in the large-scale setting where n is huge. If

each fi is σ−strongly convex and L−smooth, and ψ = 0, then SVRG [114], SAGA [72],

SAG [197], SARAH [165], SDCA [203], SDCA without duality [202], and Finito/MISO

[73, 150] can find such a x̂ within O
(
(n + L

σ
) ln(1

ε
)
)

evaluations of component gradi-

ents ∇fi, while vanilla gradient descent needs O(nL
σ

ln 1
ε
) evaluations. Recently, SCSG

1A function f is said to be smooth if its gradient ∇f is Lipschitz continuous.
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improves this complexity to O
(
(n ∧ L

σε
+ L

σ
) ln 1

ε

)
2. When ψ 6= 0, many of these al-

gorithms can be extended accordingly and the same gradient complexity is preserved

[232, 72, 204]. Among these methods, SVRG has been a popular choice due to its low

memory cost.

When the condition number L
σ

is large, the performances of these variance reduction

methods may degenerate considerably. In view of this, there have been many schemes

that incorporate second-order information into the variance reduction schemes. In

[105], the problem data is first transformed by linear sketching in order to decrease the

condition number, then SVRG is applied. However, the strategy is only proposed for

ridge regression and it is unclear whether it can be applied to other problems.

A larger family of algorithms, called Stochastic Quasi-Newton (SQN) methods, ap-

ply to more general settings. The idea is to first sample one or a few Hessian-vector

products, then perform a L-BFGS type update on the approximate Hessian inverse Hk

[47, 155, 106], then Hk is applied to the SVRG-type stochastic gradient as a precondi-

tioner. That is,

wt+1 = wt − ηHk∇̃t,

where ∇̃t is a variance-reduced stochastic gradient.

Linear convergence is established and competitive numerical performances are ob-

served for SQN methods. However, the theoretical linear rate depends on the condition

number of the approximate Hessian, which again depends poorly on the condition num-

ber of the objective, so it is not clear whether they are faster than SVRG in general.

Furthermore, they do not support nondifferentiable regularizers nonconvexity of indi-

vidual fi. Recently, the first issue is partially resolved in [130], where the algorithm is at

least as fast as SVRG. To deal with the second issue, [230] applied a Hk−preconditioned

proximal mapping of ψ after Hk is applied to the variance reduced stochastic gradient,

but in order to evaluate this mapping efficiently, Hk is required to be of the symmetric

2a ∧ b := min{a, b}.
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rank-one update form τId + uuT , where Id ∈ Rd×d is the identity matrix and u ∈ Rd.

However, Hk is still ill-conditioned with a conditioner number of order O(1
ε
), therefore

only a gradient complexity of order O
(
(n+ κ1

ε
) ln(1

ε
)
)

can be guaranteed.

Another way of exploiting second-order information is to cyclically calculate one

individual Hessian ∇2fi (or an approximation of it) [196, 154], linear and locally super-

linear convergence are established. However, they require at least an O(n) amount of

memory to store the local variables, which will be substantial when n is large.

Aside from exploiting second-order information, it is also possible to apply Nesterov-

type acceleration to SVRG. Recently, Katyusha [1] and Katyusha X [2] are developed

in this spirit. Katyusha X also applies to the sum-of-nonconvex setting where each fi

can be nonconvex. There are also “Catalyst” accelerated methods [129], where a small

amount of strong convexity c
2‖x− y

k‖2 is added to the objective and is minimized inex-

actly at each step, then Nesterov acceleration is applied. However, Catalyst methods

have an additional ln k factor in gradient complexity over Katyusha and Katyusha X.

3.1.2 Our Contributions

1. We propose to accelerate SVRG and Katyusha X by a fixed preconditioner, as

opposed to time-varying preconditioners in SQN methods. And the subproblems

are solved with fixed number of simple subroutines.

2. If the preconditioner captures the second order information of f , then there will be

significant accelerations. With a good preconditioner M , when κf ∈ (n 1
2 , n2d−2),

Algorithm 3.1 and Algorithm 3.2 are O(n
1
2
κf

) and O(
√

n
1
2
κf

) times faster than SVRG

and Katyusha X in terms of gradient complexity, respectively. When κf > n2d−2,

these numbers become O( d√
nκf

) and O( d

n
3
4
). We also demonstrate these accelera-

tions for Lasso and Logistic regression.

3. Our acceleration applies to the sum-of-nonconvex setting, where f(x) in (3.1)
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is strongly convex, but each individual fi can be nonconvex. We also allow a

nondifferentiable regularizer ψ(x).

3.2 Preliminaries and Assumptions

In addition to the preliminaries introduced in Sec. 1.4, we also need the following in

the chapter.

We use d·e to denote the ceiling function. For r ∈ (0, 1], N ∼ Geom(r) denotes a

random variable N that obeys the geometric distribution, i.e., N = k with probability

(1− r)kr for k ∈ N. We have E[N ] = 1−p
p

.

Definition 3.2.1. We say that f : Rd → R is LMf −smooth under ‖ · ‖M , if it is

differentiable and satisfies

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
LMf
2
‖y − x‖2

M ,∀x, y ∈ Rd .

Definition 3.2.2. We say that f is σf−strongly convex, if

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ σf
2
‖y − x‖2,∀x, y ∈ Rd .

We say that f is σMf −strongly convex under ‖ · ‖M , if

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
σMf
2
‖y − x‖2

M ,∀x, y ∈ Rd .

LMf −smoothness under ‖·‖M is equivalent to ‖∇fi(x)−∇fi(y)‖M−1 ≤ LMf ‖x−y‖M .

Also, σMf −strong convexity is equivalent to ‖∇fi(x)−∇fi(y)‖M−1 ≥ σMf ‖x− y‖M . Cf.

Section 2 of [204].

Definition 3.2.3. We define the condition number of f under ‖ · ‖M as κMf := LM
f

σM
f

.

When M = I, we have κMf = κf := Lf

σf
.

In this chapter, we will choose M such that κMf � κ. For example, if f(x) = 1
2x

TQx

where Q � 0 is ill-conditioned, by choosing M = Q we have

‖∇f(x)−∇f(y)‖M−1 ≡ ‖x− y‖Q,
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which tells us that LMf = σMf = 1 and κMf = 1, while κf = κ(Q) � 1. That is, under

Q−metric, f(x) has a much smaller condition number and can be minimized easily.

Definition 3.2.4. For a proper closed convex function ϕ : Rd → R∪{+∞}, its subdif-

ferential at x ∈ dom f is written as

∂ϕ(x) = {v ∈ Rd |ϕ(z) ≥ ϕ(x) + 〈v, z − x〉 ∀z ∈ Rd}.

Definition 3.2.5. For a proper closed convex function ϕ : Rd → R ∪ {+∞}, its

M−preconditioned proximal mapping with step size η > 0 is defined by

ProxMηψ(x) = arg min
y∈Rd

{ψ(y) + 1
2η
‖x− y‖2

M}.

When M = I, this reduces to the classical proximal mapping.

Finally, let us list the assumptions that will be effective throughout this chapter.

Assumption 3.2.1. In the objective function (3.1),

1. Each fi(x) is Lf−smooth and LMf −smooth under

‖ · ‖M .

2. f(x) is σf−strongly convex, and σMf −strongly convex under ‖ · ‖M , where σf > 0

and σMf > 0.

3. The regularization term ψ(x) is proper closed convex and Proxηψ is easy to com-

pute.

Remark 3.2.1. 1. In Assumption 3.2.1, we only require f(x) = 1
n

∑n
i=1 fi(x) to be

strongly convex, while each fi(x) can be nonconvex.

2. Several common choices of regularizers have simple proximal mappings. For ex-

ample, when ψ(x) = λ‖ · ‖1 with λ > 0, Proxηψ can be computed component wise

as

Proxηψ(x) = sign(x) max{|x| − ηλ, 0}.
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3.3 Proposed Algorithms

As discussed in Sec. 3.1, SVRG and Katyusha X suffer from ill-conditioning like other

first order methods. In this section, we propose to accelerate them by applying inexact

preconditioning. Let us illustrate the idea as follows,

1. We would like to apply a preconditioner M � 0 to the gradient descent step in

SVRG. i.e.,

wt+1 = ProxMηψ(wt − ηM−1∇̃t)

= arg min
y∈Rd

{ψ(y) + 1
2η
‖y − wt‖2

M + 〈∇̃t, y〉}. (3.2)

where ∇̃t is a variance-reduced stochastic gradient. When ψ = 0 and this mini-

mization is solved exactly, we have wt+1 = wt−ηM−1∇̃t, which is a preconditioned

gradient update.

2. However, solving (3.2) exactly may be expensive and impractical. In fact it suffices

to solve it highly inexactly by fixed number of simple subroutines.

We summarize the resulted algorithm in Algorithm 3.1 and call it Inexact Preconditioned(IP-

) SVRG. Compared to SVRG, the only difference lies in line 7.
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Algorithm 3.1 Inexact Preconditioned SVRG(iPreSVRG)
Input: F (·) = ψ(·) + 1

n

∑n
i=1 fi(·), initial vector x0, step size η > 0, preconditioner

M � 0, number of epochs K.

Output: vector xK

1: for k ← 0, ..., K − 1 do

2: Dk ∼ Geom( 1
m

);

3: w0 ← xk, g ← ∇f(xk);

4: for t← 0, ..., Dk do

5: pick it ∈ {1, 2, ..., n} uniformly at random;

6: ∇̃t = g +
(
∇fit(wt)−∇fit(w0)

)
;

7: wt+1 ≈ arg miny∈Rd{ψ(y) + 1
2η‖y − wt‖

2
M + 〈∇̃t, y〉};

8: end for

9: xk+1 ← wD+1;

10: end for

Remark 3.3.1. 1. In line 2, the epoch length Dk obeys a geometric distribution

and E[mk] = m − 1, this is for the purpose of simplifying analysis (motivated by

[121, 2]), in practice one can just set Dk = m− 1. In our experiments, this still

brings significant accelerations.

2. The choice of m affects the performance. Intuitively, a larger m means more

gradient evaluations per epoch, but also more progress per epoch. Theoretically,

we show that m = d n
1+pde gives faster convergence than SVRG, where p is the

number of subroutines used in Line 7.

3. In line 6, one can also sample a batch of gradients instead of one. It is straight-

forward to generalize our convergence results in Sec. 3.4 to this setting.

4. If M = I, line 7 reduces to

wt+1 = Proxηψ(wt − η∇̃t),
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and Algorithm 3.1 reduces to SVRG.

For M 6∝ I, line 7 contains an optimization problem that may not have a closed

form solution:

arg min
y∈Rd

{ψ(y) + 1
2η
‖y − wt‖2

M + 〈∇̃t, y〉}. (3.3)

To solve it inexactly, we propose to apply fixed number of iterations of some simple

subroutines, which are initialized at wt. This procedure is summarized in Procedure

3.1.

Procedure 3.1 Procedure for solving (3.3) inexactly
Input: Iterator S, iterator step size γ > 0, number of iterations p ≥ 1, problem data

η > 0, wt,M � 0, ∇̃t, ψ(·).

Output: vector wt+1

1: w0
t+1 ← wt;

2: for i← 0, ..., p− 1 do

3: wi+1
t+1 = S(wit+1, η,M, ∇̃t, ψ);

4: end for

5: wt+1 ← wpt+1;

Remark 3.3.2. In Procedure 3.1, there are many choices for the iterator S, for example,

one can use proximal gradient, FISTA [29] (or equivalently, Nesterov acceleration [160]),

and FISTA with restart [167]. Under these choices, line 3 is easy to compute. For

example, when S is the proximal gradient step, line 3 of Procedure 3.1 becomes

wi+1
t+1 = Proxγψ(wit+1 −

γ

η
M(wit+1 − wt)− γ∇̃t).

Now, let us also apply the inexact preconditioning idea to Katyusha X (Algorithm

2 of [2]). Similar to Katyusha X, we first apply a momentum step, then one epoch of

iPreSVRG (i.e., line 2 ∼ 9 of Algorithm 3.1).
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Algorithm 3.2 Inexact Preconditioned Katyusha X(iPreKatX)
Input: F (x) = ψ(x) + 1

n

∑n
i=1 fi(x), initial vector x0, step size η > 0, preconditioner

M � 0, momentum weight τ ∈ (0, 1], number of epochs K.

Output: vector yK

1: y−1 = y0 ← x0;

2: for k ← 0, ..., K − 1 do

3: xk+1 ←
3
2yk+ 1

2xk−(1−τ)yk−1
1+τ ;

4: yk+1 ← Algorithm 3.11ep(F,M, xk+1, η);

5: end for

Remark 3.3.3. 1. When τ = 1
2 , one can show that xk+1 ≡ yk, and Algorithm 3.2

reduces to Algorithm 3.1.

2. When M = I and the proximal mapping is solved exactly, Algorithm 3.2 reduces

to Katyusha X.

3. The convergence of Algorithm 3.2 is established when τ = 1
2

√
1
2mησ

M
f . In practice,

we found that many other choices of τ also work.

3.4 Main Theory

In this section, we proceed to establish the convergence of Algorithm 3.1 and Algorithm

3.2. The key idea is that when the preconditioned proximal gradient update in (3.3) is

solved inexactly as in Procedure 3.1, the error can be bounded by ‖wt+1−wt‖M , under

which we can still establish the overall convergence of Algorithm 3.1 and Algorithm 3.2.

Combine this with the fixed number of simple subroutines in Procedure 3.1, we obtain

a much lower gradient complexity when κf > n
1
2 .

All the proofs in this section are deferred to the supplementary material.

First, Let us analyze the error in the optimality condition of (3.3) when it is solved
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inexactly by FISTA with restart as in Procedure 3.1. Specifically,

Let h1(y) = ψ(y) and h2(y) = 1
2η‖y−wt‖

2
M + 〈∇̃, y〉, then the subproblem (3.3) can

be written as

min
y

Ψ(y) = h1(y) + h2(y).

Therefore, FISTA with restart applied to (3.3) can be summarized in the following

algorithm.

Algorithm 3.3 FISTA with restart for solving (3.3)
Input: Iterator S, iterator step size γ > 0, number of iterations p ≥ 1, problem data

η > 0, wt, h1(y) = ψ(y) and h2(y) = 1
2η‖y − wt‖

2
M + 〈∇̃, y〉.

1: w(0,0)
t+1 = u

(0,1)
t+1 ← wt, θ0 = 1

2: for i← 0, ..., r − 1 do

3: for j ← 0, ..., p0 − 1 do

4: θ0 = 1;

5: w
(i,j+1)
t+1 = Proxγh1

(
u

(i,j+1)
t+1 − γ∇h2(u(i,j+1)

t+1 )
)
;

6: θj+1 = 1+
√

1+4θ2
j

2 ;

7: u
(i,j+2)
t+1 = w

(i,j+1)
t+1 + θj−1

θj+1
(w(i,j+1)

t+1 − w(i,j)
t+1 );

8: end for

9: w
(i+1,0)
t+1 = u

(i+1,1)
t+1 ← w

(i,p0)
t+1

10: end for

11: wt+1 ← w
(r−1,p0)
t+1 ;

Lemma 3.4.1. Take Assumption 3.2.1. Suppose in Procedure 3.1, we choose S as the

iterator of FISTA with restart1 every p0 = d2e
√
κ(M)e steps, with step size γ = η

λmax(M)

and restart it (r− 1) times (that is, p = rp0 iterations in total). Then, wt+1 = w
(r−1,p0)
t+1

is an approximate solution to (3.3) that satisfies

0 ∈∂ψ(wt+1) + 1
η
M(wt+1 − wt) + ∇̃t +Mεpt+1, (3.4)

‖εpt+1‖M ≤
c(p)
η
‖wt+1 − wt‖M , (3.5)
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where

c(p) = 14κ(M) τ p

1− τ p
,

and

τ = (4κ(M)
p2

0
)

1
2p0 ≤ exp(− 1

2e
√
κ(M) + 1

) < 1.

With Lemma 3.4.1, the overall convergences of Algorithm 3.1 and 3.2 can be estab-

lished. The analysis is similar to that of [2].

Theorem 3.4.2. Under Assumption 3.2.1, let x∗ = arg minx F (x), 64κMf c2(p) ≤ 1,

η ≤ 1
2
√
mLM

f
, and m ≥ 4. Then the iPreSVRG in Algorithm 3.1 satisfies

E[F (xk)− F (x∗)] ≤ O
(
( 1
1 + 1

4mησ
M

)k
)
. (3.6)

Theorem 3.4.3. Under Assumption 3.2.1, let x∗ = arg minx F (x), 64κMf c2(p) ≤ 1,

τ = 1
2

√
1
2mησ

M
f , η ≤ 1

2
√
mLM

f
, and m ≥ 4. Then the iPreKatX in Algorithm 3.2 satisfies

E[F (xk)− F (x∗)] ≤ O
(
( 1
1 + 1

2

√
1
2mησ

M
)k
)
. (3.7)

Remark 3.4.1. When M = I, we have c(p) = 0, and Theorems 3.4.2 and 3.4.3 recovers

the Theorems D.1 and 4.3 of [2].

In Theorems 3.4.2 and 3.4.3, we need the number of simple subroutines p to be large

enough such that 64κMf c2(p) ≤ 1, the following Lemma provides a sufficient condition

for this.

Lemma 3.4.4. If the subproblem iterator S in Procedure 3.1 is FISTA with restart

every p0 = d2e
√
κ(M)e steps, and with step size γ = η

λmax(M) , then, in order for

1FISTA with restart can be replaced with any iterator with Q-linear convergence on the iterates.
In our experiments, FISTA also works, and a simple choice of p = 20 is enough.
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64κMf c2(p) ≤ 1 to hold, it suffices to choose

p = (2e
√
κ(M) + 1) ln

√
κMf κ(M) +√c1

c1
(3.8)

= O
(√

κ(M) ln
(√

κMf κ(M)
))

where c1 = 1
64∗142 .

With (3.6), (3.7), and (3.8), we can now calculate the gradient complexities of

Algorithm 3.1 and Algorithm 3.2, but let us first do that for SVRG and Katyusha X.

In Assumption 3.2.1, we have assumed that Proxηψ(·) is cheap to evaluate, there-

fore, each epoch of SVRG needs n + m gradient evaluations, which is also true for

Katyusha X. As a result, the gradient complexity for SVRG and Katyusha X to reach

ε−suboptimality are:

C1(m, ε) = O( n+m

ln(1 + 1
4mησ)

ln 1
ε

), (3.9)

C2(m, ε) = O( n+m

ln(1 + 1
2

√
1
2mησ)

ln 1
ε

). (3.10)

For Algorithm 3.1 and Algorithm 3.2, each iteration in Procedure 3.1 is at most as

expensive as d gradient computations1 and is operated p times, therefore, one epoch of

iPreSVRG/iPreKatX needs at most n+ (1 + pd)m gradient computations.

Consequently, we can write the the gradient complexity for Algorithm 3.1 and Al-

gorithm 3.2 to reach ε−suboptimality as:

C ′
1(m, ε) = O( n+ (1 + pd)m

ln(1 + 1
4mησ

M)
ln 1
ε

), (3.11)

C ′
2(m, ε) = O( n+ (1 + pd)m

ln(1 + 1
2

√
1
2mησ

M)
ln 1
ε

). (3.12)

Remark 3.4.2. 1. According to Lemma 3.4.4, when S is FISTA with restart, it

suffices to choose p by (3.8).

2. When the preconditioner M is chosen appropriately, the step size η in (3.11) and

(3.12) can be much larger than that of (3.9) and (3.10).
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Finally, we can compare C1(m, ε), C2(m, ε) with C ′
1(m, ε), C ′

2(m, ε), respectively. It

turns out that there is a significant speedup when κ > n
1
2 .

Theorem 3.4.5. Take Assumption 3.2.1. Let the iterator S in Procedure 3.1 be FISTA

with restart, and an appropriate preconditioner M is chosen such that κf and κ(M) are

of the same order, and κMf is small compared to them, then

1. if κf > n
1
2 and κf < n2d−2, then

minm≥1 C
′
1(m, ε)

minm≥1 C1(m, ε)
≤ O

(n 1
2

κf

)
. (3.13)

2. if κf > n
1
2 and κf > n2d−2, then

minm≥1 C
′
1(m, ε)

minm≥1 C1(m, ε)
≤ O( d

√
nκf

). (3.14)

Theorem 3.4.6. Take Assumption 3.2.1. Let the iterator S in Procedure 3.1 be FISTA

with restart, and an appropriate preconditioner M is chosen such that κf and κ(M) are

of the same order, and κMf is small compared to them, then

1. if κf > n
1
2 and κf < n2d−2, then

minm≥1 C
′
2(m, ε)

minm≥1 C2(m, ε)
≤ O

(√√√√n
1
2

κf

)
. (3.15)

2. If κf > n
1
2 and κf > n2d−2, then

minm≥1 C
′
2(m, ε)

minm≥1 C2(m, ε)
≤ O( d

n
3
4
). (3.16)

In Section 3.5, we provide practical choices of M for Lasso and Logistic regression.

1For each iteration of Procedure 3.1, the most expensive step is multiplying M to some vector,
which is often cheaper than d gradient computations.
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3.5 Experiments

To investigate the practical performance of Algorithms 3.1 and 3.2, we test on three

problems: Lasso, logistic regression, and a synthetic sum-of-nonconvex problem. For

the first two, each function in the finite sum is convex. To guarantee that the objective

is strongly convex, a small ℓ2−regularization is added to Lasso and logistic regression.

In the following, we compare SVRG, iPreSVRG, Katyusha X, and iPreKatX on four

datasets from LIBSVM1: w1a.t (47272 samples, 300 features), protein (17766 samples,

357 features), cod-rna.t (271617 samples, 8 features), australian (690 samples, 14

features), and one synthetic dataset. The implementation settings are listed below,

1. We choose the epoch length m = 100 in all experiments, since we found that the

choices m ∈ {n4 ,
n
2 , n} need more gradient evaluations.

2. For iPrePDHG and iPreKatX, we use FISTA as the subproblem iterator S. If

the preconditioner M is diagonal, then the number of subroutines for solving the

subproblem is p = 1, if not, then we set p = 20.

3. In all the experiments, we tune the step size η and momentum weight τ to their

optimal.

4. All algorithms are initialized at x0 = 0.

5. All algorithms are implemented in Matlab R2015b. To be fair, except for the

subproblem routines for inexact preconditioning, the other parts of the code are

identical in all algorithms. The experiments are conducted on a Windows system

with Intel Core i7 2.6 GHz CPU. The code is available at:

https://github.com/uclaopt/IPSVRG.

1https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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3.5.1 Lasso

We formulate Lasso as

minimize
x∈Rd

1
2n

n∑
i=1

(aTi x− bi)2 + λ1‖x‖1 + λ2‖x‖2
2, (3.17)

where ai ∈ Rd are feature vectors and bi ∈ R are labels. Note that the first term is

equivalent to 1
2n‖Ax− b‖

2, where A = (a1, a2, ..., an)T ∈ Rn×d and b = (b1, b2, . . . , bn) ∈

Rn.

For Lasso as in (3.17), we provide two choices of preconditioner M ,

1. When d is small, we choose

M1 = 1
n
ATA,

this is the exact Hessian of the smooth part of the objective.

2. When d is large and ATA is diagonally dominant, we choose

M2 = 1
n

diag(ATA) + αI,

where α > 0. In this case, the subproblem (3.3) can be solved exactly with p = 1

iteration.

Our numerical results are presented in the following figures. We didn’t observe sig-

nificant accelerations of Katyusha X over SVRG and iPreKatX over iPrePDHG, and

we suspect the reason is that m = 100 and the optimal choices of step size η make

mησf > 1 or mησMf > 1, thus the complexity in (3.10) and (3.12) are not better than

(3.9) and (3.11), respectively.
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Figure 3.1: Lasso on w1a.t, (n, d) = (47272, 300), λ1 = 10−3, λ2 = 10−8. For iPreSVRG

and iPreKatX: η1 = 0.005; For SVRG and Katyusha X: η2 = 0.08; For Katyusha X and

iPreKatX: τ = 0.45, M = M2 with α = 0.01.

Figure 3.2: Lasso on protein, (n, d) = (17766, 357), λ1 = 10−4, λ2 = 10−6, η1 = 0.008,

η2 = 0.2, τ = 0.2, M = M2 with α = 0.008.

Figure 3.3: Lasso on cod-rna.t, (n, d) = (271617, 8), λ1 = 10−2, λ2 = 1, η1 = 1,

η2 = 5× 10−6, τ = 0.45, M = M1, subproblem iterator step size γ = 3× 10−6.
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Figure 3.4: Lasso on australian, (n, d) = (690, 14), λ1 = 2, λ2 = 10−8, η1 = 0.01,

η2 = 8× 10−10, τ = 0.49, M = M1,γ = 5× 10−10.

3.5.2 Logistic Regression

We formulate Logistic regression as

minimize
x∈Rd

1
n

n∑
i=1

ln
(
1 + exp(−bi · aTi x)

)
+ λ1‖x‖1 + λ2‖x‖2

2, (3.18)

where again ai ∈ Rd are feature vectors and bi ∈ R are labels.

For Logistic regression as in (3.18), the Hessian of the smooth part can be expressed

as

H = 1
n

n∑
i=1

exp(−biaTi x)(
1 + exp(−biaTi x)

)2 b
2
i aia

T
i ≼ 1

4n
BTB,

where B = diag(b)A = diag(b)(a1, a2, ..., an)T . Inspired by this1, we provide two choices

of preconditioner M ,

1. When d is small, we choose

M1 = 1
4n
BTB.

1Here is a heuristic justification: By Definition 3.2.1 we know that LM
f = 1; Since

exp(−biaT
i x)(

1+exp(−biaT
i

x)
)2 → 0 only when x is unbounded, we know that if the iterates xk of our algorithms are

bounded, then H(xk) ≽ c
n BT B for some c > 0, which gives σM

f = 4c according to Definition 3.2.2.
When c is not too small, one can expect κM

f = 1
4c � κf .
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2. When d is large and BTB is diagonally dominant, we choose

M2 = 1
4n

diag(BTB) + αI,

where α > 0. In this case, the subproblem (3.3) can be solved exactly with p = 1

iteration.

Our results are presented in the following figures, again, we didn’t observe a significant

acceleration of Katyusha X over SVRG and iPreKatX over iPrePDHG, due to the same

reason mentioned in the last subsection.

Figure 3.5: Logistic regression on w1a.t, (n, d) = (47272, 300), λ1 = 5×10−4, λ2 = 10−8,

η1 = 0.06, η2 = 4, τ = 0.4, M = M2 with α = 0.005.

Figure 3.6: Logistic regression on protein, (n, d) = (17766, 357), λ1 = 10−4, λ2 = 10−8,

η1 = 1.5, η2 = 10, τ = 0.3, M = M2 with α = 0.05.
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Figure 3.7: Logistic regression on cod-rna.t, (n, d) = (271617, 8), λ1 = 0.1, λ2 = 10−8,

η1 = 1, η2 = 3× 10−5, τ = 0.4, M = M1, γ = 2× 10−5.

Figure 3.8: Logistic regression on australian, (n, d) = (690, 14), λ1 = 0.5, λ2 = 10−8,

η1 = 1, η2 = 10−6, τ = 0.2, M = M1, γ = 2× 10−7.

3.5.3 Sum-of-nonconvex Example

Similar to [4], we generate a sum-of-nonconvex example by the following procedure:

We take n normalized random vector ai ∈ Rd, and also d vectors of the form

gi = (0, ...0, 5i, 0, ...0), where the nonzero element is at ith coordinate.

