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ABSTRACT OF THE DISSERTATION

Operator Splitting Methods for Convex and Nonconvex Optimization

by

Yanli Liu
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 2020

Professor Wotao Yin, Chair

This dissertation focuses on a family of optimization methods called operator split-
ting methods. They solve complicated problems by decomposing the problem structure
into simpler pieces and make progress on each of them separately. Over the past two
decades, there has been a resurgence of interests in these methods as the demand for
solving structured large-scale problems grew. One of the major challenges for split-
ting methods is their sensitivity to ill-conditioning, which often makes them struggle
to achieve a high order of accuracy. Furthermore, their classical analyses are restricted
to the nice settings where solutions do exist, and everything is convex. Much less is

known when either of these assumptions breaks down.

This work aims to address the issues above. Specifically, we propose a novel acceler-
ation technique called inexact preconditioning, which exploits second-order information
at relatively low computation cost. We also show that certain splitting methods still
work on problems without solutions, in the sense that their iterates provide information
on what goes wrong and how to fix. Finally, for nonconvex problems with saddle points,
we show that almost surely, splitting methods will only converge to the local minimums

under certain assumptions.
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Part I

Introduction



CHAPTER 1

Introduction

This dissertation focuses on solving structured optimization problems. Specifically, we

consider the composite optimization problem of the following form:
minimize f(x) + g(x), (1.1)

where f and g are functions with special structures and can be nonsmooth or noncon-
vex. Common examples include the ¢;—norm |[|z||;, the indicator function dc(z) of a
nonempty convex set C, and the finite sum f(z) = 17, fi(z). Formulation (1.1)

captures problems in numerous research areas such as statistical and machine learning,

medical imaging, compressed sensing, and control theory.

In these applications, the problem dimension (e.g., the size of the optimization
variable ) is often very large, and the per-iteration computation cost of second-order
methods (e.g., interior-point methods) is prohibitively high. Therefore, to solve (1.1)
efficiently, first-order methods are widely applied. Among them, operator splitting meth-
ods are popular choices since they can decompose complicated problem structures into
smaller pieces, and lead to simple algorithms that are easy to implement and have
low per-iteration cost. This dissertation aims to accelerate the convergence of operator
splitting methods and to analyze their behavior in the pathological'! and nonconvex

settings.

Loosely speaking, pathological problems are the problems without a solution.



1.1 Background

Since the 1980s, a family of second-order methods called interior-point methods (IPMs)
have been studied intensively by the optimization research community. In these meth-
ods, the key feature is the use of logarithmic barrier function to incorporate the problem
constraints, and the logarithmic function serves well as a barrier function due to its self-
concordance property [161]. IPMs were first applied for linear programs [98]. Soon after
the important role of logarithmic barrier functions was understood, IPMs were general-
ized to quadratic and nonlinear problems [222]. Today, IPMs have been implemented
efficiently in popular software packages [5, 166, and are often very suitable to solve
problems of small or medium size. However, for many very large-scale problems that
arise in modern machine learning, IPMs are often inefficient since at each iteration,
[PMs require solving a linear system that involves second-order information of the ob-
jective. This linear system scales as the problem dimension and leads to a prohibitive

per-iteration computation cost.

In view of this, much attention in optimization research has been directed to first-
order methods in the past two decades. These methods only use first-order information
such as gradient, subgradient, and proximal mapping®, which are often cheap to obtain,
and their cost scales well with the problem dimension. As a result, these methods
are often easy to implement and enjoy low per-iteration cost. Two most prototypical
examples are gradient descent and proximal point method [192], which only require
evaluations of gradient or proximal mapping at each iteration. This makes them distinct
from Newton’s method, which is a classical second-order method. Aside from the
aforementioned advantages, first-order methods are also amenable to parallelization,
which is preferable for training large-scale models. One of the most notable examples is

the widely applied Stochastic Gradient Descent (SGD) [189] for neural network training,.

'The proximal mapping for a function f is defined as Proxs(z) = argmin, {f(y) + §[ly — z[|*}, a
formal definition can be found at Sec. 1.4.



Based on gradient descent and proximal point method, numerous first-order algo-
rithms have been developed. Some of the most popular prominent examples are, accel-
erated gradient methods [163, 29], stochastic gradient methods [189, 115], subgradient
methods [205, 181, 205], mirror descent [159, 51, 28], coordinate descent [182, 113, 75],
conditional gradient methods [93, 123, 79], and operator splitting methods that include,
proximal gradient methods [133], Alternating Direction Method of Multipliers (ADMM)
[94, 104], and Primal-Dual Hybrid Gradient (PDHG) [244, 49], and many other exten-
sions. These methods are designed for different problem settings, but are related to
each other in different ways. Furthermore, combining their features may lead to new

algorithms that can solve more chanllenaging problems.

1.2 Operator Splitting Methods

Operator splitting methods are a family of first-order methods as they only rely on the
first-order information of the objective. Their study originated from the seminal work
by Sophus Lie on the Lie scheme in the 1890s [128]. At first, they were designed to
solve the PDEs arising from computational physics. Later in the 1970s, the theory
of monotone operators came into play, and these optimization methods were related
to certain operator splitting schemes. For example, the projected gradient method
corresponds to forward-backward splitting (FBS) [133], and the Alternating Direction
Method of Multipliers (ADMM) corresponds to Douglas-Rachford splitting (DRS) [94].
This interpretation provides a unified view for these methods and has inspired the
design and analysis of new optimization methods [69, 62, 235, 218, 45]. An overview of

several common splitting methods can be found in Section 1.5.

The underlying principle of splitting methods is to decompose complicated problem
structures into simple components, and deal with them separately by solving subprob-
lems that only involve individual components. Another feature is that some of these

components are allowed to be nonsmooth. In the past 15 years or so, optimization mod-



els in numerous research areas require solving nonsmooth optimization problems that
are built up from simple components. To name a few, compressed sensing [76], Lasso
[217], logistic regression [117] and image denoising [151] all involve sums of multiple
functions and require an ¢;—norm penalty term to promote sparsity in their solutions.
Therefore, the aforementioned advantages have led to the recent resurgence of interest

in operator splitting methods.

However, splitting methods often suffer from their sensitivity to ill-conditioning,
which is a common challenge for other first-order methods as well, due to the lack of
second-order information. Furthermore, The classical analyses of splitting methods are
constrained to non-pathological settings, where a primal-dual solution pair is assumed
to exist, and strong duality holds. While in fact, even simple convex problems may not
satisfy these assumptions'. Finally, the classical theory of splitting methods heavily
relies on the monotonicity of the individual operators, which is lacking under nonconvex

settings.

This dissertation aims to accelerate the convergence of operator splitting algorithms
for convex problems and to analyze their behaviors in the pathological and nonconvex

settings. The contributions are listed as follows.

1.3 Contributions

1.3.1 Acceleration by inexact preconditioning

As first-order algorithms, operator splitting methods suffer from slow (tail) convergence,
especially on poorly conditioned problems. They may take thousands of iterations and
still struggle to reach four digits of accuracy. While they have many advantages such
as being easy to implement and friendly to parallelization, their sensitivity to problem

conditions is their main disadvantage.

1For example, consider the following two problems: (i) min,<; z, and (ii) Find z € [-2,-1]N [0, 1].



To improve their performance of on ill-conditioned problems, researchers have tried
to apply preconditioning, which is an idea first proposed for solving linear systems, and
later applied to simple algorithms such as gradient descent. Recently, it has also been
widely applied on splitting methods such as forward-backward splitting (FBS) [224,
61, 45, 230], Douglas-Rachford splitting (DRS) [42, 43], Primal-Dual Hybrid Gradient
(PDHG) [179], and alternating directions method of multipliers (ADMM).[99, 100].

Depending on the application and how one applies splitting, these preconditioned
algorithms may or may not have subproblems with closed-form solutions. When they
do not, the cost of solving subproblems has to be taken into consideration. Previous
works either assume the existence of an oracle that returns the exact solution of the
subproblems, or allow approximate subproblem solutions with quickly diminishing er-
rors [185, 83, 164, 126, 87, 86]. In either of these two cases, the total cost is prohibitive

under realistic settings.

In Part II of this dissertation, we present a new preconditioning technique called in-
ezxact preconditioning and apply it to PDHG, ADMM, and Stochastic Variance-Reduced
Gradient (SVRG). Conceptually, this technique involves two steps. First, one selects ap-
propriate preconditioners based on specific problem structures and splitting algorithms.
Then, one applies the preconditioned algorithms and solve the subproblems highly inez-
actly by warmstart and a fixred number of simple subroutines. Efficient subroutines can
be chosen based on different subproblem structure and in particular, one does not need
to enforce the errors to be diminishing in certain ways as in previous works. Theoreti-
cally, We show that this inexact preconditioning strategy brings significant acceleration
to PDHG, ADMM, and SVRG. In practice, the efficacy of inexact preconditioning is
demonstrated on several popular models such as logistic regression, graph cut, and

computed tomography (CT) reconstruction, where a 4-95x speedup is observed.



1.3.2 Convergence behavior on pathological problems

Many convex optimization algorithms have strong theoretical guarantees and empirical
performance, but they are often limited to non-pathological problems'; under patholo-
gies often the theory breaks down and the empirical performance degrades significantly.
In fact, the behavior of convex optimization algorithms under pathologies has been
studied much less, and many existing solvers often simply report “failure” without in-
forming the users of what went wrong upon encountering infeasibility, unboundedness,
or other pathologies. Pathological problems are numerically challenging, but they are
not impossible to deal with. As pathologies can arise in practice (see, for example,
[141, 140, 225, 229, 78]), designing a robust algorithm that behaves well in all cases is

important to the completion of a robust solver.

In Part IIT of this dissertation, we study the behavior of DRS and ADMM for
pathological convex programs. Perhaps surprisingly, we show that although the iterates
of DRS and ADMM diverge for pathological problems, the precise manner in which
they diverge still provides useful information regarding the type of pathology that we
encounter. Specifically, for a class of convex programs called conic programming, many
pathologies can be identified by investigating the divergence pattern of the iterates.
Furthermore, for certain types of pathologies, this divergence pattern informs us how to
modify the pathological program to remove the pathology. For general convex problems,
certain pathologies can still be identified, and we establish that DRS and ADMM only
require strong duality to work even when the primal and /or dual solution does not exist,

in the sense that the objective values of the iterates are asymptotically optimal.

!Problems that have both primal and dual solutions, and strongly duality holds.



1.3.3 Convergence behavior on nonconvex problems

Operator splitting methods are traditionally analyzed under the assumption that the
subdifferentials of the objective functions are maximally monotone. While for non-
convex functions, their subdifferentials are generally non-monotone. Therefore, the
majority of the existing results on splitting methods apply only to convex objective
functions. Recently, FBS and DRS are found to numerically converge for certain non-
convex problems [209, 215, 125, 6, 54]. Theoretically, their iterates have been shown to
converge to stationary points under some nonconvex settings [10, 125, 216, 108]. How-
ever, it remains possible that the limits of their convergent sequences are saddle points

instead of local minimums.

In Part IV of this dissertation, we show that under some smoothness conditions,
FBS and DRS can avoid the strict saddle points' almost surely, in the sense that the
probability for DRS and FBS iterations with random initializations to converge to
strict saddle points of their respective objectives is zero. The main technical tools to
achieve this are (i) Forward-Backward Envelope (FBE) [215], Douglas-Rachford Enve-
lope (DRE) [171] from nonconvex analysis, and (ii) Stable-Center Manifold Theorem

[206] from dynamical systems.

FBE and DRE are functions with nice properties even in the nonconvex settings.
In particular, they share the same stationary points, local minimizers, and strict saddle
points with the objectives of FBS and DRS, respectively. Furthermore, the FBS and
DRS iterations can be written as (preconditioned) gradient descent iterations on FBE
and DRE. By analyzing these gradient descent iterations with the Stable-Center Man-
ifold Theorem, one can show that whenever FBS and DRS converge, their limits will
not be the strict saddles of FBE and DRE almost surely, which are exactly the strict
saddles of their corresponding objective functions. Consequently, for many practical

models that satisfy the strict saddle property?, FBS and DRS will almost always avoid

T.e., saddle points with a negative curvature.



the strict saddle points whenever they converge.

1.4 Notations and Preliminaries

In this section, we review standard notions of convex analysis, state several known
results, and set up the notation. For the sake of brevity, we omit proofs or direct
references of the standard results and refer interested readers to standard references
such as [190, 195, 17]. Other relevant results will be provided at the beginning of each

chapter.

We use || - || for fa—norm, || - ||; for ;—norm, and (-,-) for dot product. We use I,
to denote the identity matrix of size n x n. M > 0 means M is a symmetric, positive

definite matrix, and M > 0 means M is a symmetric, positive semidefinite matrix.

We write Apin (M) and Apax(M) as the smallest and the largest eigenvalues of M,
respectively, and k(M) = % as the condition number of M. For M = 0, let || - ||

and (-,-)y denote the semi-norm and inner product induced by M, respectively, i.e.,
(z,y)nr = 2T My, |||y = VaTMz. If M > 0, then || - || is a norm.

A function f is convex if f(fx+ (1 —0)y) < 0f(z)+(1—0)f(y) for all z,y € R" and
0 € 10,1]. A function f is closed if its epigraph {(x, a) e R | f(z) < a} is a closed
subset of R"™. We say f : R" — RU {oo} is proper if f(z) < oo for some x. In this
work, we focus our attention on proper, closed, and convex (PCC) functions most of the
time. If f and g are PCC functions, then f+g¢is PCC or f+¢g = oo everywhere. If v > 0,
then ~f is PCC. Define the (effective) domain of f as dom f = {x € R"| f(z) < oc}.

For any v > 0, we have dom~f = dom f.

For a proper closed convex function f : R* — R U {400}, its subdifferential at

x € dom f is written as

Of(x) ={veR" | f(z) > f(z)+ (v,z — x), Vz € R"},

2That is, the stationary points of the objective are either local minimizers or strict saddle points.
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and its convex conjugate as

f(y) = sup {(y,z) — f(z)}.

z€RM
We have y € df(z) if and only if = € f*(y).
If f is convex and proper, then f* : R" — R U {oo} is PCC. If f is PCC, then
(f*)" = f. For any v > 0, we have (yf)*(z) = vf*(z/v) and dom (yf)* = ydom f*. If
h(z) = g(—w), then h*(y) = ¢"(=y).

We say that f: R" — R is Ly—smooth, if it is differentiable and satisfies
L n
fy) < F@) + (VI @),y =) + 5 lly — all*, Yo,y € R
Note that a smooth function f may be nonconvex.
We say that f is oy—strongly convex, if

J() 2 J(@) + (Vi(@)y =) + Flly = ]’ Va,y € R,

A set C is convex, if z,y € C and 6 € [0, 1] implies 6z + (1 — 0)y € C. Write C for
the closure of C. If C'is convex C is convex. The Minkowski sum and differences of A

and B are
A+B={a+0blac A, be B}, A-—B={a—-blac A be B},

respectively. If A and B are convex, then A + B and A — B are convex. However,
neither A+ B nor A — B is guaranteed to be closed, even when A and B are nonempty

closed convex sets.

For the distance between z € R™ and the set A, write
dist(z, A) = inf{||z — a||| a € A}.
For the distance between A and B, write

dist(A, B) = inf{|la — b|||a € A, b € B}.
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Note that dist(A, B) = 0 if and only if 0 € A — B.

Define the projection onto C' as Il¢(xg) = argmin, . || — zo||. When C' is closed

and convex, Ilo : R™ — R™ is well-defined, i.e., the minimizer uniquely exists.

Define the indicator function with respect to C' as

0 ifzedC,
do(z) =
oo otherwise.

When C'is closed convex, 6 : R* - R U {o0} is PCC.

Define the support function of C' as

oc(y) = igg{@c, Y)}-

oc : R" - RU {oo} is PCC. When C' is convex, we have oc = 05. If A and B are

convex, then 04,5 = 04 + op. If C is closed and convex, then (o¢)* = d¢.

Define the proximal operator Proxy : R" — R" as

Proxs(z) = argmin {f(:c) + (1/2)||lx — zHQ} :

TzER™

When f is PCC, the arg min uniquely exists, and therefore Prox; is well-defined. When
C' is closed and convex, Prox;, = Illc. When f is PCC, Prox; 4 Prox;- = I, where
I : R™ — R"™ is the identity operator.

A mapping T : R" — R" is nonexpansive if | T(x) =T (y)|| < ||[x—y] for all z,y € R™.
Nonexpansive mappings are, by definition, Lipschitz continuous with Lipschitz constant

1. T : R"™ — R"” is firmly-nonexpansive if

IT(2) = TW)II* < (z -y, T(x) = T(y))

for all =,y € R™. Proximal and projection operators are firmly-nonexpansive.

1.5 Common Operator Splitting Schemes

Now let us list some common operator splitting schemes. All of them can be cast as

k

fized point iterations of the form z*+! = T'2* where T is a firmly-nonexpansive operator,
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and z* belongs to some Hilbert space H.

Forward-backward splitting (FBS) [133] FBS solves the following problem:
minimize f(z) +g(x),

where f is PCC and smooth, and g is PCC.

Define T' = Prox,,(I — YV f). Then, the iteration of FBS can written as

" = Ta* = Prox,, (iUk - ’va(xk)) :
Or equivalently,

yb = ab — AV f(2b),

2" = Prox,, (y"),

where v > 0 is a stepsize.

From the above iteration, we can see that FBS "splits" the problem by dealing with
f and g separately.

Later, we will also work on another algorithm called Stochastic Variance-Reduced
Gradient (SVRG) [114], which extends FBS to the following setting:

minimize f(z) + g(x) = 3 filz) + g(a).

TEH i1

Here, f admits a finite sum structure, and its full gradient V f(z*) may be expensive
to obtain when n is large. In SVRG, a cheaper semi-stochastic gradient V* at z* is

applied instead. Specifically,
VE= Vi) + (Vi (") = Vi, (),

where V f(2*") is a previous full gradient at some iteration, and it will be recycled for

some later iterations k > k. iy is picked uniformly at random from {1,2,...,n}.
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SVRG iteration can be then written as
zhtl = Prox,, (:z:k — W@k) .
Douglas-Rachford Splitting (DRS) [77] DRS solves the following problem
mh;ier{[lize flx)+ g(z),

where f and g are PCC.

Define T' = $1+ £(2Prox,; —I)(2Prox,; —I), where v > 0 is a stepsize. Then, DRS

iteration can be written as

or equivalently,

2" H2 = Prox, ;(2F),

k1 _ k+1/2 _ Lk
2" = Prox,,(2x — 2",

R L S R ]

z i

We will also work on another closely related algorithm called Alternating Direc-

tion Method of Multipliers (ADMM) [94, 104], which solves the following problem

minimize f(x) +g(y)

subject to Ax + By = ¢,
where f : R? — RU{oo} and g : R? - RU {oo} are PCC, A € R"**, B € R™*, and
ce R,

1
¥ € arg min {f(x) + (V*, Az + By* —¢) + %HAw + By* — CHQ}
TERP

1
Y"1 € argmin { g(y) + (¥, A" 4 By — o) + o—[|Ac**! 4 By — |
yER4 2’)/

Vk—i—l _ Vk: + (1/”)/)(A$k+l + Byk—i-l o C).
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Under mild regularity assumptions, it can be shown that DRS and ADMM are
equivalent [82, 84, 236].

Primal-Dual Hybrid Gradient (PDHG) [49] The method of Primal-Dual Hybrid
Gradient or PDHG for solving solves
mineilﬂrgqize f(z) + g(Az),
where f : R — RU{oo}, g : R™ — RU{oo} are PCC, and A € R™*". PDHG refers
to the iteration
2" = Prox, s (z* — 7AT2F),
T = Prox,,« (2F + 0 A2 — 2F)),

where 7,0 > 0 are stepsizes.

Define
of AT
—-A 9g*
and let
Lp  —AT
M=1" = 0.
A 1,

Then, the above PDHG iteration can be written as
yk+1 — Tyk — (]'_|_ ]\4’7114)71yk:7
where y* = (2F, 2F)T.

The operator T = (I + M~*A)~! is firmly nonexpansive in || - [|5;, and y* will

converge to a primal-dual solution pair [112].
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Part 11

Acceleration by Inexact

Preconditioning
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In this part, we present the inexact preconditioning technique for accelerating several

operator splitting algorithms, the results can also be found in [138] and [136].

The inexact preconditioning technique consists of two steps: (i) find appropriate
preconditioner(s) based on the objective and the specific splitting algorithm, and (ii)

solve the subproblems inexactly by just a fixed number of simple subroutines.

In Chapter 2, we apply this technique to accelerate PDHG and ADMM, the resulting
algorithm is called inexact preconditioned PDHG (iPrePDHG), which is summarized in
Algorithm 2.1. First, we provide a criterion for choosing preconditioners in Lemma 2.3.1
and Theorem 2.3.2. It turns out that most of the time, the optimal preconditioners will
be non-diagonal, and the subproblems will not have closed-form solutions. Therefore,
we propose to solve them until a certain condition is satisfied (see Definition 2.3.1).
Remarkably, this condition is easily satisfied by applying some simple subroutines a
fixed number of times (see Theorems 2.3.3 and 2.3.4). Finally, we prove the global
convergence of iPrePDHG in Theorem 2.3.9, and provide extensive numerical tests in

Section 2.4.

The structure of Chapter 3 is similar. We aim to accelerate SVRG and Katyusha X!
by inexact preconditioning, and the new algorithms are called iPreSVRG and iPreKatX,
respectively (see Algorithms 3.1 and 3.2). The preconditioner M should decrease the
condition number and can vary for different objectives(see Definition 3.2.3). in Section
3.5. To prove acceleration, we first show that it is fine to solve the subproblems by
applying FISTA with restart a small number of times so that a certain error condition
will be satisfied (see Lemmas 3.4.1 and 3.4.4). Furthermore, when this error condition
is satisfied, the global convergence of iPreSVRG and iPreKatX is guaranteed (see The-
orems 3.4.2 and 3.4.3). Finally, we proved the acceleration of iPreSVRG over SVRG,
as well as the acceleration of iPreKatX over Katyusha X in Theorems 3.4.5 and 3.4.6.

This acceleration is also observed numerically on Lasso and logistic regression.

'Katyusha X is a Nesterov-accelerated version of SVRG.
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CHAPTER 2

Inexact Preconditioning for PDHG and ADMM

2.1 Introduction

In this chapter, we consider the following optimization problem:
mineiﬂrg}@ize f(z) + g(Ax), (2.1)
together with its dual problem:

mineiﬂrgpnize [ (—AT2) + g% (2), (2.2)

where [ : R* - RU{+o00} and g : R™ — RU{+o0} are closed proper convex, and

A € R™ ™ is a matrix, f* and g* are the convex conjugates of f and g, respectively.

Formulations (2.1) or (2.2) are abstractions of many application problems, which
include image restoration [244], magnetic resonance imaging [221], network optimiza-
tion [90], computer vision [180], and earth mover’s distance [127]. For many of them,
primal-dual algorithms such as Primal-Dual Hybrid Gradient (PDHG) and Alternating
Direction Method of Multipliers (ADMM) have been popular choices.

However, as a first-order algorithm, PDHG and ADMM suffer from slow (tail) con-
vergence especially on poorly conditioned problems. They may take thousands of iter-
ations and still struggle reaching just four digits of accuracy. While they have many
advantages such as being easy to implement and friendly to parallelization, their sensi-

tivity to problem conditions is their main disadvantage.

To improve the performance of PDHG and ADMM, researchers have tried using

preconditioners, which has been widely applied for forward-backward type of methods
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[224, 61, 45], as well as other methods [44, 62, 112, 223]. Depending on the application
and how one applies splitting, preconditioned PDHG and ADMM may or may not have
subproblems with closed-form solutions. When they do not, researchers have studied
approximate subproblem solutions to reduce the total running time. In this work, we
propose a new way of applying preconditioning that outperforms the existing state-of-

the-art.

2.1.1 Proposed approach

Simply speaking, we find a way to have both non-diagonal preconditioners (thus much
fewer iterations) and very simple subproblem procedures (thus maintaining the advan-

tages of PDHG and ADMM).

First, we apply preconditioning. We present Preconditioned PDHG (PrePDHG)
along with its convergence condition and a performance bound. We propose to choose
preconditioners to optimize the bound. In the special case where one preconditioner
is trivially fixed as an identity matrix, optimizing the bound gives us the optimal
choice of the other preconditioner, which actually reduces PrePDHG to ADMM. This
observation explains why ADMM often takes fewer iterations than PDHG (as PDHG

sets both preconditioners to identity matrices).

Next, we study how to solve PrePDHG subproblems. In all applications we are
aware of, only one of the two subproblem is (subject to) ill-conditioned. (After all, we
can always apply splitting to gether ill-conditioned components into one subproblem.)
Therefore, we choose a non-diagonal preconditioner for the ill-conditioned subproblem
and a trivial or diagonal preconditioner for the other subproblem. Again, the pair of
preconditioners should be chosen to (nearly) optimize the performance bound. Since
the non-diagonal preconditioner introduces dependence between different coordinates,
its subproblem generally does not have a closed-form solution. In particular, if the

subproblem has an ¢;-norm, which is often the reason why PDHG or ADMM is used, it
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often loses its closed-form solution due to the preconditioner. Therefore, we propose to
approximately solve it to satisfy an accuracy condition. Remarkably, there is no need
to dynamically stops a subproblem procedure to honor the condition. Instead, the con-
dition is automatically satisfied as long as one applies a common iterative procedure for
some fized number of iterations, which is new in the literature. Common choices of the
procedure include proximal gradient descent, FISTA with restart, proximal block co-
ordinate descent, and accelerated block-coordinate-gradient-descent (BCGD) methods

(e.g., [132, 3, 109]). We call this method iPrePDHG (i for “inexact”).

Next, we establish the overall convergence of iPrePDHG. To handle the inexact
subproblem, we first transform iPrePDHG into an equivalent form and then analyze an
Lyapunov function to establish convergence. The technique in our proof appears to be

new in the PDHG and ADMM literature.

Finally, we apply our approach on a few applications including image denoising,
graph cut, optimal transport, and CT reconstruction. For the last application, we use
a diagonal preconditioner in one subproblem, which gives it a closed-form solution, and
a non-diagonal preconditioner in the other, which we approximately solve. In each
of the other applications, one subproblem uses no (identity) preconditioner, and the
other uses a non-diagonal preconditioner. We numerically evaluated the performance
of iPrePDHG using these recommended preconditioners and observed speedups of 4-95

times over the existing state-of-the-art.

Since we show ADMM is a special PrePDHG with one trivial preconditioner, our
approach can also accelerate ADMM. In fact, for three of the above four applications,
there are one trivial preconditioner in each, so their iPrePDHG are inexact precondi-

tioned ADMM.
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2.1.2 Related Literature

Many problems to which we apply PDHG have separable functions f or g, or both, so
the resulting PDHG subproblems often (though not always) have closed-form solutions.
When subproblems are simple, we care mainly about the convergence rate of PDHG,
which depends on the problem conditioning. To accelerate PDHG, diagonal precondi-
tioning [179] was proposed since its diagonal structure maintains closed-form solutions
for the subproblems and, therefore, reduces iteration complexity without making each
iteration more difficult. In comparison, non-diagonal preconditioners are much more
effective at reducing iteration complexity, but their off-diagonal entries couple different
components in the subproblems, causing the lost of closed-form solutions of subprob-

lems.

When a PDHG subproblem has no closed-form solution, one often uses an itera-
tive algorithm to approximately solve it. We call it Inexact PDHG. Under certain
conditions, Inexact PDHG still converges to the exact solution. Specifically, [185] uses
three different types of conditions to skillfully control the errors of the subproblems;
all those errors need to be summable over all the iterations and thereby requiring the
error to diminish asymptotically. In an interesting method from [42, 43|, one subprob-
lem computes a proximal operator of a convex quadratic function, which can include
a preconditioner and still has a closed-form solution involving matrix inversion. This

proximal operator is successively applied n times in each iteration, for n > 1.

ADMM has different subproblems. One of its subproblems minimizes the sum of
f(z) and a squared term involving Az. Only when A has special structures does the sub-
problem have closed-form solutions. Inexact ADMM refers to the ADMM with at least
one of its subproblems inexactly solved. An absolute error criterion was introduced
in [83], where the subproblem errors are controlled by a summable (thus diminishing)
sequence of error tolerances. To simplify the choice of the sequences, a relative error

criterion was adopted in several later works, where the subproblem errors are controlled
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by a single parameter multiplying certain quantities that one can compute during the
iterations. In [164], the parameters need to be square summable. In [126], the parame-
ters are constants when both objective functions are Lipschitz differentiable. In [87, 86],
two possible outcomes of the algorithm are described: (i) infinite outer loops and finite
inner loops, and (ii) finite outer loops and the last inner loop is infinite, both guarantee-
ing convergence to a solution. On the other hand, it is unclear how to recognize them.
Since there is no bound on the number of inner loops in case (i), one may recognize it

as case (ii) and stop the algorithm before it converges.

There are works that apply certain kinds of preconditioning to accelerate ADMM.
Paper [99] uses diagonal preconditioning and observes improved performance. After
that, non-diagonal preconditioning is analyzed [42, 43], which presents effective precon-
ditioners for specific applications. One of their preconditioners needs to be inverted
(though not needed in our method). Recently, preconditioning for problems with linear

convergence has also been studied with promising numerical performances [100].

2.1.3 Organization

The rest of this chapter is organized as follows: Section 2.2 establishes notation and
reviews basics. In the first part of Section 2.3, we provide a criterion for choosing
preconditioners. In its second part, we introduce the condition for inexact subproblems,
which can be automatically satisfied by iterating a fixed number of certain inner loops.
This method is called iPrePDHG. In the last part of Section 2.3, we establish the
convergence of iPrePDHG. Section 2.4 describes specific preconditioners and reports

numerical results. Finally, Section 2.5 concludes this chapter.
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2.2 Preliminaries

In addition to the preliminaries introduced in Sec. 1.4, we need the following in this

chapter.

For any M > 0, we define the extended proximal operator of ¢ as

. 1
Proxg[(x) = argegun{gb(y) + §||y — |3} (2.3)
y n

If M =~ for v > 0, it reduces to a classic proximal operator.

We also have the following generalization of Moreau’s Identity:

Lemma 2.2.1 ([60], Theorem 3.1(ii)). For any proper closed convex function ¢ and

M = 0, we have

—1

r = Proxy(x) + Mt Proxé\ﬁ (Mzx). (2.4)

We say a proper closed function ¢ is a Kurdyka-ojasiewicz (KL) function if, for each
zo € domg, there exist n € (0, 00|, a neighborhood U of xy, and a continuous concave

function ¢ : [0,7) — R, such that:

2. ¢ is C' on (0,7n),
3. for all s € (0,m),¢'(s) > 0,

4. forall z € UN{z|d(z0) < ¢(x) < ¢(x0) + n}, the KL inequality holds:

' (p(x) — ¢(0))dist(0, Dp(x)) > 1.

2.3 Main results

This section presents the key results of this chapter. In Sec. 2.3.1 we demonstrate how

to apply preconditioning to PDHG. Then, we establish rules of preconditioner selection
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in Sec. 2.3.2. In Sec. 2.3.3, we present the proposed method iPrePDHG. Finally, we
establish the convergence of iPrePDHG in Sec. 2.3.4.

Throughout this section, we assume the following regularity assumptions:

Assumption 2.3.1.

1. [:R* 5> RU{+0}, g: R™ = RU{+o0} are proper closed convez.

2. A primal-dual solution pair (x*,z*) of (2.1) and (2.2) exists, i.e.,
0cOf(z*)+A"2*, 0¢c dg(Az*) — 2~

The problem (2.1) also has the following convex-concave saddle-point formulation:

min max ¢(z, z) = f(x) + (Az, z) — g*(2). (2.5)

zER" zeR™

A primal-dual solution pair (z*, z*) is a solution of (2.5).

2.3.1 Preconditioned PDHG

The method of Primal-Dual Hybrid Gradient or PDHG [244, 49] for solving (2.1) refers

to the iteration

" = Prox, ;(zF — TAT2F),
(2.6)
P = Prox, - (2% + 0 A(22F ! — 2%)).

When = > [|A||?, the iterates of (2.6) converge [49] to a primal-dual solution pair
of (2.1). We can generalize (2.6) by applying preconditioners M, My > 0 (their choices
are discussed below) to obtain Preconditioned PDHG or PrePDHG:

g = Proxﬁ\fl(mk — MTATZRY,
(2.7)
2= Prox )P (2% + My A2 — o*)),
where the extended proximal operators Prox?/h and PI‘OXé\{Q are defined in (2.3). We

can obtain the convergence of PrePDHG using the analysis in [50].
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There is no need to compute M; ' and M, ' since (2.7) is equivalent to
1
2" = argmin{ f(x) + (z — 2, A7) + §||x — 23, 1
reR®

1
= argmin{g*(2) — (z — 2", A(22FT — 2F)) + 5”2 — 235}
z€R™

(2.8)

2.3.2 Choice of preconditioners

In this section, we discuss how to select appropriate preconditioners M; and M. As
a by-product, we show that ADMM corresponds to choosing M; = %In and optimally
choosing M, = TAAT, thereby, explaining why ADMM appears to be faster than
PDHG.

Let us start with the following lemma, which characterizes primal-dual solution

pairs of (2.1) and (2.2).
Lemma 2.3.1. Under Assumption 2.3.1, (X, Z) is a primal-dual solution pair of (2.1)
if and only if o(X,z) — p(x,Z) < 0 for any (x,z) € R*™™™ where ¢ is given in the
saddle-point formulation (2.5).
Proof. 1f (X, Z) is a primal-dual solution pair of (2.1), then
~ATZ € 0f(X), AX €0g*(2).
Hence, for any (z,z) € R™™™ we have
fl@) = f(X)+(-A"Zz — X), ¢"(2) 2 ¢°(2) + (AX, 2 — Z).
Adding them together yields p(X, 2) — ¢(x, Z) < 0.
On the other hand, if ¢(X, z) — ¢(z, Z) < 0 for any (z,z) € R"™™ then
(AX, 2) + f(X) — g*(2) — (Ax, Z) — f(x) + ¢"(Z) <0 for any (x,2) € R"™.

Taking © = X yields (AX,z — Z) — ¢*(2) + ¢*(Z) < 0, so AX € 9¢*(Z); Similarly,
taking 2 = Z gives (AX — Az, Z) + f(X) — f(x) < 0,50 —ATZ € 9f(X). As a result,
(X, Z) is a primal-dual solution pair of (2.1). O
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We present the following convergence result, adapted from Theorem 1 of [50].

Theorem 2.3.2. Let (z*,2%),k = 0,1, ..., N be a sequence generated by PrePDHG (2.7).
Under Assumption 2.3.1, if in addition
. M, —AT
M :
—-A M,

then, for any x € R* and z € R™, it holds that

1
(p(XN7 "7’) - QO(.T, ZN) < ﬁ(x - :CO,Z - ZO) ) (210)
—-A M, z— 20

N _ 1N i N _ 1N i
where X* = 35,0 2" and Z7 = 3750, 2"

Proof. This follows from Theorem 1 of [50] by setting Ly = 0, 2D, (z, o) = 5|lz—2"|3,,,
1D.(z,20) = 3llz — 2°[|34,, and K = A. Note that in Remark 1 of [50], D, and D,
need to be 1—strongly convex to ensure their inequality (13) holds, which is exactly our

(2.9). Therefore, we do not need D, and D, to be strongly convex. O

Based on the above results, one approach to accelerate convergence is to choose
preconditioners M; and M, to obey (2.9) and minimize the right-hand side of (2.10).
When a pair of preconditioner matrices attains this minimum, we say they are optimal.

When one of them is fixed, the other that attains the minimum is also called optimal.

By Schur complement, the condition (2.9) is equivalent to My = AM; ' AT, Hence,
for any given M; > 0, the optimal M, is AM; "AT.

Original PDHG (2.6) corresponds to M; = LI, M, = %[m with 7 and o obeying

- > ||A|? for convergence. In Appendix 2.A, we show that ADMM for problem
(2.1) corresponds to setting M; = %In, My, = TAAT, M, is optimal since AM;'AT =
TAAT = M, (This is related to, but different from, the result in [49, Sec. 4.3] stating
that PDHG is equivalent to a preconditioned ADMM). In the next section, we show that
when the z—subproblem is solved inexactly, a choice of M; = %]n, M, = TAAT + 01,

with a small § guarantees convergence (see Proposition 2.3.7).
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By using more general pairs of My, M, we can potentially have even fewer iterations

of PrePDHG than ADMM.

2.3.3 PrePDHG with fixed inner iterations

It wastes total time to solve the subproblems in (2.8) very accurately. It is more efficient
to develop a proper condition and stop the subproblem procedure, which we call inner
iterations, once the condition is satisfied. It is even better if we can simply fix the

number of inner iterations and still guarantee global convergence.

In this subsection, we describe the “bounded relative error” of the z-subproblem
in (2.7) and then show that this can be satisfied by running a fixed number of inner

iterations, uniformly for every outer loop, which is new in the literature.

Definition 2.3.1 (Bounded relative error condition). Given z*, z**!

and 2*, we say
that the z-subproblem in PrePDHG (2.7) is solved to a bounded relative error by some

iterator S, if there is a constant ¢ > 0 such that

0 € dg* (") + M, (zk“ —2F — MYA(22M — xk)> + e (2.11)

Je5H 1) < el A+ - 2. (2.12)

Remarkably, this condition does not need to be checked at run time. For a fixed
¢ > 0, the condition can be satisfied by a fixed number of inner iterations using, for
example, S being the proximal gradient iteration (Theorem 2.3.3). One can also use
faster solvers, e.g., FISTA with restart [167], and solvers that suit the subproblem
structure, e.g., cyclic proximal BCD (Theorem 2.3.4). Although the error in solving
z-subproblems appears to be neither summable nor square summable, convergence can

still be established. But first, we summarize this method in Algorithm 2.1.

Theorem 2.3.3. Tuke Assumption 2.3.1. Suppose in iPrePDHG, or Algorithm 2.1, we

2>\min (MQ)

choose S as the provimal-gradient step with stepsize v € (0, 53 (%)

) and repeat it p
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Algorithm 2.1 Inexact Preconditioned PDHG or iPrePDHG
Input: f, g, Ain (2.1), preconditioners M; and Ms, initial (zg, 29), 2-subproblem iter-

ator S, inner iteration number p, max outer iteration number K.