And the sum-of-nonconvex problem is given by

minimize
x∈Rd

1
2n

n∑
i=1

xT (cicTi +Di)x+ bTx+ λ1‖x‖1, (3.19)
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where n = 2000, d = 100, and λ1 = 10−3.

ci =


ai + gi i = 1, 2, ..., d,

ai otherwise.

Di =


−100I i = 1, 2, ..., n2 ,

100I otherwise.

Since the sum of Di’s is 0, they do not affect the condition number of the whole prob-

lem. However, it makes most of the first half of fi to be highly nonconvex. Overall, the

condition number of this problem is equal to that of ∑n
i=1 cic

T
i , which is approximately

10000 in our tested data.

Since ∑n
i=1 cic

T
i is diagonally dominant, we select M = diag( 1

n

∑n
i=1 cic

T
i ) + αI as

the preconditioner. Our algorithms also have significant acceleration in this sum-of-

nonconvex setting.

Figure 3.9: Sum-of-nonconvex on synthetic data. λ1 = 10−3, α = 15. η1 = 0.015,

η2 = 10−4, τ = 0.45.

3.6 Conclusions and Future Work

In this chapter, we accelerate SVRG and Katyusha X by inexact preconditioning, with

an appropriate preconditioner, both can be provably accelerated in terms of iteration
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complexity and gradient complexity. Our algorithms admits a nondifferentiable regular-

izer, as well as nonconvexity of individual functions. We confirm our theoretical results

on Lasso, Logistic regression, and a sum-of-nonconvex example, where simple choices

of preconditioners lead to significant accelerations.

There are still open questions left for us to address in the future: (a) Do we have

theoretical guarantee when the subproblem iterator S is chosen as faster schemes such

as APCG [131], NU_ACDM [3], and A2BCD [109]? (b) In general, how to choose a

simple preconditioner that can greatly reduce the condition number of the problem?

(c) Is it possible to apply this inexact preconditioning technique to other stochastic

algorithms?

3.A Proof of Lemma 3.4.1

In this section, we prove the results on the error generated when solving the subproblem

(3.3) inexactly by Procedure 3.1. Before proving Lemma 3.4.1, we will first prove a

simpler case in Lemma 3.A.1, where the subproblem iterator S is the proximal gradient

step.

Lemma 3.A.1. Take Assumption 3.2.1. Suppose in Procedure 3.1, we choose S as the

proximal gradient step with step size γ = η λmin(M)
λ2

max(M) , and is repeat it p times, where p ≥ 1.

Then, wt+1 = wpt+1 is an approximate solution to (3.3) that satisfies

0 ∈∂ψ(wt+1) + 1
η
M(wt+1 − wt) + ∇̃t +Mεpt+1, (3.20)

‖εpt+1‖M ≤
c(p)
η
‖wt+1 − wt‖M , (3.21)

where

c(p) = (κ(M) + 1)κ(M)τ
p + τ p−1

1− τ p
,

and τ =
√

1− κ−2(M) < 1.
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Proof of Lemma 3.A.1. The optimization problem in (3.3) is of the form

minimize
y∈Rd

h1(y) + h2(y), (3.22)

for h1(y) = ψ(y) and h2(y) = 1
2η‖y−wt‖

2
M+〈∇̃, y〉. With our choice of S as the proximal

gradient descent step, the iterations in Procedure 3.1 are

w0
t+1 = wt,

wi+1
t+1 = Proxγh1

(
wit+1 − γ∇h2(wit+1)

)
,

wt+1 = wpt+1,

where i = 0, 1, ..., p− 1. From the definition of Proxγh1 , we have

0 ∈ ∂h1(wpt+1) +∇h2(wp−1
t+1 ) + 1

γ
(wpt+1 − w

p−1
t+1 ).

Compare this with (3.20) gives

Mεpt+1 = 1
γ

(wpt+1 − w
p−1
t+1 ) +∇h2(wp−1

t+1 )−∇h2(wpt+1).

To bound the right hand side, let w⋆t+1 be the solution of (3.22), α = λmin(M)
η

, and

β = λmax(M)
η

. Then h1(y) is convex and h2(y) is α-strongly convex and β-Lipschitz

differentiable. Consequently, Prop. 26.16(ii) of [18] gives

‖wit+1 − w⋆t+1‖ ≤ τ i‖w0
t+1 − w⋆t+1‖, ∀i = 0, 1, ..., p,

where τ =
√

1− γ(2α− γβ2).

Let ai = ‖wit+1 − w⋆t+1‖. Then, ai ≤ τ ia0. We can derive

‖Mεpt+1‖ ≤ ( 1
γ

+ β)‖wpt+1 − w
p−1
t+1 ‖

≤ ( 1
γ

+ β)(ap + ap−1) ≤ ( 1
γ

+ β)(τ p + τ p−1)a0.

On the other hand, we have

‖wt+1 − wt‖ ≥ a0 − ap ≥ (1− τ p)a0.
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Combining these two equations yields

‖Mεpt+1‖ ≤ b(p)‖wt+1 − wt‖, (3.23)

where

b(p) = (1
γ

+ λmax(M)
η

)τ
p + τ p−1

1− τ p
. (3.24)

Finally, let the eigenvalues of M be 0 < λ1 ≤ λ2 ≤ ... ≤ λd, with orthonormal eigenvec-

tors v1, v2, ..., vd. Let εpt+1 and wt+1 − wt be decomposed by

εpt+1 =
d∑
i=1

αivi,

wt+1 − wt =
d∑
i=1

βivi.

then

‖εpt+1‖M =

√√√√ d∑
i=1

λiα2
i ≤

√√√√ 1
λmin(M)

d∑
i=1

λ2
iα

2
i =

√
1

λmin(M)
‖Mεpt+1‖,

‖wt+1 − wt‖ =

√√√√ d∑
i=1

β2
i ≤

√√√√ 1
λmin(M)

d∑
i=1

λiβ2
i =

√
1

λmin(M)
‖wt+1 − wt‖M .

Combine these two inequalities with (3.23), we arrive at

‖εpt+1‖M ≤ c(p)‖wt+1 − wt‖M , (3.25)

where

c(p) = 1
λmin(M)

b(p) =
1
γ

+ λmax(M)
η

λmin(M)
τ p + τ p−1

1− τ p
.

Now, we are ready to prove Lemma 3.4.1, the techniques are similar to the proof of

Lemma 3.A.1.

Proof of Lemma 3.4.1. We want to find c(p) such that

0 ∈∂ψ(wt+1) + 1
η
M(wt+1 − wt) + ∇̃t +Mεpt+1, (3.26)

‖εpt+1‖M ≤
c(p)
η
‖wt+1 − wt‖M , (3.27)
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Take i = r − 1 and j = p0 − 1, then the optimality condition of the problem in line 5

of Algorithm 3.3 is

0 ∈ ∂ψ(w(r−1,p0)
t+1 ) + 1

γ
(w(r−1,p0)

t+1 − u(r−1,p0)
t+1 ) +∇h2(u(r−1,p0)

t+1 ),

compare this with (3.26), we have

Mεpt+1 =1
γ

(w(r−1,p0)
t+1 − u(r−1,p0)

t+1 ) +∇h2(u(r−1,p0)
t+1 )− 1

η
M(wt+1 − wt)− ∇̃t

=1
γ

(w(r−1,p0)
t+1 − u(r−1,p0)

t+1 ) + 1
η
M(u(r−1,p0)

t+1 − wt+1)

where

u
(r−1,p0)
t+1 =w(r−1,p0−1)

t+1 + θp0−2 − 1
θp0−1

(w(r−1,p0−1)
t+1 − w(r−1,p0−2)

t+1 ).

As a result,

‖Mεpt+1‖ ≤‖
1
γ

(w(r−1,p0)
t+1 − u(r−1,p0)

t+1 )‖+ ‖1
η
M(u(r−1,p0)

t+1 − wt+1)‖

≤‖1
γ

(w(r−1,p0)
t+1 − w(r−1,p0−1)

t+1 ‖+ 1
γ
‖θp0−2 − 1

θp0−1
(w(r−1,p0−1)

t+1 − w(r−1,p0−2)
t+1 )‖

+ ‖1
η
M(w(r−1,p0−1)

t+1 − wt+1)‖+ ‖1
η

θp0−2 − 1
θp0−1

M(w(r−1,p0−1)
t+1 − w(r−1,p0−2)

t+1 )‖,

(3.28)

Let the solution of (3.3) be w⋆t+1. By Theorem 4.4 of [29], for any 0 ≤ i ≤ r − 1 and

0 ≤ j ≤ p0 we have

Ψ(w(i,j)
t+1 )−Ψ(w⋆t+1) ≤

2λmax(M)‖w(i,0)
t+1 − w⋆t+1‖2

ηj2 .

On the other hand, the strong convexity of Ψ = h1 + h2 gives

Ψ(w(i,j)
t+1 )−Ψ(w⋆t+1) ≥

λmin(M)
2η

‖w(i,j)
t+1 − w⋆t+1‖2.

Therefore,

‖w(i,j)
t+1 − w⋆t+1‖ ≤

√
4κ(M)
j2 ‖w(i,0)

t+1 − w⋆t+1‖. (3.29)
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Now, let us use (3.29) repeatedly to bound the right hand side of (3.28). For example,

the first term can be bounded as

‖1
γ

(w(r−1,p0)
t+1 − w(r−1,p0−1)

t+1 ‖

≤1
γ
‖w(r−1,p0)

t+1 − w⋆t+1‖+ 1
γ
‖w(r−1,p0−1)

t+1 − w⋆t+1‖

≤1
γ

(4κ(M)
p2

0
)

r
2‖w(0,0)

t+1 − w⋆t+1‖+ 1
γ

(4κ(M)
p2

0
)

r−1
2 ( 4κ(M)

(p0 − 1)2 )
1
2‖w(0,0)

t+1 − w⋆t+1‖.

Similarly, the rest of the terms can be bounded as follows,

1
γ
‖θp0−2 − 1

θp0−1
(w(r−1,p0−1)

t+1 − w(r−1,p0−2)
t+1 )‖

≤1
γ

(4κ(M)
p2

0
)

r−1
2 ( 4κ(M)

(p0 − 1)2 )
1
2‖w(0,0)

t+1 − w⋆t+1‖+ 1
γ

(4κ(M)
p2

0
)

r−1
2 ( 4κ(M)

(p0 − 2)2 )
1
2‖w(0,0)

t+1 − w⋆t+1‖,

‖1
η
M(w(r−1,p0−1)

t+1 − wt+1)‖

≤λmax(M)
η

(4κ(M)
p2

0
)

r−1
2 ( 4κ(M)

(p0 − 1)2 )
1
2‖w(0,0)

t+1 − w⋆t+1‖,+
λmax(M)

η
(4κ(M)

p2
0

)
r
2‖w(0,0)

t+1 − w⋆t+1‖,

‖1
η

θp0−2 − 1
θp0−1

M(w(r−1,p0−1)
t+1 − w(r−1,p0−2)

t+1 )‖

≤λmax(M)
η

(4κ(M)
p2

0
)

r−1
2 ( 4κ(M)

(p0 − 1)2 )
1
2‖w(0,0)

t+1 − w⋆t+1‖

+ λmax(M)
η

(4κ(M)
p2

0
)

r−1
2 ( 4κ(M)

(p0 − 2)2 )
1
2‖w(0,0)

t+1 − w⋆t+1‖,

where in the first and third estimate we have used θp0−2−1
θp0−1

≤ θp0−2
θp0−1

< 1. On the other

hand, we have

‖wt+1 − wt‖ = ‖w(r−1,p0)
t+1 − w(0,0)

t+1 ‖

≥ ‖w(0,0)
t+1 − w⋆t+1‖ − ‖w

(r−1,p0)
t+1 − w⋆t+1‖

≥ (1− (4κ(M)
p2

0
)

r
2 )‖w(0,0)

t+1 − w⋆t+1‖.

As a result, taking γ = λmax(M)
η

, w(0,0)
t+1 = wt, w(r−1,p0)

t+1 = wt+1 and τ = (4κ(M)
p2

0
)

1
2p0 yields

‖Mεpt+1‖ ≤ 2λmax(M)
η

b(p)
1− τ p

‖wt+1 − wt‖,
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where

b(p) =τ p−p0
(
( 4κ(M)
(p0 − 1)2 )

1
2 + ( 4κ(M)

(p0 − 2)2 )
1
2
)

+ τ p + τ p−p0( 4κ(M)
(p0 − 1)2 )

1
2 . (3.30)

Similar to the end of proof of Lemma 3.A.1, we have

‖Mεpt+1‖M ≤ 2κ(M)
η

b(p)
1− τ p

‖wt+1 − wt‖M .

Now, let us choose p0 such that τ = (4κ(M)
p2

0
)

1
2p0 is minimized, a simple calculation yields

p⋆0 = 2e
√
κ(M).

In order for p0 to be an integer, we can take

p0 = d2e
√
κ(M)e,

then

τ = (4κ(M)
p2

0
)

1
2p0 ≤ ( 1

e2 )
1

2d2e
√

κ(M)e ≤ ( 1
e2 )

1
2(2e

√
κ(M)+1) = exp(− 1

2e
√
κ(M) + 1

).

Finally, Let us show that b(p) in (3.30) can be bounded by 7τ p, and the desired bound

(3.27) on ‖εpt+1‖M follows.

First, we have

τ−p0(4κ(M)
p0 − 1

)
1
2 = ( p0

p0 − 1
)

1
p0 ,

and

p0 = d2e
√
κ(M)e ≥ d2ee = 6.

On the other hand, a simple calculation shows that ( p0
p0−1)

1
p0 is decreasing in p0, therefore

τ−p0(4κ(M)
p0 − 1

)
1
2 ≤ (6

5
)

1
6 < 2,
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Similarly, one can show that

τ−p0(4κ(M)
p0 − 2

)
1
2 ≤ (6

4
)

1
6 < 2.

Combining these two inequalities with (3.31) yields

b(p) ≤ 7τ p.

3.B Proof of Theorem 3.4.2

In this section, we proceed to establish the convergence of inexact preconditioned SVRG

as in Algorithm 3.1. The proof is similar to that of Theorem D.1 of [2].

Before proving Theorem 3.4.2, let us first prove several lemmas.

First, the inexact optimality condition (3.4) gives the following descent:

Lemma 3.B.1. Under Assumption 3.2.1, suppose that (3.4) holds. Then, for any

u ∈ Rd we have

〈∇̃t, wt − u〉+ ψ(wt+1)− ψ(u) ≤〈∇̃t, wt − wt+1〉+ ‖u− wt‖
2
M

2η

− 1
2η
‖u− wt+1‖2

M −
1
2η
‖wt+1 − wt‖2

M + 〈Mεpt+1, u− wt+1〉.

Proof. First, let us rewrite the left hand side as

〈∇̃t, wt − u〉+ ψ(wt+1)− ψ(u) = 〈∇̃t, wt − wt+1〉+ 〈∇̃t, wt+1 − u〉+ ψ(wt+1)− ψ(u).

By (3.4) and the definition of subdifferential we have

ψ(u) ≥ ψ(wt+1)− 〈∇̃t + 1
η
M(wt+1 − wt) +Mεpt+1, u− wt+1〉.
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Combining these two gives

〈∇̃t, wt − u〉+ ψ(wt+1)− ψ(u) ≤〈∇̃t, wt − wt+1〉+ 〈1
η
M(wt+1 − wt) +Mεpt+1, u− wt+1〉

=〈∇̃t, wt − wt+1〉+ ‖u− wt‖
2
M

2η

− 1
2η
‖u− wt+1‖2

M −
1
2η
‖wt+1 − wt‖2

M + 〈Mεpt+1, u− wt+1〉,

where in the last equality we have applied

〈a− b, c− a〉M = −1
2
‖a− b‖2

M −
1
2
‖a− c‖2

M + 1
2
‖b− c‖M .

Based on lemma 3.B.1, we have

Lemma 3.B.2. Under Assumption 3.2.1, if the iterator S in Procedure 3.1 is proximal

gradient descent or FISTA with restart, then, for any a > 0, η ≤ 1−2c(p)a
2LM

f
, and u ∈ Rd

we have

E[F (wt+1)− F (u)] ≤E[η‖∇̃t −∇f(wt)‖2
M−1 +

1− ησMf
2η

‖u− wt‖2
M

− ( 1
2η
− c(p)

2ηa
)‖u− wt+1‖2

M ].

Proof. We have

E[F (wt+1)− F (u)] = E[f (wt+1)− f(u) + ψ (wt+1)− ψ(u)]

≤E[f (wt) + 〈∇f (wt) , wt+1 − wt〉+
LMf
2
‖wt − wt+1‖2

M − f(u) + ψ (wt+1)− ψ(u)]

≤ E[〈∇f (wt) , wt − u〉 −
σMf
2
‖u− wt‖2

M + 〈∇f (wt) , wt+1 − wt〉

+
LMf
2
‖wt − wt+1‖2

M + ψ (wt+1)− ψ(u)]

= E[〈∇̃t, wt − u〉 −
σMf
2
‖u− wt‖2

M + 〈∇f (wt) , wt+1 − wt〉

+
LMf
2
‖wt − wt+1‖2

M + ψ (wt+1)− ψ(u)], (3.31)
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where the first and second inequality are due to the smoothness and strong convexity

under ‖ · ‖M in Assumption 3.2.1, respectively. The last equality is due to E[∇̃t] =

∇f(wt).

On the other hand, recall that Lemma 3.B.1 gives

〈∇̃t, wt − u〉+ ψ(wt+1)− ψ(u) ≤ 〈∇̃t, wt − wt+1〉+ ‖u− wt‖
2
M

2η
− 1

2η
‖u− wt+1‖2

M −
1
2η
‖wt+1 − wt‖2

M

+ 〈Mεpt+1, u− wt+1〉.

For the last term we can apply Cauchy-Schwartz as follows,

〈Mεpt+1, u− wt+1〉 ≤ ‖εpt+1‖M‖u− wt+1‖M ,

from Lemma 3.A.1 and Lemma 3.4.1 we know that

‖εpt+1‖M ≤
c(p)
η
‖wt+1 − wt‖M .

Therefore, by Young’s inequality, we have for any a > 0 that

〈Mεpt+1, u− wt+1〉 ≤
c(p)a

2η
‖wt+1 − wt‖2

M + c(p)
2aη
‖u− wt+1‖2

M .

Applying this to Lemma 3.B.1 yields

〈∇̃t, wt − u〉+ ψ(wt+1)− ψ(u) ≤〈∇̃t, wt − wt+1〉+ ‖u− wt‖
2
M

2η
− 1

2η
‖u− wt+1‖2

M −
1
2η
‖wt+1 − wt‖2

M

+ 〈Mεpt+1, u− wt+1〉

≤ 〈∇̃t, wt − wt+1〉+ ‖u− wt‖
2
M

2η
− ( 1

2η
− c(p)

2aη
)‖u− wt+1‖2

M

− ( 1
2η
− c(p)a

2η
)‖wt+1 − wt‖2

M

Applying this to (3.31), we arrive at

E[F (wt+1)− F (u)] ≤E[〈∇̃t −∇f (wt) , wt − wt+1〉 −
1− c(p)a− ηLMf

2η
‖wt − wt+1‖2

M

+
1− ησMf

2η
‖u− wt‖2

M − ( 1
2η
− c(p)

2aη
)‖u− wt+1‖2

M ]

≤E[ η

2(1− c(p)a− ηLMf )
‖∇̃t −∇f(wt)‖2

M−1

+
1− ησMf

2η
‖u− wt‖2

M − ( 1
2η
− c(p)

2aη
)‖u− wt+1‖2

M ],
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where in the second inequality we have applied

〈u1, u2〉 = 〈M− 1
2u1,M

1
2u2〉 ≤ ‖u1‖M−1‖u2‖M ≤

1
2b
‖u1‖2

M−1
1

+ b

2
‖u2‖2

M
1
2

for any b > 0.

Finally, since η ≤ 1−2c(p)a
2LM

f
, we have η

2(1−c(p)a−ηLM
f

) ≤ η, which gives the desired result.

Lemma 3.B.3. Under Assumption 3.2.1, we have

E[‖∇̃t −∇f(wt)‖2
M−1 ] ≤ (LMf )2‖w0 − wt‖2

M .

Proof. We have

E[‖∇̃t −∇f(wt)‖2
M−1 ] = E[‖∇f(w0) +∇fit(wt)−∇fit(w0)−∇f(wt)‖2

M−1 ]

= E[‖
(
∇fit(wt)−∇fit(w0)

)
−
(
∇f(wt)−∇f(w0)

)
‖2
M−1 ]

≤ E[‖∇fit(wt)−∇fit(w0)‖2
M−1 ]

≤ (LMf )2‖wt − w0‖2
M ,

where in the first inequality, we have applied E[‖ξ − E ξ‖2] = E[‖ξ‖2 − ‖E ξ‖2 with

ξ = M− 1
2

(
∇fit(wt)−∇fit(w0)

)
, and in the second inequality follows from Assumption

3.2.1.

Lemma 3.B.4 ((Fact 2.3 of [2])). Let C1, C2, ... be a sequence of numbers, and N ∼Geom(p),

then

1. EN [CN − CN+1] = p
1−pEN [C0 − CN ], and

2. EN [CN ] = (1− p)E [CN+1] + pC0.

Lemma 3.B.5. Under Assumption 3.2.1, if η ≤ min{1−2c(p)a
2LM

f
, 1

2
√
mLM

f
} and m ≥ 2,

then, for any u ∈ Rd we have

E[F (wD+1)− F (u)] ≤E[− 1
4mη
‖wD+1 − w0‖2

M + 〈w0 − wD+1, w0 − u〉M
mη

− (
σMf
4
− c(p)

2aη
)‖wD+1 − u‖2

M ].

87



Proof. By Lemmas 3.B.2 and 3.B.3, we know that

E[F (wt+1)− F (u)] ≤ E[η(LMf )2‖w0 − wt‖2
M +

1− ησMf
2η

‖u− wt‖2
M

− ( 1
2η
− c(p)

2ηa
)‖u− wt+1‖2

M ].

Let D ∼ Geom( 1
m

) as in Algorithm 3.1 and take t = D, then

E[F (wD+1)− F (u)] ≤E[η(LMf )2‖w0 − wD‖2
M + 1

2η
‖u− wD‖2

M

− 1
2η
‖u− wD+1‖2

M −
σMf
2
‖u− wD‖2

M + c(p)
2ηa
‖u− wD+1‖2

M ]

=E[η(LMf )2‖wD − w0‖2
M + ‖u− w0‖2

M − ‖u− wD‖2
M

2(m− 1)η

−
σMf
2
‖u− wD‖2

M + c(p)
2aη
‖u− wD+1‖2

M ]

=E[m− 1
m

η(LMf )2‖wD+1 − w0‖2
M + ‖u− w0‖2

M − ‖u− wD+1‖2
M

2mη
]

−
σMf
2m
‖u− w0‖2

M −
σMf (m− 1)

2m
‖u− wD+1‖2

M + c(p)
2aη
‖u− wD+1‖2

M ]

≤E[η(LMf )2‖wD+1 − w0‖2
M + ‖u− w0‖2

M − ‖u− wD+1‖2
M

2mη

−
σMf
4
‖u− wD+1‖2

M + c(p)
2aη
‖u− wD+1‖2

M ]

≤E[− 1
4mη

‖w0 − wD+1‖2
M

+ ‖u− w0‖2
M − ‖u− wD+1‖2

M + ‖w0 − wD+1‖2
M

2mη

−
σMf
4
‖wD+1 − u‖2

M + c(p)
2aη
‖u− wD+1‖2

M ]

=E[− 1
4mη
‖wD+1 − w0‖2

M + 〈w0 − wD+1, w0 − u〉M
mη

− (
σMf
4
− c(p)

2aη
)‖wD+1 − u‖2

M ],

where the first equality follows from the item 1 of Lemma 3.B.4 with CN = ‖u−wN‖2
M ,

the second inequality follows from item 2 with CN = ‖wd − w0‖2
M , item 2 with CN =

‖u − w0‖2
M − ‖u − wN‖2

M , and item 1 with CN = ‖u − wD‖2
M , then third inequality

makes use of m ≥ 2 and the fourth inequality makes use of η ≤ 1
2
√
mLM

f
.
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Now, let us proceed to prove Theorem 3.4.2. With Lemma 3.B.5, it can be proved

in a similar way as Theorem 3 of [110].

Proof of Theorem 3.4.2. Without loss of generality, we can assume x⋆ = arg minx∈Rd F (x) =

0 and F (x∗) = 0.

According to Lemma 3.B.5, for any u ∈ Rd, and η ≤ min{1−2c(p)a
2LM

f
, 1

2
√
mLM

f
} we have

E[F (xj+1)− F (u)] ≤E[− 1
4mη
‖xj+1 − xj‖2

M

+ 〈x
j − xj+1, xj − u〉M

mη
− (

σMf
4
− c(p)

2aη
)‖xj+1 − u‖2

M ],

or equivalently,

E[F (xj+1)− F (u)] ≤E[ 1
4mη
‖xj+1 − xj‖2

M + 1
2mη
‖xj − u‖2

M

− 1
2mη
‖xj+1 − u‖2

M − (
σMf
4
− c(p)

2aη
)‖xj+1 − u‖2

M ].

In the following proof, we will omit E.

Setting u = x∗ = 0 and u = xj yields the following two inequalities:

F (xj+1) ≤ 1
4mη

(‖xj+1 − xj‖2
M + 2‖xj‖2

M)− 1
2mη

(
1 + 1

2
mη(σMf −

2c(p)
aη

)
)
‖xj+1‖2

M ,

(3.32)

F (xj+1)− F (xj) ≤− 1
4mη

(
1 +mη(σMf −

2c(p)
aη

)
)
‖xj+1 − xj‖2

M . (3.33)

Define τ = 1
2mη(σMf −

2c(p)
aη

), multiply (1 + 2τ) to (3.32), then add it to (3.33) yields

2(1 + τ)F (xj+1)− F (xj) ≤ 1
2mη

(1 + 2τ)
(
‖xj‖2

M − (1 + τ)‖xj+1‖2
M

)
.

Multiplying both sides by (1 + τ)j gives

2(1 + τ)j+1F (xj+1)− (1 + τ)jF (xj) ≤ 1
2mη

(1 + 2τ)
(
(1 + τ)j‖xj‖2

M − (1 + τ)j+1‖xj+1‖2
M

)
.
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Summing over j = 0, 1, ..., k − 1, we have

(1 + τ)kF (xk) +
k−1∑
j=0

(1 + τ)jF (xj)− F (x0) ≤ 1
2mη

(1 + 2τ)(‖x0‖2
M − (1 + τ)k‖xk‖2

M).

Since F (xj) ≥ 0, we have

F (xk)(1 + τ)k ≤ F (x0) + 1
2mη

(1 + 2τ)‖x0‖2.

By the strong convexity of F , we have F (x0) ≥ σM
f

2 ‖x
0‖2
M , therefore

F (xk)(1 + τ)k ≤ F (x0)(2 + 1
2τ

). (3.34)

Finally, recall that a > 0 can be chosen arbitrarily, so we can take

a = 4c(p)
ησMf

,

and

η ≤min{1− 2c(p)a
2LMf

,
1

2
√
mLMf

} = min{
1− 8c2(p)

ησM
f

2LMf
,

1
2
√
mLMf

}, (3.35)

τ = 1
2
mη(σMf −

2c(p)
aη

) = 1
4
mησMf .

In order for the choice of η in (3.35) to be possible, we need

2LMf η2 − η + 8c
2(p)
σMf

≤ 0 (3.36)

to have one solution at least, which requires

64κMf c2(p) ≤ 1,

under which η = 1
4LM

f
satisfy (3.36). As a result, m ≥ 4 makes (3.35) into

η ≤ 1
2
√
mLMf

,

and the desired convergence result follows from (3.34).
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3.C Proof of Lemma 3.4.4

Proof. From Lemma 3.4.1, we know that

c(p) = 14κ(M) τ p

1− τ p
,

where

τ ≤ exp(− 1
2e
√
κ(M) + 1

).

Therefore, in order for 64κMf c2(p) ≤ 1, we need

κMf κ
2(M)( τ p

1− τ p
)2 ≤ 1

64× 142 = c1,

which is equivalent to

τ p ≤ c1√
κMf κ(M) +√c1

.

Thus, it suffices to require that

[exp(− 1
2e
√
κ(M) + 1

)]p ≤ c√
κMf κ(M) +√c1

,

which gives

p ≥ (2e
√
κ(M) + 1) ln

√
κMf κ(M) +√c1

c1
.

3.D Proof of Theorem 3.4.3

The proof of Theorem 3.4.3 is similar to that of Theorem 4.3 of [2], so we provide a

proof sketch here and omit the details.

1. In [2], the proof of Theorem 4.3 is based on Lemma 3.3, here the proof of Theorem

3.4.3 is based on Lemma 3.B.5, which is an analog of Lemma of 3.3 in our settings.
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2. Based on Lemma 3.B.5, the proof of Theorem 3.4.3 follows in nearly the same

way as Theorem 4.3 of [2], the only difference is that one needs to replace σ by

σMf −
2c(p)
aη

.

3. By setting

a = 4c(p)
ησMf

,

and

64κMf c2(p) ≤ 1

as in the proof of Theorem 3.4.2, the τ in Theorem 4.3 of [2] becomes 1
2mησ

M
f ,

and the convergence result of Theorem 3.4.3 follows.

3.E Proof of Theorems 3.4.5 and 3.4.6

Proof of Theorem 3.4.5. From Remark 3.4.1, we know that the gradient complexity of

SVRG can be expressed as

C1(m, ε) = O( n+m

ln(1 + 1
4mησf )

ln 1
ε

).

Taking the largest possible step size η = 1
2
√
mLf

as in Theorem 3.4.2, we have

C1(m, ε) = O( n+m

ln(1 +
√
m

8κf
)

ln 1
ε

).

Let us first find the optimal m = m⋆ for SVRG, let

g(m) = n+m

ln(1 +
√
m

8κf
)
,

then

g′(m) =
ln(1 +

√
m

8κf
)−

√
m

8κf

1+
√

m
8κf

n+m
2m

ln2(1 + z)
.

Taking derivative to the numerator gives

[ln(1 +
√
m

8κf
)−

√
m

8κf

1 +
√
m

8κf

n+m

2m
]′ = (n+m)

1
32κf

m− 3
2 + 2 m−1

(16κf )2

(1 +
√
m

8κf
)2

> 0,
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Therefore, m⋆ is given by g′(m) = 0. Let z =
√
m

8κf
> 0, then

g′(m) =
ln(1 + z)− z

1+z
n+m
2m

ln2(1 + z)
.

Since ln(1 + z) > z
1+z for z > 0, we know that g′(n) > 0, therefore, m⋆ < n.

Let m = ns where 0 < s < 1, we would like to have g′(ns) < 0, i,e.,

ln(1 + z)
z

1+z
<

1 + n1−s

2
.

so that m⋆ ∈ (ns, n).

Since κf > n
1
2 , we have z =

√
m

8κf
< 1

8 , on the other hand, we have

[ ln(1 + z)
z

1+z
<

1 + n1−s

2
]′z > 0.

Therefore, it suffices to have

n1−s > 18 ln 9
8
− 1 := c0 > 1.

As a result, we have m⋆ ∈ ( n
c0
, n), and

C1(m⋆, ε) = O( n+m⋆

ln(1 +
√
m⋆

8κf
)

ln 1
ε

) = O( n
√
n

8κf

ln 1
ε

) = O(κf
√
n ln 1

ε
),

where in the second equality we have used κf > n
1
2 .

For our iPreSVRG in Algorithm 3.1, we have

C ′
1(m, ε) = O( n+ (1 + pd)m

ln(1 + 1
4mησ

M)
ln 1
ε

),

thanks to Lemma 3.4.4, p can be chosen as

p = O(
√
κ(M) ln

(√
κMf κ(M)

)
,

furthermore, we can take η = 1
2
√
mLf

due to Theorem 3.4.2.

Under these settings, we have

C ′
1(m, ε) = O(n+ (1 + pd)m

ln(1 + 1
8

√
m

κM
f

)
ln 1
ε

).
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Let us take m = m′ = d n
1+pde.

If n > 1 + pd, or equivalently κf < n2d−2, then

C ′
1(m′, ε) = O( n

ln(1 + 1
8

√
n√

pdκM
f

)
ln 1
ε

).

Since p = O
(√

κ(M) ln
(√

κMf κ(M)
))
, we know that when (κMf )2

√
κ(M)d < n, or

equivalently κf < n2d−2, we have

ln(1 + 1
8

√
n√

pdκMf
) = O(lnn),

therefore

C ′
1(m′, ε) = O(n ln 1

ε
),

and
minm≥1 C

′
1(m, ε)

minm≥1 C1(m, ε)
≤ C ′

1(m′, ε)
C1(m⋆, ε)

= O(
√
n

κf
).

If n ≤ 1 + pd, or equivalently κf > n2d−2, then m = 1 and

C ′
1(m, ε) = O(

√
κ(M)d

ln(1 + 1
8

1
κM

f
)

ln 1
ε

),

therefore
minm≥1 C

′
1(m, ε)

minm≥1 C1(m, ε)
≤ C ′

1(1, ε)
C1(m⋆, ε)

= O(

√
κ(M)d

κf
√
n ln(1 + 1

8
1
κM

f
)
).

Since κ(M) ≈ κf � κMf , this ratio becomes O( d√
nκf

)

Proof of Theorem 3.4.6. The proof of Theorem 3.4.6 is similar and is omitted.
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Part III

Convergence Behaviors on

Pathological Problems
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In this part, we present the results of [137] and [199], where the behavior of DRS on

pathological convex problems is analyzed. This part depends heavily on the monotone

operator theory (c.f. [18]).

In Chapter 4, we work on conic programs. First, we view DRS iteration as a

fixed-point iteration with some firmly nonexpansive operator T (see (4.6)). In the

pathological settings, T does not have a fixed point, and DRS iterations will diverge.

However, they diverge in a certain pattern 4.2.3, and this pattern is very helpful for

identifying pathologies. Specifically, we can run three different but similar fixed-point

iterations in parallel (see Algorithms 4.1, 4.2, and 4.3). Their convergence or divergence

patterns inform us about what goes wrong in the original conic program, and how we

may fix them. We summarize the theoretical results as a flowchart for identifying

pathologies (see Figure 4.1), and numerical results on infeasible semidefinite programs

(SDPs) in Section 4.3.

In Chapter 5, we turn to general convex problems. Just like DRS for conic programs,

the divergence pattern of DRS can still inform us about certain pathologies such as

strong infeasibility and improving directions (see Section 5.3.1). Furthermore, we show

in Section 5.3.2 that, DRS essentially only requires strong duality to "work" even when

the primal and/or dual solution does not exist, in the sense that the objective values of

the iterates are asymptotically optimal. This result comes from a novel function value

analysis. Finally, all these results are translated for ADMM in Section 5.5, which is

known to be equivalent to DRS.
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CHAPTER 4

DRS for Pathological Conic Programs

4.1 Introduction

Many convex optimization algorithms have strong theoretical guarantees and empirical

performance, but they are often limited to non-pathological, feasible problems; under

pathologies often the theory breaks down and the empirical performance degrades signif-

icantly. In fact, the behavior of convex optimization algorithms under pathologies has

been studied much less, and many existing solvers often simply report “failure” without

informing the users of what went wrong upon encountering infeasibility, unbounded-

ness, or pathology. Pathological problem are numerically challenging, but they are not

impossible to deal with. As infeasibility, unboundedness, and pathology can arise in

practice (see, for example, [141, 140, 225, 229, 78]), designing a robust algorithm that

behaves well in all cases is important to the completion of a robust solver.

In this chapter, we propose a method based on Douglas-Rachford splitting (DRS)

that identifies infeasible, unbounded, and pathological conic programs. First-order

methods such as DRS are simple and can quickly provide a solution with low or mod-

erate accuracy. It is well known, for example by combining Theorem 1 of [193] and

Proposition 4.4 of [82], that the iterates of DRS converge to a fixed point if there is one

(a fixed point z∗ of an operator T satisfies z∗ = Tz∗), and when there is no fixed point,

the iterates diverge unboundedly. However, the precise manner in which they diverge

has been studied much less. Somewhat surprisingly, when iterates of DRS diverge, the

divergent iterates still provide useful information, which we use to classify the conic
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program. For example, a separating hyperplane can be found when the conic program

is strongly infeasible, and an improving direction can be obtained when there is one.

When the problem is infeasible or weakly feasible, we can get information of how to

minimally modify the problem data to achieve strong feasibility.

Facial reduction is one approach to handle infeasible or pathological conic programs.

Facial reduction reduces an infeasible or pathological problem into a reduced problem

that is strongly feasible, strongly infeasible, or unbounded with an improving direction,

which are the easier cases [38, 36, 169, 227]. This reduced problem can then be solved

with, say, interior point methods [162]. However, facial reduction introduces a new

set of computational issues. After completing the facial reduction step, which has its

own the computational challenge and cost, the reduced problem must be solved. The

reduced problem involves a cone expressed as an intersection of the original cone with

an linear subspace, and in general such cones neither are self-dual nor have a simple

formula for projection. This makes applying an interior point method or a first-order

method difficult, and existing work on facial reduction do not provide an efficient way

to address this issue.

Homogeneous self-dual embedding is a transformation that embeds a conic program

and its dual into a single larger conic program. In conjunction with interior point

methods, one can use the homogeneous self-dual embedding to identify and solve some

pathologies [240, 70, 241, 143, 175].

In contrast, our proposed method directly addresses infeasibility, unboundedness,

and pathology without transforming to a larger problem. Some cases are always iden-

tified, and some are identifiable under certain conditions. Being a first-order method,

the proposed algorithm relies on simple subroutines; each iteration performs projections

onto the cone and the affine space of the conic program and elementary operations such

as vector addition. Consequently, the method is simple to implement and has a lower

per-iteration cost than interior point methods.
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4.1.1 Basic definitions

Cones. A set K ⊆ Rn is a cone if K = λK for any λ > 0. We write and define the

dual cone of K as

K∗ = {u ∈ Rn| uTv ≥ 0, for all v ∈ K}.

Throughout this chapter, we focus on nonempty closed convex cones that we can effi-

ciently project onto. In particular, we do not require that the cone be self-dual. Example

of such cones include:

• The positive orthant:

Rk
+ = {x ∈ Rk |xi ≥ 0, i = 1, . . . , n}

• Second order cone:

Qk+1 =
{

(x1, . . . , xk, xk+1) ∈ Rk × R+ |xk+1 ≥
√
x2

1 + · · ·+ x2
k

}

• Rotated second order cone:

Qk+2
r =

{
(x1, . . . , xk, xk+1, xk+2) ∈ Rk × R2

+ | 2xk+1xk+2 ≥ x2
1 + · · ·+ x2

k

}
.

• Positive semidefinite cone:

Sk+ = {M = MT ∈ Rk×k| xTMx ≥ 0 for any x ∈ Rk}

Conic programs. Consider the conic program

minimize cTx

subject to Ax = b

x ∈ K,

(P)

where x ∈ Rn is the optimization variable, c ∈ Rn, A ∈ Rm×n, and b ∈ Rm are problem

data, and K ⊆ Rn is a nonempty closed convex cone. We write p⋆ = inf{cTx |Ax =
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b, x ∈ K} to denote the optimal value of (P). For simplicity, we assume m ≤ n and A

is full rank.

The dual problem of (P) is

maximize bTy

subject to ATy + s = c

s ∈ K∗,

(D)

where y ∈ Rm and s ∈ Rn are the optimization variables. We write d⋆ = sup{bTy |ATy+

s = c, s ∈ K∗} to denote the optimal value of (D).

The optimization problem (P) is either feasible or infeasible; (P) is feasible if there

is an x ∈ K ∩ {x |Ax = b} and infeasible if there is not. When (P) is feasible, it

is strongly feasible if there is an x ∈ relintK ∩ {x |Ax = b} and weakly feasible if

there is not, where relint denotes the relative interior. When (P) is infeasible, it is

strongly infeasible if there is a non-zero distance between K and {x |Ax = b}, i.e.,

d(K, {x |Ax = b}) > 0, and weakly infeasible if d(K, {x |Ax = b}) = 0, where

d(C1, C2) = inf {‖x− y‖ | x ∈ C1, y ∈ C2} ,

and ‖ · ‖ denotes the Euclidean norm. Note that d(C1, C2) = 0 does not necessarily

imply C1 and C2 intersect. When (P) is infeasible we say p⋆ = ∞ and when feasible

p⋆ ∈ R ∪ {−∞}. Likewise, when (D) is infeasible we say d⋆ = −∞ and when feasible

d⋆ ∈ R ∪ {∞}.

As special cases, (P) is called a linear program when K is the positive orthant,

a second-order cone program when K is the second-order cone, and a semidefinite

program when K is the positive semidefinite cone.

4.1.2 Classification of conic programs

Every conic program of the form (P) falls under exactly one of the following 7 cases

(some of the following examples are taken from [146, 148, 143, 145]). Discussions on
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most of these cases exist in the literature. Some of these cases have a corresponding

dual characterization, but we skip this discussion as it is not directly relevant to our

method. We report the results of SDPT3 [220], SeDuMi [211], and MOSEK [156] using

their default settings. In Section 4.2, we discuss how to identify most of these 7 cases.

Case (a). p⋆ is finite, both (P) and (D) have solutions, and d⋆ = p⋆, which is the

most common case. For example, the problem

minimize x3

subject to x1 = 1

x3 ≥
√
x2

1 + x2
2

has the solution x⋆ = (1, 0, 1) and p⋆ = 1. (The inequality constraint corresponds to

x ∈ Q3.) SDPT3, SeDuMi and MOSEK can solve this example.

The dual problem, after some simplification, is

maximize y

subject to 1 ≥ y2,

which has the solution y⋆ = 1 and d⋆ = 1.

Case (b). p⋆ is finite, (P) has a solution, but (D) has no solution, d⋆ < p⋆, or both.

For example, the problem

minimize x2

subject to x1 = x3 = 1

x3 ≥
√
x2

1 + x2
2

has the solution x⋆ = (1, 0, 1) and optimal value p⋆ = 0. (The inequality constraint

corresponds to x ∈ Q3.)

The dual problem, after some simplification, is

maximize y1 −
√

1 + y2
1.
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By taking y1 →∞, we achieve the dual optimal value d⋆ = 0, but no finite y1 achieves

it.

In this example, SDPT3 reports “Inaccurate/Solved” and −2.99305 × 10−5 as the

optimal value; SeDuMi reports “Solved” and −1.54566 × 10−4 as the optimal value;

MOSEK reports “Solved” and −2.71919× 10−8 as the optimal value.

As another example, the problem

minimize 2x12

subject to X =


x11 x12 x13

x12 0 x23

x13 x23 x12 + 1

 ∈ S3
+,

has the solution

X⋆ =


0 0 0

0 0 0

0 0 1


and optimal value p⋆ = 0.

The dual problem, after some simplification, is

maximize 2y2

subject to


0 y2 + 1 0

y2 + 1 −y1 0

0 0 −2y2

 ∈ S3
+,

which has the solution y⋆ = (0,−1) and optimal value d⋆ = −2.

In this example, SDPT3 reports “Solved” and −2 as the optimal value; SeDuMi

reports “Solved” and −0.602351 as the optimal value; MOSEK reports “Failed” and

does not report an optimal value.

Note that case (b) can happen only when (P) is weakly feasible, by standard convex

duality [191].
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Case (c). (P) is feasible, p⋆ is finite, but there is no solution. For example, the

problem
minimize x3

subject to x1 =
√

2

2x2x3 ≥ x2
1

x2, x3 ≥ 0

has an optimal value p⋆ = 0 but has no solution since any feasible x satisfies x3 > 0.

(The inequality constraints correspond to x ∈ Q3
r.)

In this example, SDPT3 reports “Inaccurate/Solved” and 7.9509× 10−5 as the opti-

mal value; SeDuMi reports “Solved” and 8.75436× 10−5 as the optimal value; MOSEK

reports “Solved” and 4.07385× 10−8 as the optimal value.

Case (d). (P) is feasible, p⋆ = −∞, and there is an improving direction, i.e., there is

a u ∈ N (A) ∩K satisfying cTu < 0. For example, the problem

minimize x1

subject to x2 = 0

x3 ≥
√
x2

1 + x2
2

has an improving direction u = (−1, 0, 1). If x is any feasible point, x + tu is feasible

for t ≥ 0, and the objective value goes to −∞ as t → ∞. (The inequality constraint

corresponds to x ∈ Q3.)

In this example, SDPT3 reports “Failed” and does not report an optimal value;

SeDuMi reports “Unbounded” and −∞ as the optimal value; MOSEK reports “Un-

bounded” and −∞ as the optimal value.
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Case (e). (P) is feasible, p⋆ = −∞, but there is no improving direction, i.e., there is

no u ∈ N (A) ∩K satisfying cTu < 0. For example, consider the problem

minimize x1

subject to x2 = 1

2x2x3 ≥ x2
1

x2, x3 ≥ 0.

(The inequality constraints correspond to x ∈ Q3
r.) Any improving direction u =

(u1, u2, u3) would satisfy u2 = 0, and this in turn, with the cone constraint, implies

u1 = 0 and cTu = 0. However, even though there is no improving direction, we can

eliminate the variables x1 and x2 to verify that

p⋆ = inf{−
√

2x3 |x3 ≥ 0} = −∞.

In this example, SDPT3 reports “Failed” and does not report an optimal value; Se-

DuMi reports “Inaccurate/Solved” and −175514 as the optimal value; MOSEK reports

“Inaccurate/Unbounded” and −∞ as the optimal value.

Case (f). Strongly infeasible, where p⋆ =∞ and d(K, {x |Ax = b}) > 0. For example,

the problem
minimize 0

subject to x3 = −1

x3 ≥
√
x2

1 + x2
2

satisfies d(K, {x |Ax = b}) = 1. (The inequality constraint corresponds to x ∈ Q3.)

In this example, SDPT3 reports “Failed” and does not report an optimal value;

SeDuMi reports “Infeasible” and ∞ as the optimal value; MOSEK reports “Infeasible”

and ∞ as the optimal value.
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Case (g). Weakly infeasible, where p⋆ =∞ but d(K, {x |Ax = b}) = 0. For example,

the problem
minimize 0

subject to

0, 1, 1

1, 0, 0

x =

0

1


x3 ≥

√
x2

1 + x2
2

satisfies d(K, {x |Ax = b}) = 0, since

d(K, {x |Ax = b}) ≤ ‖(1,−y, y)− (1,−y,
√
y2 + 1)‖ → 0

as y →∞. (The inequality constraint corresponds to x ∈ Q3.)

In this example, SDPT3 reports “Infeasible” and ∞ as the optimal value; SeDuMi

reports “Solved” and 0 as the optimal value; MOSEK reports “Failed” and does not

report an optimal value.

Remark. In the case of linear programming, i.e., when K in (P) is the positive

orthant, there are only three possible cases: (a), (d), and (f).

4.1.3 Classification method overview

At a high level, our proposed method for classifying the 7 cases is quite simple. Given

an operator T and a starting point z0, we call zk+1 = T (zk) the fixed-point iteration of

T . Our proposed method runs three similar but distinct fixed-point iterations with the

operators

T1(z) = T̃ (z) + x0 − γDc

T2(z) = T̃ (z) + x0 (Operators)

T3(z) = T̃ (z)− γDc,

where T̃ (z) = (1/2)(I + RN (A)RK)(z), D = I − AT (AAT )−1A, x0 = AT (AAT )−1b, and

γ > 0. We explain the notation in more detail in Section 4.2.
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We can view T1 as the DRS operator of (P), T2 as the DRS operator with c set to

0 in (P), and T3 as the DRS operator with b set to 0 in (P). We use the information

provided by the iterates of these fixed-point iterations to solve (P) and classify the cases.

As outlined in Section 4.2.8, this is based on the theory of Section 4.2 and the flowchart

shown in Figure 4.1.

4.1.4 Previous work

Previously, Bauschke, Combettes, Hare, Luke, and Moursi have analyzed Douglas-

Rachford splitting in other pathological problems such as: feasibility problems between

2 affine sets [25], feasibility problems between 2 convex sets [19, 26], and general setups

[13, 21, 23, 157]. Our work builds on these past results.

4.2 Obtaining certificates from Douglas-Rachford Splitting

The primal problem (P) is equivalent to

minimize f(x) + g(x), (4.1)

where

f(x) = cTx+ δ{x |Ax=b}(x)

g(x) = δK(x), (4.2)

and δC(x) is the indicator function of a set C defined as

δC(x) =


0 if x ∈ C

∞ if x /∈ C.
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Start

Infeasible

Feasible

(f) Strongly infeasible

(g) Weakly infeasible

(a) There is a primal-dual

solution pair with d⋆ = p⋆

(b) There is a primal

solution but no dual

solution or d⋆ < p⋆

(c) p⋆ is finite but

there is no solution

(d) Unbounded

(p⋆ = −∞) with an

improving direction

(e) Unbounded

(p⋆ = −∞) without

an improving direction

Thm 4.2.7

Alg 4.2

Thm 4.2.8

Alg 4.2

Thm 4.2.2

Alg 4.1

Thm 4.2.17

Alg 4.3

Thm 4.2.18

Alg 4.1

Thm 4.2.14

Alg 4.3

Figure 4.1: The flowchart for identifying cases (a)–(g). A solid arrow means the cases

are always identifiable, a dashed arrow means the cases sometimes identifiable.
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Douglas-Rachford splitting (DRS) [133] applied to (3.32) is

xk+1/2 = Proxγg(zk)

xk+1 = Proxγf (2xk+1/2 − zk) (4.3)

zk+1 = zk + xk+1 − xk+1/2,

which updates zk to zk+1 for k = 0, 1, .... Given γ > 0 and function h,

Proxγh(x) = arg min
z∈Rn

{
h(z) + (1/2γ)‖z − x‖2

}
denotes the proximal operator with respect to γh.

Given a nonempty closed convex set C ⊆ Rn, define the projection with respect to

C as

PC(x) = arg min
y∈C

‖y − x‖2

and the reflection with respect to C as

RC(x) = 2PC(x)− x.

Write I to denote both the n× n identity matrix and the identity map from Rn → Rn.

Write 0 to denote the origin point in Rn. Define

D = I − AT (AAT )−1A

x0 = AT (AAT )−1b = P{x |Ax=b}(0). (4.4)

Write N (A) for the null space of A and R(AT ) for the range of AT . Then

P{x |Ax=b}(x) = Dx+ x0,

PN (A)(x) = Dx.

Finally, define

T̃ (z) = 1
2

(I +RN (A)RK)(z).
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Now we can rewrite the DRS iteration (4.3) as

xk+1/2 = PK(zk)

xk+1 = D(2xk+1/2 − zk) + x0 − γDc (4.5)

zk+1 = zk + xk+1 − xk+1/2.

Equivalently and more compactly, we can write

zk+1 = T̃ (zk) + x0 − γDc, (4.6)

which is also zk+1 = T1(zk) with T1 definied in (Operators).

Remark. Instead of (3.33), we could have considered the more general form

f(x) = (1− α)cTx+ δ{x |Ax=b}(x),

g(x) = αcTx+ δK(x)

with α ∈ R. By simplifying the resulting DRS iteration, one can verify that the iterates

are equivalent to the α = 0 case. Since the choice of α does not affect the DRS iteration

at all, we will only work with the case α = 0.

4.2.1 Convergence of DRS

A point x⋆ ∈ Rn is a solution of (3.32) if and only if

0 ∈ ∂(f + g)(x⋆).

DRS, however, converges if and only if there is a point x⋆ such that

0 ∈ ∂f(x⋆) + ∂g(x⋆).

In general,

∂f(x) + ∂g(x) ⊆ ∂(f + g)(x)
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for all x ∈ Rn, but the two are not necessarily equal.

We summarize the convergence of DRS in the theorem below. Its main part is a

direct result of Theorem 1 of [193] and Propositions 4.4 and 4.8 of [82]. The convergence

of xk+1/2 and xk+1 is due to [214]. Therefore, we do not prove it.

Theorem 4.2.1. Consider the iteration (4.6) with any starting point z0. If there is an

x such that

0 ∈ ∂f(x) + ∂g(x),

then zk converges to a limit z⋆, xk+1/2 → x⋆ = Proxγg(z⋆), xk+1 → x⋆ = Proxγg(z⋆),

and

0 ∈ ∂f(x⋆) + ∂g(x⋆).

If there is no x such that

0 ∈ ∂f(x) + ∂g(x),

then zk diverges in that ‖zk‖ → ∞.

DRS can fail to find a solution to (P) even when one exists. Slater’s constraint

qualification is a sufficient condition that prevents such pathologies: if (P) is strongly

feasible, then

0 ∈ ∂f(x⋆) + ∂g(x⋆)

for all solutions x⋆ [190, Theorem 23.8]. This fact and Theorem 4.2.1 tell us that under

Slater’s constraint qualifications DRS finds a solution of (P) if one exists.

The following theorem, however, provides a stronger, necessary and sufficient char-

acterization of when the DRS iteration converges.

Theorem 4.2.2 ([191]). There is an x⋆ such that

0 ∈ ∂f(x⋆) + ∂g(x⋆)

if and only if x⋆ is a solution to (P), (D) has a solution, and d⋆ = p⋆.

110



Based on Theorem 4.2.1 and 4.2.2 we can determine whether we have case (a) with

the iteration (4.6)

with any starting point z0 and γ > 0.

• If limk→∞ ‖zk‖ <∞, we have case (a), and vice versa.

• If limk→∞ ‖zk‖ =∞, we do not have case (a), and vice versa.

With a finite number of iterations, we test ‖zk‖ ≥ M for some large M > 0. However,

distinguishing the two cases can be numerically difficult as the rate of ‖zk‖ → ∞ can

be very slow.

4.2.2 Fixed-point iterations without fixed points

We say an operator T : Rn → Rn is nonexpansive if

‖T (x)− T (y)‖2 ≤ ‖x− y‖2

for all x, y ∈ Rn. We say T is firmly nonexpansive (FNE) if

‖T (x)− T (y)‖2 ≤ ‖x− y‖2 − ‖(I − T )(x)− (I − T )(y)‖2

for all x, y ∈ Rn. (FNE operators are nonexpansive.) In particular, all three operators

defined in (Operators) are FNE, as they are DRS operators [15]. It is well known

[66] that if a FNE operator T has a fixed point, its fixed-point iteration zk+1 = T (zk)

converges to one with rate

‖zk+1 − zk‖ = o(1/
√
k).

Now consider the case where a FNE operator T has no fixed point, which has been

studied to a lesser extent. In this case, the fixed-point iteration zk+1 = T (zk) diverges in

that ‖zk‖ → ∞ [193, Theorem 1]. Precisely in what manner zk diverges is characterized

by the infimal displacement vector [172]. Given a FNE operator T , we call

v = Pran (I−T )(0)
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the infimal displacement vector of T . To clarify, ran (I − T ) denotes the closure of the

set

ran (I − T ) = {x− T (x) |x ∈ Rn}.