Output: (2% 2K)

1: for k< 0,1,...., K —1do
2: okt = Prox%(:z:k — M{TAT R
3: Z(]]€+1 = Zk;

4: for 7+ 0,1,...,p—1do

. k+1 _ k+1 k+1 kY.
5: Zit1 _S(zz L » L )7

6: end for

T A= > which approximates Prox):2 (2% + My ' A(22%+1 — 2*))

8: end for

k+1 k+1

times, where p > 1. Then, """ = 27" is an approximate solution to the z-subproblem

up to a bounded relative error in Definition 2.3.1 for

% + Amax(MZ)
L—pr

where p = \/1 — (2 min(Ma) — vA2, . (Ms)) < 1.

max

c=clp) = (0" + "), (2.13)

Proof. The z-subproblem in (2.8) is of the form

minimize hy(z) + ha(z), (2.14)

z€R™
for hy(z) = g*(2) and ho(2) = 1|z — 2¥ — M5 " A(22%! — 2%)||3,,. With our choice of S

as the proximal-gradient descent step, the inner iterations are
2+ k

:Z7

2EH = Prox,p, (2811 — 4 Vhy(zF1), i=0,1,...,p—1, (2.15)

7

Concerning the last iterate 2" = 25*!, we have from the definition of Prox,, that

1
0 € Ohy (25 ™) + Vha(2h11) + ;(z}’,f“ — 2.

27



Compare this with (2.11) and use 2" = 25! to get

1
ghtl — ;(z;f“ — 280) 4 Vha(2lH]) = Vhy (207,

It remains to show that "1 satisfies (2.12).
Let 2¥*! be the solution of (2.14), a = Apuin(Ms), and 8 = Apax(Ms). Then hy(2)

is convex and hy(z) is a-strongly convex and S-Lipschitz differentiable. Consequently,

[18, Prop. 26.16(ii)] gives

2B — 2B < Pl = A vi=0,1, ., p,

where p = \/1 — 720 — v5?).

k1

Let a; = ||2; 21| Then, a; < p'ag. We can derive

90 < 4 B = 1 S 4 B+ ap) < (4 A + 7 e (216)
On the other hand, we have
1247 = 2H) > ag — ap > (1 = p")ao. (2.17)
Combining these two equations yields

le™H] < efl 5 = 28],

where ¢ is given in (2.13). O

Theorem 2.3.3 uses the iterator S that is the proximal-gradient step. It is straight-
forward to extend its proof to S being the FISTA step with restart. We omit the

proof.

In our next theorem, we let S be the iterator of one epoch of the cyclic proximal
BCD method. A BCD method updates one block of coordinates at a time while fixing
the remaining blocks. In one epoch of cyclic BCD, all the blocks of coordinates are

sequentially updated, and every block is updated once. In cyclic proximal BCD, each
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block of coordinates is updated by a proximal-gradient step, just like (2.15) except only
the chosen block is updated each time. When h; is block separable, each update costs
only a fraction of updating all the blocks together. When different blocks are updated
one after another, the Gauss-Seidel effect brings more progress. In addition, since the
Lipschitz constant of each block gradient of hy is typically less than than that of Vhs,
one can use a larger stepsize v and get potentially even faster progress. Therefore, the
iterator of cyclic proximal BCD is a better choice for S.

In summary, with hy(2) = g*(2) and hy(z) = L[|z — 2% — My A2z — 2%)|]3,,, one

epoch of cyclic proximal BCD for the z—subproblem can be written as

K+l _ k

zo =2,

K+l _ @kl kD kY s

ziy =Sz 2" "), i=0,1,...,p—1,
M o kL

where S is the iterator of cyclic proximal BCD. Define

T(2) = Proxqys, (2)(2 — YVha(2)),

B(z) = i<z ~T(2)).

and the jth coordinate operator of B:

Then, we have

2 = ST M ah) = (I = yB)(I = yBa)..(I — vBy)z ™.

Theorem 2.3.4. Let Assumption 2.53.1 hold and g be block separable, i.e.,
2= (21,22, ...,2) and g(z) = 22:1 gj(zj). Suppose in iPrePDHG, or Algorithm 2.1, we

choose S as the iterator of cyclic proximal BCD with stepsize v satisfying

0 < < min {zxmmm» L= 1= 12 (M) — 7N (M)
- )\%nax<M2>) ’ 4\/571)\max(M2> ’
1 2l)\max(M2) }
W (M) 1713 (M) + 2( a2 ()
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and we set p > 1. Then, zFt! = Z;erl is an approximate solution to the z-subproblem

up to a bounded relative error in Definition 2.3.1 for

(l)‘maX(M2> + %)(/)p + Pp_l)

c=c(p) = T , (2.18)

2
(1*\/1*7(2)\min(M2)7ﬁf)‘?nax(M2))> < 1

where p =1 — 5

Proof. See Appendix 2.B. n

2.3.4 Global convergence of iPrePDHG

In this subsection, we proceed to establishing the convergence of Algorithm 2.1. Our
approach first transforms Algorithm 2.1 into an equivalent algorithm in Proposition

2.3.5 below and then proves its convergence in Theorems 2.3.8 and 2.3.9 below.

First, let us show that PrePDHG (2.7) is equivalent to an algorithm applied on the
dual problem (2.2). This equivalence is analogous to the equivalence between PDHG
(2.6) and Linearized ADMM applied to the dual problem (2.2), shown in [88]). Specifi-
cally, PrePDHG is equivalent to

A = Prong"’(zk + My PAMTH (AT 28 — oF 4 b)),
—1
" = Proxyt (uf — ATZRY), (2.19)

W = g AT R e
When M; = %I, My = M, (2.19) reduces to Linearized ADMM, also known as Split
Inexact Uzawa [243].

Furthermore, iPrePDHG in Algorithm 2.1 is equivalent to (2.19) with inexact sub-

problems, which we present in Algorithm 2.2.
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Algorithm 2.2 Inexact Preconditioned ADMM
Input: f,g, A in (2.1), preconditioners M; and M,,

initial vector (zg, Yo, uo), subproblem solver S for the z-subproblem in (2.19), number
of inner loops p, number of outer iterations K.
Output: (25, y% uf)

1: for £+ 0,1,...., K —1do

5. AL ok

3: for 7+ 0,1,...,p—1do

4: A = STy ub);

5: end for

6: M= > approximate Prox) (2" + My ' AM; (= AT2F — yF + uF)).
O Prox?{l_l(uk L AT R,

8 uktl = gk — AT R kL,

9: end for

Proposition 2.3.5. Under Assumption 2.5.1 and the transforms u* = Myz*, y*+1 =
uk — AT2F —u* L PrePDHG (2.7) is equivalent to (2.19), and iPrePDHG in Algorithm

2.1 is equivalent to Algorithm 2.2.

Proof. Set u* = Myz*, y* = u* — AT2% — w**1. Then (2.4) and (2.7) yield

M71
y" = Myak — ATF — Myt = Prox;.! (ub — AT2*),

and

ktl kAT k ket

u vy

Zk+1 _ PI‘OXQC{Q(Z]C + M{lAMfl(—ATZk _ yk+1 + uk+1))'
If the z-update is performed first, then we arrive at (2.19).

In iPrePDHG or Algorithm 2.1, we are solving the z-subproblem of PrePDHG (2.7)
approximately to the bounded relative error in Definition 2.3.1. This is equivalent to

doing the same to the z-subproblem of (2.19), which yields Algorithm 2.2. [
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Let us define the following generalized augmented Lagrangian:
* x _ 1
L(Z,y,U) =g (’Z> +f (y)+ <_ATZ_y7M1 1u> +§HATZ+yH?\/[1_1 (220)

Inspired by [231], we use (2.20) as the Lyapunov function to establish convergence
of Algorithm 2.2 and, equivalently, the convergence of Algorithm 2.1. To the best of

our knowledge, this is a new proof technique for inexact PDHG and inexact ADMM.

We first establish subsequential convergence of iPrePDHG in Algorithm 2.1 under

the following additional assumptions.

Assumption 2.3.2.

1. f(x) is pp—strongly convex.

2. g*(z) + f*(=ATz2) is coercive, i.e., im0 g7 (2) + f*(—AT2) = .

To establish convergence of iPrePDHG in Algorithm 2.1, we also need the following

assumption.

Assumption 2.3.3. L(z,y,u) is a KL function.

Assumption 2.3.3 is true when both ¢*(z) and f*(y) are semi-algebraic, or more
generally, definable in an o-minimal structure (more details can be referred to Sec 2.2

of [10] and Sec 2.2 of [233] and the references therein).

Theorem 2.3.6. Take Assumptions 2.3.1 and 2.3.2. Choose any preconditioners My, Mo

and inner iteration number p such that

C) =

Lo M
PM T
Ky
1
Cy = M, — 5AM;lAT —c(p)1,, = 0, (2.22)

I, >~ 0, (2.21)

where ¢(p) depends on the z-subproblem iterator S and My (e.g., (2.13) and (2.18)).
Define L* .= L(z* y* u¥). Then, Algorithm 2.2 satisfies the following sufficient descent
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and lower boundedness properties, respectively:

LF = LM > Iy — 8, + 112" = 2", (2.23)

LF > g*(2*) + f*(—AT2*) > —o0. (2.24)

Proof. Since the z-subproblem of Algorithm 2.2 is solved to the bounded relative error
in Def. 2.3.1, we have

0 € Og*(2") + My(2F — 2F — My PAMTH(—ATZF — oF 4 b)) + 5L (2.25)

where eF*1 satisfies (2.12):

194 < elp)[lFH = 2Fl. (2.26)

The y and u updates produce
0= vf*<yk+1) + Ml—l(yk+1 . ulc + ATZk—i-l) — vf*(yk—l—l) . Ml_luk+1, (227)
UL = gk AT AL e (2.28)

In order to show (2.23), let us write

g'(z") = g"(z"*)
+ <M2(Zk _ zk—i—l) +AM1_1(—ATZk _ yk +uk) _ €k+1,zk o Zk+1>,

FrW5) = )+ (M R =y,
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Assembling these inequalities with (2.26) gives us

Lk . Lk-l—l Z sz o Zk—i_l”?\/lg—c(p)lm

+ <AMf1<—ATZk o yk + uk)’zk _ Zk+1> + <Mf1uk+1’yk . yk+1>

+ <_ATZk _ yk,Ml_luk> _ <ATZk+1 _ yk—f—l7 Ml—l(uk _ ATZk-H o yk+1)>

AT R — AT R

= sz - Zk+1H?\42—C(p)Im

LM (AT — ), 26— 2R (M gy
+ (=, M7 ) — (=g M)

1 ;HATZk +yk”?\4;1 . 2||ATzk+1 +yk+1||?\4f17

where the terms in (A) and (B) simplify to

<AM1—1(_ATZk . yk)7zk . Zk+1> + <M1—1(_ATZk+1 . yk—i-l)’yk . yk+1>.

Apply the following cosine rule on the two inner products above:

1 1 1
(a—b,a— C>M;1 = 5”“ - b“?w;l + §Ha - CH?\/[fl - §||b - CHM;l'

Set a = AT2F, ¢ = AT2*1 and b = —y* to obtain

(2.29)

_ 1 1
<AM1 1(_ATZk . yk),zk o zk+1> — —§||ATZk +yk||?\/[1—1 o §||ATZI<: . ATZk:—i—lH?WI_l

1
+ §”yk + ATZIH—IH?V[;L

Set a = y**! ¢ = y*, and b = —AT2**! to obtain

(2.30)

_ 1 1
<M1 1(—ATZk+1 o yk+1)’yk . yk+1> — §HATZk+1 + Z/kJrlH?\/[;l + §”yk o yk+1HM1_1

1
_ §HATZI€+1 _{_ka?\/[l_l_
Combining (2.29), (2.30), and (2.31) yields

Lk . Lk+1 Z ||Zk . yk+1||2

k12 k
o ”Mgf%AMl’lAch(p)Im +y* = Ve

— HATZkJrl _'_ykJrl”?\/lfl.
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Since f is pg-strongly convex, we know that V f* is i—LipSChitZ continuous. Conse-

quently,
1
T k+1 | k+1)2 |,k k4112 —1(, k k412
AT = o o € M = )
(2.27) ||M1||
< Syt =yt (2.33)
Ky

Combining (2.32) and (2.33) gives us (2.23).

Now, to show (2.24), we use (2.27) and smoothness of f* to get
FrR) > F=ATZRY o (MR, AT - Ql]:[/f”ATZk T2,
Hence, we arrive at
LF = g" (%) + F* (o) + (—AT2F — oF Mhk) 4+ ;”ATZ]&‘ +ka?\/1;1
> 7R 4 AT AT — AT R (230
Since Cy > 0 if and only if up > v/2|| M, (2.24) follows. 0

Next, we provide a simple choice of M;, M5, and p that ensures the positive defi-

niteness of C; and Cy in Theorem 2.3.6.

Proposition 2.3.7. In order to ensure (2.21) and (2.22), it suffices to set My = L1,
where T < %Nf, M, = TAAT + 01, with any 6 > 0, and p is large enough such that
c(p) < 6.

Proof. Since M, = %In, it is evident that C; > 0 if and only if 7 < %,uf. With
M; = 21, and My = TAA" + 01,,, we have
1 T
Cy = §TAA + (0 — c(p))Lm,
since ¢(p) decreases linearly in p, we know that there exists py such that Cy > 0 for any

P 2 Po- [
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We are now ready to show that (z¥, z*) in Algorithm 2.1 converges subsequentially

to a primal-dual solution pair of (2.1) and (2.2).

Theorem 2.3.8. Take Assumptions 2.5.1 and 2.5.2. Then, (x*,2%) in Algorithm 2.1
is bounded, and any cluster point of {x*, 2*} is a primal-dual solution pair of (2.1) and

(2.2).

Proof. According to Theorem 2.3.5, it is sufficient to show that {M;'u*, ¥} is bounded,

and its cluster points are primal-dual solution pairs of (2.1).

Since L* is nonincreasing, (2.34) tells us that
1
g (") + fr(= AT + S AT + gl < L7 < oo

Since g*(2)+ f*(—AT2) is coercive, {2*} is bounded, and, by the boundedness of { AT 2%+

y*}, {y*} is also bounded. Furthermore, (2.27) gives us
—1(,k _ .0 LTI "
10" =)l < =l = ol

Therefore, {M; 'u*} is bounded, too.

Let (2¢,y¢, u) be a cluster point of {z*, y* u¥F}. We shall show (2¢, ¢, u°) is a saddle

point of L(z,y,u), i.e.,
0 € OL(=2°,y°, u®), (2.35)
or equivalently,

0 € 0g*(2°) — AM; us,
0= V[ (y) — M v,

0= 14T2:c_|_yc7

which ensures (M 'u¢, 2¢) to be a primal-dual solution pair of (2.1).
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In order to show (2.35), we first notice that (2.20) gives

8,,3L(zk+1,yk+1,uk+1) — ag*(Zk—i-l) AM 1 k—i—l +AM1—1(ATZk+1 +yk+1),
v L( k+1 k+1,uk+1) — vf*(yk—H) o Ml—lukz-i-l +M1—1(ATzk+1 +yk+1)’

vuL(2k+l’yk+17uk+1) —_ Mfl(—ATZkJrl - yk+1).
Comparing these with the optimality conditions (2.25), (2.27), and (2.28), we have
dk+1 (dk—I—l dk+1 dk+1) c 8L( k+1 k+1 uk—f—l) (236)

where

d’;—l—l _ MQ(Zk _ Zk—i—l) + 2AM1—1(uk _ uk—H) _ AMl—l(uk—l . uk) _ €k+17

At = M7 (Wb — Wt (2.37)

dk+1 — Mfl(ukJrl o uk)
Since (2.23) and (2.24) imply 2% — 21 % — ¢F1 — 0, (2.27) gives u* — uFT1 — 0.
Combine these with (2.12), we have d* — 0.

Finally, let us take a subsequence {z*s g% u*} — (2¢ 9 u¢). Since d* — 0

as s — +o00, [194, Def. 8.3] and [194, Prop. 8.12] yield (2.35), which tells us that
(M e, 2°) is a primal-dual solution pair of (2.1). O

Following the axiomatic approach developed in [10] for decent algorithms on KL
functions, we can show that the whole sequence (z*, 2*) in Algorithm 2.1 converges to
a primal-dual solution pair. This approach has also been applied in [34] for KL-based

Lagrangian optimization.

Theorem 2.3.9. Take Assumptions 2.5.1, 2.5.2, and 2.5.5. Then, {z*,2*} in Algo-

rithm 2.1 converges to a primal-dual solution pair of (2.1).

Proof. By Theorem 2.3.8, we can take {z% y* uf} — (2°9° u®) as s — oo. Since L

is a KL function, we can prove the convergence of {z%, 4% u*} to {2 9 u°} following
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the approach developed in [10]. Specifically, let us first verify that conditions H1, H2,
and H3 of [10] are satisfied for v* = (2% y* u*) and L(v*).

First, (2.23) gives
L) A Ol — 91+ An(Co) 12 — 7P < LGY). (2.38)

By (2.27) and the #—Lipsehitz differentiability of f*, we know that

1 2
Sl =y 2 = S - (2:39)

Combine (2.38) with (2.39), we know that there exists a > 0 such that
L(Uk—l—l) +a||vk+1 _ vk”Q < L(Uk)
which satisfies condition H1 of [10].

From (2.36) and (2.37), we know that d**! € OL(v*™!) satisfies
I < bl — o

for some b > 0, which satisfies condition H2 of [10].
Next, let us verify that condition H3 of [10] also holds true.

Recall that we have taken {zFs yks ub} — (2¢,9°u°) as s — oo. Note that
L(2%s,y*s u**) is monotonic nonincreasing and lower bounded due to Theorem 2.3.6,
which implies the convergence of L(z*s, 4% u*s). Since L is lower semicontinuous, we

have

L(2% ¢ u®) < lim L(z%, gy ube). (2.40)

§—00

Since the only potentially discontinuous term in L is ¢g*, we have
lim L(z2F yFs ubs) — L(2° y° uf) < limsup g*(2F) — g% (2°). (2.41)

S§—00 §—00

By (2.25), we know that

g () = g" (")

+ <M2(st—1 o st) + AMI—I(_ATZICS—I . yks—l +uks—1) o €kS,ZC o zks>’
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Then, by Theorem 2.3.6, we further get z*~1 — 2% — 0. Since 2% — 2¢ and {2*, y*, u¥}
is bounded, we obtain

lim sup g* (2**) — g*(2°) < 0.

§—00

Combining this with (2.40) and (2.41), we conclude that

lim L(z%, y* ub) = L(2°, y¢, u),

§—00

which satisfies condition H3 of [10].

Finally, since the conditions H1, H2, and H3 are satisfied, we can follow the proof of
Theorem 2.9 of [10] to establish the convergence of v* = (2%, y*, u*) to (2¢,y¢, u¢), which
is a critical point of L(z,y,u). By (2.37), we further now that {M; 'u*, ¥} converges to
a primal-dual solution pair of (2.1), which is exactly {z*, 2¥} in Algorithm 2.1 according

to Theorem 2.3.5.

2.4 Numerical experiments

In this section, we compare our iPrePDHG (Algorithm 2.1) with (original) PDHG (2.6)
and diagonally-preconditioned PDHG (DP-PDHG) [179]. We consider four popular ap-
plications of PDHG: TV-L! denoising, graph cuts, estimation of earth mover’s distance,

and CT reconstruction.

For the preconditioners M; and M in iPrePDHG, we choose M; = %In and M =
TAAT + 01 as suggested in Proposition 2.3.7, which corresponds to ADMM and M, is
nearly optimal for small 6 (see subsection 2.3.2). The number of inner loops p is taken
from {1,2,3}. Although f may not be strongly convex in our experiments, we still

observe significant speedups compared to other algorithms.

When we write these examples in the form of (2.1), the matrix A (or a part of A)

is one of the following operators:

39



Case 1: 2D discrete gradient operator D : RM*N — R2M*N.

For images of size M x N and grid stepsize h, we have

1
(Du)y; = (Du)i,j 7
(D“)?,j
where
(Du)l %(uiJrl,j — ui,j) if i < M,
,J
0 ifi= M,
(Du)2 B %(umﬂ — ui,j) lf] < N,
,J
0 itj= N

where w € (RT)*M¥ is a weight vector.