Because T is nonexpansive, the closed set ran (I − T ) is convex [172], so v is uniquely

defined. We can interpret the infimal displacement vector v as the asymptotic output

of I − T corresponding to the best effort to find a fixed point.

Lemma 4.2.3 (Corollary 2.3 of [11]). Let T be FNE, and consider its fixed-point iter-

ation zk+1 = T (zk) with any starting point z0. Then

zk − zk+1 → v = Pran (I−T )(0).

In [11], Lemma 4.2.3 is proved in generality for nonexpansive operators, but we

provide a simpler proof in our setting in Theorem 4.2.4.

When T has a fixed point v = 0, but v = 0 is possible even when T has no fixed

point. In the following sections, we use Lemma 4.2.3 to determine the status of a

conic program, but, in general, zk − zk+1 → v has no rate. However, we only need to

determine whether limk→∞(zk+1 − zk) = 0 or limk→∞(zk+1 − zk) 6= 0, and we do so

by checking whether ‖zk+1 − zk‖ ≥ ε for some tolerance ε > 0. For this purpose, the

following rate of approximate convergence is good enough.

Theorem 4.2.4. Let T be FNE, and consider its fixed point iteration

zk+1 = T (zk),

with any starting point z0, then

zk − zk+1 → v.

And for any ε > 0, there is an Mε > 0 (which depends on T , z0, and ε) such that

‖v‖ ≤ min
0≤j≤k

‖zj − zj+1‖ ≤ ‖v‖+ Mε√
k + 1

+ ε

2
.
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Proof of Theorem 4.2.4. For simplicity, we prove the result for 0 < ε ≤ 1. The result

for ε = 1 applies to the ε > 1 case.

Given any xε, we use the triangle inequality to get

‖zk − zk+1 − v‖ = ‖T k(z0)− T k+1(z0)− v‖ (4.7)

≤ ‖(T k(z0)− T k+1(z0))− (T k(xε)− T k+1(xε))‖+ ‖T k(xε)− T k+1(xε)− v‖.

(4.8)

To bound the second term, pick an xε such that

‖xε − T (xε)− v‖ ≤
ε2

4(2‖v‖+ 1)
,

which we can do since v = Pran (I−T )(0) ∈ ran (I − T ). Since T is nonexpansive, we

have

‖T k(xε)− T k+1(xε)‖ − ‖v‖ ≤ ‖xε − T (xε)‖ − ‖v‖ ≤ ‖xε − T (xε)− v‖.

Since v = arg minran (I−T ) ‖x‖, we have ‖T k(xε) − T k+1(xε)‖ − ‖v‖ ≥ 0. Putting this

together we get

0 ≤ ‖T k(xε)− T k+1(xε)‖ − ‖v‖ ≤
ϵ2

4(2‖v‖+ 1)
.

Since v = Pran (I−T )(0),

‖v‖2 ≤ yTv

for any y ∈ ran (I − T ). Putting these together we get

‖T k(xε)− T k+1(xε)− v‖2 = ‖T k(xε)− T k+1(xε)‖2 + ‖v‖2 − 2(T k(xε)− T k+1(xε))Tv

≤ ‖T k(xε)− T k+1(xε)‖2 + ‖v‖2 − 2‖v‖2

= (‖T k(xε)− T k+1(xε)‖+ ‖v‖)(‖T k(xε)− T k+1(xε)‖ − ‖v‖)

≤ (2‖v‖+ ε2

4(2‖v‖+ 1)
) ε2

4(2‖v‖+ 1)

≤ (2‖v‖+ 1) ε2

4(2‖v‖+ 1)
= ε2

4
(4.9)
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for 0 < ε ≤ 1.

Now let us bound the first term ‖(T k(z0)−T k+1(z0))− (T k(xε)−T k+1(xε))‖ on the

righthand side of (4.8). Since T is FNE, we have

‖(T k(z0)−T k+1(z0))−(T k(xε)−T k+1(xε))‖2 = ‖T k(z0)−T k(xε)‖2−‖T k+1(z0)−T k+1(xε)‖2.

Summing this inequality we have
k∑
j=0
‖(T k(z0)− T k+1(z0))− (T k(xε)− T k+1(xε))‖2 ≤ ‖z0 − xε‖2. (4.10)

(4.8), (4.9), and (4.10) imply that

zk − zk+1 → v.

Furthermore,

min
0≤j≤k

‖zj − zj+1 − v‖ ≤ Mε√
k + 1

+ ε

2
,

where Mε = ‖z0 − xε‖. As a result,

‖v‖ ≤ min
0≤j≤k

‖zj − zj+1‖ ≤ ‖v‖+ Mε√
k + 1

+ ε

2
.

4.2.3 Feasibility and infeasibility

We now return to conic programs. Consider the operator T2 defined by T2(z) = T̃ (z)+x0.

As mentioned, we can view T2 as the DRS operator with c set to 0 in (P).

The infimal displacement vector of T2 has a nice geometric interpretation: it is the

best approximation displacement between the sets K and {x |Ax = b}, and ‖v‖ =

d(K, {x |Ax = b}). Define the set

K − {x |Ax = b} = {y − x | y ∈ K, Ax = b}.

Theorem 4.2.5 (Theorem 3.4 of [19], Proposition 11.22 of [157]). The operator T2 has

the infimal displacement vector v = PK−{x |Ax=b}(0).
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We can further understand v in terms of the projection PPR(AT )(K). Note that

PR(AT )(K) is a cone because K is. PR(AT )(K) is not always closed, but its closure

PR(AT )(K) is. We prove the following result at the end of this subsection.

Lemma 4.2.6 (Interpretation of v). The infimal displacement vector v of T2 satisfies

v = PK−{x |Ax=b}(0) = PPR(AT )(K)−x0
(0) = PPR(AT )(K)(x0)− x0,

where x0 is given in (4.4) and K is any nonempty set.

Combining the discussion of Section 4.2.2 with Theorem 4.2.5 gives us Theorems

4.2.7 and 4.2.8.

Theorem 4.2.7 (Certificate of feasibility). Consider the iteration zk+1 = T2(zk) with

any starting point z0 ∈ Rn, then

1. (P) is feasible if and only if zk converges, and in this case xk+1/2 converges to a

feasible point of (P).

2. (P) is infeasible if and only if zk diverges in that ‖zk‖ → ∞.

Theorem 4.2.8 (Certificate of strong infeasibility). Consider the iteration zk+1 =

T2(zk) with any starting point z0. We have zk − zk+1 → v and

1. (P) is strongly infeasible if and only if v 6= 0.

2. (P) is weakly infeasible or feasible if and only if v = 0.

When (P) is strongly infeasible, we can obtain a separating hyperplane from v. We

prove the following result at the end of this subsection.

Theorem 4.2.9 (Separating hyperplane). Consider the iteration zk+1 = T2(zk) with

any starting point z0. When (P) is strongly infeasible, zk − zk+1 → v 6= 0, and the

hyperplane

{x |hTx = β},
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where h = −v ∈ K∗ ∩ R(AT ) and β = −(vTx0)/2 > 0, strictly separates K and

{x |Ax = b}. More precisely, for any y1 ∈ K and y2 ∈ {x |Ax = b} we have

hTy1 < β < hTy2.

Based on Theorems 4.2.7, 4.2.8, and 4.2.9, we can determine feasibility, weak infea-

siblity, and strong infeasibility and obtain a strictly separating hyperplane if one exists

with the iteration zk+1 = T2(zk) with any starting point z0.

• limk→∞ ‖zk‖ <∞ if and only if (P) is feasible.

• limk→∞ ‖zk−zk+1‖ > 0 if and only if (P) is strongly infeasible, and Theorem 4.2.9

provides a strictly separating hyperplane.

• limk→∞ ‖zk‖ = ∞ and limk→∞ ‖zk − zk+1‖ = 0 if and only if (P) is weakly

infeasible.

With a finite number of iterations, we distinguish the three cases by testing ‖zk+1−zk‖ ≤

ε and ‖zk‖ ≥ M for some small ε > 0 and large M > 0. By Theorem 4.2.4, we can

distinguish strong infeasibility from weak infeasibility or feasibility at a rate of O(1/
√
k).

However, distinguishing feasibility from weak infeasibility can be numerically difficult

as the rate of ‖zk‖ → ∞ can be very slow when (P) is weakly infeasible.

Proof of Lemma 4.2.6. Remember that by definition (4.4), we have x0 ∈ R(AT ) and

{x |Ax = b} = x0 +N (A) = x0 −N (A).

Also note that for any y ∈ Rn, we have

y +N (A) = PR(AT )(y) +N (A).

So

K − {x |Ax = b} = K +N (A)− x0 = PR(AT )(K)− x0 +N (A),
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and

K − {x |Ax = b} = PR(AT )(K) +N (A)− x0 = PR(AT )(K)− x0 +N (A). (4.11)

Since x0 ∈ R(AT ), we have PR(AT )(K)−x0 ⊆ R(AT ), and, in particular, PR(AT )(K)−x0

is orthogonal to the subspace N (A). Recall

v = PPR(AT )(K)−x0+N (A)(0).

So v ∈ PR(AT )(K)− x0 ⊆ R(AT ) and

v = PPR(AT )(K)−x0
(0).

Finally,

v = arg min
x∈PR(AT )(K)−x0

{
‖x‖2

2

}
= arg min

y∈PR(AT )(K)

{
‖y − x0‖2

2

}
− x0 = PPR(AT )(K)(x0)− x0

Proof of Theorem 4.2.9. Note that

v = PK−{x |Ax=b}(0) = PK+N (A)−x0
(0) = PK+N (A)(x0)− x0

Using I = PK∗∩R(AT ) + P−(K∗∩R(AT ))∗ and (K∗ ∩R(AT ))∗ = K +N (A) [15], we have

v = PK+N (A)(x0)− x0 = −P−(K∗∩R(AT ))(x0) = PK∗∩R(AT )(−x0).

Since the projection operator is FNE, we have

−vTx0 = (v − 0)T (−x0 − 0) ≥ ‖PK∗∩R(AT )(−x0)‖2 = ‖v‖2 > 0

and therefore vTx0 < 0, β = −vTx0/2 > 0.

So for any y1 ∈ K and y2 ∈ {x |Ax = b}, we have

hTy1 = −vTy1 ≤ 0 < −(vTx0)/2 = β < −vTx0 = hTy2,

where we have used h = −v = −PK∗∩R(AT )(−x0) ∈ −K∗ in the first inequality.
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4.2.4 Modifying affine constraints to achieve strong feasibility

Loosely speaking, strongly feasible problems are the good cases that are easier to solve,

compared to weakly feasible or infeasible problems. Given a problem that is not strongly

feasible, how to minimally modify the problem to achieve strong feasibility is often useful

to know.

The limit zk − zk+1 → v informs us of how to do this. When d(K, {x |Ax = b}) =

‖v‖ > 0, the constraint K∩{x |A(x−y) = b} is infeasible for any y such that ‖y‖ < ‖v‖.

In general, the constraint K∩{x |A(x−v) = b} can be feasible or weakly infeasible, but

is not strongly feasible. The constraint K∩{x |A(x−v−d) = b} is strongly feasible for

an arbitrarily small d ∈ relintK. In other words, K ∩ {x |A(x− v − d) = b} achieves

strong feasibility with the minimal modification (measured by the Euclidean norm ‖ ·‖)

to the original constraint K ∩ {x |Ax = b}.

Theorem 4.2.10 (Achieving strong feasibility). Let v = PK−{x |Ax=b}(0), and let d be

any vector satisfying d ∈ relintK. Then the constraint K ∩ {x |A(x − v − d) = b} is

strongly feasible, i.e., there is an x such that x ∈ relintK ∩ {x |A(x− v − d) = b}.

Proof of Theorem 4.2.10. By Lemma 4.2.6 we have

v + x0 ∈ PR(AT )(K). (4.12)

Because PR(AT ) is a linear transformation, by Lemma 4.2.11 below

PR(AT )(relintK) = relintPR(AT )(K).

Since d ∈ relintK,

PR(AT )(d) ∈ PR(AT )(relintK) = relintPR(AT )(K). (4.13)

Applying Lemma 4.2.12 to (4.12) and (4.13), we have

v + x0 + PR(AT )(d) ∈ relintPR(AT )(K) = PR(AT )(relintK).
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Finally we have

0 ∈ PR(AT )(relintK)− x0 − v − d+N (A) = relintK − {x |A(x− v − d) = b}.

Lemma 4.2.11 (Theorem 6.6 of [190]). If A(·) is a linear transformation and C is a

convex set, then A(relintC) = relintA(C).

Lemma 4.2.12 (Theorem 6.1 [190]). Let K be a convex cone. If x ∈ K and y ∈

relintK, then x+ y ∈ relintK.

4.2.5 Improving direction

(P) has an improving direction if and only if the dual problem (D) is strongly infeasible:

0 < d(0, K⋆ +R(AT )− c) = d({(y, s) |ATy + s = c}, {(y, s) | s ∈ K∗}).

Theorem 4.2.13 (Certificate of improving direction). Exactly one of the following is

true:

1. (P) has an improving direction, (D) is strongly infeasible, and PN (A)∩K(−c) 6= 0

is an improving direction.

2. (P) has no improving direction, (D) is feasible or weakly infeasible, and PN (A)∩K(−c) =

0.

Furthermore,

PN (A)∩K(−c) = P
K∗+R(AT )−c(0).

Theorem 4.2.14. Consider the iteration zk+1 = T3(zk) = T̃ (zk) − γDc with any

starting point z0 and γ > 0. If (P) has an improving direction, then

d = lim
k→∞

zk+1 − zk = P
K∗+R(AT )−c(0) 6= 0
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gives one. If (P) has no improving direction, then

lim
k→∞

zk+1 − zk = 0.

Based on Theorem 4.2.13 and 4.2.14 we can determine whether there is an improving

direction and find one if one exists with the iteration zk+1 = T̃ (zk) − γDc with any

starting point z0 and γ > 0.

• limk→∞ zk+1 − zk = 0 if and only if there is no improving direction.

• limk→∞ zk+1 − zk = d 6= 0 if and only if d is an improving direction.

With a finite number of iterations, we test ‖zk+1 − zk‖ ≤ ε for some small ε > 0. By

Theorem 4.2.4, we can distinguish whether there is an improving direction or not at a

rate of O(1/
√
k).

We need the following theorem for Section 4.2.7, it is proved similarly to 4.2.7 below.

Theorem 4.2.15. Consider the iteration

zk+1 = T̃ (zk)− γDc

with any starting point z0 and γ > 0. If (D) is feasible, then zk converges. If (D) is

infeasible, then zk diverges in that ‖zk‖ → ∞.

Proof of Theorem 4.2.13. The qualitative aspect of this theorem (duality between exis-

tence of improving directions and strong infeasibility) is known [148]. To the best of our

knowledge, the quantitative aspect of this theorem (the meaning and characterization

of PN (A)∩K(−c)) has not been explicitly addressed before. The following proof slightly

extends the argument of [148] to show both the qualitative and the quantitative parts.

(P) has no improving direction if and only if

{x ∈ Rn|x ∈ N (A) ∩K, cTx < 0} = ∅,
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which is equivalent to cTx ≥ 0 for all x ∈ N (A) ∩ K. This is in turn equivalent to

c ∈ (N (A) ∩K)∗. So

−c = P−(N (A)∩K)∗(−c).

if and only if there is no improving direction, which holds if and only if

0 = PN (A)∩K(−c).

Assume there is an improving direction. Since the projection operator is firmly

nonexpansive, we have

0 < ‖PN (A)∩K(−c)‖2 ≤ (PN (A)∩K(−c))T (−c).

This simplifies to

(PN (A)∩K(−c))T c < 0,

and we conclude PN (A)∩K(−c) is an improving direction.

Using the fact that (N (A) ∩K)∗ = K∗ +R(AT ), we have

PN (A)∩K(−c) = −PN (A)∩K(c) = (P
K∗+R(AT ) − I)(c) = P

K∗+R(AT )−c(0),

where we have used the identity I = PN (A)∩K + P
K∗+R(AT ) in the second equality.

Proof of Theorem 4.2.14 and 4.2.15. Using the identities I = PN (A) + PR(AT ), I =

PK + P−K∗ , and RR(AT )−γc(z) = RR(AT )(z)− 2γDc, we have

T3(z) = T̃ (z)− γDc = 1
2

(I +RR(AT )−γcR−K∗)(z).

In other words, we can interpret the fixed point iteration

zk+1 = T̃ (zk)− γDc

as the DRS iteration on

minimize 0

subject to x ∈ R(AT )− γc

x ∈ −K∗.
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This proves Theorem 4.2.15.

Using Lemma 4.2.3, applying Theorem 3.4 of [19] as we did for Theorem 4.2.5, and

applying Theorem 4.2.13, we get

zk − zk+1 → Pran (I−T3)(0)

= P−K∗−R(AT )+γc(0)

= −γP
K∗+R(AT )−c(0)

= −γPN (A)∩K(−c).

4.2.6 Modifying the objective to achieve finite optimal value

Similar to Theorem 4.2.10, we can achieve strong feasibility of (D) by modifying c, and

(P) will have a finite optimal value.

Theorem 4.2.16 (Achieving finite p⋆). Let w = P
K∗+R(AT )−c(0), and let s be any

vector satisfying s ∈ relintK∗. If (P) is feasible and has an unbounded direction, then

by replacing c with c′ = c+ w + s, (P) will have a finite optimal value.

Proof of Theorem 4.2.16. Similar to Lemma 4.2.6, we have

w = PPN (A)(K∗)−PN (A)(c)
(0).

And similar to Theorem 4.2.10, the new constraint of (D)

K∗ ∩ {c+ w + s− ATy}

is strongly feasible. The constraint of (P) is still K ∩ {x |Ax = b}, which is feasible.

By weak duality of we conclude that the optimal value of (P) becomes finite.
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4.2.7 Other cases

So far, we have discussed how to identify and certify cases (a), (d), (f), and (g). We

now discuss sufficient conditions to certify the remaining cases.

The following theorem follows from weak duality.

Theorem 4.2.17 ([191] Certificate of finite p⋆). If (P) and (D) are feasible, then p⋆

is finite.

Based on Theorem 4.2.15, we can determine whether (D) is feasible with the itera-

tion zk+1 = T3(zk) = T̃ (zk)− γDc,

with any starting point z0 and γ > 0.

• limk→∞ ‖zk‖ <∞ if and only if (D) is feasible.

• limk→∞ ‖zk‖ =∞ if and only if (D) is infeasible.

With a finite number of iterations, we test ‖zk‖ ≥ M for some large M > 0. However,

distinguishing the two cases can be numerically difficult as the rate of ‖zk‖ → ∞ can

be very slow.

Theorem 4.2.18 (Primal iterate convergence). Consider the DRS iteration as defined

in (4.5) with any starting point z0. Assume (P) is feasible, if xk+1/2 → x∞ and xk+1 →

x∞, then x∞ is primal optimal, even if zk doesn’t converge.

When running the fixed-point iteration with T1(z) = T̃ (z) +x0−γDc, if ‖zk‖ → ∞

but xk+1/2 → x∞ and xk+1 → x∞, then we have case (b), but the converse is not

necessarily true.

Proof of Theorem 4.2.18. Define

xk+1/2 = Proxγg(zk)

xk+1 = Proxγf (2xk+1/2 − zk)

zk+1 = zk + xk+1 − xk+1/2
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as in (4.5) Define

∇̃g(xk+1/2) = (1/γ)(zk − xk+1/2)

∇̃f(xk+1) = (1/γ)(2xk+1/2 − zk − xk+1).

It’s simple to verify that

∇̃g(xk+1/2) ∈ ∂g(xk+1/2)

∇̃f(xk+1) ∈ ∂f(xk+1).

Clearly,

∇̃g(xk+1/2) + ∇̃f(xk+1) = (1/γ)(xk+1/2 − xk+1).

We also have

zk+1 = zk − γ∇̃g(xk+1/2)− γ∇̃f(xk+1) = xk+1/2 − γ∇̃f(xk+1)

Consider any x ∈ K ∩ {x |Ax = b}. Then, by convexity of f and g,

g(xk+1/2)− g(x) + f(xk+1)− f(x) ≤ ∇̃g(xk+1/2)T (xk+1/2 − x) + ∇̃f(xk+1)T (xk+1 − x)

= (∇̃g(xk+1/2) + ∇̃f(xk+1))T (xk+1/2 − x)

+ ∇̃f(xk+1)T (xk+1 − xk+1/2)

= (xk+1 − xk+1/2)T (∇̃f(xk+1)− (1/γ)(xk+1/2 − x))

= (1/γ)(xk+1 − xk+1/2)T (x− zk+1)

We take the liminf on both sides and use Lemma 4.2.19 below to get

g(x∞) + f(x∞) ≤ g(x) + f(x).

Since this holds for any x ∈ K ∩ {x |Ax = b}, x∞ is optimal.

Lemma 4.2.19. Let ∆1,∆2, . . . be a sequence in Rn. Then

lim inf
k→∞

(∆k)T
k∑
i=1

(−∆i) ≤ 0.
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Proof. Assume for contradiction that

lim inf
k→∞

(∆k)T
k∑
i=1

(−∆i) > 2ε

for some ε > 0. Since the initial part of the sequence is irrelevant, assume without loss

of generality that

(∆j)T
j∑
i=1

∆i < −ε

for j = 1, 2, . . . , summing both sides gives us, for all k = 1, 2, ...

k∑
j=1

(∆j)T
j∑
i=1

∆i < −εk.

Define

1{i ≤ j} =


1, if i ≤ j,

0, otherwise.

We have

k∑
j=1

k∑
i=1

(∆j)T∆i
1{i ≤ j} < −εk,

0 ≤ 1
2

∥∥∥∥∥
k∑
i=1

∆i

∥∥∥∥∥
2

+ 1
2

k∑
i=1

∥∥∥∆i
∥∥∥2
< −εk,

which is a contradiction.

4.2.8 The algorithms

We now collect the discussed classification results as three algorithms. The full algo-

rithm is simply running Algorithms 4.1, 4.2, and 4.3, and applying flowchart of Fig-

ure 4.1. In theory, the algorithms work with any value of γ > 0, although the empirical

performance can vary with γ.

The algorithms rely on detecting whether certain quantities converge to 0 or ∞.

This can be numerically challenging in certain cases. However, certain pathologies are
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inherently challenging, and we observe through the examples of Section 4.3 that our

method is competitive with other approaches.

Algorithm 4.1 Finding a solution
Parameters: γ, M , ε, z0

for k = 1, . . . do

xk+1/2 = PK(zk)

xk+1 = D(2xk+1/2 − zk) + x0 − γDc

zk+1 = zk + xk+1 − xk+1/2

end for

if ‖zk‖ < M then

Case (a)

xk+1/2 and xk+1 solution

else if xk+1/2 → x∞ and xk+1 → x∞ then

Case (b)

xk+1/2 and xk+1 solution

else

Case (b), (c), (d), (e), (f), or (g).

end if

4.2.9 Case-by-case illustration

In this section, we present a case-by-case illustration of the algorithms. We describe

the empirical behavior of the algorithms on cases (b), (c), (d), and (e) and demonstrate

how the classification works.

We skip the discussion of case (a), as it is the standard non-pathological case. Algo-

rithm 1 determines whether or not we have case (a). Case (f) and (g) are the infeasible

cases, and Algorithm 2 determines whether or not we have case (f) or (g). We skip

the discussion of these cases, as we present more thorough experiments of them in
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Algorithm 4.2 Feasibility test
Parameters: M , ε, z0

for k = 1, . . . do

xk+1/2 = PK(zk)

xk+1 = D(2xk+1/2 − zk) + x0

zk+1 = zk + xk+1 − xk+1/2

end for

if ‖zk‖ ≥M and ‖zk+1 − zk‖ > ε then

Case (f)

Strictly separating hyperplane defined by (zk+1 − zk, ((zk+1 − zk)Tx0)/2)

else if ‖zk‖ ≥M and ‖zk+1 − zk‖ ≤ ε then

Case (g)

else ‖zk‖ < M

Case (a), (b), (c), (d), or (e)

end if
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Algorithm 4.3 Boundedness test
Prerequisite: (P) is feasible.

Parameters: γ, M , ε, z0

for k = 1, . . . do

xk+1/2 = PK(zk)

xk+1 = D(2xk+1/2 − zk)− γDc

zk+1 = zk + xk+1 − xk+1/2

end for

if ‖zk‖ ≥M and ‖zk+1 − zk‖ ≥ ε then

Case (d)

Improving direction zk+1 − zk

else if ‖zk‖ < M then

Case (a), (b), or (c)

else

Case (a), (b), (c), or (e)

end if
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Section 4.3.

Case (b), (P) has a solution but (D) has no solution. Consider the example

problem of this case discussed in Section 4.1.2. When we run Algorithm 1, we empiri-

cally observe that ‖zk‖ → ∞ and xk+1/2, xk+1 → x⋆, for γ = 0.1. This tells us we have

case (b).

Case (b), −∞ < d⋆ < p⋆ <∞. Consider the example problem of this case discussed

in Section 4.1.2. When we run Algorithm 1, we empirically observe that ‖zk‖ → ∞,

xk+1/2 and xk+1 do not converge, and limk→∞ 2xk+1
12 = −0.2 for γ = 0.1. When we

run Algorithm 2, we empirically observe that zk converges to a limit. When we run

Algorithm 3, we empirically observe that zk converges to a limit. From this, we can

conclude we have case (b) or (c).

Case (b), −∞ = d⋆ < p⋆ <∞ Consider the problem

minimize x1

subject to x2 − x3 = 0

x3 ≥
√
x2

1 + x2
2,

which has the solution set {(0, t, t) | t ∈ R} and optimal value p⋆ = 0. Its dual problem

is
maximize 0

subject to y ≥
√
y2 + 1,

which is infeasible. This immediately tells us that p⋆ > −∞ is possible even when

d⋆ = −∞.

We can in fact analyze this example analytically. When we run Algorithm 1 with
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starting point z0 = (z0
1 , z

0
2 , 0), the iterates zk+1 = (zk+1

1 , zk+2
2 , zk+1

3 ) are:

zk+1
1 = 1

2
zk1 − γ

zk+1
2 = 1

2
zk2 + 1

2

√
(zk1 )2 + (zk2 )2

zk+1
3 = 0.

So ‖zk‖ → ∞. Furthermore, xk+1/2 = PK(zk) satisfies xk+1/2
1 → −2γ, xk+1/2

2 →∞ and

x
k+1/2
3 →∞, so xk+1/2 does not converge to the solution set. When we run Algorithm

2, zk converges to a limit. When we run Algorithm 3, ‖zk‖ → ∞ and zk+1 − zk → 0.

From such observations, we could conclude we have case (b), (c), or (e).

This example demonstrates that the converses of Theorem 4.2.17 and 4.2.18 are not

true.

Case (c). In this case, |p⋆| <∞ but there is no solution. Consider the example prob-

lem of this case discussed in Section 4.1.2. When we run Algorithm 1, we empirically

observe that ‖zk‖ → ∞, xk+1/2 and xk+1 do not converge, and limk→∞ 2xk+1
3 = p⋆ for

γ = 0.1. When we run Algorithm 2, we empirically observe that zk converges to a limit.

When we run Algorithm 3, we empirically observe that zk converges to a limit. From

this, we can conclude we have case (b) or (c).

Case (d). In this case, there is an improving direction. Consider the example problem

of this case discussed in Section 4.1.2. When we run Algorithm 1, we empirically observe

that ‖zk‖ → ∞ and xk+1/2, xk+1 do not converge for γ = 0.1. When we run Algorithm

2, we empirically observe that zk converges to a limit. When we run Algorithm 3, we

empirically observe that ‖zk‖ → ∞ and limk→∞ ‖zk+1 − zk‖ > 0. From this, we can

conclude we have case (d).

Case (e). In this case, p⋆ = −∞, but there is no improving direction. Consider the

example problem of this case discussed in Section 4.1.2. When we run Algorithm 1,
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we empirically observe that ‖zk‖ → ∞ and xk+1/2, xk+1 do not converge for γ = 0.1.

When we run Algorithm 2, we empirically observe that zk converges to a limit. When

we run Algorithm 3, we empirically observe that ‖zk‖ → ∞ and zk+1 − zk → 0. From

this, we can conclude we have case (b), (c), or (e).

4.3 Numerical Experiments

We test our algorithm on a library of weakly infeasible SDPs generated by [135]. These

semidefinite programs are in the form:

minimize C •X

subject to Ai •X = bi, i = 1, ...,m

X ∈ Sn+,

where n = 10, m = 10 or 20, and A • B = ∑n
i=1

∑n
j=1 AijBij denotes the inner product

between two n× n matrices A and B.

The library provides “clean” and “messy” instances. Given a clean instance, a messy

instance is created with

Ai ← UT (
m∑
j=1

TijAj)U for i = 1, ...,m

bi ←
m∑
j=1

Tijbj for i = 1, ...,m,

where T ∈ Zm×m and U ∈ Zn×n are random invertible matrices with entries in [−2, 2].

In [135], four solvers are tested, specifically, SeDuMi, SDPT3 and MOSEK from

the YALMIP environment, and the preprocessing algorithm of Permenter and Parrilo

[176] interfaced with SeDuMi. Table 4.1 reports the numbers of instances determined

infeasible out of 100 weakly infeasible instances. The four solvers have varying success

in detecting infeasibility of the clean instances, but none of them succeed in the messy

instances.

Our proposed method performs better. However, it does require many iterations
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Table 4.1: Percentage of infeasibility de-

tection in [135], C stands for “clean" and

M stands for “messy".

m = 10 m = 20

C M C M

SeDuMi 0 0 1 0

SDPT3 0 0 0 0

MOSEK 0 0 11 0

PP+SeDuMi 100 0 100 0

Table 4.2: Percentage of infeasibility de-

tection success, C stands for “clean" and

M stands for “messy".

m = 10 m = 20

C M C M

Proposed method 100 21 100 99

Table 4.3: Percentage of success deter-

mination that problems are not strongly

infeasible, C stands for “clean" and M

stands for “messy".

m = 10 m = 20

C M C M

Proposed method 100 100 100 100

and does fail with some of the messy instances. We run the algorithm with N = 107

iterations and label an instance infeasible if 1/‖zN‖ ≤ 8 × 10−2 (cf. Theorem 4.2.7

and 4.2.8). Table 4.2 reports the numbers of instances determined infeasible out of 100

weakly infeasible instances. Curiously, our method and other existing methods perform

better with the larger instances of m = 20. This behavior is also reported and discussed

in [135], the paper that provides the library of pathological instances. We suspect this

phenomenon is inherent to the data set, not our algorithm.

We would like to note that detecting whether or not a problem is strongly infeasible

is easier than detecting whether a problem is infeasible. With N = 5 × 104 and a

tolerance of ‖zN − zN+1‖ < 10−3 (c.f Theorem 4.2.8) our proposed method correctly

determined that all test instances are not strongly infeasible. Table 4.3 reports the
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numbers of instances determined not strongly infeasible out of 100 weakly infeasible

instances.
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CHAPTER 5

DRS and ADMM for Pathological Convex Problems

5.1 Introduction

Douglas–Rachford splitting (DRS) and alternating directions method of multipliers

(ADMM) are classical methods originally presented in [173, 77, 133, 116] and [94, 103],

respectively. DRS and ADMM are closely related. Over the last decade, these methods

have enjoyed a resurgence of popularity, as the demand to solve ever larger problems

grew.

DRS and ADMM have strong theoretical guarantees and empirical performance,

but such results are often limited to non-pathological problems; in particular, most

analyses assume a primal solution exists, a dual solution exists, and strong duality

holds. When these assumptions are not met, i.e., under pathologies, the theory often

breaks down and the empirical performance may degrade significantly. Surprisingly,

there had been very little work analyzing DRS and ADMM under pathologies, despite

the vast literature on these methods. There has been some recent exciting progress in

this area, which we review in Section 5.1.2.

In this chapter, we analyze the asymptotic behavior of DRS and ADMM under

pathologies. While it is well known that the iterates “diverge” in such cases, the precise

manner in which they do so was not known. We establish that when strong duality

holds, i.e., when p⋆ = d⋆ ∈ [−∞,∞], DRS works, in the sense that asymptotically

the divergent iterates are approximately feasible and approximately optimal. The as-

sumption that primal and dual solutions exist is not necessary. We then translate the
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pathological analyses for DRS to pathological analyses for ADMM.

Furthermore, we conjecture that DRS necessarily fails when strong duality fails, and

we present empirical evidence that supports (but does not prove) this conjecture. In

other words, we believe strong duality is the necessary and sufficient condition for DRS

to work.

5.1.1 Summary of results, contribution, and organization

Sections 5.4 and 5.5 present what we consider the fruits of this work, the convergence

analyses of DRS and ADMM under various pathologies. In fact, we suggest readers

read Sections 5.4 and 5.5 before reading the theory of Section 5.3, as doing so will give

a sense of direction.

We quickly illustrate, through examples, the kinds of results we show. Precise

definitions and statements are presented later. We want DRS and ADMM to find a

point that is approximately feasible and, when applicable, approximately optimal. For

example, if the primal problem is weakly infeasible, we want the DRS iterates to satisfy

xk+1 − xk+1/2 → 0

and we show this as Theorem 5.4.6. As another example, if the primal problem is

feasible but has no solution and d⋆ = p⋆ > −∞, we want the DRS iterates to satisfy

xk+1 − xk+1/2 → 0, f(xk+1/2) + g(xk+1)→ p⋆

and we show related results as Theorems 5.4.3 and 5.4.4. We can say something for all

the pathological cases, so long as d⋆ = p⋆.

Section 5.3 presents the main theoretical contribution of this work. To show that

DRS and ADMM successfully achieve the 2 goals of approximate feasibility and approx-

imate optimality, we need 2 separate major theoretical components.

Section 5.3.1 presents the first component, which analyzes the “fixed-point iteration”

without a fixed point with tools from operator theory. With this machinery, we show
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results like xk+1 − xk → 0 or xk+1 − xk → v, where v is a certificate of (primal or

dual) infeasibility. Our contribution is defining the notion of improving directions via

recession functions and fully characterizing the infimal displacement vector with this

notion.

Section 5.3.2 presents the second component, the function-value analysis, which

is based on ideas from convex optimization and subgradient inequalities. With these

techniques, we show results like f(xk+1/2)+g(xk+1)→ p⋆. This part requires the d⋆ = p⋆

assumption. Our function-value analysis uses, but does not immediately follow from,

the results of Section 5.3.1. To the best of our knowledge, analyzing the convergence

of objective values for DRS or ADMM applied to pathological problems has not been

done before.

Section 5.3.3 presents a third, relatively minor theoretical component, which we use

later in Section 5.5 to translate analyses for DRS to analyses for ADMM.

As the goal of this work is to prove several theorems, one each for the many patho-

logical cases, we build up our theory in a series of lemmas and corollaries. Some of

these lemmas are rather simple extensions of known results while some are novel. All

results of Section 5.3 are eventually used in proving the 5 theorems of Section 5.4 and

the 3 theorems of Section 5.5.

The chapter is organized as follows. Section 5.2 reviews standard notions of convex

analysis, states several known results, and sets up the notation. Section 5.3 presents

the main theoretical contributions. Section 5.4 analyzes DRS under pathologies with

the theory of Section 5.3. Section 5.5 analyzes ADMM under pathologies with the

theory of Sections 5.4 and 5.3. Section 5.6 presents counterexamples to make additional

observations. Section 5.7 concludes this chapter.
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5.1.2 Prior work

As pathological convex optimization problems do arise in practice [142, 71, 78, 225, 229],

there is practical value in studying how well-behaved and robust an algorithm is in such

setups However, the there had been surprisingly little work investigating the behavior

of the popular methods DRS and ADMM under pathologies. The understanding is still

incomplete, but there has been some recent progress: [19, 24, 27, 137] analyze DRS

under specific pathological setups, [22, 23, 27] analyze DRS under general setups, and

[183, 210, 12] analyze ADMM under specific pathological setups for conic programs.

These studies, however, are limited to more specific setups and pathologies where an

improving direction exists or the primal problem is strongly feasible.

The convex feasibility problem of finding an x ∈ A∩B, where A and B are nonempty

closed convex sets, is a subclass of problems with practical importance. While it is

possible to recast convex feasibility problems into equivalent optimization problems

and apply the results of this work, prior work on the specific setup has stronger results

[19, 24, 27]. We discuss further comparisons in Section 5.4.4.

DRS has strong primal-dual symmetry, in the sense of Fenchel duality for convex

optimization [91, 190] and, more generally, Attouch-Théra duality for monotone opera-

tors [152, p. 40] and [8]. See [80, Lemma 3.6 p. 133] or [13, 26, 27] for in-depth studies

on this subject. Naturally, our results also exhibit a degree of primal-dual symmetry,

although we do not explicitly address it in the interest of space. Rather, we take the

viewpoint that the primal problem is the problem of interest and the dual problem is

an auxiliary conceptual and computational tool.

In operator theory, and especially in infinite dimensional problems arising from

physics and PDEs, the sum of two maximal monotone operators may not be maximal,

and one can consider this a pathology. One remedy to such pathology is to generalize the

notion of the sum of two operators by regularizing the operators and then considering

the limit as the regularization is reduced to zero [9, 186, 187]. This notion of pathology
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and the remedy is quite different from what we consider. For some of the pathologies we

consider, ∂f +∂g is a perfectly well-defined maximal monotone operator. Moreover, we

do not remedy the pathology but rather simply analyze how DRS and ADMM behave

under the pathology. We work in finite dimensions and thereby avoid the notion of

weak and strong convergence.

When a problem is known to be pathological a priori, one can first modify or regu-

larize the problem and then solve the non-pathological problem. One such approach is

facial reduction, a pre-processing step that rids a pathological conic program of difficult

pathologies [37, 39, 35, 184, 170, 55, 226, 228, 178, 144, 175, 177, 245]. In contrast, the

goal of this work is to analyze DRS and ADMM when directly applied to pathological

convex programs. To put in differently, we do not assume users of DRS or ADMM have

a priori knowledge of whether the problem is pathological.

The standard analysis for DRS proves the iterates converge using ideas from operator

theory and fixed point iterations [133, 80, 81, 57, 59, 85, 58]. The standard analyses of

ADMM prove the iterates converge by reducing ADMM to DRS [95, 81, 85] or with a

direct analysis via a Lyapunov function [92, 102, 32, 74, 53]. These analyses rely on the

existence of a primal-dual saddle point, which only exists under the non-pathological

case, and therefore do not immediately generalize to pathological setups.

The first part of our analysis relies on a classical result by Pazy [172] and Baillon et al.

[11] from the 1970s, which characterize the asymptotic behavior of fixed-point iterations

without fixed-points. There has been some recent work that analyze algorithms that

can be interpreted as fixed-point iterations without fixed-points [14, 19, 40, 6, 22, 20,

24, 7, 158, 27, 198, 137]. The analysis of Section 5.3.1 was inspired by these works.

Another recent line of analysis for DRS and ADMM is function-value analysis, which

establishes the objective values, rather than the iterates, converge [65, 67, 68]. These

analyses, however, also rely on the existence of a primal-dual saddle point and do

not immediately generalize to the pathological setups. The function-value analysis of
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Section 5.3.2 was inspired by these works.

5.2 Preliminaries

In addition to the preliminaries introduced in Sec. 1.4, we also need the following in

the chapter. Define the recession function of a PCC function f as

rec f(d) = lim
α→∞

f(x+ αd)− f(x)
α

(5.1)

for any x ∈ dom f . Loosely speaking, the recession function characterizes the asymp-

totic change of f as we go in direction d. In fact,

f(x+ αd) = α rec f(d) + o(α)

as α → ∞ for any x ∈ dom f . The recession function rec f : Rn → R ∪ {∞} is a

positively homogeneous PCC function. If h(x) = g(−x), then rec(h∗)(d) = rec(g∗)(−d).

When f and g are PCC, either f(x)+g(x) =∞ for all x ∈ Rn or rec(f+g) = rec f+rec g.

If f is PCC, then σdom f∗ = rec f .

Define the proximal operator Proxf : Rn → Rn as

Proxf (z) = arg min
x∈Rn

{
f(x) + (1/2)‖x− z‖2

}
.

When f is PCC, the arg min uniquely exists, and therefore Proxf is well-defined. When

C is closed and convex, ProxδC
= ΠC . When f is PCC, Proxf + Proxf∗ = I, where

I : Rn → Rn is the identity operator.

A mapping T : Rn → Rn is nonexpansive if ‖T (x)−T (y)‖ ≤ ‖x−y‖ for all x, y ∈ Rn.

Nonexpansive mappings are, by definition, Lipschitz continuous with Lipschitz constant

1. T : Rn → Rn is firmly-nonexpansive if

‖T (x)− T (y)‖2 ≤ 〈x− y, T (x)− T (y)〉

for all x, y ∈ Rn. Proximal and projection operators are firmly-nonexpansive.
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5.2.1 Duality and primal subvalue

We call the optimization problem

minimize
x∈Rn

f(x) + g(x), (P)

the primal problem. We call the optimization problem

maximize
ν∈Rn

−f ∗(ν)− g∗(−ν), (D)

the dual problem. Throughout this chapter, we assume f and g are PCC.

(P) is feasible if 0 ∈ dom f − dom g, strongly infeasible if 0 /∈ dom f − dom g,

and weakly infeasible otherwise. (P) falls under exactly one of the three cases. (P)

is infeasible if it is not feasible. (D) is feasible if 0 ∈ dom (f ∗) + dom (g∗), strongly

infeasible if 0 /∈ dom (f ∗) + dom (g∗), and weakly infeasible otherwise.

We call p⋆ = inf{f(x)+g(x) |x ∈ Rn} the primal optimal value and d⋆ = sup{−f ∗(ν)−

g∗(−ν) | ν ∈ Rn} the dual optimal value. We let p⋆ =∞ if (P) is infeasible and d⋆ = −∞

if (D) is infeasible. Weak duality, which always holds, states d⋆ ≤ p⋆. We say strong

duality holds between (P) and (D), if d⋆ = p⋆ ∈ [−∞,∞]. We say total duality holds

between (P) and (D), if (P) has a solution, (D) has a solution, and strong duality holds.

Define the primal subvalue of (P) as

p− = lim
ε→0+

inf
x,y∈Rn

{f(x) + g(y) | ‖x− y‖ ≤ ε} .

The notion of primal subvalue is standard in conic programming [118, 234, 149, 147].

Here, we generalize it to general convex programs. The following theorem is well known

[195], although we have not seen it stated exactly in this form.

Theorem 5.2.1. If f and g are PCC, then d⋆ = p− ≤ p⋆.

In fact, the following proof follows the exposition of [195].
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Proof. Write h(ν) = f ∗(ν) + g∗(−ν), and define

p(δ) = min
x∈Rn
{f(x+ δ) + g(x)}.

Since f and g are proper, i.e., finite somewhere, p is proper. Since p is defined by partial

minimization of a convex function, it is convex.

Then

p∗(ν) = −min
δ∈Rn
{p(δ)− νT δ}

= −min
δ∈Rn

{
min
x∈Rn
{f(x+ δ) + g(x)} − νT δ

}
= −min

x∈Rn

{
min
δ∈Rn
{f(x+ δ)− νT δ}+ g(x)

}
= −min

x∈Rn

{
min
δ′∈Rn
{f(δ′)− νT δ′}+ νTx+ g(x)

}
= f ∗(ν)− min

x∈Rn

{
νTx+ g(x)

}
= f ∗(ν) + g∗(−ν) = h(ν).

We can rewrite the definition of the primal subvalue as

p− = lim
ε→0

inf
‖δ‖≤ε

p(δ) = lim inf
δ→0

p(δ),

where the second equality follows from the definition of lim inf. The lower semi-

continuous hull of p is p∗∗ [195, Theorem 4 and 5], i.e.,

lim inf
δ→0

p(δ) = p∗∗(0).

So

p− = p∗∗(0) = h∗(0) = sup
ν∈Rn
{f ∗(ν) + g∗(−ν)} = d∗.

With Theorem 5.2.1, we can interpret strong duality as well-posedness of (P). The

primal subvalue p− is the optimal value of (P) achieved with infinitesimal infeasibilities.

When the infinitesimal infeasibilities provide a non-infinitestimal improvement to the

function value, we can consider (P) ill-posed.
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5.2.2 Douglas–Rachford operator

Douglas–Rachford splitting (DRS) applied to (P) is

xk+1/2 = Proxγf (zk)

xk+1 = Proxγg(2xk+1/2 − zk) (5.2)

zk+1 = zk + xk+1 − xk+1/2

with a starting point z0 ∈ Rn and a parameter γ > 0. We also express this iteration

more concisely as zk+1 = Tγ(zk) where

Tγ = 1
2
I + 1

2
(2 Proxγg−I)(2 Proxγf −I).

Tγ : Rn → Rn is a firmly-nonexpansive operator, and we interpret DRS as a fixed-point

iteration. Write T1 for Tγ with γ = 1.

The standard analysis of DRS assumes total duality, which, again, means (P) has a

solution, (D) has a solution, and d⋆ = p⋆.

Theorem 5.2.2 (Theorem 7.1 and 8.1 of [13] and Proposition 4.8 of [80]). Total duality

holds between (P) and (D) if and only if Tγ has a fixed point for some γ > 0. If

total duality holds between (P) and (D), then DRS converges in that zk → z⋆, where

x⋆ = Proxγf (z⋆) is a solution of (P). If total duality does not hold between (P) and

(D), then DRS diverges in that ‖zk‖ → ∞.

Theorem 5.2.2 is well known, although the term “total duality” is not always used.

More often, total duality is assumed by instead assuming a saddle point exists for an

appropriate Lagrangian.

5.2.3 Fixed-point iterations without fixed points

Theorem 5.2.2 states the DRS iteration has no fixed points under pathologies. Ana-

lyzing fixed-point iterations without fixed points is the first part of our pathological

analysis.
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Let T : Rn → Rn be a firmly-nonexpansive operator. Write

ran (I − T ) = {z − T (z) | z ∈ Rn}.

Note that T has a fixed point if and only if 0 ∈ ran (I − T ). The closure of this set,

ran (I − T ), is closed and convex [172]. We call

v = Πran (I−T )(0)

the infimal displacement vector of T . (The term was coined in [22].) If T has a fixed

point, then v = 0, but v = 0 is possible even when T has no fixed point.

The following classical result by Pazy and Baillon et al. elegantly characterizes the

asymptotic behavior of fixed-point iterations with respect to T .

Theorem 5.2.3 (Theorem 2 of [172] and Corollary 2.3 of [11]). If T is firmly-nonexpansive

and v is its infimal displacement vector, the iteration zk+1 = T (zk) satisfies

zk = −kv + o(k), zk+1 − zk → −v.

Theorem 5.2.3 is especially powerful when we can concretely characterize v. Re-

cently, Bauschke, Hare, and Moursi published the following elegant formula.

Theorem 5.2.4 ([23]). The infimal displacement vector v of T1, the DRS operator,

satisfies

v = arg min
{
‖z‖ | z ∈ dom f − dom g ∩ dom f ∗ + dom g∗

}
.

The original result in [23] is more general as it applies to the DRS operator of

monotone operators. In Section 5.3.1, we use Theorem 5.2.4 and the notion of improving

directions to provide a further concrete characterization of v.

5.3 Theoretical results

In this section, we present the main theoretical contribution of this chapter. Our

analysis requires a generalized notion of improving directions, so we define it first. Sec-

tion 5.3.1 analyzes DRS as a fixed-point iteration without fixed points. Section 5.3.2
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analyzes DRS as an optimization method that reduces function values. Section 5.3.3

directly analyzes the evolution of the xk+1/2 and xk+1-iterates of DRS. Later in Sec-

tions 5.4 and 5.5 we combine these results to analyze the asymptotic behavior of DRS

and ADMM applied to pathological convex programs.

While the formula of Theorem 5.2.4 is known, the use of improving directions to

concretely characterize the infimal displacement vector v is new. An improving direction

may or may not exist, and we analyze both cases. Our analysis shows that existence of

an improving direction is a key deciding factor in how DRS behaves.

We say d ∈ Rn is a primal improving direction for (P) if

rec f(d) + rec g(d) < 0.

Note rec f(d) + rec g(d) = rec(f + g)(d) when (P) is feasible. For simplicity, we only

consider primal improving directions when (P) is feasible. The notion of (primal) im-

proving direction is standard in conic programming [149, 162, 147]. Here, we extend it

to general convex programs of the form (P).

If (P) is feasible and there is a primal improving direction, then p⋆ = −∞. To see

why, let d be a primal improving direction. Then

f(x+ αd) + g(x+ αd) = α rec(f + g)(d) + o(α)

for any x ∈ dom f ∩ dom g as α → ∞, and therefore p⋆ = −∞. However, p⋆ = −∞

is possible even when (P) has no improving direction. We discuss such an example in

Section 5.4.

Likewise, we say d′ ∈ Rn is a dual improving direction if

rec(f ∗)(d′) + rec(g∗)(−d′) < 0.

If (D) is feasible and there is a dual improving direction, then d⋆ =∞.
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5.3.1 Infimal displacement vector of the DRS operator

In this section, we provide a further concrete characterization of the infimal displace-

ment vector v. When (P) or (D) is strongly infeasible, Theorem 5.2.4 states v 6= 0.

Our contribution is to show v is an improving direction in this case. For the sake of

simplicity, we first analyze T1 and then translate the results to Tγ for γ > 0.

We first consider the case where (P) is feasible and characterize v based on the

primal improving direction or the absence of it.

Lemma 5.3.1. (P) has an improving direction if and only if (D) is strongly infeasible.

Write

d = −Π(dom f∗+dom g∗)(0).

If (P) has an improving direction, then d 6= 0 and d is an improving direction. If (P)

has no improving direction, then d = 0.

Proof. We first show

−Π(dom f∗+dom g∗)(0) = Proxrec f+rec g(0). (5.3)

Let A and B be nonempty convex sets. The identities of Section 5.2 tell us

(δA+B)∗(x) = σA+B(x) = σA+B(x) = σA(x) + σB(x).

Setting A = dom f ∗ and B = dom g∗ gives us

(δdom f∗+dom g∗)∗(x) = σdom f∗(x) + σdom g∗(x).

Based on the identities of Section 5.2, we have

Πdom f∗+dom g∗(0) = Proxδdom f∗+dom g∗ (0)

= (I − Proxσdom f∗+dom g∗ )(0)

= −Proxσdom f∗+dom g∗ (0)

= −Proxσdom f∗ +σdom g∗ (0)

= −Proxrec f+rec g(0).
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Remember that rec f + rec g is a convex positively homogeneous function. Since

rec f(0) + rec g(0) = 0,

0 = arg min
{
rec f(x) + rec g(x) + (1/2)‖x‖2

}
= Proxrec f+rec g(0)

if and only if rec f(x) + rec g(x) ≥ 0 for all x ∈ Rn. By our definition of an improving

direction, rec f(x) + rec g(x) ≥ 0 for all x ∈ Rn if and only if there is no improving

direction. By definition, 0 = Πdom f∗+dom g∗(0) if and only if (D) is not strongly infea-

sible. So with (5.3), we conclude (P) has an improving direction if and only if (D) is

strongly infeasible.

It remains to show that

d = arg min
{
rec f(x) + rec g(x) + (1/2)‖x‖2

}
is an improving direction, if d 6= 0. Since d is defined as a minimizer, we have

rec f(d) + rec g(d) + (1/2)‖d‖2 ≤ rec f(0) + rec g(0) + (1/2)‖0‖2 = 0.

This implies rec f(d) + rec g(d) ≤ −(1/2)‖d‖2 < 0, i.e., d is an improving direction.

Lemma 5.3.2. Assume (P) is feasible. Then

v = −d = Πdom f∗+dom g∗(0)

is the infimal displacement vector of T1.

Proof. Let x0 be a feasible point of (P). Since rec f(d) + rec g(d) ≤ 0 < ∞ by

Lemma 5.3.1 and the definition of an improving direction, we have x0 ∈ dom f ,

x0 + d ∈ dom g, and thus −d ∈ dom f − dom g ⊆ dom f − dom g. Since −d is

the minimum-norm element of dom f ∗ + dom g∗, Theorem 5.2.4 tells us that −d is the

infimal displacement vector of T1.

Corollary 5.3.3. Assume (P) is feasible, and (D) is feasible. Then v = 0 is the infimal

displacement vector of Tγ for any γ > 0.
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Corollary 5.3.4. Assume (P) is feasible, and (D) is weakly infeasible. Then v = 0 is

the infimal displacement vector of Tγ for any γ > 0.

Corollary 5.3.5. Assume (P) is feasible, and (D) is strongly infeasible. Then

v = −γd = γΠdom f∗+dom g∗(0) 6= 0

is the infimal displacement vector of Tγ for any γ > 0. Furthermore, d is an improving

direction of (P).

Next, we consider the case where (D) is feasible and characterize the infimal dis-

placement vector based on the dual improving direction or the absence of it.

Lemma 5.3.6. Assume (D) is feasible. Then

v = −d′ = Πdom f−dom g(0)

is the infimal displacement vector of T1.

Proof. Following the same logic as in the proof of Lemma 5.3.1, we have

Πdom f−dom g(0) = − arg min
ν

{
rec(f ∗)(ν) + rec(g∗)(−ν) + (1/2)‖ν‖2

}
,

and

d′ = −Πdom f−dom g(0)

is a dual improving direction, if d′ 6= 0.

Let ν0 be any feasible point of (D). Then ν0 ∈ dom f ∗ and −ν0 − d′ ∈ dom g∗.

Therefore, −d′ ∈ dom f ∗ + dom g∗ ⊆ dom f ∗ + dom g∗. Since −d′ is defined to

be the minimum-norm element of dom f − dom g we conclude the statement with

Theorem 5.2.4.

Corollary 5.3.7. Assume (D) is feasible, and (P) is weakly infeasible. Then v = 0 is

the infimal displacement vector of Tγ for any γ > 0.
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Corollary 5.3.8. Assume (D) is feasible, and (P) is strongly infeasible. Then

v = −d′ = Πdom f−dom g(0) 6= 0,

is the infimal displacement vector of Tγ for any γ > 0. Furthermore, d′ is a dual

improving direction.

Note that for Corollary 5.3.8, the infimal displacement vector is independent of the

value of γ.

5.3.2 Function-value analysis

In this section, we present the second major theoretical component to our analysis.

Section 5.3.1 analyzed the infimal displacement vector of Tγ. This, however, is not

sufficient for characterizing the asymptotic behavior of DRS in relation to the original

optimization problem (P).