Case 2: 2D discrete divergence operator: div: R#Y*N — RM™*N given by

div(p)i; = h(pz‘l,j - pil—l,j +p12,j - p?,j—l))
€ R2ZM*N

where p = (p', p*)”
j=1,..N.

Po; =Py = 0and piy =piy =0fori=1,.., M,

To take advantages of the finite-difference structure of these operators, we let S be
the iterator of cyclic proximal BCD in Algorithm 2.1. We split {1,2,...m} into 2 blocks
(for case 3) or 4 blocks (for cases 1 and 2), which are inspired by the popular red-black

ordering [201] for solving sparse linear system.

According to Theorem 2.3.4, running finitely many epochs of cyclic proximal BCD
gives us a bounded relative error in Def. 2.3.1. We expect that this solver brings faster
overall convergence. Specifically, when g* is linear (or equivalently, g is a § function), the
z-subproblem in PrePDHG reduces to a linear system with a structured sparse matrix
AAT. Therefore, Gradient Descent amounts to the Richardson method [188, 201], and

cyclic proximal BCD is equivalent to the Gauss-Seidel method [96, 201]. The following
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two claims tell us that S in Algorithm 2.1 has a closed form, so Algorithm 2.1 is easy

to implement. Furthermore, each execution of S can use parallel computing.

B ——

e
RERER!

Figure 2.1: two-block ordering in Claim Figure 2.2: four-block ordering in Claim

24.1 24.2

Claim 2.4.1. When A = div (i.e. AT = —D) and My = 71AAT, for = € RM*N e

separate z into two block zy, z,. where
zpi={zij |1+ ] is even}, z = {zi;|i+ j is odd},

for 1 < i< M,1<j<N. Ifg(2) = %;;0i;(z,) and ProTag: have closed-form
solutions for all 1 < i < M, 1 <75 < N and v > 0, then S as the iterator of cyclic

proximal BCD in Algorithm 2.1 has a closed form and computing S is parallelizable.

Proof. Asillustrated in Fig. 2.1, every black node is connected to its neighbor red nodes,
so we can update all the coordinates corresponding to the black nodes in parallel, while
those corresponding to the red nodes are fixed, and vice versa. See Appendix 2.C for a

complete explanation. Il

Claim 2.4.2. When A = D (i.e. AT = —div) and My = TAAT, for z = (21, 2%)T €
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R*M*N e separate z into four blocks zy, 2, z, and z,, where

2= {2, |iis odd}, z ={z;|i is even},

2y =A{2};1j is odd}, zy={27;|j is even},

for1 <i < M,1<j5<N. Ifg(z) =2%;9,(z;) and all Pro@.g: - have closed-form
solutions for all 1 < i < M, 1 <5 < N and v > 0, then S as the iterator of cyclic

proximal BCD in Algorithm 2.1 has a closed form and computing S is parallelizable.

Proof. In Figure 2.2, the 4 blocks are in 4 different colors. The coordinates correspond-
ing to nodes of the same color can be updated in parallel, while the rest are fixed. See

Appendix 2.C for details. [

In Table 2.4.2, Table 2.4.1, Fig. 2.7, and Table 2.4.4, PDHG denotes original PDHG
in (2.6) without any preconditioning; DP-PDHG denotes the diagonally-preconditioned
PDHG in [179], PrePDHG denotes Preconditioned PDHG in (2.7) where the (k + 1)th
z-subproblem is solved until % < 107° using the TFOCS [30] implementation
of FISTA with restart; iPrePDHG (Inner: BCD) and iPrePDHG (S=FISTA) denote our
iPrePDHG in Algorithm 2.1 with the iterator S being cyclic proximal BCD or FISTA
with restart, respectly. All the experiments were performed on MATLAB R2018a on
a MacBook Pro with a 2.5 GHz Intel i7 processor and 16GB of 2133MHz LPDDR3

memory.

A comparison between PDHG and DP-PDHG is presented in [179] on TV-L' denois-
ing and graph cuts, and in [207] on CT reconstruction. A PDHG algorithm is proposed
to estimate earth mover’s distance (or optimal transport) in [127]. In order to provide

a direct comparison, we use their problem formulations.
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2.4.1 Graph cuts

The total-variation-based graph cut model involves minimizing a weighted TV energy:

minimize || Dyull; + (u, w")

subject to 0 <wu <1,

RMXN

where w% € R2MN

is a vector of unary weights, w® € is a vector of binary weights,

and D,, = diag(w®)D for D being the 2D discrete gradient operator with h = 1.

To formulate this problem as (2.1), we take f(u) = (u,w") 4 0 1(u), A = D, and

g as a weighted ¢; —norm:
2MN

g(2) = Y (w’)ilzil.
i=1
In our experiment, the image has a size 660 x 720. We run all algorithms until

ok = |¢T(;T*| < 1078, where ®* is the objective value at the kth iteration and ®* is the

optimal objective value obtained by running CVX.

The best results of 7 € {10,1,0.1,0.01,0.001} and p € {1,2,3} are summarized in

Table 2.4.1, where the step size of cyclic proximal BCD has been chosen as v = We

1
Mz
can see that our iPrePDHG (Inner: BCD) is the fastest. It is also worth mentioning that
its number of outer iterations is close to that of PrePDHG, which solves z-subproblem
much more accurately. In the last row of Table 2.4.1, we also take My = TDng +01,,

with 8 > 0 as suggest in Proposition 2.3.7, the performance is similar to that of 8 = 0.

In practice, we recommend simply taking 6 = 0.
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Method Outer Iter | Runtime(s) Parameters

PDHG 5529 140.5777 T=1,M = 1I,, My = 7|| Dy ||*In
My = diag(¥;| Duw; 1),
DP-PDHG 3571 104.5392
M2 = diag(ZﬂDwi,j])
PrePDHG
282 938.3787 T =10,M; = 1I,, My = 7D, D},
(ADMM)
iPrePDHG
411 14.9663 | 7=10,M; = 11,,, My = 7DD, p=2
(Inner: BCD)
iPrePDHG T =10,M; = LI,, M = 7D, DT + 01,,,
402 14.7687
(Inner: BCD) 0=0.1,p=2

Table 2.1: Graph cut test

Figure 2.3: Input image Figure 2.4: Graph cut by iPrePDHG (In-
ner: BCD)

2.4.2 Total variation based image denoising

The following problem is known as the (discrete) TV-L' model for image denoising:
minimize, ®(u) = ||Dull; + \||u — b]|1,

where D is the 2D discrete gradient operator with h = 1, b € R™*¥ is a noisy input

image, and A is a regularization parameter.
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To formulate this problem as (2.1), we take f(u) = A||lu — b||1, g(2) = ||z]|1, and
A=D.

In our experiment we input a 1024 x 1024 image with noise level 0.15 and set A = 1;

_ [@F-a

- < 107, where ®* is the objective

see Fig. 2.5. We run the algorithms until 6* :
value at kth iteration and ®* is the optimal objective value obtained by calling CVX
[64, 107].

Observed performance is summarized in Table 2.4.2, where the best results for
7 € {10,1,0.1,0.01,0.001} and p € {1,2,3} are presented (Again, the step size of
cyclic proximal BCD has been chosen as v = M) Our iPrePDHG (Inner: BCD) is

significantly faster than the other three algorithms.

When taking 6 = 0.1, we get nearly identical results. This is because # > 0 adds a

proximal term 4|z — 2*||? in the z—subproblem(see Equ. (2.8)), whose gradient at z*
is 0. Since p = 1 and cyclic proximal BCD is initialized exactly at z*, we get the same

iterates as that of 6 = 0. In practice, we recommend simply taking 6 = 0.

Remarkably, our algorithm uses fewer outer iterations than PrePDHG under the

(B[P

(5] < 107?, as this kind of stopping criteria may become

stopping criterion
looser as z* is closer to z*. In this example, % < 107° only requires 1 inner
iteration of FISTA when Outer Iter > 368, while as high as 228 inner iterations on
average during the first 100 outer iterations. In comparison, our algorithm uses fewer

outer iterations while each of them also costs less.

In addition, the diagonal preconditioner given in [179] appears to help very little
when A = D. In fact, My = diag(X;|A4;;|) will be 41, and M, = diag(X;]|4;;|) will
be 21, if we ignore the Neumann boundary condition. Therefore, DP-PDHG performs

even worse than PDHG.
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Method Outer Iter | Runtime(s) Parameters
PDHG 2990 114.2576 T=0.01, My = 11,,, My = 7|| DI,
PrePDHG
963 5706.2837 7=01,M = I, My = 7DD
(ADMM)
iPrePDHG
541 26.2704 | 7=0.01,M; =11, My =7DDT p=1
(Inner: BCD)
iPrePDHG 7=0.01,M, = 11, My = rDD7 + 01,
541 26.2951
(Inner: BCD) p=10=0.1

Table 2.2: TV-L! denoising test. PDHG is original PDHG. DP-PDHG uses diago-
nal preconditioning. PrePDHG uses non-diagonal preconditioning. iPrePDHG (Inner:
BCD) is our algorithm that uses both non-diagonal preconditioning and an iterator S

instead of solving the z-subproblem.

Figure 2.5: Noisy image Figure 2.6:

ner: BCD)

Denoising by iPrePDHG (In-
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2.4.3 Earth mover’s distance

Earth mover’s distance is useful in image processing, computer vision, and statistics
[122, 153, 174]. A recent method [127] to compute earth mover’s distance is based on
minimize  ||m|];2
subject to div(m) + p' — p* =0,
where m € R*™*¥ is the sought flux vector on the M x N grid, and p°, p' represents

two mass distributions on the M x N grid. The setting in our experiment here is the

same with that in [127], i.e. M = N =256, h = X1 and for p° and p' see Fig. 2.8.

To formulate this problem as (2.1), we take f(m) = [[m|[12, g(2) = dgpo—_1}(2), and
A = div.

Since the iterates m* may not satisfy the linear constraint, the objective ®(m) =
Limpaivim)y=p—p1y + [Im|l12 is not comparable. Instead, we compare ||m*||;» and the
constraint violation until £ = 100000 outer iterations in Fig. 2.4.3, where we set

7=3x%x107% as in [127], and 0 = In Fig. 2.4.3, we can see that our iPrePDHG

1
T||div]|?
provides much lower constraint violation and much more faithful earth mover’s distance
|m||12. Fig. 2.8 shows the solution obtained by our iPrePDHG (Inner: BCD), where m
is the flux that moves the standing cat p' into the crouching cat p°. For our iPrePDHG,

when My = 7div divl +61,,, one has similar results for a small 6, the results are omitted.

In practice, we recommend simply taking # = 0.

DP-PDHG and PrePDHG are extremely slow in this example. Similar to 2.4.2, when
A = div, the diagonal preconditioners proposed in [179] are approximately equivalent to

L 5 =1 and they lead to extremely slow convergence.

fixed constant parameters 7 = T, i

As for PrePDHG, it suffers from the high cost per outer iteration.

It is worth mentioning that unlike [127], the algorithms in our experiments are not
parallelized. On the other hand, in our iPrePDHG (Inner: BCD), iterator S can be
parallelized (which we did not implement). Therefore, one can expect a further speedup

by a parallel implementation.
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Results on EMD estimation and constraint violation during 100000 outer iterations
T T T T

10" \ T
¥ —PDHG, H\'WH‘!‘,Z"‘\‘\W”H|,2\
10° : limlho=lm ol |3
—iPrePDHG (S=BCD), e TP 1
- ldiv(m)-+o! =1, i
10 —PDHG, 10t il
: _ ldiv(m) o'~
02k ) iPrePDHG (S=BCD), et ]
10° E E
104 E E
10°F E
10'6 | | | | | |
0 50 100 150 200 250 300 350
Runtime (s)
Figure 2.7: For PDHG, 7 = 3 x 1075, 0 = W; For iPrePDHG (Inner: BCD),

T=3x107% M, = 771, My = 7divdiv", v = =1+, and p = 2. ||m*|||12 is obtained
’ VT ] )

by calling CVX.
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Figure 2.8: %, p! are the white standing cat and the black crouching cat, respectively.

Both images are 256 x 256, and the earth mover’s distance between p° and p' is 0.6718.

2.4.4 CT reconstruction

We test solving the following optimization problem for CT image reconstruction:

minimize ®(u) = 3||Ru — b||3 + A||Dul|:, (2.42)

where R € R3032x65336 ig 5 gystem matrix for 2D fan-beam CT with a curved detector,
b = Ruge € R¥%2 is a vector of line-integration values, and we want to reconstruct
Ugrne € RMY , where M = N = 256. D is the 2D discrete gradient operator with h = 1,
and A = 1 is a regularization parameter. By using the fancurvedtomo function from
the AIR Tools II [111] package, we generate a test problem where the projection angles

are 0°,10°,...,350°, and for all the other input parameters we use the default values.

Following [207], we formulate the problem (2.42) in the form of (2.1) by taking

p 1
g|"| =5l —bl+ Alal, f@ =0, a=|"], (243

q D
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By using this formulation, we avoids inverting the matrices R and D.

Since the block structure of AAT is rather complicated, if we naively choose M; =
%In and M, = TAAT like in the previous three experiments, it becomes hard to find
a fast subproblem solver for the z-subproblem. In Table 2.4.4, we report a TFOCS
implementation of FISTA for solving the z-subproblem and the overall convergence is

very slow.

Instead, we propose to choose

2 THRHQIm—?n 0
Ml - *In, M2 - (244)
T 0 rDDT
or
1 diag(>;|R; ; 0
M, = diag(Z|Rij|) + =1, My = 85 Resl) : (2.45)
T

0 TrDDT
These choices satisfy (2.9), and have simple block structures, a fixed epoch of S as
cyclic proximal BCD iterators gives fast overall convergence. Note that (2.45) is a little

slower but avoids the need of estimating || R||.

We summarize the numerical results in Table 2.4.4. All the algorithms are executed

. k_H*
untll (Sk = |q>|¢,*T |

< 107*, where ®* is the objective value at the kth iteration and
®* is the optimal objective value obtained by calling CVX. The best results of 7 €
{10,1,0.1,0.01,0.001} and p € {1,2,3} are summarized in Table 2.4.4. As in the
previous experiments, # = 0.1 gives similar performances for iPrePDHG (Inner: BCD).
In practice, we recommend simply taking = 0. For iPrePDHG (S=FISTA) with M, =
TAAT | the result for p = 100 is also reported (here we use the TFOCS implementation
of FISTA).

2.5 Conclusion

We have developed an approach to accelerate PDHG and ADMM in this work. Our

approach uses effective preconditioners to significantly reduce the number of iterations.
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Method Outer Iter | Runtime(s) Parameters
PDHG 364366 | 3663.0348 T =0.001, My = 11,, M, = 7||A|]*1,,
My = diag(X[A4i),
DP-PDHG 70783 713.9865
My = diag(¥;|A; ;1)
PrePDHG
- > 10* T=0.01,M; = 11, My = TAAT
(ADMM)
iPrePDHG 7=0.001, My = 11,
- > 10*
(Inner: FISTA) My =71AAT p=1,2,0r 3
iPrePDHG T =0.01,M; = 11,
- > 10*
(Inner: FISTA) My = 1AAT p =100
T=0.01,M = 2I,,,p=2,
iPrePDHG
587 7.5365 TR n-2n O
(Inner: BCD) =
0 rDDT
T=0.01,M; = 2I,,,p =2,
iPrePDHG
586 7.2112 7| RII2 Ln—2n 0
(Inner: BCD) 2 =
0 TDDT + 015,
7= 0.01, M; = diag(3;| R j|) + 11,,p = 2
iPrePDHG
858 10.3517 diag(X|R; ;) 0
(Inner: BCD) 2 =
0 TDDT
7= 0.01, M; = diag(5;| R j|) + 11,,p = 2
iPrePDHG
857 10.3123 diag(%;|R; ;) 0
(Inner: BCD) 2 =
0 TDDT 4 015,

Table 2.3: CT reconstruction
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In general, most effective preconditioners are non-diagonal and cause very difficult sub-
problems in PDHG and ADMM, so previous arts are restrictive with less effective
diagonal preconditioners. However, we deal with those difficult subproblems by “solv-
ing” them highly inexactly, running just very few epochs of proximal BCD iterations.
In all of our numerical tests, our algorithm needs relatively few outer iterations (due to
effective preconditioners) and has the shortest total running time, achieving 4-95 times

speedup over the state-of-the-art.

Theoretically, we show a fixed number of inner iterations suffice for global conver-
gence though a new relative error condition. The number depends on various factors

but is easy to choose in all of our numerical results.

There are still open questions left for us to address in the future: (a) Depending
on problem structures, there are choices of preconditioners that are better than M; =
%In, M, = 7AAT (the ones that lead to ADMM if the subproblems are solved exactly).
For example, in CT reconstruction, our choices of M; and M, have much faster overall
convergence. (b) Is it possible to show Algorithm 2.1 converges even with S chosen as
the iterator of faster accelerated solvers like APCG [131], NU_ ACDM [3], and A2BCD
[109]? (c) In general, how to accelerate a broader class of algorithms by integrating

effective preconditioning and cheap inner loops while still ensuring global convergence?

2.A  ADMM as a special case of PrePDHG

In this section we show that if we choose M; = % and M, = TAAT in PrePDHG (2.7),
then it is equivalent to ADMM on the primal problem (2.1).

By Theorem 1 of [237], we know that ADMM is primal-dual equivalent, in the sense
that one can recover primal iterates from dual iterates and vice versa. Therefore, it
suffices to show that M; = £ and M, = 7AAT in PrePDHG (2.7) on the primal problem
is equivalent to ADMM on the dual problem (2.2).
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In Theorem 2.3.5 we have shown that, under an appropriate change of variables,
PrePDHG on the primal is equivalent to applying (2.19) to the dual. As a result, we
just need to demonstrate that the latter is exactly ADMM on the dual when M; = %In
and M, = TAAT.

For the z-update in (2.19), we have
= argmin{g*(2) — 7(z — 2F, A(=AT2F —* £ uF)) + %Hz — 2|24}
z€ERM

. * T
= argmin{g”(z) — 7{z - A=y ) + Sz}

P T
= arg min{g”(z) + (2, Ay —uh) + 114"}

.
= argmin{g*(2) + 7(ATz, —u*) + §HATZ + 45 )°}
zERM

= argmin{g*(2) + 7(—ATz — ¥ u*) + gHATz + 4712}, (2.46)
z€Rm

and for the y-update we have

-1
Yt = PFOX%I (uh — AT

. % T
= argmin{f*(y) + 1y — u* + A7)
yeRn

. « T
= argmin{f*(y) + 7(= AT —y,u) 4+ SATH 4y P (2.47)
yeR™

Define v* = TuF, (2.46), (2.47), and the u—update in (2.19) become

-
M= argeﬂg{{lﬂiﬂ{g*(Z) +(=ATz —y" 0f) + §||ATZ +y* |17},

. * T
yk'i‘l = arg Eun{f (y) + <—ATZk+1 - y,vk) + §||ATZ]€+1 + y||2}>
yeR®

VL = gk — (AT AL gkt

which are ADMM iterations on the dual problem (2.2).
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2.B Proof of Theorem 2.3.4: bounded relative error when S

is the iterator of cyclic proximal BCD

The z-subproblem in (2.7) has the form

min hi(2) + ha(2),

where hy(2) = g*(2) = Xi_; (%)), and ha(z) = 3|z — 2 — My " A(22% ! — 2¥) |13, And

2 = 28+ s given by
2ot = 2,

E+1 k+1 k+1 K -
zip = S(z 2" 2"), i=0,1,...,p—1,

Here, S is the iterator of cyclic proximal BCD. Define

T(z) = Proxqys, (2)(2 — YVha(2)),
1
B(z) = ;(Z —1'(z)),

and the jth coordinate operator of B:

Then, we have

2 = SE M 2 = (T = vB) (I = vBy)...(1 — yBy)z[ .