Let us briefly discuss why function-value analysis is necessary. Consider the convex

function h(x, y) = x2/y defined for y > 0. Note that h has minimizers, (0, y) for any

y > 0, and the operator I − ∇h has fixed points. It is straightforward to verify that

h(√y, y)− inf f ↛ 0, but ∇h(√y, y)→ 0 as y →∞, i.e., (√y, y) for large y is not an

approximate minimizer for h but does approximate satisfy the fixed point condition for

I −∇h. It is possible to construct a similar example with the DRS operator. If we let

f = h and g = 0, then DRS reduces to the proximal point method on h. This operator

exhibits the same exact issue.

This means approximate fixed points do not always correspond to approx-

imate solutions of the original problem. This is why we need a separate and

distinct function-value analysis to accompany the fixed-point theory.

We now present function-value analysis. Throughout this section, write xk+1/2 and

xk+1 to denote the DRS iterates of (5.2).
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Lemma 5.3.9. For all k = 0, 1, . . . and any x ∈ Rn

f(xk+1/2) + g(xk+1)− f(x)− g(x)

≤ (1/γ)〈xk+1 − xk+1/2, x− zk+1〉.

An inequality similar to that of Lemma 5.3.9 has been presented as Proposition 2

of [67]. We nevertheless quickly show a direct proof.

Proof. Write

∇̃f(xk+1/2) = (1/γ)(zk − xk+1/2)

∇̃g(xk+1) = (1/γ)(2xk+1/2 − zk − xk+1).

From the definition of the DRS iteration (5.2), we can verify that

∇̃f(xk+1/2) ∈ ∂f(xk+1/2), ∇̃g(xk+1) ∈ ∂g(xk+1)

and that

∇̃f(xk+1/2) + ∇̃g(xk+1) = (1/γ)(xk+1/2 − xk+1).

We also have

zk+1 = zk − γ∇̃f(xk+1/2)− γ∇̃g(xk+1) = xk+1/2 − γ∇̃g(xk+1).

If x /∈ dom f ∩dom g, then f(x)+g(x) =∞ for all x ∈ Rn , and there is nothing to

prove. Now, consider any x ∈ dom f ∩ dom g. Then, by definition of subdifferentials,

f(xk+1/2)− f(x) + g(xk+1)− g(x)

≤ 〈∇̃f(xk+1/2), xk+1/2 − x〉+ 〈∇̃g(xk+1), xk+1 − x〉

= (∇̃f(xk+1/2) + 〈∇̃g(xk+1), xk+1/2 − x〉+ 〈∇̃g(xk+1), xk+1 − xk+1/2〉

= 〈xk+1 − xk+1/2, ∇̃g(xk+1)− (1/γ)(xk+1/2 − x)〉

= (1/γ)〈xk+1 − xk+1/2, x− zk+1〉.
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The following result, which is well known for non-pathological setups, also holds

under pathologies, so long as d⋆ = p⋆.

Lemma 5.3.10. Assume p⋆ = d⋆ ∈ [−∞,∞]. Assume the infimal displacement vector

v of Tγ satisfies v = 0. Then

lim
k→∞

1
k + 1

k∑
i=0

f(xi+1/2) + g(xi+1) = p⋆

and

lim inf
k→∞

f(xk+1/2) + g(xk+1) = p⋆.

Proof. If ∆0,∆1, . . . is any sequence in Rn, then
k∑
j=0
〈∆j,

j∑
i=0

∆i〉 =
k∑
j=0

k∑
i=0

1{i ≤ j}〈∆j,∆i〉

= 1
2

∥∥∥∥∥
k∑
i=0

∆i

∥∥∥∥∥
2

+ 1
2

k∑
i=0

∥∥∥∆i
∥∥∥2
.

Let ∆k = zk+1 − zk = xk+1 − xk+1/2 and sum the inequality of Lemma 5.3.9 to get

γ
k∑
i=0

f(xi+1/2)− f(x) + g(xi+1)− g(x) ≤
k∑
j=0
〈∆j, x− z0〉 −

k∑
j=0
〈∆j,

j∑
i=0

∆i〉

= 〈zk+1 − z0, x− z0〉 − 1
2
‖zk+1 − z0‖2 − 1

2

k∑
i=0
‖zi+1 − zi‖2

= −1
2
‖zk+1‖2 + 1

2
‖z0‖2 + 〈zk+1 − z0, x〉 − 1

2

k∑
i=0
‖zi+1 − zi‖2.

Divide both sides by (k + 1)/2 to get

2γ
k + 1

k∑
i=0

(
f(xi+1/2)− f(x) + g(xi+1)− g(x)

)
(5.4)

≤ − 1
k + 1

‖zk+1‖2 + 1
k + 1

‖z0‖2 − 1
k + 1

k∑
i=0
‖zi+1 − zi‖2 + 2

k + 1
〈zk+1 − z0, x〉.

for all k = 0, 1, . . . and any x ∈ Rn.

We now show

lim sup
k→∞

1
k + 1

k∑
i=0

(
f(xi+1/2) + g(xi+1)

)
≤ p⋆.
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Assume p⋆ <∞, as otherwise there is nothing to prove. Let x be any x ∈ dom f∩dom g.

By Theorem 5.2.3, zk = −kv + o(k). If v 6= 0, then the first (negative) term on the

right-hand side of (5.4) dominates the positive terms. If v = 0, then both nonnegative

terms on the right-hand side of (5.4) converge to 0. In both cases, we have

lim sup
k→∞

1
k + 1

k∑
i=0

f(xi+1/2) + g(xi+1) ≤ f(x) + g(x) (5.5)

for all x ∈ dom f ∩ dom g. We minimize the right-hand side to obtain p⋆.

By Theorem 5.2.3, v = 0 implies xk+1/2− xk+1 → 0. In turn, by Theorem 5.2.1, we

have

lim inf
k→∞

f(xk+1/2) + g(xk+1) ≥ p⋆.

Combining this with (5.5) gives us the first stated result.

It is straightforward to verify that if a real-valued sequence ak satisfies

lim inf
k→∞

ak ≥ a, lim
k→∞

1
k

k∑
i=1

ai = a,

then

lim inf
k→∞

ak = a.

The second stated result follows from this argument.

Lemma 5.3.10 provides the function-value analysis when v = 0, and the first part of

Lemma 5.3.11 provides the analysis when v 6= 0. The later parts part of Lemma 5.3.11

is used in translating the analyses for DRS to analyses for ADMM in Section 5.5.

Lemma 5.3.11. Assume (P) is feasible and v 6= 0, i.e., (P) has an improving direction.

Then

f(xk+1/2) + g(xk+1)→ p⋆ = −∞.

Moreover, |f(xk+1/2)| ≤ O(k) and |g(xk+1)| ≤ O(k) as k →∞. Assume (P) is feasible

and v = 0. Then |f(xk+1/2)| ≤ o(k) and |g(xk+1)| ≤ o(k) as k →∞.
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Proof. When (P) has an improving direction, Corollary 5.3.5 and Theorem 5.2.3 tells

us

zk+1 − zk = xk+1 − xk+1/2 → γd.

Then Lemma 5.3.9 tells us that

(1/k)(f(xk+1/2) + g(xk+1)) ≤ −(1/γ)〈xk+1 − xk+1/2, (1/k)zk+1〉+O(1/k)

which tells us

lim sup
k→∞

(1/k)(f(xk+1/2) + g(xk+1)) ≤ −γ‖d‖2. (5.6)

This proves the first statement.

Assume v = 0. With the same reasoning as for (5.6) we get

lim sup
k→∞

(1/k)(f(xk+1/2) + g(xk+1)) ≤ 0.

Assume (P) feasible, without making any asumptions on v. Write ∇̃f(x1/2) for any

subgradient of f at x1/2. Then

f(xk+1/2) ≥ f(x1/2) + 〈∇̃f(x1/2), xk+1/2 − x1/2〉

≥ f(x1/2)− ‖∇̃f(x1/2)‖‖xk+1/2 − x1/2‖ = kγ‖d‖‖∇̃f(x1/2)‖+ o(k),

and we conclude

lim inf
k→∞

(1/k)f(xk+1/2) ≥ −γ‖d‖‖∇̃f(x1/2)‖.

With a similar argument, we get

lim inf
k→∞

(1/k)g(xk+1) ≥ −γ‖d‖‖∇̃g(x1)‖

where ∇̃g(x1) is any subgradient of g at x1. Combining these with (5.6) gives us the

remaining statements.

Lemma 5.3.12. Assume p⋆ = d⋆. Assume xk+1/2 and xk+1 are the DRS iterates as

defined in (5.2). If xk+1/2, xk+1 → x⋆ for some x⋆, then x⋆ is a solution.
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Proof. We first note that closed functions are by definition lower semi-continuous, and

that f and g are assumed to be closed. By Lemma 5.3.10 we have

f(x⋆) + g(x⋆) ≤ lim inf
k→∞

f(xk+1/2) + g(xk+1) = p⋆,

and we conclude f(x⋆) + g(x⋆) = p⋆.

5.3.3 Evolution of shadow iterates

Section 5.3.1 characterized the evolution of the zk-iterates, which we could call the main

iterates. The xk+1/2 and xk+1-iterates of DRS are called the shadow iterates. Here, we

analyze the evolution of the shadow iterates.

Although the results of this section are are not as fundamental or important as

the results of Sections 5.3.1 and 5.3.2, we do need these results later, especially when

translating the analyses for DRS to analyses for ADMM.

Lemma 5.3.13. If v = 0, then xk+3/2 − xk+1/2 → 0 and xk+2 − xk+1 → 0.

Proof. Since v = 0, we have zk+1− zk → 0. Since the map the defines zk 7→ xk+1/2 and

zk+1 7→ xk+3/2 is Lipschitz continuous, xk+3/2−xk+1/2 → 0. Finally, zk+1− zk → 0 and

xk+3/2 − xk+1/2 → 0 implies xk+2 − xk+1 → 0.

Lemma 5.3.14. If (P) is strongly infeasible and (D) is feasible, then xk+3/2−xk+1/2 →

0 and xk+2 − xk+1 → 0.

Proof. Write −d′ for the infimal displacement vector as given by Corollary 5.3.8. By

Theorem 5.2.3, we have

zk+1 − zk = xk+1 − xk+1/2 → d′.

The projection inequality states

〈v − ΠCx,ΠCx− x〉 ≥ 0 (5.7)
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for any nonempty closed convex set C, v ∈ C, and x ∈ Rn. Since −d′ = Πdom f−dom g(0),

(5.7) tells us that

〈d′, x− xk+1〉+ ‖d′‖2 ≤ 0

for any x ∈ dom f . Using xk+1/2 = Proxγf (zk) and firm-nonexpansiveness of Prox, we

get

‖Proxγf (zk + d′)− xk+1/2‖2 ≤ 〈d′,Proxγf (zk + d′)− xk+1/2〉

= 〈d′,Proxγf (zk + d′)− xk+1〉+ 〈d′, xk+1 − xk+1/2〉

→ 0

since 〈d′, xk+1 − xk+1/2〉 → ‖d′‖2. So Proxγf (zk + d′) − Proxγf (zk) → 0. Since Prox is

Lipschitz continuous, zk+1 − zk − d′ → 0 implies

Proxγf (zk + d′)− Proxγf (zk+1)→ 0.

Putting everything together we conclude

Proxγf (zk+1)− Proxγf (zk) = xk+3/2 − xk+1/2 → 0.

Since

zk+2 − zk+1 = zk+1 − zk︸ ︷︷ ︸
→d′

+xk+2 − xk+1 − (xk+3/2 − xk+1/2)︸ ︷︷ ︸
→0

→ d′

we also conclude that xk+2 − xk+1 → 0.

Lemma 5.3.15. If (P) has an improving direction, and (P) is feasible, then xk+3/2 −

xk+1/2 → γd and xk+2 − xk+1 → γd, where −γd = γΠdom f∗+dom g∗(0) is the infimal

displacement vector as given in Corollary 5.3.5.

Proof. For simplicity, assume γ = 1. For γ 6= 1, we scale f and g to get the stated

result.
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Rewrite the DRS iteration as

xk+1/2 = Proxf (zk)

νk+1/2 = zk − xk+1/2 = Proxf∗(zk)

xk+1 = Proxg(2xk+1/2 − zk)

νk+1 = 2xk+1/2 − zk − xk+1 = Proxg∗(2xk+1/2 − zk)

zk+1 = zk − (νk+1 + νk+1/2).

By Theorem 5.2.3, we have

zk+1 − zk = xk+1 − xk+1/2 → d.

By the same reasoning as in Lemma 5.3.14, we can use (5.7) and firm-nonexpansiveness

to show that

νk+3/2 − νk+1/2 = Proxf∗(zk+1)− Proxf∗(zk)→ 0.

Since

zk+1 − zk = νk+3/2 − νk+1/2︸ ︷︷ ︸
→0

+xk+3/2 − xk+1/2 → d,

we have xk+3/2 − xk+1/2 → d.

Since

zk+2 − zk+1 = zk+1 − zk︸ ︷︷ ︸
→d

+xk+2 − xk+1 − (xk+3/2 − xk+1/2)︸ ︷︷ ︸
→d

→ d

we also conclude that xk+2 − xk+1 → d.

5.4 Pathological convergence: DRS

In this section, we use the theory of Section 5.3 to analyze DRS under pathologies. We

classify the status of (P) and (D) into 7 cases and provide convergence analyses for the

first 6 cases, the ones that assume strong duality.
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5.4.1 Classification

The primal-dual problem pair, (P) and (D), falls under exactly one of the following 7

distinct cases.

Case (a) Total duality holds between (P) and (D).

In other words, (P) and (D) have solutions, and d⋆ = p⋆. For example, the primal

problem

minimize x− log x

and its dual problem
maximize 1 + log(y)

subject to y = 1

both have solutions, and d⋆ = p⋆ = 1.

Case (b) d⋆ = p⋆ is finite, (P) has a solution, (D) has no solution.

For example, the primal problem

minimize δ{(x1,x2) |x2
1+x2

2≤1}(x1, x2)︸ ︷︷ ︸
f(x)

+x2 + δ{(x1,x2) |x1=1}(x1, x2)︸ ︷︷ ︸
g(x)

has a solution but its dual problem

maximize −
√
ν2

1 + ν2
2 + ν1 − δ{ν2=1}(−ν2)

does not. Nevertheless, d⋆ = p⋆ = 0.

Case (c) d⋆ = p⋆ is finite, (P) is feasible, but (P) has no solution.

To get such an example, swap the role of the primal and the dual in the example

for case (b).
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Case (d) d⋆ = p⋆ = −∞, (P) is feasible, but there is no improving direction.

This implies (D) is weakly infeasible. For example, the primal problem

minimize δ{x |x≥1}(x)− log x

has no solution and has optimal value p⋆ = −∞. Since the derivative of the objective,

−1/x, goes to 0 as x → ∞, the primal problem has no improving direction. The dual

problem
maximize y + 1 + log(y)

subject to y ≤ 0

is weakly infeasible.

Case (e) d⋆ = p⋆ = −∞, (P) is feasible, and there is an improving direction.

This implies (D) is strongly infeasible. For example, the primal problem

minimize x+ x

has an improving direction, namely d = −1, and the dual problem

maximize δ{1}(x) + δ{1}(−x)

is strongly infeasible.

Case (f) d⋆ = p⋆ =∞ and (P) is infeasible.

For example, the problem

minimize 1/
√
−x− log(x)

is infeasible, and its dual

maximize (3/22/3)y1/3 + 1 + log(y)

subject to y ≥ 0

has optimal value d⋆ =∞.
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Case (g) d⋆ < p⋆, i.e. strong duality fails.

5.4.2 Convergence results

Theorem 5.4.1. [133, 67] In case (a), xk+1/2, xk+1 → x⋆, where x⋆ is a solution of

(P) and

lim
k→∞

f(xk+1/2) + g(xk+1) = p⋆.

Theorem 5.4.2. In case (b), xk+1 − xk+1/2 → 0 and

lim
k→∞

1
k + 1

k∑
i=0

f(xi+1/2) + g(xi+1) = p⋆, lim inf
k→∞

f(xk+1/2) + g(xk+1) = p⋆.

Furthermore, if xk+1/2 → x⋆ (or equivalently if xk+1 → x⋆) then x⋆ is a solution.

Proof. This follows from Theorem 5.2.3, Corollary 5.3.3, Lemma 5.3.10, and Lemma 5.3.12.

Theorem 5.4.3. In case (c), xk+1 − xk+1/2 → 0,

lim
k→∞

1
k + 1

k∑
i=0

f(xi+1/2) + g(xi+1) = p⋆, lim inf
k→∞

f(xk+1/2) + g(xk+1) = p⋆,

and (xk+1/2, xk+1) do not converge.

Proof. This follows from Theorem 5.2.3, Corollary 5.3.3, Lemma 5.3.10, and the con-

trapositive of Lemma 5.3.12.

Theorem 5.4.4. In case (d), (D) is weakly infeasible, xk+1 − xk+1/2 → 0,

lim
k→∞

1
k + 1

k∑
i=0

f(xi+1/2) + g(xi+1) = −∞, lim inf
k→∞

f(xk+1/2) + g(xk+1) = −∞,

and (xk+1/2, xk+1) do not converge.

Proof. This follows from Theorem 5.2.3, Lemma 5.3.1, Corollary 5.3.4, Lemma 5.3.10,

and the contrapositive of Lemma 5.3.12.
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Theorem 5.4.5. In case (e), (D) is strongly infeasible, xk+1 − xk+1/2 → γd, where d

is an improving direction,

lim
k→∞

f(xk+1/2) + g(xk+1) = −∞,

and (xk+1/2, xk+1) do not converge. Furthermore, dist(xk+1/2,dom g)→ 0 and

dist(xk+1,dom f)→ 0.

Proof. All but the last assertions follows from Theorem 5.2.3, Lemma 5.3.1, Corol-

lary 5.3.5, Lemma 5.3.11, and the contrapositive of Lemma 5.3.12. By Lemma 5.3.15

xk+1/2 − xk−1/2 → γd and by Theorem 5.2.3 and Corollary 5.3.5 xk − xk−1/2 → γd. So

xk+1/2 − xk → 0. Since xk ∈ dom g, we have

dist(xk+1/2,dom g) ≤ dist(xk+1/2, xk)→ 0.

Since xk+1/2 ∈ dom f , we have

dist(xk,dom f) ≤ dist(xk, xk+1/2)→ 0.

Theorem 5.4.6. In case (f), ‖xk+1 − xk+1/2‖ → dist(dom f,dom g).

Proof. This follows from Theorem 5.2.3 and Corollaries 5.3.7 and 5.3.8.

5.4.3 Interpretation

We can view the DRS as an algorithm with two major goals: make the iterates feasible

and optimal. With some caveats, DRS succeeds at both. As an auxiliary goal, we want

the shadow iterates of DRS to converge to a solution if one exists. With some caveats,

DRS succeeds at this as well. Finally, DRS provides a certificate of infeasibility in cases

(e) and (f).

In cases (a), (b), (c), and (d) the iterates become approximately feasible in that

xk+1 − xk+1/2 → 0. In case (e) the iterates become approximately feasible in that
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dist(xk+1/2,dom g) → 0 and dist(xk+1,dom f) → 0. In case (f), feasibility is impossi-

ble, but DRS does its best to achieve feasibility.

In cases (a), (b), (c), (d), and (e), the function values on average converge to the

optimal value. In other words, DRS finds the correct optimal value in these cases.

In case (a), the shadow iterates, the xk+1/2 and xk+1 iterates, converge to a solu-

tion. In case (b), we do not know whether the shadow iterates converge to a solution.

However, if they converge, the limit is a solution. In cases (c), (d), and (e), the shadow

iterates do not converge, which is good since there is no solution to converge to.

In cases (e) and (f), the limit zk+1− zk → −v 6= 0 provides a certificate of dual and

primal strong infeasibility, respectively. These may be computationally useful when

verifying the validity of a certificate is easy, which is the case for conic programs.

We quickly clarify the contribution. The analysis of case (a) is well known and is not

the focus of this work, but we include it’s discussion here for completeness. Approximate

feasibility in cases (a), (b), (c) and (d) directly follows from prior work, in particular

from Theorems 5.2.3 and 5.2.4. The approximate feasibility results for cases (e) and (f)

are contributions of this work.

5.4.4 Feasibility problems

Consider the problem of finding an x ∈ A ∩ B, where A and B are nonempty closed

convex sets. Recasting this convex feasibility problem into an equivalent optimization

problem and using Theorem 5.2.4 [23], Theorem 5.2.3 [172, 11], Theorem 5.4.1 [133],

and basic convex analysis provides us the following results:

• Case (a). If A ∩B 6= ∅ then xk+1/2, xk+1 → x⋆ where x⋆ ∈ A ∩B.

• Case (f). If dist(A,B) > 0, then ‖xk+1 − xk‖ → dist(A,B).

• Case (g). If A ∩B 6= ∅ but dist(A,B) = 0, then xk+1/2 − xk+1 → 0.
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Specifically, one can recast the convex feasibility problem x ∈ A∩B into the primal

problem

minimize
x∈Rn

δA(x) + δB(x),

which has the dual problem

maximize
ν∈Rn

−σA(ν)− σB(−ν).

When A ∩ B 6= ∅, then p⋆ = 0 with x ∈ A ∩ B and d⋆ = 0 with ν = 0. Therefore total

duality holds (i.e., we have case (a)) and Theorem 5.4.1 applies. When dist(A,B) > 0,

then p⋆ =∞ since A ∩B = ∅. For the dual, define ν̃ = PA−B(0), which satisfies

〈a− b, ν̃〉 ≥ ‖ν̃‖2

for all a ∈ A and b ∈ B by the optimality conditions defining the projection. Then we

have

−σA(−ην̃)− σB(+ην̃) = inf
a∈A,b∈B

〈a− b, ν̃〉 ≥ η‖ν̃‖2

for η > 0. Since ‖ν̃‖ = dist(A,B) > 0, with η → ∞ we conclude d⋆ = ∞. So

we have case (f) and Theorem 5.4.6 applies. However, the results of this work say

nothing for case (g). The contribution of this work is to consider improving directions

and function-value analysis, but both notions are not relevant in the setup of convex

feasibility problems. Therefore, our work does not provide any new results for the

convex feasibility problems.

Prior work on the convex feasibility setup provides further stronger results. By [19,

Theorem 3.13], we have

xk+1 − xk+1/2 → ΠB−A(0).

Furthermore, by [27, Theorem 4.5], we have

(xk+1/2, xk+1)→ (aapx, bapx) ∈ arg min
(a,b)∈A×B

{‖a− b‖}

if the arg min is nonempty. (The pairs in the arg min are called “best approximation

pairs” between A and B.) These results show that the relevant dichotomy is whether a
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best approximation pair exists, rather than whether strong duality holds. These results

cannot be obtained from the analysis of our work.

5.5 Pathological convergence: ADMM

We now analyze ADMM under pathologies. Consider the primal problem

minimize
x∈Rp,y∈Rq

f(x) + g(y)

subject to Ax+By = c,
(P-ADMM)

where f : Rp → R ∪ {∞} and g : Rq → R ∪ {∞} are PCC, A ∈ Rn×p, B ∈ Rn×q, and

c ∈ Rn, and its dual problem

maximize
ν∈Rn

−f ∗(−ATν)− g∗(−BTν)− cTν. (D-ADMM)

Write p⋆ and d⋆ for the primal and dual optimal values. ADMM applied to this primal-

dual problem pair is

xk+1 ∈ arg min
x∈Rp

{
f(x) + 〈νk, Ax+Byk − c〉+ 1

2γ
‖Ax+Byk − c‖2

}

yk+1 ∈ arg min
y∈Rq

{
g(y) + 〈νk, Axk+1 +By − c〉+ 1

2γ
‖Axk+1 +By − c‖2

}

νk+1 = νk + (1/γ)(Axk+1 +Byk+1 − c). (5.8)

For ADMM to be well-defined, the argmins of (5.8) must exist. Throughout this

section, we furthermore assume the regularity conditions

(ranAT ) ∩ ri dom (f ∗) 6= ∅, (5.9)

(ranBT ) ∩ ri dom (g∗) 6= ∅. (5.10)

Here, ri denotes the relative interior of a set. These conditions ensure the subproblems

are solvable [190, Theorem 16.3].

Without these regularity conditions, the subproblems of (5.8) may not have so-

lutions. This is often overlooked and sometimes even misunderstood throughout the
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ADMM literature. (The highly influential paper [41] mistakenly claimed it is enough for

f and g to be PCC. Chen, Sun, and Toh [53] pointed out that additional assumptions

are needed.)

5.5.1 Classification and convergence results

Under (5.9) and (5.10), the status of (P-ADMM) and (D-ADMM) falls under exactly

one of the following 5 distinct cases.

Case (a) d⋆ = p⋆, both (P-ADMM) and (D-ADMM) have solutions.

Theorem 5.5.1 ([103, 41, 67]). In case (a), Axk +Byk − c→ 0 and

lim
k→∞

f(xk) + g(yk)→ p⋆.

Case (b) d⋆ = p⋆, (P-ADMM) has a solution, (D-ADMM) has no solution.

Theorem 5.5.2. In case (b), Axk +Byk − c→ 0 and

lim
k→∞

1
k

k∑
i=1

f(xi) + g(yi) = p⋆, lim inf
k→∞

f(xk) + g(yk) = p⋆.

Furthermore, if (xk, yk)→ (x⋆, y⋆), then (x⋆, y⋆) is a solution.

Case (c) d⋆ = p⋆ ∈ [−∞,∞), (P-ADMM) is feasible but has no solution.

Theorem 5.5.3. In case (c), Axk +Byk − c→ 0 and

lim
k→∞

1
k

k∑
i=1

f(xi) + g(yi) = p⋆, lim inf
k→∞

f(xk) + g(yk) = p⋆,

and the sequence (xk, yk) does not converge.

Case (d) d⋆ = p⋆ =∞, (P-ADMM) is infeasible.

Theorem 5.5.4. In case (d),

‖Axk +Byk − c‖ → inf
x∈dom f
y∈dom g

‖Ax+By − c‖.
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Case (e) d⋆ < p⋆, i.e. strong duality fails.

5.5.2 Interpretation

With some caveats, ADMM succeeds at achieving feasibility and optimality. In cases

(a), (b), and (c) the iterates become approximately feasible in that Axk +Byk− c→ 0,

and the function values on average converge to the solution. In case (d), feasibility is

impossible, but ADMM does its best to achieve feasibility.

5.5.3 Proofs

ADMM is often analyzed as DRS applied to (D-ADMM) [95]. In this proof, however, we

take the less common approach shown in [80, 238], which derives ADMM directly from

the primal problem. We do so as the function-value analysis of Section 5.3.2 translate

nicely with this primal approach.

Consider the equivalent primal optimization problem

minimize
z∈Rn

f̃(z) + g̃(z)

with

f̃(z) = inf{f(x) |Ax+ z = 0}, g̃(z) = inf{g(y) |By − c = z},

which are PCC functions, as we assume (5.9) and (5.10) [190, Theorem 16.3]. We apply

DRS to this form to get

x̃k+1/2 = arg min
x̃

{
γg̃(x̃) + (1/2)‖x̃− zk‖2

}
x̃k+1 = arg min

x̃

{
γf̃(x̃) + (1/2)‖x̃− 2x̃k+1/2 + zk‖2

}
zk+1 = zk + x̃k+1 − x̃k+1/2,

where we perform the g̃-update before the f̃ -update. We introduce and substitute the

variables xk, yk, and νk defined implicitly by x̃k+1/2 = Byk+1 − c, x̃k+1 = −Axk+2, and
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zk = −γνk − Axk+1 to get

yk+1 = arg min
y

{
γg(y) + γ〈νk, Axk+1 +By − c〉+ (1/2)‖Axk+1 +By − c‖2

}
xk+2 = arg min

x

{
γf(x) + γ〈νk+1, Ax+Byk+1 − c〉+ (1/2)‖Ax+Byk+1 − c‖2

}
νk+1 = νk + (1/γ)(Axk+1 +Byk+1 − c).