)

By [18, Prop. 26.16(ii)], we know that 7'(z) is a contraction with coefficient p, =
\/1 — Y(2Amin (M) — A2, (Ms)). We know that for Vz;, 2 € R™ and pg = =22,

Y

(B(z1) - B(zs). 21 — ) = iuzl - i<T<z1> — T(22), 71 — 22)

> puollz1 — 2olf?,
Let 21 = arg min, gm{h1(2) + ha(2)}. For [56, Thm 3.5, we have

[2FH — 25 < Pt =Y, vi=1,2,.p. (2.48)
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where p =1 — wo

Let y; = (I —vBj)...(I — 7Bl)z§f11 for j = 1,..,0 and yo = 2. Note that

p
(2511); = (y;); for j = 1,2, ..., 1, and the blocks of y; satisfies

(PTOXwg* (yjfl - ’Yth(yjl)>) , ift=y
(yj)t = t
(Yj-1)¢, otherwise.

On the other hand, we have

1
Prox, - (y;-1 = 7Vha(y;-1)) = argmin{g"(y) + 5”21/ — Y1+ Vha(y;-)[}-

yER™

Since ¢g* and || - ||? are separable, we obtain

0 € dg;((y;);) + i((yj)j — (yj-1); + V(th(yj_l))), Vi=1,2 .1,

or equivalently,
1 .
0 e ag] (( k+1)J) + 7(<Z£+l)j — (Zgjll>j —+ ’}/(th(yjl))j), V] = 1, 2, ceey l.
Therefore,

1
0 € g™ (= k—l—l) + 7<Zk+1 k+1 +7§p) Vi=1,2,..1,

P
where (,); = (th(yj_1)> for j =1,2,...,]. Comparing this with (2.11), we obtain
j
1
= é“p th( k+1) + ;<Z£+1 . Z}l;irll)

Notice that the first j — 1 blocks of y;_; are the same with those of y;, = z]’;“, and the

k+1

Z,.1, 8o we have

rest of the blocks are the same with those of y, =

l
1
k+1‘ S Z max M2 |yj 1~ ZkJrlH + rYH k+1 k+1”

Sl)\max<M2)H k+1 k+1H+,}/H Ic+1 k+1H

1
< (Dhae(02) )57 = 271+ 1 = )
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Combine this with (2.48)

1] < (Phinax (M) + i)(ﬂp +p ™ = 2 (2.49)
Combining
12540 = 28] = 5™ — 26
> [z = 2 = gt = 2|

> (L= ")z — 2l

with (2.49), we obtain

(l)‘maX(M2) + 1)(pp + Pp_l)
8k—l—lH S : _vpp ”Zk—l—l o Zk“

2.C Two-block ordering in Claim 2.4.1 and four-block ordering
in Claim 2.4.2

According to (2.8), when My = TAAT| the z-subproblem of Algorithm 2.1 is

2 = argmin{g*(2) — (z — 2", A2z — 2*)) + gHAT(z — 2912} (2.50)
z€RM

Let us prove Claim 2.4.1 first. In that claim, A = div € RMM2MN 4nd » € RMN,
Following the definition of the sets z, and z,, we separate the M N columns of AT = —D
into two blocks L;, L, by associating them with z, and z,, respectively. Therefore, we
have ATz = Lyz, + L,z for any z € RMY,

By the red-black ordering in Fig. 2.1, different columns of L, are orthogonal one

another, so L’ Ly, is diagonal. Similarly, L,” L, is also diagonal.
Define c® = —A(2251 — 2%), and let b be the set of black nodes and 7 the set of red
nodes. We can rewrite (2.50) as

A= argmin {g;(z) + g7(2) + (2, 05) + (20, ¢5) (2.51)

2p,2r ERMN/2

-
+5 1Lz = 2) + Le(z — 27)I133,
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where g;(25) = S jyep 955 (2i3), 95(2) = Xigyer 954(2i), and ¢f, ¢f are the coordinates

of c* associated with 2z, and z,, respectively.
Applying cyclic proximal BCD to black and red blocks with stepsize ~ yields

k+t k4t k+t
z, " = Prox, <zb+" - (c’,f + TLbTLb(zb+” -2+ TLfbrLr(errp - sz))) . (2.52)

k4 iL k+t kL e+t
o P o=Proxyg (2 P =+ 7L Lz, P —2) +TL L(z P —2F)) ),

fort =0,1,...,p — 1, where p is the number of inner iterations in Algorithm 2.1.

Since Prox,g; = > e Proxwgzj, Prox,g: = > gijjer Proxvg;j and PrOngZ‘i,ﬂ are
closed-form, (2.52) and (2.53) have closed-form solutions. Furthermore, the updates

within each block can be done in parallel.

The proof of Claim 2.4.2 is similar. When A = D, we separate the columns of AT
into four blocks L;, L,, L,, L, by associating them with 2z, z., 2, ,z,, respectively.
Therefore, we have ATz = Lyz, + L2, + Lyzy + Lgz, for all z € R2MN - Similarly, by
the block design in Fig. 2.2, cyclic proximal BCD iterations have closed-form solutions,

and updates within each block can be executed in parallel.
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CHAPTER 3

Inexact Preconditioning for SVRG and Katyusha X

3.1 Introduction

Empirical risk minimization is an important class of optimization problems that has
many applications in machine learning, especially in the large-scale setting. In this

chapter, we formulate it as the minimization of the following objective

Flw) = () +0a) = 5 3 f(@) + (o), (31)

where the finite sum f(z) is strongly convex, each f;(z) in the finite sum is smooth®
and can be nonconvex, and the regularizer ¥ (z) is proper, closed, and convex, but may
be nonsmooth. A nonzero ¢ (z) is desirable in many applications, for example, ¢;—
regularization that induces sparsity in the solution. Allowing f; to be nonconvex is also

necessary in some applications, e.g., shift-and-invert approach to solve PCA [200].

3.1.1 Related Work

To obtain a high quality approximate solution Z of (3.1), stochastic variance reduction
algorithms are a class of preferable choices in the large-scale setting where n is huge. If
each f; is o—strongly convex and L—smooth, and ¢ = 0, then SVRG [114], SAGA [72],
SAG [197], SARAH [165], SDCA [203], SDCA without duality [202], and Finito/MISO
[73, 150] can find such a Z within (’)((n + L) 1n(%)) evaluations of component gradi-

ents V f;, while vanilla gradient descent needs O(ng In %) evaluations. Recently, SCSG

LA function f is said to be smooth if its gradient V f is Lipschitz continuous.
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improves this complexity to (9((77, AL+ L) %)2 When ¢ # 0, many of these al-
gorithms can be extended accordingly and the same gradient complexity is preserved
[232, 72, 204]. Among these methods, SVRG has been a popular choice due to its low

memory cost.

When the condition number g is large, the performances of these variance reduction
methods may degenerate considerably. In view of this, there have been many schemes
that incorporate second-order information into the variance reduction schemes. In
[105], the problem data is first transformed by linear sketching in order to decrease the
condition number, then SVRG is applied. However, the strategy is only proposed for

ridge regression and it is unclear whether it can be applied to other problems.

A larger family of algorithms, called Stochastic Quasi-Newton (SQN) methods, ap-
ply to more general settings. The idea is to first sample one or a few Hessian-vector
products, then perform a L-BFGS type update on the approximate Hessian inverse Hj,
[47, 155, 106], then Hj, is applied to the SVRG-type stochastic gradient as a precondi-
tioner. That is,

W1 = wy — NHEVy,
where V, is a variance-reduced stochastic gradient.

Linear convergence is established and competitive numerical performances are ob-
served for SQN methods. However, the theoretical linear rate depends on the condition
number of the approximate Hessian, which again depends poorly on the condition num-
ber of the objective, so it is not clear whether they are faster than SVRG in general.
Furthermore, they do not support nondifferentiable regularizers nonconvexity of indi-
vidual f;. Recently, the first issue is partially resolved in [130], where the algorithm is at
least as fast as SVRG. To deal with the second issue, [230] applied a Hj—preconditioned
proximal mapping of ¢ after Hj, is applied to the variance reduced stochastic gradient,

but in order to evaluate this mapping efficiently, Hj, is required to be of the symmetric

2a A b= min{a, b}.
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rank-one update form 7I; + uu”, where I; € R? is the identity matrix and u € R9,
However, H, is still ill-conditioned with a conditioner number of order O(2), therefore

only a gradient complexity of order (’)((n + K1) 1n(%)) can be guaranteed.

Another way of exploiting second-order information is to cyclically calculate one
individual Hessian V2f; (or an approximation of it) [196, 154], linear and locally super-
linear convergence are established. However, they require at least an O(n) amount of

memory to store the local variables, which will be substantial when n is large.

Aside from exploiting second-order information, it is also possible to apply Nesterov-
type acceleration to SVRG. Recently, Katyusha [1] and Katyusha X [2] are developed
in this spirit. Katyusha X also applies to the sum-of-nonconvex setting where each f;
can be nonconvex. There are also “Catalyst” accelerated methods [129], where a small
amount of strong convexity £|jz — y*||* is added to the objective and is minimized inex-
actly at each step, then Nesterov acceleration is applied. However, Catalyst methods

have an additional In k factor in gradient complexity over Katyusha and Katyusha X.

3.1.2 Our Contributions

1. We propose to accelerate SVRG and Katyusha X by a fized preconditioner, as
opposed to time-varying preconditioners in SQN methods. And the subproblems

are solved with fixzed number of simple subroutines.

2. If the preconditioner captures the second order information of f, then there will be
significant accelerations. With a good preconditioner M, when x; € (n%, n?d=?%),
Algorithm 3.1 and Algorithm 3.2 are O(%) and O( \/E ) times faster than SVRG
and Katyusha X in terms of gradient complexity, respectively. When x; > n*d 2,

these numbers become O(—%=) and O(-%). We also demonstrate these accelera-
n4

A /nKZf
tions for Lasso and Logistic regression.

3. Our acceleration applies to the sum-of-nonconvex setting, where f(z) in (3.1)
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is strongly convex, but each individual f; can be nonconvex. We also allow a

nondifferentiable regularizer ¢ (x).

3.2 Preliminaries and Assumptions

In addition to the preliminaries introduced in Sec. 1.4, we also need the following in

the chapter.

We use [-] to denote the ceiling function. For r € (0,1], N ~ Geom(r) denotes a
random variable N that obeys the geometric distribution, i.e., N = k with probability
(1 —7)*r for k € N. We have E[N] = 2.

Definition 3.2.1. We say that f : RY — R is L} —smooth under || - |[s, if it is

differentiable and satisfies
M

L
fly) < f(o) +(Vf(z),y—x) + %Ily—xllﬂa\wy e R?.

Definition 3.2.2. We say that f is os—strongly convez, if
> \V4 — I 10— 12 4 R4
fy) =z fl2) +{(Vf(@),y = 2) + S lly — 2[]°, Ve, y € RT.

We say that f is o}' —strongly convex under || - ||ar, if
M

o
f(y) = f(2) +(Vf(@),y = o)+ —-lly = alliy, Yo,y € R

L} —smoothness under || - ||a7 is equivalent to ||V fi(z) =V fi(y) ;-1 < LY |z —y||ar-

Also, o} —strong convexity is equivalent to ||V fi(z) — V f;(y)llx-1 > o' |z — ylln. CEL.

Section 2 of [204].

M
Definition 3.2.3. We define the condition number of f under || - ||y as k} = %
/

When M = I, we have £} = k== ﬂ
f o

In this chapter, we will choose M such that my < k. For example, if f(z) = %ITQIE

where () > 0 is ill-conditioned, by choosing M = @) we have

IV (@) = VW)l = llz - ylle,
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which tells us that L} = o} =1 and &}’ = 1, while x; = £(Q) > 1. That is, under

()—metric, f(x) has a much smaller condition number and can be minimized easily.

Definition 3.2.4. For a proper closed convex function ¢ : RY — RU{+oo}, its subdif-

ferential at x € dom [ is written as
0d(z) = {v € RY | p(2) > é(z) + (v, 2 — z) Vz € R4},

Definition 3.2.5. For a proper closed convexr function ¢ : RY — RU{+o0}, its

M —preconditioned prozimal mapping with step size n > 0 is defined by

i 1
Prox (2) = argmin{u(y) + ol — yll}}
yERd n

When M = I, this reduces to the classical proximal mapping.

Finally, let us list the assumptions that will be effective throughout this chapter.

Assumption 3.2.1. In the objective function (3.1),

1. Each fi(z) is Ly—smooth and L} —smooth under

- M-

2. f(x) is op—strongly convex, and Uy—strongly convex under || - ||pr, where o >0

and ch\/[ > 0.

3. The reqularization term 1(x) is proper closed conver and Prox,, is easy to com-

pute.

Remark 3.2.1. 1. In Assumption 5.2.1, we only require f(x) = ", fi(z) to be

T n
strongly convez, while each f;(x) can be nonconver.
2. Several common choices of reqularizers have simple prorximal mappings. For ex-
ample, when (x) = M| - ||1 with A > 0, Prox,, can be computed component wise
as

Prox,,(z) = sign(x) max{|z| — nA,0}.
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3.3 Proposed Algorithms

As discussed in Sec. 3.1, SVRG and Katyusha X suffer from ill-conditioning like other
first order methods. In this section, we propose to accelerate them by applying inexact

preconditioning. Let us illustrate the idea as follows,

1. We would like to apply a preconditioner M > 0 to the gradient descent step in
SVRG. i.e.,

Wip1 = Prox%(wt —nM~V,)

— argmin{4(y) + ;nuy — w3+ (Vo)) (3.2)

y€ER4

where V, is a variance-reduced stochastic gradient. When ¢ = 0 and this mini-
mization is solved exactly, we have w1 = w,—nM 'V, which is a preconditioned

gradient update.

2. However, solving (3.2) exactly may be expensive and impractical. In fact it suffices

to solve it highly inezactly by fixred number of simple subroutines.

We summarize the resulted algorithm in Algorithm 3.1 and call it Inexact Preconditioned (IP-

) SVRG. Compared to SVRG, the only difference lies in line 7.
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Algorithm 3.1 Inexact Preconditioned SVRG(iPreSVRG)
Input: F(-) = ¢(-) + = >, fi(-), initial vector z°, step size > 0, preconditioner

M > 0, number of epochs K.

Output: vector 2

1: for K+ 0,..., K —1do
2: DF ~ Geom(2);
3: wo < 2¥, g « Vf(2*);

4: for t < 0,...,D" do

5: pick 7, € {1,2,...,n} uniformly at random;
6: Vi=g+ (Vfilw) = Vi (w));
T wipr & argmingcga{(y) + 55 ly — well3 + (Vi 9) b

8: end for

9: o wpg;

10: end for

Remark 3.3.1. 1. In line 2, the epoch length D* obeys a geometric distribution
and E[m*] = m — 1, this is for the purpose of simplifying analysis (motivated by
[121, 2]), in practice one can just set DX = m — 1. In our experiments, this still

brings significant accelerations.

2. The choice of m affects the performance. Intuitively, a larger m means more
gradient evaluations per epoch, but also more progress per epoch. Theoretically,

we show that m = | gives faster convergence than SVRG, where p is the

Ty

number of subroutines used in Line 7.

3. In line 6, one can also sample a batch of gradients instead of one. It is straight-

forward to generalize our convergence results in Sec. 3.4 to this setting.

4. If M =1, line 7 reduces to

Wit1 = PYOanp(wt - n@t)u
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and Algorithm 3.1 reduces to SVRG.

For M ¢ I, line 7 contains an optimization problem that may not have a closed

form solution:

arg min{y(y) + ;nny — w2+ (Vi) (3.3)

yeRd

To solve it inexactly, we propose to apply fixed number of iterations of some simple

subroutines, which are initialized at w;. This procedure is summarized in Procedure

3.1.

Procedure 3.1 Procedure for solving (3.3) inexactly
Input: Iterator S, iterator step size v > 0, number of iterations p > 1, problem data

n > 07wta M ~ Oa 675,77/}()

Output: vector wy
1wy < wy;
2: for i+ 0,...,p—1do
8wl = S(wip,n, M, Ve, v);
4: end for

P
9 W1 < Wiy

Remark 3.3.2. In Procedure 3.1, there are many choices for the iterator S, for example,
one can use proximal gradient, FISTA [29] (or equivalently, Nesterov acceleration [160]),
and FISTA with restart [167]. Under these choices, line 3 is easy to compute. For

example, when S is the proximal gradient step, line 3 of Procedure 3.1 becomes

i i Y i =
wtﬁ = PTOXW(th - HM(th —wy) — V).

Now, let us also apply the inexact preconditioning idea to Katyusha X (Algorithm
2 of [2]). Similar to Katyusha X, we first apply a momentum step, then one epoch of
iPreSVRG (i.e., line 2 ~ 9 of Algorithm 3.1).
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Algorithm 3.2 Inexact Preconditioned Katyusha X(iPreKatX)
Input: F(z) = (z) + =3, fi(x), initial vector 2°, step size n > 0, preconditioner

M > 0, momentum weight 7 € (0, 1], number of epochs K.

Output: vector y

1t Y1 = Yo < Zo;

2: for k< 0,...,. K —1do

= (1=T)ygp—1 .
1+ )

4: Yes1 < Algorithm 3.1'P(F, M, 2511, 7);

3 1
3: Tkl < 2Vt 3T

5. end for

Remark 3.3.3. 1. When T = %, one can show that xiy1 = yr, and Algorithm 3.2
reduces to Algorithm 3.1.

2. When M = I and the proximal mapping is solved exactly, Algorithm 3.2 reduces
to Katyusha X.

3. The convergence of Algorithm 3.2 is established when T = 1,/ %mna}w. In practice,

2

we found that many other choices of T also work.

3.4 Main Theory

In this section, we proceed to establish the convergence of Algorithm 3.1 and Algorithm
3.2. The key idea is that when the preconditioned proximal gradient update in (3.3) is
solved inexactly as in Procedure 3.1, the error can be bounded by ||w;1 — wy||pr, under
which we can still establish the overall convergence of Algorithm 3.1 and Algorithm 3.2.
Combine this with the fixed number of simple subroutines in Procedure 3.1, we obtain

a much lower gradient complexity when x; > ne.
All the proofs in this section are deferred to the supplementary material.

First, Let us analyze the error in the optimality condition of (3.3) when it is solved

66



inexactly by FISTA with restart as in Procedure 3.1. Specifically,

Let hi(y) = ¢¥(y) and he(y) = ﬁHy —wy||3; + (V, %), then the subproblem (3.3) can
be written as

min ¥ (y) = hy(y) + ha(y).

y
Therefore, FISTA with restart applied to (3.3) can be summarized in the following

algorithm.

Algorithm 3.3 FISTA with restart for solving (3.3)
Input: Iterator S, iterator step size v > 0, number of iterations p > 1, problem data

0> 0,we, h(y) = ¥(y) and ha(y) = 55 lly — will; + (V.y).

0,0 0.1
1wy =uly w0 =1

2: for i < 0,...,m—1do

3: for j < 0,...,p0 — 1 do

4: 0y = 1;

5: wid ™ = Proxn, (i = yVha(ufi™));
6: 9j+1 = 1+\/21—|—To?;

P Sl + Sl — o)
8: end for

o W Y ol

10: end for

(T*l,p )
1 Wiy <= wipg s

Lemma 3.4.1. Tuke Assumption 3.2.1. Suppose in Procedure 3.1, we choose S as the
iterator of FISTA with restart' every py = [2e\/k(M)] steps, with step size v = #(M)

and restart it (r — 1) times (that is, p = rpo iterations in total). Then, wy1 = wgi_ll’pO)

is an approximate solution to (3.3) that satisfies

1 -
0 €9v(wis1) + EM(th —wy) + Vi + Mel,, (3.4)
c(p)
letiallar < 7||wt+1 — Wl ar, (3.5)
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where

and

(M), L 1
H( ))2;‘,0 Sexp(—

P} 2e\/k(M) 4 1

With Lemma 3.4.1, the overall convergences of Algorithm 3.1 and 3.2 can be estab-

) < L.

lished. The analysis is similar to that of [2].

Theorem 3.4.2. Under Assumption 3.2.1, let x* = argmin, F(z), 64x}'c*(p) < 1,

n < W, and m > 4. Then the iPreSVRG in Algorithm 3.1 satisfies
f

B{P(e") ~ F(a")) < O((1 o)) (3.6)

Theorem 3.4.3. Under Assumption 3.2.1, let x* = argmin, F(z), 64r}'c*(p) < 1,
1 /1 1 ; . . ,
T =34 /imna}/[, n < ST and m > 4. Then the iPreKatX in Algorithm 3.2 satisfies

B[F(&¥) - F(2")] < O((———)") (3.7

1+ 54/2mnoM
Remark 3.4.1. When M = I, we have ¢(p) = 0, and Theorems 3.4.2 and 3.4.3 recovers
the Theorems D.1 and 4.3 of [2].

In Theorems 3.4.2 and 3.4.3, we need the number of simple subroutines p to be large
enough such that 64;@?4 *(p) < 1, the following Lemma provides a sufficient condition

for this.

Lemma 3.4.4. If the subproblem iterator S in Procedure 3.1 is FISTA with restart
every po = [2e\/k(M)] steps, and with step size v = #(M), then, in order for

IFISTA with restart can be replaced with any iterator with Q-linear convergence on the iterates.
In our experiments, FISTA also works, and a simple choice of p = 20 is enough.
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64k} c*(p) < 1 to hold, it suffices to choose

p = (2ey/x(M) + D) A0 + Ve (3.8)

= 0( k(M) In (\/WR(M))CS

_ 1
where ¢1 = g1 -

With (3.6), (3.7), and (3.8), we can now calculate the gradient complexities of
Algorithm 3.1 and Algorithm 3.2, but let us first do that for SVRG and Katyusha X.

In Assumption 3.2.1, we have assumed that Prox,,(-) is cheap to evaluate, there-
fore, each epoch of SVRG needs n + m gradient evaluations, which is also true for
Katyusha X. As a result, the gradient complexity for SVRG and Katyusha X to reach

e—suboptimality are:

Cy(m, &) = O(Mln i), (3.9)
Colm, ) = O(— ™M 1y (3.10)

In(1+ %\/3mno) €
For Algorithm 3.1 and Algorithm 3.2, each iteration in Procedure 3.1 is at most as

expensive as d gradient computations! and is operated p times, therefore, one epoch of

iPreSVRG/iPreKatX needs at most n + (1 + pd)m gradient computations.

Consequently, we can write the the gradient complexity for Algorithm 3.1 and Al-

gorithm 3.2 to reach e—suboptimality as:

c;(m,e):O(lZJf;mf?ﬁ) 0, (3.11)
Chm, e) = (1 L+ pdm mi). (3.12)

In(1+ %\/3mno™M)
Remark 3.4.2. 1. According to Lemma 3.4.4, when S is FISTA with restart, it
suffices to choose p by (3.8).

2. When the preconditioner M is chosen appropriately, the step size n in (3.11) and
(3.12) can be much larger than that of (3.9) and (3.10).
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Finally, we can compare C1(m,¢), Co(m, ) with C{(m,e), Ci(m, e), respectively. It

turns out that there is a significant speedup when x > ns.

Theorem 3.4.5. Take Assumption 3.2.1. Let the iterator S in Procedure 3.1 be FISTA
with restart, and an appropriate preconditioner M is chosen such that ky and k(M) are

of the same order, and /4;?4 is small compared to them, then

1. if Ky >n2 and Ky < n2d2, then

mianl C{ (m, 5)

n2
<O(—). 3.13
min,,>; Cy(m,e) — (Kf) ( )
2. if Ky >n2 and kp > n*d2, then
min,,>; C(m, €) <o d ) (3.14)
min,,>; C1(m,e) = /iR '

Theorem 3.4.6. Tuke Assumption 3.2.1. Let the iterator S in Procedure 3.1 be FISTA
with restart, and an appropriate preconditioner M is chosen such that ky and k(M) are

of the same order, and /{?4 is small compared to them, then
1. if Ky > n: and ke < n?d"?, then

Il'liIlle Cé(m, 5)

n2
<O\ —). 3.15
HliIlle Cz(m,éT) - ( /if) ( )
2. If ky >n2 and ks > n2d~2, then
min,,>, C4(m, ) d
= < O(—). 3.16
minmzl Cg(m, 8) - <n%) ( )

In Section 3.5, we provide practical choices of M for Lasso and Logistic regression.

'For each iteration of Procedure 3.1, the most expensive step is multiplying M to some vector,
which is often cheaper than d gradient computations.
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3.5 Experiments

To investigate the practical performance of Algorithms 3.1 and 3.2, we test on three
problems: Lasso, logistic regression, and a synthetic sum-of-nonconvex problem. For
the first two, each function in the finite sum is convex. To guarantee that the objective

is strongly convex, a small /;—regularization is added to Lasso and logistic regression.

In the following, we compare SVRG, iPreSVRG, Katyusha X, and iPreKatX on four
datasets from LIBSVM!: wia.t (47272 samples, 300 features), protein (17766 samples,
357 features), cod-rna.t (271617 samples, 8 features), australian (690 samples, 14

features), and one synthetic dataset. The implementation settings are listed below,

1. We choose the epoch length m = 100 in all experiments, since we found that the

choices m € {%, §,n} need more gradient evaluations.

2. For iPrePDHG and iPreKatX, we use FISTA as the subproblem iterator S. If
the preconditioner M is diagonal, then the number of subroutines for solving the

subproblem is p = 1, if not, then we set p = 20.

3. In all the experiments, we tune the step size n and momentum weight 7 to their

optimal.
4. All algorithms are initialized at 2% = 0.

5. All algorithms are implemented in Matlab R2015b. To be fair, except for the
subproblem routines for inexact preconditioning, the other parts of the code are

identical in all algorithms. The experiments are conducted on a Windows system

with Intel Core i7 2.6 GHz CPU. The code is available at:

https://github.com/uclaopt/IPSVRG.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

71


https://github.com/uclaopt/IPSVRG
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

3.5.1 Lasso

We formulate Lasso as

inimize — P — b))% 4+ A Xal|z]|2, 3.17

minimize 53 (ol — )"+ Al + al (317)

where a; € R? are feature vectors and b, € R are labels. Note that the first term is
equivalent to 5-[|Az — b[|%, where A = (a1, az, ..., a,)" € R™® and b= (by, by, ..., b,) €

R™.

For Lasso as in (3.17), we provide two choices of preconditioner M,

1. When d is small, we choose

Ml = lATA,

n

this is the exact Hessian of the smooth part of the objective.
2. When d is large and AT A is diagonally dominant, we choose
]. . T
M, = —diag(A" A) + o,
n

where a > 0. In this case, the subproblem (3.3) can be solved exactly with p =1

iteration.

Our numerical results are presented in the following figures. We didn’t observe sig-
nificant accelerations of Katyusha X over SVRG and iPreKatX over iPrePDHG, and
we suspect the reason is that m = 100 and the optimal choices of step size n make
mnoy > 1 or mno}’ > 1, thus the complexity in (3.10) and (3.12) are not better than
(3.9) and (3.11), respectively.
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Figure 3.1: Lasso on wla.t, (n,d) = (47272,300), \; = 1073, Ay = 1078. For iPreSVRG
and iPreKatX: n; = 0.005; For SVRG and Katyusha X: 1, = 0.08; For Katyusha X and
iPreKatX: 7 = 0.45, M = M, with a = 0.01.
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Figure 3.2: Lasso on protein, (n,d) = (17766,357), A\; = 107% Xy = 107% 7; = 0.008,
ny =02, 7=0.2, M = M, with a = 0.008.
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Time(second) Epoch

Figure 3.3: Lasso on cod-rna.t, (n,d) = (271617,8), Ay = 1072, X = 1, g, = 1,
Ny =5 x 1078, 7 = 0.45, M = M, subproblem iterator step size v = 3 x 107°.
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Figure 3.4: Lasso on australian, (n,d) = (690,14), \; = 2, Xy = 1078, ; = 0.01,
o =8 x 10710, 7 = 049, M = M,y =5 x 1012

3.5.2 Logistic Regression
We formulate Logistic regression as

minimize — Zln (1 + exp(—b; - aZT:L’)) + Al + Al ]l3, (3.18)

xER4 =1
where again a; € R? are feature vectors and b; € R are labels.

For Logistic regression as in (3.18), the Hessian of the smooth part can be expressed

as
z”: exp(—b;al’z)

1 1
— B"B,
ni= (1 + exp(—b;al z)

)26?27’ ~dn

where B = diag(b)A = diag(b)(ai, as, ..., a,). Inspired by this!, we provide two choices

of preconditioner M,

1. When d is small, we choose

1
M, = —B"B.
4in
'Here is a heuristic justification: By Definition 3.2.1 we know that L;‘f = 1; Since

T
M — 0 only when 2z is unbounded, we know that if the iterates z* of our algorithms are
(1+exp(—b1a;rw))

bounded, then H(z*) = %BTB for some ¢ > 0, which gives a?/[ = 4c according to Definition 3.2.2.
When ¢ is not too small, one can expect /@j\/ = 4% <L Ky.
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2. When d is large and BT B is diagonally dominant, we choose
M, = i (B"B) +al
> 4n 188 b

where o > 0. In this case, the subproblem (3.3) can be solved exactly with p = 1

iteration.

Our results are presented in the following figures, again, we didn’t observe a significant

acceleration of Katyusha X over SVRG and iPreKatX over iPrePDHG, due to the same

reason mentioned in the last subsection.

1 — SVRG
. 0.0 0.01\ - - IP-SVRG
"T-rl e-4 \\‘ le-4 \“ Katyusha X
J-i‘,] e-6 N - le-6 g IP-Katyusha X
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1e-10 - ~ 1e-10 = T
0 5 10 15 20 0 200 400 600 800
Time(second) Epoch

Figure 3.5: Logistic regression on wia.t, (n,d) = (47272,300), \; = 5x 1074 Xy = 1078,
m = 0.06, 0y = 4, 7 = 0.4, M = M, with a = 0.005.
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Figure 3.6: Logistic regression on protein, (n,d) = (17766,357), Ay = 1074, Ay = 1078,
m = 1.5, my =10, 7 = 0.3, M = M, with a = 0.05.
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Figure 3.7: Logistic regression on cod-rna.t, (n,d) = (271617,8), A\; = 0.1, Ay = 1078,
m=1,1m=3x10"° 7=04, M =M, vy=2x 1075,
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Figure 3.8: Logistic regression on australian, (n,d) = (690, 14), \; = 0.5, Ay = 1078,
m=11=10"0 7=02 M=M,v=2x10",

3.5.3 Sum-of-nonconvex Example

Similar to [4], we generate a sum-of-nonconvex example by the following procedure:

We take n normalized random vector a; € RY, and also d vectors of the form
g: = (0,...0,5i,0,...0), where the nonzero element is at ith coordinate.

And the sum-of-nonconvex problem is given by

oo L
minimize o Zzzl z” (cic] + Di)x + b + M|z, (3.19)
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where n = 2000, d = 100, and \; = 1073,

a; + g; i:1,2,...,d,
C; =

a; otherwise.

1001 i=1,2,..,

n
29

D, =
1007 otherwise.

Since the sum of D;’s is 0, they do not affect the condition number of the whole prob-
lem. However, it makes most of the first half of f; to be highly nonconvex. Overall, the
condition number of this problem is equal to that of 37, ¢;cf', which is approximately

10000 in our tested data.

Since 7, c;c! is diagonally dominant, we select M = dlag( " cel) +al as
the preconditioner. Our algorithms also have significant acceleration in this sum-of-

nonconvex setting.

0.01) 0.01
e-a, 1e-4
| ' .
_ﬁ‘1e—6 1e-6 :

le-8 |\ \ le-8

1e-10 ~  1e-10
0 50 100 150 200 0 10k 20k 30k 40k 50k

— SVRG

- = IP-SVRG
Katyusha X
IP-Katyusha X

Time(second) Epoch

Figure 3.9: Sum-of-nonconvex on synthetic data. A\, = 1072, a = 15. n; = 0.015,
ny = 1074, 7 = 0.45.

3.6 Conclusions and Future Work

In this chapter, we accelerate SVRG and Katyusha X by inexact preconditioning, with

an appropriate preconditioner, both can be provably accelerated in terms of iteration
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complexity and gradient complexity. Our algorithms admits a nondifferentiable regular-
izer, as well as nonconvexity of individual functions. We confirm our theoretical results
on Lasso, Logistic regression, and a sum-of-nonconvex example, where simple choices

of preconditioners lead to significant accelerations.

There are still open questions left for us to address in the future: (a) Do we have
theoretical guarantee when the subproblem iterator S is chosen as faster schemes such
as APCG [131], NU_ACDM (3], and A2BCD [109]? (b) In general, how to choose a
simple preconditioner that can greatly reduce the condition number of the problem?
(c) Is it possible to apply this inexact preconditioning technique to other stochastic

algorithms?

3.A Proof of Lemma 3.4.1

In this section, we prove the results on the error generated when solving the subproblem
(3.3) inexactly by Procedure 3.1. Before proving Lemma 3.4.1, we will first prove a
simpler case in Lemma 3.A.1, where the subproblem iterator S is the proximal gradient

step.

Lemma 3.A.1. Take Assumption 3.2.1. Suppose in Procedure 3.1, we choose S as the

prozimal gradient step with step size v = ni;“i“((%)), and is repeat it p times, wherep > 1.

Then, w1 = wi,, is an approzimate solution to (3.3) that satisfies

1 .
0 €8w(wt+1) + EM(th — U}t) + Vt + M€f+1, (320)
c\p
leballar < ;)me ~ wlar, (3.21)
where
TP 4 P71
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Proof of Lemma 3.A.1. The optimization problem in (3.3) is of the form

minimize by (y) + ha(y), (3.22)

yeRd

for hi(y) = ¥ (y) and ha(y) = ﬁHy—th?W—l—(@, y). With our choice of S as the proximal

gradient descent step, the iterations in Procedure 3.1 are

0 _
Wiy = Wy,
Wiy = FTOXypy (Wi — YV I2(Weyq) ),

W1 = wf+1,
where 7 = 0,1,...,p — 1. From the definition of Prox,;,, we have
_ 1 _
0 € Ohy(wiyy) + Vh2(wf+11) + ;(wfﬂ - wfﬂl)-

Compare this with (3.20) gives

1 _ _
Mej,, = ;(wfﬂ - wf—&-ll) + th(wfﬂl) — Vhy(wiy).

To bound the right hand side, let w},; be the solution of (3.22), a = ’\"‘i“T(M), and
p = ’\a%(M) Then hq(y) is convex and hs(y) is a-strongly convex and [-Lipschitz

differentiable. Consequently, Prop. 26.16(ii) of [18] gives

||wi+1 - w:—i—l” < Tin?—i-l - w:+1||7 Vi=0,1,..,p,

where 7 = \/1 —v(2a — v5?).

Let a; = |Jwi,, — w},,||. Then, a; < 7'ag. We can derive
p 1 P p—1
[Met | < (; + B)wipy — wipy |l
1 1
S (; + B)(ap + Clpfl) S (; + 6)(7’p + Tp71>a0.
On the other hand, we have
lwipr — we|| > ap —ap, > (1 — 7P)ag.
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Combining these two equations yields

[ Mef || < b(p)[Jwisr — well], (3.23)
where
1 Apax (M) 7P + 7771
b(p) = (— . 3.24
() = (- + e T (3.24)

Finally, let the eigenvalues of M be 0 < A\; < Ay < ... < Ay, with orthonormal eigenvec-

tors vy, vg, ..., v4. Let €7, and wyy — wy be decomposed by
d
p _
€41 = Z (O U
i=1

d
Wiy — Wy = Z/@Uz
i=1

then

d 1 d 1
leteallar = | D_Niad < J)\(M)Z)\ZQ%Q = mHMs’ZHH,
=1 min min

i=1

d 1 d 1
— = E 2 — § NP2 = ——— — )
Hthrl th P 62 = \l )\mm(M) 62 Y (M) Hwt+1 wt”M

i=1 min

Combine these two inequalities with (3.23), we arrive at

letillar < c(p)lwerr — wellar, (3.25)
where o
)= by 2 !
c(p) = —— =
g )\mm(M) b Amin(M) 1—7P

]

Now, we are ready to prove Lemma 3.4.1, the techniques are similar to the proof of

Lemma 3.A.1.

Proof of Lemma 3.4.1. We want to find ¢(p) such that

1 .
0 €8¢(wt+1) -+ EM(th — wt) —+ Vt -+ Mgi?—f—lv (326)
c\p
letiallar < (77) [ wess — wel (3.27)
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Take i = r — 1 and j = py — 1, then the optimality condition of the problem in line 5
of Algorithm 3.3 is

r—1, 1 r—1, r—1, r—1,
OE@@/)(IULF pO))+,y(w(+ 10) U(Jr po))+Vh2(u(+1 po))7

compare this with (3.26), we have

1 T T r 1 =
Mey,y ;(w£+117p0) - U§+11’p0 )+ Vh2(“§+11’p0)) - 5M(wt+1 —wy) — Vi
1 T r— ]‘ T
= @i =) M = )
where
e 0, _o—1 e o
r—1, r—1, 1 2 r—1, 1 r—1, 2
U§+1 ) :wt(—H o pi)g <w1£+1 " )—w§+1 " ))-
po—1
As a result,

1 r—1, r—1, 1 r—1,
||M5t+1|| <HV(wt+1 vo) _ U£+1 o) )|+ HH (Ut+1 Po) _ W) |

I, -, po—1 o—1, G 1po—1 r—1po—2
< @ — i) 4 LR Lt D)
f)/ fy pofl
1 r—1,po—1 160, o r—1pp—1 e Lpo_3
FI MO — )l + I B2 Ml — wf )
7] 77 po—1
(3.28)

Let the solution of (3.3) be wy,,. By Theorem 4.4 of [29], for any 0 < i <r —1 and

0 < j <po we have

,0
2)\max(M) ng—i-l) - w;—i—l H2 )

W)~ Wluf,) < o

On the other hand, the strong convexity of ¥ = h; + hy gives

i, * /\mln(M) , *
Vwi) = i) = =5 =l — ol
Therefore,
(4,9) < (2,0) * 3 29
|wist — wiyy |l H Wiy — Wi (3.29)
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Now, let us use (3.29) repeatedly to bound the right hand side of (3.28). For example,

the first term can be bounded as

||*( (r=L,po) (7” 1,p0— 1)”
t+1 t+1
r—1 * r—1 1 *
;nt W—wﬁﬂ+7nt Pt |l
1 4K(M) r 0,0 1 4K(M) r—1 4H(M) (0,0
<( )2 iy — wi |+ = ( )7 2wy — wi |-
v pd v} (po — 1)?