Reordering the updates to get the dependency right, we get

yk+1 = arg min
y

{
γg(y) + γ〈νk, Axk+1 +By − c〉+ (1/2)‖Axk+1 +By − c‖2

}
νk+1 = νk + (1/γ)(Axk+1 +Byk+1 − c)

xk+2 = arg min
x

{
γf(x) + γ〈νk+1, Ax+Byk+1 − c〉+ (1/2)‖Ax+Byk+1 − c‖2

}
.

Finally, redefine the start and end of an iteration so that it updates xk+1, yk+1, and

νk+1 instead yk+1, νk+1, and xk+2. With this, we get (5.8).

The the last step, where we redefine the start and end of an iteration, introduces

a subtlety when translating the results of Section 5.4.2. In particular, the results of

Section 5.3.3 are necessary because of this.

Theorem 5.5.2 follows from Theorem 5.4.2 and Lemmas 5.3.2, 5.3.11, and 5.3.13.

Theorem 5.5.4 follows from Theorem 5.4.6 and Lemma 5.3.14.

Case (c) of this section corresponds to cases (c), (d), and (e) of Section 5.4.2. For the

three cases, we use Theorem 5.4.3 and Lemmas 5.3.2, 5.3.11, and 5.3.13, Theorem 5.4.4

and Lemmas 5.3.2, 5.3.11, and 5.3.13, and Theorem 5.4.5 and Lemma 5.3.11, and 5.3.15.

Combining the three results into one gives us Theorem 5.5.3.

5.6 When strong duality fails

In the analyses of DRS, we assumed strong duality holds. When strong duality fails,

i.e., when d⋆ < p⋆, we conjecture that DRS fails.
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Conjecture. When strong duality fails, DRS necessarily fails in that

lim inf
k→∞

f(xk+1/2) + g(xk+1) < p⋆.

In other words, DRS finds the wrong objective value.

As discussed in Section 5.4.2, DRS tries to achieve feasibility and optimality. As

discussed in Section 5.2.1, strong duality is well-posedness. Therefore, when the problem

is ill-posed, we expect DRS to reduce the function value below p⋆ while achieving an

infinitesimal infeasibility. We support the conjecture with examples.

We first present an analytical counter example. Consider the problem taken from

[137]
minimize δ{(x1,x2,x3) |x3≥(x2

1+x2
2)1/2}(x)︸ ︷︷ ︸

f(x)

+x1 + δ{(x1,x2,x3) |x2=x3}︸ ︷︷ ︸
g(x)

(x)

which has the solution set {(0, t, t) | t ∈ R} and optimal value p⋆ = 0. Its dual problem

maximize −δ{(ν1,ν2,ν3) | −ν3≥(ν2
1 +ν2

2 )1/2}(ν)− δ{(ν1,ν2,ν3) | ν1=1, ν2=−ν3}(−ν)

is infeasible. Given z0 = (z0
1 , z

0
2 , 0), the DRS iterates have the form

zk+1
1 = 1

2
zk1 − γ

zk+1
2 = 1

2
zk2 + 1

2

√
(zk1 )2 + (zk2 )2

zk+1
3 = 0.

With this, it is relatively straightforward to show xk+1/2 − xk+1 → 0, xk+1/2
1 → −2γ,

x
k+1/2
2 → ∞, xk+1/2

3 → ∞, and f(xk+1/2) + g(xk+1) → −2γ. Also, xk+1/2 ↛ dom f ∩

dom g even though xk+1/2 − xk+1 → 0.

Note that

d⋆ < lim
k→∞

f(xk+1/2) + g(xk+1) < p⋆.

So this counterexample proves, at least in some cases, that DRS solves neither the

primal nor the dual problem in the absence of strong duality.
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Next, we present more experimental counter examples that support the conjecture.

We run DRS on these problems report the experimental results.

The problem, taken from [31],

minimize
x∈R2

exp(−
√
x1x2)︸ ︷︷ ︸

f(x)

+ δ{(x1,x2) |x1=0}(x)︸ ︷︷ ︸
g(x)

has p⋆ = 1 but d⋆ = 0. Experimentally, for all γ > 0 and choice of z0 we observe

d⋆ < limk→∞ f(xk+1/2) + g(xk+1) < p⋆.

The problem, taken from [78],

minimize
X∈S3

δS3
+
(X)︸ ︷︷ ︸

f(X)

+X22 + δ{X∈S3 |X33=0,X22+2X13=1}(X)︸ ︷︷ ︸
g(X)

,

where S3 and S3
+ respectively denote the set of symmetric and positive semidefinite 3×3

matrices, has p⋆ = 1 but d⋆ = 0. Experimentally, we observe d⋆ = limk→∞ f(xk+1/2) +

g(xk+1) for γ ≥ 0.5, and d⋆ < limk→∞ f(xk+1/2) + g(xk+1) < p⋆ for 0 < γ < 0.5. This

behavior does not depend on z0.

The problem, taken from [239],

minimize
X∈S3

δS3
+
(X)︸ ︷︷ ︸

f(X)

+ 2X12 + δ{X∈S3 |X22=0,−2X12+2X33=2}(X)︸ ︷︷ ︸
g(X)

has p⋆ = 0 but d⋆ = −2. Experimentally, we observe d⋆ =

limk→∞ f(xk+1/2) + g(xk+1) for γ ≥ 1, and d⋆ < limk→∞ f(xk+1/2) + g(xk+1) < p⋆ for

0 < γ < 1. This behavior does not depend on z0.

The problem, taken from [219],

minimize
X∈S5

δS5
+
(X)︸ ︷︷ ︸

f(X)

+X44 +X55 + δ{X∈S3 |X11=0,X22=1,X34=1,2X13+2X45+X55=1}(X)︸ ︷︷ ︸
g(X)

has p⋆ = (
√

5− 1)/2 but d⋆ = 0. Experimentally, we observe d⋆ =

limk→∞ f(xk+1/2) + g(xk+1) for γ ≥ 0.8, and d⋆ < limk→∞ f(xk+1/2) + g(xk+1) < p⋆ for

0 < γ < 0.8. This behavior does not depend on z0.
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The conjecture holds for all examples. Interestingly, for some examples, there is a

threshold γmin such that d⋆ < limk→∞ f(xk+1/2) + g(xk+1) < p⋆ when 0 < γ < γmin and

d⋆ = limk→∞ f(xk+1/2) + g(xk+1) when γmin ≤ γ. We do not have an explanation for

this phenomenon.

5.7 Conclusion

In this chapter, we analyzed DRS and ADMM under pathologies. We show that when

strong duality holds, the iterates of DRS and ADMM are approximately feasible and

approximately optimal in the sense discussed in Sections 5.4.3 and 5.5.2. Furthermore,

we conjectured that DRS necessarily fails when strong duality fails, and we provided

empirical evidence supporting this conjecture.

As discussed in Section 5.6, DRS exhibits an interesting behavior in the absence of

strong duality, and we do not have an explanation for it. Analyzing this phenomenon

and addressing the conjecture is an interesting direction of future research.

For non-pathological problems, DRS can be generalized with an over-under relax-

ation parameter between 0 and 2. The pathological DRS analysis of this chapter imme-

diately extends to this generalized setup. For non-pathological problems, ADMM can

be generalized with an over-under relaxation parameter between 0 and (1+
√

5)/2. This

generalization arises when ADMM is analyzed directly through a Lyapunov function,

and not through DRS [92, 102, 32, 89, 74, 53, 52]. The pathological ADMM analysis

of this chapter does not immediately extend to this generalized setup. Analyzing this

form of ADMM applied to pathological problems is an interesting direction of future

research.
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Part IV

Convergence Behaviors on

Nonconvex Problems
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In this part, we present the results of [139], in which the convergence behaviors of

FBS and DRS on nonconvex problems are analyzed. The main result is that under some

smoothness conditions, FBS and DRS can avoid the strict saddle points1 almost surely,

in the sense that the probability for DRS and FBS iterations with random initializations

to converge to strict saddle points of their respective objectives is zero (see Theorem

6.5.6).

The main technical tools to achieve this are (i) Forward-Backward Envelope (FBE)

[215], Douglas-Rachford Envelope (DRE) [171] from nonconvex analysis, and (ii) Stable-

Center Manifold Theorem [206] from dynamical systems.

FBE and DRE are functions with nice properties even in the nonconvex settings. In

Section 6.4, we show that they share the same stationary points, global minimizers, local

minimizers, and strict saddle points with the objectives of FBS and DRS, respectively.

Furthermore, the FBS and DRS iterations can be written as (preconditioned) gradient

descent iterations on FBE and DRE. In Section 6.5, we analyze these gradient descent

iterations with the Stable-Center Manifold Theorem, and show that whenever FBS

and DRS converge, their limits will not be the strict saddles of FBE and DRE almost

surely, which are exactly the strict saddles of their corresponding objective functions.

Consequently, for many practical models that satisfy the strict saddle property2, FBS

and DRS will almost always avoid the strict saddle points whenever they converge.

As a byproduct, we also generalize FBE and DRE to the Davis-Yin Envelope in

Section 6.3, which is an envelope function for the Davis-Yin splitting3. Many results in

Section 6.4 and 6.5 also hold for Davis-Yin Splitting and Davis-Yin Envelope.

1I.e., saddle points with a negative curvature.
2That is, the stationary points of the objective are either local minimizers or strict saddle points.
3Davis-Yin splitting [69] is a generalization of FBS and DRS.
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CHAPTER 6

Strict-Saddle Point Avoidance of FBS and DRS

6.1 Introduction

The most general model considered in this chapter minimizes the sum of three functions,

where one of them is differentiable, and all the three functions can be nonconvex. A

mathematical formulation is given in Section 6.3. The results of this chapter, of course,

apply to simpler models, where any one or two of these three functions vanish. Problems

that can be written in our general model are abundant. Examples include texture

inpainting [134], matrix completion [48], and support vector machine classification [63].

Our model can be solved by the splitting iterative methods based on Douglas-

Rachford Splitting (DRS) [133] and Forward-Backward Splitting (FBS) [168], as well

as their generalization, Davis-Yin Splitting (DYS) [69]. In these methods, the problem

objective is split into different steps, one for each of the objective functions. Their

implementations are typically straightforward. By exploiting additional sum and coor-

dinate friendly structures, they give rise to parallel and distributed algorithms that are

highly scalable. The details of these methods are reviewed in Section 6.3 below.

These splitting methods are traditionally analyzed under the assumption that the

subdifferentials of the objective functions are maximally monotone. The subdifferentials

of nonconvex functions are generally non-monotone. Therefore, the majority of the

existing results apply only to convex objective functions.

Recently, FBS and DRS are found to numerically converge for certain nonconvex

problems, for example, FBS for image restoration [209], dictionary learning, and ma-

171



trix decomposition [215], and DRS for nonconvex feasibility problems [125], matrix

completion [6], and phase retrieval [54]. Theoretically, their iterates have been shown

to converge to stationary points in some nonconvex settings [10, 125, 216, 108]. In par-

ticular, any bounded sequence produced by FBS converges to a stationary point when

the objective satisfies the KL property [10]; By using the Douglas-Rachford Envelope

(DRE), the authors of [125] show that DRS iterates converge to a stationary point when

one of the two functions is Lipschitz differentiable, both of them are semi-algebraic and

bounded below, and one of them is coercive; Later, the boundedness assumption is

removed in [216]; In [124], similar convergence is established for Peaceman-Rachford

Splitting; In [108], when one function is strongly convex, and the other is weakly convex,

and their sum is strongly convex, DRS iterates are shown to be Fejer monotone with

respect to the set of fixed points of DRS operator, thus convergent. Though unlikely,

it is still possible that the limit of a convergent sequence is a saddle point instead of a

local minimum (except when all stationary points are local minima, which is the case

studied in [108]).

On the other hand, some first-order methods have been shown to avoid so-called

strict saddle points, with probability one regarding random initialization [120, 119].

These results make skillful use of the Stable-Center Manifold Theorem [206]. So far,

their results apply only to relatively simple methods such as Gradient Descent, Coor-

dinate Descent, and Proximal Point methods. We give an affirmative answer (under

smoothness assumptions) that splitting methods also have this property. This result

also matches the practical observations made in [213].

This chapter makes the following contribution regarding the envelopes and saddle

point avoidance of FBS and DRS iterations for nonconvex problems. We first gener-

alize the existing Forward-Backward Envelope (FBE) and Douglas-Rachford Envelope

(DRE) into a Davis-Yin Envelope (DYE) and establish relationships between the latter

envelope and the original optimization objective. Then, under smoothness conditions,

we show that the probability for DRS and FBS iterations with random initializations
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to converge to strict saddle points of their respective DRE and FBE is zero. Finally, by

the connection between the envelopes and the original objectives, we extend the above

avoidance results to the strict saddle points of the original objectives. That is, when

our problem has the strict saddle property, DRS and FBS with random initialization

will almost surely converge to local minimizers. The strict saddle property is satisfied in

several applications including, but not limited to, dictionary learning [213], simple neu-

ral networks [46], phase retrieval [212], tensor decomposition [97], and low-rank matrix

factorization [33].

Recently, another generalization of FBE and DRE is proposed[101]. Some properties

of the more general envelope are provided and some of them sharpen the corresponding

results of FBE and DRE. Also, a new interpretation of FBS and DRS as majorization-

minimization algorithms applied to their respective envelopes is given. Compared to

[101], the envelope proposed in this chapter also applies to DYS, we interpret DYS as

gradient descent of this envelope under a variable metric, and establish the strict saddle

avoidance property of FBS and DRS.

The rest of this chapter is organized as follows. In Section 6.2, we introduce notation

and review some useful results. In Section 6.3, we review DYS, and define the envelope

for DYS. In Section 6.4, we rewrite DYS equivalently as a gradient descent of the

envelope, and establish a strong relationship between the envelope and the objective.

Then, in Section 6.5, we analyze the avoidance of strict saddle points of the objective.

Finally, we conclude this chapter in Section 6.6.

6.2 Preliminaries

In this section, we review some basic concepts, introduce our notation, and state some

known results. For the sake of brevity, we omit proofs and direct references. We refer

the reader to textbooks [194, 16].
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We let 0 ∈ Rn denote the vector zero, 〈·, ·〉 the usual dot product, ‖ · ‖ the ℓ2 norm,

and FixT the set of fixed points of a single-valued operator T .

A function f : Rn → R ∪ {+∞} is called β−weakly convex (or β−semiconvex) if

the function f̃(·) := f(·) + β
2‖ · ‖

2 is convex. Clearly, f can be nonconvex.

Let y f−→ x denote y → x and f(y) → f(x). Then, the subdifferential of f at

x ∈ dom f can be defined by

∂f(x) :=
{
v ∈ Rn : ∃xt f−→ x, vt → v,with

lim inf
z→xt

f(z)− f(xt)− 〈vt, z − xt〉
‖z − xt‖

≥ 0 for each t
}
.

If f is differentiable at x, we have ∂f(x) = {∇f(x)}; If f is convex, we have

∂f(x) = {v ∈ Rn : f(z) ≥ f(x) + 〈v, z − x〉 for any z ∈ Rn},

which is the classic definition of subdifferential in convex analysis.

A point x∗ is a stationary point of a function f if 0 ∈ ∂f(x∗). x∗ is a critical point

of f if f is differentiable at x∗ and ∇f(x∗) = 0.

A point x∗ is a strict saddle point of f if f is twice differentiable at x∗, x∗ is a critical

point of f , and λmin[∇2f(x∗)] < 0, where λmin[·] returns the smallest eigenvalue of the

input. Local minimizers of a function are always its stationary points, but not strict

saddle points.

For any γ > 0, the Moreau envelope of a function f is defined by

fγ(x) := inf
y∈Rn
{f(y) + 1

2γ
‖y − x‖2}.

The proximal mapping of f is defined by

Proxγf (x) : x⇒ arg min
y∈Rn

{f(y) + 1
2γ
‖y − x‖2},

assuming that the arg min exists, here ⇒ denotes a possibly set-valued mapping. When

f is convex, Proxγf is single-valued and equals Proxγf (x) = (Id + γ∂f)−1, where Id is
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the identity map. For any proper, closed, convex function f , its Moreau Identity is

Id = Proxγf +γ Prox f∗
γ
◦Id
γ
, (6.1)

where f ∗(u) := supx∈Rn{〈u, x〉 − f(x)} is the convex conjugate of f .

We also need the Inverse Function Theorem: let F : Rn → Rn be a C1 mapping, if

the Jacobian JF (x) of F at x ∈ Rn is invertible, then, there exists an inverse function

F−1 defined in a neighbourhood of F (x) such that F−1 is also C1 and

JF−1

(
F (x)

)
=
(
JF (x)

)−1
. (6.2)

6.3 Davis-Yin Splitting and its Envelope

In this section, we will introduce a function, which we call an envelope, such that DYS

iteration can be written as the gradient descent of this function under a variable metric.

Since DYS generalizes FBS and DRS, the envelope of DYS is also a generalization of

FBE and DRE, the respective envelopes of FBS and DRS, which were introduced in

[171, 215].

6.3.1 Review of Davis-Yin Splitting

DYS [69] can be applied to solve the following problem:

minimize
x∈Rn

φ(x) := f(x) + g(x) + h(x), (6.3)

where f, g, h : Rn → R∪{∞}.

DYS iteration produces a sequence (zk)k≥0 according to zk+1 = Tzk, where

Tzk := zk + α

(
Proxγf

(
2 Proxγg(zk)− zk − γ∇h

(
Proxγg(zk)

))
− Proxγg(zk)

)
,

where γ and α are positive scalars. We rewrite this operator into successive steps with
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designated letters as

qk := ∇h
(

Proxγg(zk)
)
,

rk := 2 Proxγg(zk)− zk,

pk := Proxγf (rk − γqk),

wk = pk − Proxγg(zk), (6.4)

zk+1 = Tzk = zk + αwk. (6.5)

In [69], convergence is established when f, g and h are proper, closed, and convex,

h is Lh−Lipschitz differentiable, and

γ ∈]0, 2Lh[, α ∈
]
0, 2− γ

2Lh

[
.

When h = 0, (6.5) simplifies to DRS iteration,

zk+1 = zk + α
(

Proxγf (rk)− Proxγg(zk)
)
.

When g = 0, Proxγg reduces to Id and thus (6.5) simplifies to

zk+1 = zk + α(Proxγf (zk − γqk)− zk),

which is FBS iteration.

When f = 0, Proxγf reduces to Id and (6.5) simplifies to Backward-Forward Split-

ting,

zk+1 = zk + α(Proxγg(zk)− γqk − zk).

When f = g = 0, (6.5) simplifies to gradient descent iteration

zk+1 = zk − αγqk.
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6.3.2 Envelope of Davis-Yin Splitting

We define the envelope function of DYS as:

φγ(z) := gγ(z)− γ‖∇gγ(z)‖2 − γ〈∇h
(

Proxγg(z)
)
,∇gγ(z)〉+ h

(
Proxγg(z)

)
− γ

2
‖∇h

(
Proxγg(z)

)
‖2 + fγ

(
z − 2γ∇gγ(z)− γ∇h

(
Proxγg(z)

))
. (6.6)

When g = 0, this envelope reduces to the FBE proposed in [215]; When h = 0, it

reduces to the DRE introduced in [171]. When g = h = 0, it is the Moreau envelope.

This envelope is well defined when g is β−weakly convex, h is differentiable, and

γ ∈ (0, 1
β
). This is justified by the following lemma.

Lemma 6.3.1. Let ξ be proper, closed, β−weakly convex. Choose γ such that γ ∈

(0, 1
β
). Let ξγ(z) = minu∈Rn{ξ(u) + 1

2γ‖z − u‖
2} be the Moreau envelope of ξ. Define

ξ̃(·) = ξ(·)+ β
2‖·‖

2, which is convex. Then, proximal mapping Proxγξ(z) is single-valued

and satisfies

Proxγξ(z) = Prox γ
1−γβ

ξ̃(
1

1− γβ
z),

∇ξγ(z) = γ−1
(
z − Proxγξ(z)

)
.

Furthermore, Proxγξ(z) is 1
1−γβ−Lipschitz continuous.

Proof. We have

ξγ(z) = min
u∈R
{ξ(u) + β

2
‖u‖2 + 1

2γ
‖u− z‖2 − β

2
‖u‖2}

= min
u∈R

{
ξ̃(u) + 1− γβ

2γ
‖u− 1

1− γβ
z‖2

}
− β

2− 2γβ
‖z‖2

where the second equality follows from the definition of ξ̃.

As a result, for γ ∈ (0, 1
β
), Proxγξ is single-valued and

Proxγξ(z) = Prox γ
1−γβ

ξ̃(
1

1− γβ
z).
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Since Prox γ
1−γβ

ξ̃(z) is 1−Lipschitz continuous, we know that Proxγξ(z) is Lipschitz con-

tinuous with constant 1
1−γβ .

Finally, since ξ̃ is convex, [16, Prop.12.29] tells us that ξγ is differentiable and

∇ξγ(z) = 1
1− γβ

∇ξ̃
γ

1−γβ ( 1
1− γβ

z)− β

1− γβ
z

= 1
1− γβ

1− γβ
γ

( 1
1− γβ

z − Prox γ
1−γβ

ξ̃(
1

1− γβ
z)
)
− β

1− γβ
z

= 1
γ

(
z − Proxγξ(z)

)
.

6.4 Properties of Envelope

In this section, we show that DYS iteration can be written as the gradient descent of this

function under a variable metric. Furthermore, the global minimizers, local minimizers,

critical (stationary) points, and strict saddle points of the envelope φγ defined in (6.6)

correspond one on one to those of the objective function φ in (6.3).

We now analyze the properties of the DYS envelope (6.6) under the following as-

sumption:

Assumption 6.4.1.

1. g : Rn → R is Lg−Lipschitz differentiable.

2. h : Rn → R is Lh−Lipschitz differentiable.

3. φ : Rn → R∪{∞} is lower bounded.

4. γ ∈ (0, 1
Lg+Lh

).

Compared to the assumption in Section 6.3.1, a main restriction is that g is Lipschitz

differentiable. On the other hand, all f , g and h can be nonconvex.
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First, we show lower and upper bounds of the envelope, which generalize [215, Prop.

2.3], [208, Prop. 4.3], and [171, Prop. 1].

Lemma 6.4.1. Under Assumption 6.4.1, the following three inequalities hold for any

z ∈ Rn:

φγ(z) ≤φ
(
Proxγg(z)

)
, (6.7)

φγ(z) ≥φ
(
p(z)

)
+ C1(γ)‖p(z)− Proxγg(z)‖2, (6.8)

φγ(z) ≤φ
(
p(z)

)
+ C2(γ)‖p(z)− Proxγg(z)‖2, (6.9)

where φγ(z) is defined in (6.6),

C1(γ) := 1− γLh − γLg
2γ

> 0,

C2(γ) := 1 + γLh + γLg
2γ

> 0,

and p(z) is any element of Proxγf
(

2 Proxγg(z)− z − γ∇h
(

Proxγg(z)
))

.

Proof of inequality (6.7). By applying Lemma 6.3.1 to g, φγ(z) can be written as

φγ(z) = min
u
{g(u) + 1

2γ
‖z − u‖2} − γ‖1

γ

(
z − Proxγg(z)

)
‖2

− γ〈∇h
(

Proxγg(z)
)
,

1
γ

(
z − Proxγg(z)

)
〉

+ h
(

Proxγg(z)
)
− γ

2
‖∇h

(
Proxγg(z)

)
‖2

+ min
u
{f(u) + 1

2γ
‖ − z + 2 Proxγg(z)− γ∇h

(
Proxγg(z)

)
− u‖2}. (6.10)

Taking u = Proxγg(z) in the two minimums of (6.10), we have

φγ(z) ≤ g
(

Proxγg(z)
)

+ 1
2γ
‖z − Proxγg(z)‖2 − γ‖1

γ

(
z − Proxγg(z)

)
‖2

− 〈∇h
(

Proxγg(z)
)
, z − Proxγg(z)〉

+ h
(

Proxγg(z)
)
− γ

2
‖∇h

(
Proxγg(z)

)
‖2

+ f
(

Proxγg(z)
)

+ 1
2γ
‖ − z + Proxγg(z)− γ∇h

(
Proxγg(z)

)
‖2

=φ
(

Proxγg(z)
)
.
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Proof of inequality (6.8). According to Assumption 6.4.1, we know that f(·) + 1
2γ‖ ·

‖2 is bounded below for γ ∈ (0, 1
Lg+Lh

). Therefore, [194, Thm. 1.25] tells us that

Proxγf
(
2 Proxγg(z)− z − γ∇h

(
Proxγg(z)

))
6= ∅ for γ ∈ (0, 1

Lg+Lh
)).

By taking u = Proxγg(z) in the first minimum of (6.10) and u = p(z) ∈ Proxγf (2 Proxγg(z)−

z − γ∇h
(

Proxγg(z)
)
) in the second, we have

φγ(z) = g
(

Proxγg(z)
)

+ 1
2γ
‖z − Proxγg(z)‖2

− γ〈∇h
(

Proxγg(z)
)
,

1
γ

(
z − Proxγg(z)

)
〉

+ h
(

Proxγg(z)
)
− γ

2
‖∇h

(
Proxγg(z)

)
‖2

+ f
(
p(z)

)
+ 1

2γ
‖ − z + 2 Proxγg(z)− γ∇h

(
Proxγg(z)

)
− p(z)‖2. (6.11)

By making use of

h(y) ≥ h(x)− 〈∇h(y), x− y〉 − Lh
2
‖x− y‖2 forany x, y ∈ Rn,

we arrive at

φγ(z) ≥ g
(

Proxγg(z)
)
− 1

2γ
‖z − Proxγg(z)‖2

− 〈∇h
(

Proxγg(z)
)
, z − ProxPγg(z)〉

+ h
(
p(z)

)
− 〈∇h

(
Proxγg(z)

)
, (p(z)− Proxγg(z))〉

− Lh
2
‖p(z)− Proxγg(z)‖2 − γ

2
‖∇h

(
Proxγg(z)

)
‖2

+ f
(
p(z)

)
+ 1

2γ
‖2 Proxγg(z)− z − γ∇h

(
Proxγg(z)

)
− p(z)‖2.

Next, by making use of ‖a+ b+ c‖2 = ‖a‖2 + ‖b‖2 + ‖c‖2 + 2〈a, b〉+ 2〈b, c〉+ 2〈a, c〉 for

a = Proxγg(z)− p(z),

b = Proxγg(z)− z,

c = −γ∇h
(

Proxγg(z)
)
,
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we obtain

φγ(z) ≥g
(

Proxγg(z)
)

+ h
(
p(z)

)
− Lh

2
‖p(z)− Proxγg(z)‖2

+ f
(
p(z)

)
+ 1

2γ
‖Proxγg(z)− p(z)‖2 + 〈Proxγg(z)− p(z),

1
γ

(Proxγg(z)− z)〉.

Finally, by substituting

∇g
(

Proxγg(z)
)

= −1
γ

(Proxγg(z)− z),

g(y) ≥ g(x)− 〈∇g(y), x− y〉 − Lg
2
‖x− y‖2 forany x, y ∈ Rn,

we arrive at (6.8).

Proof of inequality (6.9). Similarly to the proof above, we can also start from (6.11)

and apply

h(y) ≤ h(x)− 〈∇h(y), x− y〉+ Lg
2
‖x− y‖2 forany x, y ∈ Rn,

g(y) ≤ g(x)− 〈∇g(y), x− y〉+ Lg
2
‖x− y‖2 forany x, y ∈ Rn,

which gives (6.9).

6.4.1 Global Minimizers Correspondence

Now we can establish the direct connections between the global and local minimizers

of φγ and those of φ. These results generalize [215, Prop. 2.3] and [208, Thm. 4.4].

Theorem 6.4.2. Under Assumption 6.4.1, we have

1. infx∈Rn φ(x) = infz∈Rn φγ(z),

2. arg minx∈Rn φ(x) = Proxγg
(

arg minz∈Rn

(
φγ(z)

))
.

Proof of 1. From (6.7) we have

inf
z∈Rn

φγ(z) ≤ inf
x∈Rn

φ(x),
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If infz∈Rn φγ(z) < infx∈Rn φ(x), then, there exists z1 ∈ Rn such that

φγ(z1) < infx∈Rn φ(x). So (6.8) gives

inf
x∈Rn

φ(x) > φγ(z1) ≥ φ
(
p(z1)

)
+ C1(γ)‖Proxγg(z1)− p(z1)‖2 ≥ φ

(
p(z1)

)
,

which is a contradiction.

Proof of 2. Let us first show that

arg min
x∈Rn

φ(x) ⊆ Proxγg
(

arg min
z∈Rn

(
φγ(z)

))
.

Without the loss of generality, we may assume arg minx∈Rn φ(x) 6= ∅, then, for any

x∗ ∈ arg minx∈Rn φ(x), we have x∗ = Proxγg(z∗) for z∗ = (I + γ∇g)(x∗). As a result,

(6.7) and (6.8) give us

inf
x∈Rn

φ(x) = φ(x∗) = φ
(

Proxγg(z∗)
)

≥ φγ(z∗) ≥ φ
(
p(z∗)

)
+ C1(γ)‖Proxγg(z∗)− p(z∗)‖2,

which enforces Proxγg(z∗) = p(z∗) and φ
(

Proxγg(z∗)
)

= φγ(z∗). So for any z ∈ Rn we

have

φγ(z∗) = inf
x∈Rn

φ(x) ≤ φ
(
p(z)

)
≤ φγ(z)− C1(γ)‖Proxγg(z)− p(z)‖2 ≤ φγ(z),

which yields z∗ ∈ arg minz∈Rn φγ(z), x∗ ∈ Proxγg
(

arg minz∈Rn

(
φγ(z)

))
.

Now let us show that

Proxγg
(

arg min
z∈Rn

(
φγ(z)

))
⊆ arg min

x∈Rn
φ(x).

Again, we can assume that arg minz∈Rn

(
φγ(z)

)
6= ∅. For any

z∗ ∈ arg minz∈Rn φγ(z), we need to show Proxγg(z∗) ∈ arg minx∈Rn φ(x).

Let z∗∗ = (I + γ∇g)p(z∗), then, Proxγg(z∗∗) = p(z∗) and (6.7) and (6.8) give us

φγ(z∗∗) ≤ φ(Proxγg
(
z∗∗)

)
= φ

(
p(z∗)

)
≤ φγ(z∗)− C1(γ)‖Proxγg(z∗)− p(z∗)‖2.
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Since z∗ ∈ arg minz∈Rn φγ(z), we must have

Proxγg(z∗) = p(z∗) = Proxγg(z∗∗),

φγ(z∗) = φγ(z∗∗) = φ
(

Proxγg(z∗)
)
.

Consequently, for any z ∈ Rn we have

φ
(

Proxγg(z∗)
)

= φγ(z∗) ≤ φγ(z) ≤ φ
(

Proxγg(z)
)
,

which concludes Proxγg(z∗) ∈ arg minx∈Rn φ(x).

6.4.2 Davis-Yin Splitting as Gradient Descent of the Envelope

We now show that (6.5) can be written as a gradient descent iteration of an envelope

function under the following assumption.

Assumption 6.4.2.

1. f is βf−weakly convex and γ ∈ (0, 1
βf

).

2. g, h are twice continuously differentiable.

We begin with a technical lemma regarding the twice differentiability of the Moreau

envelope of g.

Lemma 6.4.3. Under Assumptions 6.4.1 and 6.4.2, Proxγg has a Jacobian at z0, gγ

is twice differentiable at z0 with the Hessian

∇2gγ(z0) = 1
γ

(
I −

(
I + γ∇2g

(
Proxγg(z0)

))−1
)
.

In addition, the mapping

A(z) := I − 2γ∇2gγ(z)− γ∇2h
(
(Proxγg(z)

)(
I − γ∇2gγ(z)

)
(6.12)

is invertible.
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Proof. Since γ ∈]0, 1
Lg

[, Proxγg is single-valued and

Proxγg(z0) = (Id + γ∇g)−1z0, (6.13)

where (Id + γ∇g)−1 is the inverse mapping of Id + γ∇g. Since ∇2g(Proxγg
(
z0)
)

is

symmetric and its eigenvalues are bounded by Lg, we know that

I + γ∇2g
(

Proxγg(z0)
)

is invertible, which is the Jacobian of Id + γ∇g at Proxγg(z0).

Applying the Inverse Function Theorem to (6.13) by setting F as Proxγg and z0 as

p in (6.2), we have

JProxγg(z0) =
(
I + γ∇2g

(
Proxγg(z0)

))−1

Hence, Lemma 6.3.1 yields

∇2gγ(z0) = 1
γ

(
I −

(
I + γ∇2g

(
Proxγg(z0)

))−1
)
.

According to (6.12),

A(z0) = A1 − γA2. (6.14)

where

A1 = 2
(
I + γ∇2g

(
Proxγg(z0)

))−1
− I,

A2 = ∇2h
(

Proxγg(z0)
)(
I + γ∇2g

(
Proxγg(z0)

))−1
.

Since γ ∈ (0, 1
Lg

), A1 is invertible, as a result,

det
(
A(z0)

)
= det(A1 − γA2) = det(I − γA2A

−1
1 )det(A1)

=
n∏
i=1

(1− γλi
(
A2A

−1
1 )

)
det(A1),

where λi(A2A
−1
1 ), i = 1, ..., n are the eigenvalues of A2A

−1
1 .

Let us set

C = I + γ∇2g
(

Proxγg(z0)
)

= CT � 0,
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and rewrite A2A
−1
1 as

A2A
−1
1 = ∇2h

(
Proxγg(z0)

)
C−1(2C−1 − I)−1 = ∇2h

(
Proxγg(z0)

)
(2I − C)−1.

Note that ∇2h
(

Proxγg(z0)
)

is symmetric and (2I − C)−1 is symmetric, positive

definite. Therefore, λi(A2A
−1
1 ) ∈ R, and we can set

λ1(A2A
−1
1 ) ≥ λ2(A2A

−1
1 ) ≥ ... ≥ λn(A2A

−1
1 ).

In order to show det
(
A(z0)

)
6= 0, it suffices to show that 1 − γλ1(A2A

−1
1 ) > 0 when

γ ∈ (0, 1
Lg+Lh

).

We have

λ1(A2A
−1
1 )

(a)
≤ λ1

(
∇2h

(
Proxγg(z0)

))
· λ1

(
(2I − C)−1

)
≤ λ1

(
∇2h

(
Proxγg(z0)

))
· 1

2− (1 + γLg)

= ‖(∇2h
(

Proxγg(z0)
)
‖2 ·

1
1− γLg

(b)
≤ ‖∇2h

(
Proxγg(z0)

)
‖2

1
1− γLg

≤ Lh
1

1− γLg
,

where (a) is by [242, Corollary 11], and (b) is by Cauchy-Schwartz. Since

γ ∈ (0, 1
Lg+Lh

), we have

1− γλ1(A2A
−1
1 ) ≥ 1− Lh

γ

1− γLg
> 0.

Therefore, det
(
A(z0)

)
6= 0.

Theorem 6.4.4. Under Assumptions 6.4.1 and 6.4.2, DYS iteration (6.5) can be writ-

ten equivalently as

zk+1 = T (zk) = zk − αγA−1(zk)∇φγ(zk), (6.15)

where the metric is given by

A(z) := I − 2γ∇2gγ(z)− γ∇2h
(

Proxγg(z)
)(
I − γ∇2gγ(z)

)
,

and the envelope φγ is given by (6.6).
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Proof. In view of Lemma 6.3.1 and (6.4), we have

wk = p(zk)− Proxγg(zk) = Proxγf (rk − γqk)− Proxγg(zk), (6.16)

where

Proxγf (rk − γqk) = rk − γqk − γ∇fγ(rk − γqk).

Proxγg(zk) = zk − γ∇gγ(zk),

rk = 2 Proxγg(zk)− zk = zk − 2γ∇gγ(zk),

qk = q(zk) = ∇h
((
zk − γ∇gγ(zk)

))
.

By substitution,

wk = −γ∇gγ(zk)− γq(zk)− γ∇fγ
(
zk − 2γ∇gγ(zk)− γq(zk)

)
.

Let ∇z denote taking gradient to z; then,

∇zf
γ
(
z − 2γ∇gγ(z)− γ∇h

(
Proxγg(z)

))
= A(z)∇fγ

(
z − 2γ∇gγ(z)− γ∇h

(
Proxγg(z)

))
,

where A(z) is given in (6.12). After some computation, we can verify that

A(zk)wk =− γ
(
∇zg

γ(zk)− γ∇z‖∇gγ(zk)‖2
)

− γ
(
− γ∇z

(
〈∇h

(
Proxγg(zk)

)
,∇gγ(zk)〉

))
− γ∇zh

(
Proxγg(zk)

)
− γ

(
− γ

2
∇z‖∇h

(
Proxγg(zk)

)
‖2
)

−−γ∇zf
γ
(
zk − 2γ∇gγ(zk)− γ∇h

(
Proxγg(z)

))
=− γ∇φγ(zk).

Since A(zk) is invertible, we can rewrite DYS iteration (6.5) as (6.15).
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6.4.3 Local Minimizers Correspondence

Theorem 6.4.5. Under Assumptions 6.4.1 and 6.4.2, we have:

1. If Proxγg(z∗) ∈ arg minx∈B(Proxγg(z∗),δ) φ(x) for some δ > 0, then, z∗ is a local

minimizer of φγ.

2. If z∗ ∈ arg minz∈B(z∗,ε) φ
γ(z) for some ε > 0, then,

φ
(

Proxγg(z∗)
)
≤ φ

(
Proxγg(z)

)
for all z such that ‖z − z∗‖ ≤ ε.

That is, Proxγg(z∗) is a local minimizer of φ(x).

Proof of 1. Since Proxγg(z∗) is a local minimizer of φ, according to [194, Exercise 10.10],

we have

0 ∈ ∂φ
(

Proxγg(z∗)
)

= ∂f
(

Proxγg(z∗)
)

+∇g
(

Proxγg(z∗)
)

+∇h
(

Proxγg(z∗)
)
.

Since Proxγg is single-valued, this is equivalent to

0 ∈ ∂f
(

Proxγg(z∗)
)

+ 1
γ

(
− Proxγg(z∗) + z∗ + γ∇h

(
Proxγg(z∗)

))
,

Since f + 1
2γ‖ · ‖

2 is convex and Proxγf is single valued, this is further equivalent to

Proxγg(z∗) = Proxγf
(

2 Proxγg(z∗)− z∗ − γ∇h
(

Proxγg(z∗)
))

= p(z∗).

According to Lemma 6.3.1, Proxγf is 1
1−γβf

−Lipschitz continuous, we can conclude that

there exists η > 0 such that when ‖z − z∗‖ ≤ η, we have ‖p(z)− p(z∗)‖ ≤ δ and

φγ(z∗) = φ
(

Proxγg(z∗)
)

= φ
(
p(z∗)

)
≤ φ

(
p(z)

)
≤ φγ(z)− C1(γ)‖Proxγg(z)− p(z)‖2

≤ φγ(z).
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Proof of 2. According to Lemma 6.4.3, A(z) is invertible at z∗. Theorem 6.4.4 tells us

that φγ is differentiable at z∗, so ∇φγ(z∗) = 0 and Proxγg(z∗) = p(z∗). As a result, for

any z ∈ Rn with ‖z − z∗‖ ≤ ε we have

φ
(

Proxγg(z∗)
)

= φγ(z∗) ≤ φγ(z) ≤ φ
(

Proxγg(z)
)
.

Furthermore, according to Lemma 6.4.3 we have

Proxγg(z) = Proxγg(z∗) +
(
I + γ∇2g

(
Proxγg(z∗)

))−1
(z − z∗) + o(‖z − z∗‖).

Since
(
I + γ∇2g

(
Proxγg(z∗)

))−1
is positive definite, we know that Proxγg

(
B(z∗, ε)

)
contains a ball centered at Proxγg(z∗), as a result, Proxγg(z∗) is a local minimizer of

φ(x).

Now, let us show the one-to-one correspondence between the critical points of the

envelope φγ and the stationary points of the objective φ(x).

6.4.4 Critical and Stationary Point Correspondence

Theorem 6.4.6. Under Assumptions 6.4.1 and 6.4.2, z∗ is a critical point of φγ if and

only if Proxγg(z∗) is a stationary point of φ.

Proof. Since f is βf−weakly convex and γ ∈ (0, 1
βf

), by Lemma 6.3.1, we know that

Proxγf is single-valued. And by Theorem 6.4.4, we have

∇φγ(z) = −A(z) 1
γ

(p(z)− Proxγg(z)), (6.17)

where p(z) = Proxγf
(

(2 Proxγg(z) − z − γ∇h
(

Proxγg(z)
))

. So ∇φγ(z∗) = 0 if and

only if

Proxγg(z∗) = Proxγf
(

2 Proxγg(z∗)− z∗ − γ∇h(Proxγg(z∗)
))

= arg min
z
{f(z) + 1

2γ
‖z −

(
2 Proxγg(z∗)− z∗ − γ∇h

(
Proxγg(z∗)

))
‖2}.
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Since the objective in the arg min is convex, by [194, Exercise 10.10] we know that this

is equivalent to

0 ∈ ∂f
(

Proxγg(z∗)
)

+ 1
γ

(
− Proxγg(z∗) + z∗ + γ∇h(Proxγg(z∗)

))
.

By the definition of Proxγg and γ ∈ (0, 1
Lg+Lh

), this is further equivalent to

0 ∈ ∂f
(

Proxγg(z∗)
)

+∇g
(

Proxγg(z∗)
)

+∇h
(

Proxγg(z∗)
)

= ∂φ
(

Proxγg(z∗)
)
.

6.4.5 Strict Saddle Correspondence

In order to establish the correspondence between the strict saddles of φγ and φ, we

also need the following assumption.

Assumption 6.4.3. For any critical point z∗ of φγ, f is twice continuously differ-

entiable in a small neighbourhood of Proxγg(z∗), and there exits Lf > 0 such that

‖∇2f(Proxγg(z∗))‖ ≤ Lf . In addition, assume that γ ∈ (0, 1
Lf

).

Lemma 6.4.7. Let z∗ be a critical point of φγ. Under Assumptions 6.4.1, 6.4.2 and

6.4.3, φγ is twice differentiable at z∗ and

∇2φγ(z∗) = −A(z∗) 1
γ

(
Jp(z∗)− JProxγg(z∗)

)
(6.18)

Moreover, ∇2φγ(z∗) is symmetric.

Proof. (6.18) follows from (6.17), p(z∗) = Proxγg(z∗), and [208, Prop. 2.A.2].

Since f is weakly convex, by Lemma 6.3.1 we know that Proxγf is continuous, so

p(z) is continuous. As a result, φγ(z) is C1, which tells us that ∇2φγ(z∗) is symmetric.

Theorem 6.4.8. Let z∗ be a critical point of φγ. Under Assumptions 6.4.1, 6.4.2 and

6.4.3, z∗ is a strict saddle point of φγ if and only if Proxγg(z∗) is a strict saddle point

of φ.
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Proof. According to Lemma 6.4.7, we know that ∇2φγ(z∗) exists and it is symmetric.

Let z∗ be a strict saddle point of φγ(z), then, Taylor expansion gives

φγ(z) =φγ(z∗) + 1
2

(z − z∗)T∇2φγ(z∗)(z − z∗) + o(‖z − z∗‖2),

φ
(
p(z)

)
=φ

(
p(z∗)

)
+ 1

2
(
p(z)− p(z∗)

)T
∇2φ

(
p(z∗)

)(
p(z)− p(z∗)

)
+ o(‖p(z)− p(z∗)‖2).

On the other hand, (6.8) gives

φγ(z) ≥ φ
(
p(z)

)
.

Let ∇2φγ(z∗)v = λv, where ‖v‖ = 1 and λ < 0. Setting z − z∗ = αv, we arrive at

φγ(z∗) + 1
2
λα2 + o(α2)

≥ φ
(
p(z∗)

)
+ 1

2
(
p(z)− p(z∗)

)T
∇2φ

(
p(z∗)

)(
p(z)− p(z∗)

)
+ o(‖p(z)− p(z∗)‖2) (6.19)

Furthermore, (6.7), (6.8) together with p(z∗) = Proxγg(z∗) yield φγ(z∗) = φ
(
p(z∗)

)
,

combine this with (6.19) and ‖p(z) − p(z∗)‖ = O(‖z − z∗‖) = O(α), we conclude that

λmin

(
∇2φ

(
Proxγg(z∗)

))
< 0.

Similarly, let Proxγg(z∗) be a strict saddle of φ(z), then, Taylor expansions gives

φγ(z) =φγ(z∗) + 1
2

(z − z∗)T∇2φγ(z∗)(z − z∗) + o(‖z − z∗‖2),

φ(Proxγg
(
z)
)

=φ
(

Proxγg(z∗)
)

+ 1
2
(

Proxγg(z)− Proxγg(z∗)
)T
∇2φ

(
Proxγg(z∗)

)(
Proxγg(z)− Proxγg(z∗)

)
+ o(‖Proxγg(z)− Proxγg(z∗)‖2).

On the other hand, (6.7) gives

φγ(z) ≤ φ
(

Proxγg(z)
)
,

Let ∇2φ
(

Proxγg(z∗)
)
v = λv where ‖v‖ = 1 and λ < 0 is a negative eigenvalue

of ∇2φ
(

Proxγg(z∗)
)
, let us also set z = (Id + γ∇g)(Proxγg(z∗) + αv). Therefore,

Proxγg(z)− Proxγg(z∗) = αv, taking α→ 0 gives λmin
(
∇2φγ(z∗)

)
< 0.
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6.5 Avoidance of Strict Saddle Points

In this section, we first show that under Assumptions 6.4.1, 6.4.2 and 6.4.3, the proba-

bility for DRS and FBS with random initializations to converge to strict saddle points

of DRE and FBE is zero, respectively. Then, by combining this result with the corre-

spondence between the strict saddle points of the envelope and the objective, as stated

in Theorem 6.4.8, we can conclude that DRS and FBS, if convergent, will almost always

avoid the strict saddle points of the objective. Therefore, when the objective satisfies the

“strict saddle property", DRS and FBS, if they converge, will almost always converge

to local minimizers.

To prove the main result, Theorem 6.5.6, we need the following Stable-Center Man-

ifold Theorem, and its direct consequence, Theorem 6.5.2.

Theorem 6.5.1 states that, if T is a local diffeomorphism around one of its fixed

point z∗, then, there is a local stable center manifold W cs
loc with dimension equal to

the number of eigenvalues of the Jacobian of T at z∗ that are less than or equal to 1.

Furthermore, there exists a neighbourhood B of z∗, such that a point z must be in W cs
loc

if its forward iterations T k(z), for all k ≥ 0, stay in B.

Theorem 6.5.1 (Theorem III.7, Shub [206]). Let z∗ be a fixed point for a Cr local

diffeomorphism T : U → Rn, where U is a neighbourhood of z∗ and r ≥ 1. Suppose

E = Es
⊕
Eu, where Es is the span of the eigenvectors that correspond to eigenvalues of

JT (z∗) that have magnitude less than, or equal to, 1, and Eu is the span of eigenvectors

that correspond to eigenvalues of JT (z∗) that have magnitude greater than 1. Then,

there exists a Cr embedded disk W cs
loc that is tangent to Es at z∗, which is called the

local stable center manifold. Moreover, there exists a neighbourhood B of z∗, such that

T (W cs
loc) ∩B ⊆ W cs

loc and ∩∞
k=0T

−k(B) ⊆ W cs
loc, where T−k(B) = {z ∈ Rn : T k(z) ∈ B}.

The assumption of this following theorem is weaker than that of Theorem 2 of [119],

as we do not assume that T is invertible in Rn but only around every z∗ ∈ A∗
T .
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Theorem 6.5.2. Assume that T (z) = z+α
(
p(z)−Proxγg(z)

)
is a local diffeomorphism

around every z∗ ∈ A∗
T := {z ∈ Rn : z = T (z),maxi |λi

(
JT (z)

)
| > 1}, where A∗

T is

the set of unstable fixed points of T , and | · | denotes the magnitude. Then, the set

W = {z0 : lim zk ∈ A∗
T} has Lebesgue measure µ(W ) = 0 in Rn.

Proof. Take any z0 ∈ W , we have zk = T k(z0) → z∗ ∈ A∗
T , there exists t0 > 0, such

that for any t ≥ t0 we have T t(z0) ∈ Bz∗ . As a result,

T t(z0) ∈ S := ∩∞
k=0T

−k(Bz∗) for any t ≥ t0.

From Theorem 6.5.1 we know that S is a subset of the local center stable manifold

W cs
loc whose codimension is greater or equal to 1, so we have µ(S) = 0;

Finally, T t0(z0) ∈ S implies that z0 ∈ T−t0(S) ⊆ ∪∞
j=0T

−j(S), since

T−j(S) = T−j
(
∩∞
k=0 T

−k(Bz∗)
)

= ∩∞
k=jT

−k(Bz∗) ⊆ ∩∞
k=0T

−k(Bz∗) = S,

we can conclude that µ(W ) = 0.

Now let us show that T (z) in Theorem 6.5.2 is indeed a local diffeomorphism around

its fixed points.

Lemma 6.5.3. Let T (z) = z+α
(
p(z)−Proxγg(z)

)
and z∗ ∈ FixT . Under Assumptions

6.4.1, 6.4.2 and 6.4.3, there exists α0 > 0, such that T is a local diffeomorphism around

z∗ for α ∈]0, α0[.

Proof. By Assumptions 6.4.1, 6.4.2, and Lemma 6.3.1, p(z) is continuous, therefore

when z sufficiently close to z∗, p(z) is in the neighbourhood of Proxγg(z∗) guaranteed

by Assumption 6.4.3. Lemma 6.4.3 and chain rule tell us that

Jp(z) =
(
I + γ∇2f

(
p(z)

))−1
A(z),

JProxγg(z) =
(
I + γ∇2g

(
Proxγg(z)

))−1
,

where A(z) is defined in (6.12), so JT (z) exists and JT (z) = I + α(Jp(z) − JProxγg(z))

for z sufficiently close to z∗.

192



For the local invertibility of T around z∗, let us show that det(JT (z)) > 0 for z

sufficiently close to z∗.

First, let us define ψ(α) := det(I + αB), where B ∈ Rn×n. Then, we know that

ψ(α) is a polynomial of α and ψ(0) = 1.

Furthermore, the coefficients of this polynomial are sums of products of the entries

of B. Since each entry is bounded by ‖B‖F and ‖B‖F ≤
√
n‖B‖, we know that all the

coefficients of ψ(α) can be bounded by some polynomial of ‖B‖.

Now let us set

B = Jp(z)− JProxγg(z)

=
(
I + γ∇2f

(
p(z)

))−1
A(z)−

(
I + γ∇2g

(
Proxγg(z)

))−1
,

where A(z) is given in (6.12), we know that ‖B‖ is bounded for all z ∈ Rn.

As a result, there exists α0 > 0 such that det(JT (z)) > 0 for all α ∈ (0, α0).

Now we are ready to show the main result of this section: when α is small enough,

the probability for DRS and FBS to converge to any strict saddle point of φγ is 0, which

is also true for any strict saddle point of φ.

Lemma 6.5.4. Let Assumptions 6.4.1 and 6.4.2 hold, then z∗ ∈ FixT if and only if

∇φγ(z∗) = 0.

Proof. This follows directly from Theorem 6.4.4.

Theorem 6.5.5. Define Z∗ = {z∗ ∈ Rn |∇φγ(z∗) = 0, λmin
(
∇2φγ(z∗)

)
< 0} as the

set of strict saddle points of φγ. Under Assumptions 6.4.1, 6.4.2, and 6.4.3, if either

g = 0 or h = 0, then, for sufficiently small α, we have that the set W := {z0 ∈ Rn :

limk→∞ T kz0 ∈ Z∗} satisfies µ(W ) = 0.
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Proof. Take any z∗ ∈ Z∗, Lemma 6.4.3 states that A(z∗) is invertible and symmetric.

Also, ∇2φ(z∗) is symmetric.

According to (6.18), we have

Jp(z∗)− JProxγg(z∗) = −γA−1(z∗)∇2φγ(z∗),

since A−1(z∗)∇2φγ(z∗) is similar to A− T
2 (z∗)∇2φγ(z∗)A− 1

2 (z∗), we know that Jp(z∗)−

JProxγg(z∗) has real eigenvalues and

λmax
(
Jp(z∗)− JProxγg(z∗)

)
> 0.

Since

λmax
(
JT (z∗)

)
= 1 + αλmax

(
Jp(z∗)− JProxγg(z∗)

)
,

we know that Z∗ ⊆ A∗
T . Furthermore, from Lemma 6.5.3 we know that T is a local

diffeomorphism around every z∗ ∈ Z∗ ⊆ A∗
T , therefore Theorem 6.5.2 gives µ(W ) =

0.

Theorem 6.5.6. Define X∗ := {x∗ ∈ Rn |∇φ(x∗) = 0, λmin(∇2φ(x∗)) < 0} as the set

of strict saddle points of φ. Under Assumptions 6.4.1, 6.4.2, and 6.4.3, if either g = 0

or h = 0, then, the set V := {z0 ∈ Rn : limk→∞ Proxγg(T kz0) ∈ X∗} satisfies µ(V ) = 0.

Proof. Combine Theorem 6.4.8 with Theorem 6.5.5.

When the objective satisfies the strict saddle property, i.e., the stationary points of

the objective are either local minimizers or strict saddle points, we can conclude that

FBS and DRS almost always converge to local minimizers of the objective whenever

they converge.

Many problems in practice satisfy the strict saddle property. Examples include

dictionary learning [213], simple neural networks [46], phase retrieval [212], tensor de-

composition [97], and low rank matrix factorization [33].
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6.6 Conclusions

In this chapter, we have constructed an envelope for DYS and established various

properties of this envelope. Specifically, there are one-to-one correspondences between

the global, local minimizers, critical (stationary) points and strict saddle points of this

envelope and those of the original objective. Then, by the Stable-Center Manifold

theorem, we have shown that the probability for FBS or DRS to converge from random

starting points to strict saddle points of the envelope is zero. If the original objective

also satisfies the strict saddle property, we have concluded that, whenever FBS and

DRS converge, their iterates will almost always converge to local minimizers.

A limitation of this work lies in its smoothness assumptions. The construction of

the envelope requires the Lipschitz differentiability of g(x). Furthermore, twice differen-

tiability of f(x) at specific points is needed for the strict saddle avoidance property of

FBS and DRS. It is undoubtedly interesting to investigate the possibility of weakening

these assumptions in the future.
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