Similarly, the rest of the terms can be bounded as follows,

1, (1 r—1.po—
*H po 2 (w( Lpo—1) _, (r—Lpo 2))“

L t+1 - t+1
PO
1 4/1(]\/[) =1, 4s(M) 1 7 1 4/{(M) =1, 4k(M)
<—( )7 () iy — wh ||+ = ( )7 2 [0y — wil,
v Pk (po — 1) v Pk (po —2)?
1 o
mﬂﬂwaSM]J—anu
Amax(M) Ax(M) r—1  4k(M) . Amax (M) 4k (M) .
< ()7 () Al — wipl + (=3 2) 5wl = will,
n D5 (po — 1)? n Pi
16 r—Lpo— r—1py—
I B Ml - w7 )
n po—1
Amax (M)  4k(M) -1, 4k(M) .
< W —w
(T )T << - V)Ht |
Amax(M) 4'%(M) — (M) = (0 0) *
+ 2 2|lwyly —w ,
n ( pg ) (<p0_2)2) || t+1 t+1||

where in the first and third estimate we have used 20=2=1 < 9730’? < 1. On the other
Po

hand, we have

[wis1 — we| = ngﬁlpo t—O&-?)H
> Jlugy = will = gy ™ —wf|
> (1 (U5 00D g,
Dy
As a result, taking v = )‘“‘a"T(M), w® = w,, w7 = Wy and T = (4”‘}52/[))2170 yields

Amax(M) b(p)
[ Mef, || < 2 n 1- Tprt+1 — wyl],
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where

o 4K(M) 1 4K(M) 1

b —P~Po 2 + (—m——==)2
0 =Gy * Gu—2p)

4k(M
4P 4 Tp—po((p;d_ 1))2 )% (3.30)
Similar to the end of proof of Lemma 3.A.1, we have
k(M) b

202lar < 250D

4k(M)

2]
Py = 2e\/k(M).

In order for pg to be an integer, we can take

Po = |_2€\/ /{(M)-I’

1
Now, let us choose py such that 7 = ( )20 is minimized, a simple calculation yields

then

1 1, —— 1 —F 1

)20 < () 2M2eVrDT < (—)22eVmOD+) = exp(— ———=—).

P e? e? 2er/k(M) + 1
Finally, Let us show that b(p) in (3.30) can be bounded by 777, and the desired bound

(3.27) on ||ef||a follows.
First, we have

k(M) 1 _ Py

T—Po( — —
po—1 po—1

and
po = [2/i(M)] > [2¢] = 6.

1
On the other hand, a simple calculation shows that (I%)% is decreasing in py, therefore

—po 4/€(M) %
T (ﬁ) <(

6. 1
2V <2
5)° <2
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Similarly, one can show that

4k (M)
Po — 2

o=

rm(BE < Oyt <2

Combining these two inequalities with (3.31) yields

b(p) < 77P.

3.B Proof of Theorem 3.4.2

In this section, we proceed to establish the convergence of inexact preconditioned SVRG

as in Algorithm 3.1. The proof is similar to that of Theorem D.1 of [2].
Before proving Theorem 3.4.2, let us first prove several lemmas.

First, the inexact optimality condition (3.4) gives the following descent:

Lemma 3.B.1. Under Assumption 3.2.1, suppose that (3.4) holds. Then, for any

u € RY we have

2
y = u—w
(Vi,we — u) + (wigr) — P(u) <AV, wp — wipr) + H277tHM
1 1
N %Hu —wiallay - %Hw”l — w3 + (Meby, u— wi).

Proof. First, let us rewrite the left hand side as
(Vi,wy = u) + P(wia) = (u) = (Vi wp — wigr) + (Vi wen — u) + P(wign) — (u).
By (3.4) and the definition of subdifferential we have

~ 1
Y() 2 Ywen) = Vet - MW = we) + Mepy, v = win).
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Combining these two gives

- ~ 1
(Vi,we — u) + P(wer) — P(u) (Vi wp — wegr) + (EM(th —wy) + Mefi g, u — W)
€ [l — we[3s
=(Vi, wy — wigq) + 2n

1 1
- %HU — w3 — %Hwtﬂ — w3 + (Meb,, u— wiyr),

where in the last equality we have applied

1 1 1
(0= b,e =y = —5lla—bl3 — Slla — elld + 51— el

Based on lemma 3.B.1, we have

Lemma 3.B.2. Under Assumption 3.2.1, if the iterator S in Procedure 3.1 is proximal

gradient descent or FISTA with restart, then, for any a > 0, n < 122402 4 4 € R

2L§W
we have
= 2 L - 7705”\4 2
E[F(wiy1) — F(u)] <E[n||V: — V f(wy)[[3-1 + THU — wy||y
1 cp)
- (% - %)HU - wt+1||?w]-

Proof. We have

E[F (wi1) — F(u)] = E[f (W) — f(u) + ¥ (wegr) — 9 (u)]

SELF () + (VF () ey — ) + 2 o — ey — F() + 0 () — ()

< ST () = ) — T = a4 (9 0) s — )
2~ w3+ ) — 00

= BT~ ) — T =l + (9 (1) s — )

I il + 0 w) — v, (331)
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where the first and second inequality are due to the smoothness and strong convexity

under || - ||5; in Assumption 3.2.1, respectively. The last equality is due to E[@t] =
Vf(w).

On the other hand, recall that Lemma 3.B.1 gives

(Vi wr —u) + (wi1) — () < (Vi wy —wip) + Ww - 2177HU — wep |3y — 2177H’wt+1 — w3
+ (M}, 1, u— wiyq).
For the last term we can apply Cauchy-Schwartz as follows,
(Metiy,u—werr) < |lefi|larllu — wea|ar,
from Lemma 3.A.1 and Lemma 3.4.1 we know that
el < “2 s =
Therefore, by Young’s inequality, we have for any a > 0 that
(8= s} < D s — By + S = il
Applying this to Lemma 3.B.1 yields
(o =)+ i) = 0) < = wera) + LS 7, = L =

+ (Mef, 1, u — W)

u — w2 1 cp
o=l (L Oy

<V, wy —
_< t, Wt wt+1>—|— 2 2 2an

1 c(p)a
~ (5 = 2 s — il

Applying this to (3.31), we arrive at

1 —c(p)a— UL?/[ 2
| w _thrlHM

E[F (wi1) = F(u)] <E[Ve = Vf (w,) ,w; = wip1) =

2n
L =l = G~ S il
<[5 c(p;]a —7 IVe = V(w3
L =l = G~ S~ el
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where in the second inequality we have applied

1 1 1 b
(ur, u) = (M~ 2wy, M2up) < |Jug||ar-1 ||Jus|[ar < %Hulﬂi/[;l + §||u2||jﬁ for any b > 0.

. . 172c(p)a . . .
Finally, since n < —7 i we have Wa—w% < n, which gives the desired result.

]
Lemma 3.B.3. Under Assumption 3.2.1, we have
E[||V: = Vf(we)[[3-1] < (L) [wo — w3
Proof. We have
E[||V: = Vf(w)[3-1] = |V f(wo) + V fi, (i) = V fio(wo) = V£ (wy) [3-1]
= E[|[(V fi.(wi) = V fi, (wo) ) = (Vf(wr) = V f(wo))|[34-1]

< E[|Vfi,(we) = V fi, (wo) [3-1]

< (Ly')*lwe — woll,

where in the first inequality, we have applied E[||¢ — E£||?] = E[||€]|? — || E£||? with
£=Mz (V fi,(wy) =V fit(w0)>, and in the second inequality follows from Assumption
3.2.1. [

Lemma 3.B.4 ((Fact 2.3 of [2])). Let C, Cy, ... be a sequence of numbers, and N ~Geom(p),
then

1. EN [CN — CN—H] == ﬁEN [Co — CN], and

2. En [Cn] = (1 = p)E[Cy1] + pCo.

Lemma 3.B.5. Under Assumption 3.2.1, if n < min{IEQLCX?)a, 2\/%W} and m > 2,
! !

then, for any u € RY we have

1 (wo — wp1,wo — U) s
E[F — F(u)] <E[—— — wp|? :
[F'(wps1) — F(u)] <EJ 4m77HwD+1 wo |3, + mn
O'M C
L N )
4 2an
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Proof. By Lemmas 3.B.2 and 3.B.3, we know that

M

1—no
E[F (wi1) = F(u)] < Elp(L§)? |lwo — will iy + —— = Ilu = will3,

2n
L cp)
- (% - 2777)”“ — Wi [3]-
Let D ~ Geom() as in Algorithm 3.1 and take ¢ = D, then
1
E[F(wps1) = F(u)] <E[n(Lf')*[lwo — wpllis + 5w = woll3,

1 M

~ ol = woalfi = %l = wply + ;ﬁiﬁuu wpnill]
R e

= D= oy + 22wl
=l s = ol + Ll wpall

- gi”u - wOH?\/] - U}V[(;nm_DHU - UJD+1||?\/[ + ;Sj;”u — wDHH?\/[]

2 2
<Eln(LM)2 . 2 lw —wol|3; — llu — wpa1l3s
— [77( f ) ||wD+1 wOHM + 2m7]

M

o c(p)
- f“u — wp13; + %Hu — wpi1]3]
1

SE[_M [wo — wp1] 3

N lu — woll3, — llu — wpal3; + llwo — wpia 3y

2mn
= oo~y + S
Bl lwpss -y + SR =
O s iy

where the first equality follows from the item 1 of Lemma 3.B.4 with Cy = |Ju —wx/||3;,
the second inequality follows from item 2 with Cy = |Jwg — wo||%;, item 2 with Cy =
|lu — wol|3; — |[u — wnl|3;, and item 1 with Cy = |ju — wp||3;, then third inequality

makes use of m > 2 and the fourth inequality makes use of n < W
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O

Now, let us proceed to prove Theorem 3.4.2. With Lemma 3.B.5, it can be proved

in a similar way as Theorem 3 of [110].

Proof of Theorem 3.4.2. Without loss of generality, we can assume 2* = arg min  pa F'(x) =

0 and F(z*) =0.

According to Lemma 3.B.5, for any u € R? ,and n < mln{l 251(5 ; 2\FLM} we have
. 1 . .
E[F(27*") — F(u)] SE[—MIWH — 2|3,
(27 — oIt — u) s 05\‘/1 c(p) J+1 2
T (= S~ ulf)
or equivalently,
E[F(2*") — F(u)] <E[——[|lo™" — 27|13 + = [la” — ul?,
4mn 2mn
1 ) oM c(p) .
_ g+ _ _ (PN
s/ =l = (T = G2l ]

In the following proof, we will omit E.

Setting u = 2* = 0 and u = 27 yields the following two inequalities:

- 1 . - - 1 1 2¢(p) -
F1y b g g2 2y _ L 4 M _ #Cp) J+12
Flar™) < g (la”™ =2/l + 202/13) = 50 (14 gmn(op’ = =0 =) 12 I,
(3.32)
F(2/t) — F(a?) < — L(1 +mn(a} — 20(]@))ij+1 — 7|3, (3.33)
- 4dmn ! an

Define 7 = gmn (o} — 2‘;(3]”)), multiply (1 + 27) to (3.32), then add it to (3.33) yields

2(1+7)F(/*!) = F(a?) <—(1+2)([27 13, — 1+ 1)l ]3,).

2mn

Multiplying both sides by (1 + 7)7 gives

20+ 7y R@T) = (L4 7)Y Fof) <g—(1+ 27) ((L+ 7V e’ |13 = (L4 ) 2715, )
mi)
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Summing over j =0,1,...,k — 1, we have

k—1

(1+7)"F(a*) + 3 (1+7) F(a!) - F(a") SQT}m(l +27)([l2°13, — L+ 7)* 2" [7)-

=0
Since F(z?) > 0, we have
1
F(*)(14 1) < F(2%) 4+ s— (1 + 27)||2°]>.
(&)1 ) < F )+ o (14 20) )

M
g
f

2 HZUOH?M, therefore

By the strong convexity of F, we have F(z°) >

Fa®) (1 +7)F < P(a®) (2 + 217)'

Finally, recall that a > 0 can be chosen arbitrarily, so we can take

4
noy

and

1— 8¢2(p)
ol
f

— 2¢c(p)a 1 ) in{
: = min
2L 7 2y/mLY 2L

1
7 < min{

L
o /mIi

1
T = fmn(ajfw —

20(]9)) _ 1 Y
2 an 4

mnoy’ .

In order for the choice of 7 in (3.35) to be possible, we need

(p)
2L " —n+38 o <0

to have one solution at least, which requires
64&?402(1)) <1,

under which 7 = 7 satisfy (3.36). As a result, m > 4 makes (3.35) into
7

1
N< 57—
2\/mL9/[

and the desired convergence result follows from (3.34).
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3.C Proof of Lemma 3.4.4

Proof. From Lemma 3.4.1, we know that

Tp

clp) = k(M)

where
1

26\/K(M)+1).

Therefore, in order for 64/1}4 A(p) < 1, we need

7 < exp(—

= (1,

which is equivalent to

Thus, it suffices to require that

1 » c

exp(— < ;
O D <1 = w0 1 v

which gives

p = (26\/m+ 1) In /‘3?4/1(]\/[)4-\/0_1.

C1

3.D Proof of Theorem 3.4.3

The proof of Theorem 3.4.3 is similar to that of Theorem 4.3 of [2], so we provide a

proof sketch here and omit the details.

1. In [2], the proof of Theorem 4.3 is based on Lemma 3.3, here the proof of Theorem

3.4.3 is based on Lemma 3.B.5, which is an analog of Lemma of 3.3 in our settings.
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2. Based on Lemma 3.B.5, the proof of Theorem 3.4.3 follows in nearly the same

way as Theorem 4.3 of [2], the only difference is that one needs to replace o by

M _ 2c(p)
oy o

3. By setting

and

64%?402 (p) <1

as in the proof of Theorem 3.4.2, the 7 in Theorem 4.3 of [2] becomes gmno}!,

and the convergence result of Theorem 3.4.3 follows.

3.E Proof of Theorems 3.4.5 and 3.4.6

Proof of Theorem 3.4.5. From Remark 3.4.1, we know that the gradient complexity of
SVRG can be expressed as

Cl(m,g):(’)( nim

In-).
In(1 + $mnoy) " 5)

Taking the largest possible step size n = ﬁ as in Theorem 3.4.2, we have

n-—+m

In(1+ ;5/77?)

Let us first find the optimal m = m* for SVRG, let

Cl(m,€) :O( 1ng)

( n+m
g(m) = ————,
Vm
In(1 + Snf)
then
vm % n+m
1n(1+ %) — 1+@ o
g'(m) = =
In*(1 + 2)
Taking derivative to the numerator gives
In(1 + Vm, s nt m], — (n+m) 32ry A6ep)? 0.
Syt 14y 2m (1+ ¥
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8@ > 0, then
Ry

Therefore, m* is given by ¢’(m) = 0. Let z =
zZ_nt+m
J(m) = In(l +2) — 57 ‘
In*(1 + 2)

Since In(1 + 2) > 13 for z > 0, we know that ¢'(n) > 0, therefore, m* < n.
Let m = n® where 0 < s < 1, we would like to have ¢'(n®) < 0, i,e.,

In(1+2) 1+n'®
— < :
2
142

so that m* € (n®,n).
Since Ky > n%, we have z = %/TF? < %, on the other hand, we have

In(1 1 1=s
[n( Z+z)< o . > 0.
142 2

Therefore, it suffices to have
1—s 9
n >181n§—1::co>1.

As a result, we have m* € (7, n), and
n—+m* 1 n
m2)=0Z&

Cl(m*7€> - O( *
In(1 + ggj) o

1 1
In g) = O(rsv/nln g)7

where in the second equality we have used x; > ne.

For our iPreSVRG in Algorithm 3.1, we have
1

n+ (14 pd)m b,

€

Ol(m7 5) - O(ln(l + %mUUM)

thanks to Lemma 3.4.4, p can be chosen as
p=0O(/k(M)In ( H%R(M)),

2\/%!'4 due to Theorem 3.4.2.

furthermore, we can take n =

Under these settings, we have
14 pd 1

nt(l+p )mlnf).

€

C'(m,e) =0
1(m.€) 1n<1+;g*?>
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l—fpd-l .

Let us take m =m’ = |
If n > 1+ pd, or equivalently r; < n*d~2, then

n | 1)
n-—).
In(1+3i—2) ¢

i

Ci(m’,e) = O(

Since p = (’)(,//ﬁ(]\/[) ln( /i?”/ﬁ(M))), we know that when (x})*\/s(M)d < n, or

equivalently r; < n*d~2, we have

In(1+ ;\/p_\{i_?/;‘f) = O(Inn),

therefore
1
Ci<m/a 5) = O(n In g>a

and

min,,>; C1(m,e) < Ci(m/,e) (9(@)

mil’lle C’l(m,s) - C’l(m*,s) Ky ’

If n < 1+ pd, or equivalently x; > n?d—2, then m = 1 and

Ci(m,e) = O(m -
8:{;”

therefore
min,,>; C(m, €) < Ci(l,e) o VE(M)d )
min,,>; C1(m,e) = Cy(m*,e) key/nin(l+ %,%\4) '
f
Since k(M) = ry > K}, this ratio becomes O( gﬁf) O
Proof of Theorem 3.4.6. The proof of Theorem 3.4.6 is similar and is omitted. O]
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Part I11

Convergence Behaviors on

Pathological Problems
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In this part, we present the results of [137] and [199], where the behavior of DRS on
pathological convex problems is analyzed. This part depends heavily on the monotone

operator theory (c.f. [18]).

In Chapter 4, we work on conic programs. First, we view DRS iteration as a
fixed-point iteration with some firmly nonexpansive operator 7' (see (4.6)). In the
pathological settings, T" does not have a fixed point, and DRS iterations will diverge.
However, they diverge in a certain pattern 4.2.3, and this pattern is very helpful for
identifying pathologies. Specifically, we can run three different but similar fixed-point
iterations in parallel (see Algorithms 4.1, 4.2, and 4.3). Their convergence or divergence
patterns inform us about what goes wrong in the original conic program, and how we
may fix them. We summarize the theoretical results as a flowchart for identifying
pathologies (see Figure 4.1), and numerical results on infeasible semidefinite programs

(SDPs) in Section 4.3.

In Chapter 5, we turn to general convex problems. Just like DRS for conic programs,
the divergence pattern of DRS can still inform us about certain pathologies such as
strong infeasibility and improving directions (see Section 5.3.1). Furthermore, we show
in Section 5.3.2 that, DRS essentially only requires strong duality to "work" even when
the primal and/or dual solution does not exist, in the sense that the objective values of
the iterates are asymptotically optimal. This result comes from a novel function value
analysis. Finally, all these results are translated for ADMM in Section 5.5, which is

known to be equivalent to DRS.
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CHAPTER 4

DRS for Pathological Conic Programs

4.1 Introduction

Many convex optimization algorithms have strong theoretical guarantees and empirical
performance, but they are often limited to non-pathological, feasible problems; under
pathologies often the theory breaks down and the empirical performance degrades signif-
icantly. In fact, the behavior of convex optimization algorithms under pathologies has
been studied much less, and many existing solvers often simply report “failure” without
informing the users of what went wrong upon encountering infeasibility, unbounded-
ness, or pathology. Pathological problem are numerically challenging, but they are not
impossible to deal with. As infeasibility, unboundedness, and pathology can arise in
practice (see, for example, [141, 140, 225, 229, 78]), designing a robust algorithm that

behaves well in all cases is important to the completion of a robust solver.

In this chapter, we propose a method based on Douglas-Rachford splitting (DRS)
that identifies infeasible, unbounded, and pathological conic programs. First-order
methods such as DRS are simple and can quickly provide a solution with low or mod-
erate accuracy. It is well known, for example by combining Theorem 1 of [193] and
Proposition 4.4 of [82], that the iterates of DRS converge to a fixed point if there is one
(a fixed point z* of an operator T satisfies z* = T'z*), and when there is no fixed point,
the iterates diverge unboundedly. However, the precise manner in which they diverge
has been studied much less. Somewhat surprisingly, when iterates of DRS diverge, the

divergent iterates still provide useful information, which we use to classify the conic
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program. For example, a separating hyperplane can be found when the conic program
is strongly infeasible, and an improving direction can be obtained when there is one.
When the problem is infeasible or weakly feasible, we can get information of how to

minimally modify the problem data to achieve strong feasibility.

Facial reduction is one approach to handle infeasible or pathological conic programs.
Facial reduction reduces an infeasible or pathological problem into a reduced problem
that is strongly feasible, strongly infeasible, or unbounded with an improving direction,
which are the easier cases [38, 36, 169, 227]. This reduced problem can then be solved
with, say, interior point methods [162]. However, facial reduction introduces a new
set of computational issues. After completing the facial reduction step, which has its
own the computational challenge and cost, the reduced problem must be solved. The
reduced problem involves a cone expressed as an intersection of the original cone with
an linear subspace, and in general such cones neither are self-dual nor have a simple
formula for projection. This makes applying an interior point method or a first-order
method difficult, and existing work on facial reduction do not provide an efficient way

to address this issue.

Homogeneous self-dual embedding is a transformation that embeds a conic program
and its dual into a single larger conic program. In conjunction with interior point
methods, one can use the homogeneous self-dual embedding to identify and solve some

pathologies [240, 70, 241, 143, 175].

In contrast, our proposed method directly addresses infeasibility, unboundedness,
and pathology without transforming to a larger problem. Some cases are always iden-
tified, and some are identifiable under certain conditions. Being a first-order method,
the proposed algorithm relies on simple subroutines; each iteration performs projections
onto the cone and the affine space of the conic program and elementary operations such
as vector addition. Consequently, the method is simple to implement and has a lower

per-iteration cost than interior point methods.
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4.1.1 Basic definitions

Cones. A set K C R" is a cone if K = AK for any A > 0. We write and define the
dual cone of K as

K*={ueR" v'v>0, forallv e K}.

Throughout this chapter, we focus on nonempty closed convex cones that we can effi-
ciently project onto. In particular, we do not require that the cone be self-dual. Example

of such cones include:
e The positive orthant:
RE={zeRF|2,>0,i=1,...,n}
e Second order cone:
Q= {(.:El, o Ty Tpg1) € RE X Ry | 2pyy > \/2d + - + xi}
e Rotated second order cone:

k2 _ k 2 2 2
Q= {(951» coe Ty Thp 1, Th) € R X RY [ 2212440 > 27 + -+ + xk}

e Positive semidefinite cone:

St ={M=M" € R¥*| 2" Mz > 0 for any z € R}

Conic programs. Consider the conic program

T

minimize c x
subject to Az =1b (P)
r e K,

where x € R” is the optimization variable, c € R", A € R™*" and b € R™ are problem

data, and K C R" is a nonempty closed convex cone. We write p* = inf{c’z | Az =
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b, x € K} to denote the optimal value of (P). For simplicity, we assume m < n and A

is full rank.

The dual problem of (P) is

maximize by
subject to ATy +s=c (D)

s € K,

where y € R™ and s € R" are the optimization variables. We write d* = sup{b’y | ATy+

s =c¢, s € K*} to denote the optimal value of (D).

The optimization problem (P) is either feasible or infeasible; (P) is feasible if there
is an x € K N{x|Ax = b} and infeasible if there is not. When (P) is feasible, it
is strongly feasible if there is an x € relintK N {x| Az = b} and weakly feasible if
there is not, where relint denotes the relative interior. When (P) is infeasible, it is
strongly infeasible if there is a non-zero distance between K and {z|Ax = b}, ie.,

d(K,{z| Ax = b}) > 0, and weakly infeasible if d(K, {z| Az = b}) = 0, where
d(Cl,CQ) = lnf{HiL' — y” |IE S Cl, Yy € Cg},

and || - || denotes the Euclidean norm. Note that d(Cy,Cs) = 0 does not necessarily
imply C; and Cj intersect. When (P) is infeasible we say p* = oo and when feasible
p* € RU{—o0}. Likewise, when (D) is infeasible we say d* = —oo and when feasible
d* € RU {o0}.

As special cases, (P) is called a linear program when K is the positive orthant,
a second-order cone program when K is the second-order cone, and a semidefinite

program when K is the positive semidefinite cone.

4.1.2 Classification of conic programs

Every conic program of the form (P) falls under exactly one of the following 7 cases

(some of the following examples are taken from [146, 148, 143, 145]). Discussions on
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most of these cases exist in the literature. Some of these cases have a corresponding
dual characterization, but we skip this discussion as it is not directly relevant to our
method. We report the results of SDPT3 [220], SeDuMi [211], and MOSEK [156] using

their default settings. In Section 4.2, we discuss how to identify most of these 7 cases.

Case (a). p* is finite, both (P) and (D) have solutions, and d* = p*, which is the
most common case. For example, the problem

minimize I3

subject to ;=1

x3 > /o] + a3

has the solution z* = (1,0,1) and p* = 1. (The inequality constraint corresponds to

r € Q%) SDPT3, SeDuMi and MOSEK can solve this example.

The dual problem, after some simplification, is

maximize Yy

subject to 1 > 92,

which has the solution y* =1 and d* = 1.

Case (b). p* is finite, (P) has a solution, but (D) has no solution, d* < p*, or both.
For example, the problem

minimize o

subject to z1 =2x3=1

T3 > \/23 + 73

has the solution z* = (1,0,1) and optimal value p* = 0. (The inequality constraint

corresponds to T € Q3.)

The dual problem, after some simplification, is

maximize y; — /1 + 2.
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By taking y; — oo, we achieve the dual optimal value d* = 0, but no finite y; achieves
it.

In this example, SDPT3 reports “Inaccurate/Solved” and —2.99305 x 1075 as the
optimal value; SeDuMi reports “Solved” and —1.54566 x 10~* as the optimal value;
MOSEK reports “Solved” and —2.71919 x 1078 as the optimal value.

As another example, the problem

minimize 2xi9
T11 12 x13
subject to X = |25 0 Ta3 | €59,
Tz Toz 12+ 1
has the solution
0 0O
0 0O
0 01

X*

and optimal value p* = 0.
The dual problem, after some simplification, is

maximize 2y

0 g+l 0
subject to |y, +1 —yy 0 | €53,

0 0 —2y2
which has the solution y* = (0, —1) and optimal value d* = —2.

In this example, SDPT3 reports “Solved” and —2 as the optimal value; SeDuMi
reports “Solved” and —0.602351 as the optimal value; MOSEK reports “Failed” and

does not report an optimal value.

Note that case (b) can happen only when (P) is weakly feasible, by standard convex
duality [191].
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Case (c). (P) is feasible, p* is finite, but there is no solution. For example, the
problem
minimize T3
subject to z; = V2
2093 > .77%
Ta, T3 >0
has an optimal value p* = 0 but has no solution since any feasible x satisfies x3 > 0.

(The inequality constraints correspond to z € @Q3.)
In this example, SDPT3 reports “Inaccurate/Solved” and 7.9509 x 107> as the opti-

mal value; SeDuMi reports “Solved” and 8.75436 x 10~° as the optimal value; MOSEK

reports “Solved” and 4.07385 x 107% as the optimal value.

Case (d). (P) is feasible, p* = —o0, and there is an improving direction, i.e., there is

au e N(A)N K satisfying ¢’u < 0. For example, the problem

minimize 23
subject to x5 =0

r3 > /23 + 23

has an improving direction u = (—1,0,1). If = is any feasible point, x + tu is feasible
for ¢ > 0, and the objective value goes to —oo as t — 0o. (The inequality constraint

corresponds to z € @Q3.)

In this example, SDPT3 reports “Failed” and does not report an optimal value;
SeDuMi reports “Unbounded” and —oo as the optimal value; MOSEK reports “Un-

bounded” and —oo as the optimal value.
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Case (e). (P) is feasible, p* = —oo, but there is no improving direction, i.e., there is

no u € N'(A) N K satisfying ¢’u < 0. For example, consider the problem

minimize
subject to xo =1
2
2wox3 > X7

X9, w3 > 0.

(The inequality constraints correspond to z € Q2.) Any improving direction u =
(u,ug,uz) would satisfy us = 0, and this in turn, with the cone constraint, implies
u; = 0 and ¢Tu = 0. However, even though there is no improving direction, we can

eliminate the variables x; and x5 to verify that
p* = inf{—v2z3|z3 > 0} = —oc.

In this example, SDPT3 reports “Failed” and does not report an optimal value; Se-
DuMi reports “Inaccurate/Solved” and —175514 as the optimal value; MOSEK reports

“Inaccurate/Unbounded” and —oo as the optimal value.

Case (f). Strongly infeasible, where p* = 0o and d(K, {x | Az = b}) > 0. For example,
the problem

minimize 0

subject to z3 = —1

r3 > /23 + 23

satisfies d(K, {z | Ax = b}) = 1. (The inequality constraint corresponds to x € @Q3.)

In this example, SDPT3 reports “Failed” and does not report an optimal value;
SeDuMi reports “Infeasible” and oo as the optimal value; MOSEK reports “Infeasible”

and oo as the optimal value.
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Case (g). Weakly infeasible, where p* = oo but d(K, {x | Az = b}) = 0. For example,
the problem
minimize 0
0,1,1 0

subject to xr =

1,0,0 1

x3 > \Jof + a3

satisfies d(K,{z | Az = b}) = 0, since

d(K,{z|Az =b}) < [[(L,—y,y) — (L, =y, \/y? + ) = 0
as y — 00. (The inequality constraint corresponds to z € Q3.)

In this example, SDPT3 reports “Infeasible” and oo as the optimal value; SeDuMi
reports “Solved” and 0 as the optimal value; MOSEK reports “Failed” and does not

report an optimal value.

Remark. In the case of linear programming, i.e., when K in (P) is the positive

orthant, there are only three possible cases: (a), (d), and (f).

4.1.3 Classification method overview

At a high level, our proposed method for classifying the 7 cases is quite simple. Given
an operator T and a starting point z°, we call 2**! = T'(2*) the fized-point iteration of

T. Our proposed method runs three similar but distinct fixed-point iterations with the

operators
Ti(2) = T(2) + xo — vDc
To(z) = T(2) + xo (Operators)
Ts(z) = T(2) — vDe,

where T(2) = (1/2)(I + RyayRi)(2), D =1 — AT(AAT) A, 3y = AT(AAT)"'b, and

v > 0. We explain the notation in more detail in Section 4.2.
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We can view T} as the DRS operator of (P), T, as the DRS operator with ¢ set to
0 in (P), and T3 as the DRS operator with b set to 0 in (P). We use the information
provided by the iterates of these fixed-point iterations to solve (P) and classify the cases.
As outlined in Section 4.2.8, this is based on the theory of Section 4.2 and the flowchart

shown in Figure 4.1.

4.1.4 Previous work

Previously, Bauschke, Combettes, Hare, Luke, and Moursi have analyzed Douglas-
Rachford splitting in other pathological problems such as: feasibility problems between
2 affine sets [25], feasibility problems between 2 convex sets [19, 26], and general setups

[13, 21, 23, 157]. Our work builds on these past results.

4.2 Obtaining certificates from Douglas-Rachford Splitting

The primal problem (P) is equivalent to

minimize f(z) + g(x), (4.1)
where

f(:l,’) =Ty + 5{$|Ax:b} (:t)

9(z) = 0k (), (4.2)
and 0¢c(z) is the indicator function of a set C' defined as

0 ifxeC
do(z) =
oo if z ¢ C.
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Start

Thm 4.2.8

Thm 4.2.7

Alg 4.2

Infeasible

Alg 4.2

(f) Strongly infeasible

Thm 4.2.2

Feasible

Alg 4.1

(g) Weakly infeasible

Thm 4.2.18 &

Thm 4.2.14 ~

Alg 4.3

NG

(a) There is a primal-dual

solution pair with d* = p*

(b) There is a primal
solution but no dual

solution or d* < p*

(c) p* is finite but

there is no solution

(d) Unbounded
(p* = —o0) with an

improving direction

(e) Unbounded

(p* = —o0) without

an improving direction

Figure 4.1: The flowchart for identifying cases (a)—(g). A solid arrow means the cases

are always identifiable, a dashed arrow means the cases sometimes identifiable.
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Douglas-Rachford splitting (DRS) [133] applied to (3.32) is

"2 = Prox,,(2¥)
2 = Prox, (20712 — o) (4.3)
Rk kel k12

which updates z* to z**! for k = 0,1,.... Given v > 0 and function h,

Prox.;(z) = arg min {h(z) + (1/29)||z — m”Q}

z€R™
denotes the proximal operator with respect to ~vh.

Given a nonempty closed convex set C' C R", define the projection with respect to
C as

Po(r) = argmin ||y — $||2
yeC

and the reflection with respect to C' as
Re(x) = 2Po(x) — x.

Write I to denote both the n x n identity matrix and the identity map from R" — R™.

Write 0 to denote the origin point in R”. Define

D=1-AT(AAT) A

zo = AT(AAT) b = Ppy| az—iy (0). (4.4)
Write A/(A) for the null space of A and R(AT) for the range of A”. Then

P{I|Ax:b}(x) =Dz + Zo,

PN(A)(SL’) = DQJ.

Finally, define
~ 1
T(2) = 5(I + By B ) (2)-
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Now we can rewrite the DRS iteration (4.3) as

$k+1/2 _ PK<Zk)

$k+1 _ D(2$k+1/2 _ Zk) + 29 — 7Dc (45)

R L R ]

z x
Equivalently and more compactly, we can write

= T(2%) + 29 — vDe, (4.6)

which is also 251 = T3 (2*) with T} definied in (Operators).

Remark. Instead of (3.33), we could have considered the more general form

flz)=01—a)lz+ 04z | Az=b} (),

g(z) = ac’z + 5 ()

with o € R. By simplifying the resulting DRS iteration, one can verify that the iterates
are equivalent to the e = 0 case. Since the choice of o does not affect the DRS iteration

at all, we will only work with the case a = 0.

4.2.1 Convergence of DRS
A point z* € R" is a solution of (3.32) if and only if
0€d(f +g)a").
DRS, however, converges if and only if there is a point z* such that
0 € df(z*)+ 0g(z™).

In general,

Of (x) + dg(x) € O(f + g)(x)
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for all z € R™, but the two are not necessarily equal.

We summarize the convergence of DRS in the theorem below. Its main part is a
direct result of Theorem 1 of [193] and Propositions 4.4 and 4.8 of [82]. The convergence

of 2F+1/2 and 2%+! is due to [214]. Therefore, we do not prove it.

Theorem 4.2.1. Consider the iteration (4.6) with any starting point 2°. If there is an
x such that
0 € df(x)+ dg(x),

k ot A% k+1/2 * * k+1 * *
then zF converges to a limit z*, x**Y/2 — 2* = Prox.,(2*), 2**1 — 1* = Prox,,(z*),
and

0 € Of(z*) + Og(z*).

If there is no x such that
0 € 9f(x) + dg(x),

then 2% diverges in that ||2*| — oo.
DRS can fail to find a solution to (P) even when one exists. Slater’s constraint
qualification is a sufficient condition that prevents such pathologies: if (P) is strongly

feasible, then
0 € Of(z*) + 0g(x™)

for all solutions * [190, Theorem 23.8]. This fact and Theorem 4.2.1 tell us that under

Slater’s constraint qualifications DRS finds a solution of (P) if one exists.

The following theorem, however, provides a stronger, necessary and sufficient char-

acterization of when the DRS iteration converges.

Theorem 4.2.2 ([191]). There is an x* such that
0 € 9f(z*) + dg(z¥)
if and only if z* is a solution to (P), (D) has a solution, and d* = p*.
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Based on Theorem 4.2.1 and 4.2.2 we can determine whether we have case (a) with

the iteration (4.6)

with any starting point z° and v > 0.

o If limy ., ||2¥|| < oo, we have case (a), and vice versa.

e If limy_, ||2*|| = 0o, we do not have case (a), and vice versa.

With a finite number of iterations, we test ||2*|| > M for some large M > 0. However,
distinguishing the two cases can be numerically difficult as the rate of ||2¥|| — oo can

be very slow.

4.2.2 Fixed-point iterations without fixed points

We say an operator T : R” — R" is nonexpansive if

IT(x) = TWI* < |z -yl

for all z,y € R™. We say T is firmly nonexpansive (FNE) if

IT(x) =TI <l —yl* = I = T)(@) = (I = )W)

for all z,y € R". (FNE operators are nonexpansive.) In particular, all three operators
defined in (Operators) are FNE, as they are DRS operators [15]. It is well known
[66] that if a FNE operator T has a fixed point, its fixed-point iteration 2**1 = T(z%)

converges to one with rate

125 = 2*] = o(1/Vk).

Now consider the case where a FNE operator T" has no fixed point, which has been
studied to a lesser extent. In this case, the fixed-point iteration 2**1 = T'(2*) diverges in
that ||2*|| — oo [193, Theorem 1]. Precisely in what manner 2* diverges is characterized

by the infimal displacement vector [172]. Given a FNE operator T', we call



the infimal displacement vector of T'. To clarify, ran (I — T') denotes the closure of the
set

ran ([ —T)={x—T(x)|z € R"}.

Because T is nonexpansive, the closed set ran (I — T') is convex [172], so v is uniquely
defined. We can interpret the infimal displacement vector v as the asymptotic output

of I — T corresponding to the best effort to find a fixed point.

Lemma 4.2.3 (Corollary 2.3 of [11]). Let T' be FNE, and consider its fized-point iter-

ation ¢t = T(2*) with any starting point 2°. Then

Zk — Zk+1 — V= Pﬁ)(())

ran

In [11], Lemma 4.2.3 is proved in generality for nonexpansive operators, but we

provide a simpler proof in our setting in Theorem 4.2.4.

When T has a fixed point v = 0, but v = 0 is possible even when 7" has no fixed
point. In the following sections, we use Lemma 4.2.3 to determine the status of a
conic program, but, in general, z*¥ — z*! — v has no rate. However, we only need to
determine whether limy_,,(2**! — 2F) = 0 or limy_,oo(2¥*1 — 2F) # 0, and we do so

k+1

by checking whether ||z 2¥|| > ¢ for some tolerance € > 0. For this purpose, the

following rate of approximate convergence is good enough.

Theorem 4.2.4. Let T be FNE, and consider its fixed point iteration
Zk—l—l — T(Zk),

with any starting point 2°, then

Zk — Zk+1 — .

And for any € > 0, there is an M. > 0 (which depends on T, 2°, and €) such that

o]l < min [|z7 — 277 < o] + =
0<j<k k+1

+

Do ™

112



Proof of Theorem 4.2.4. For simplicity, we prove the result for 0 < ¢ < 1. The result

for e = 1 applies to the € > 1 case.

Given any x., we use the triangle inequality to get

2% — 25— ]| = [ TH(=0) — T (%) — o] (4.7)
< (THE0) = T () — (THas) — T (@) | + 1T (@) — T (@) — o)
(4.8)

To bound the second term, pick an x. such that

2

€
[ee = T(xe) —vll < 7=
4(2[Jvll + 1)

which we can do since v = Pm(O) € ran (I — 7). Since T is nonexpansive, we

have
17" () = T (o) || = o]l < e — T(z) || = [Jo]| < ||z — T(z2) — vll.

Since v = arg min 7 [|z[|, we have |T*(x.) — TF(z.)|| — [Jv|| > 0. Putting this
together we get

2

€
0 < T (@) = T (o)l = vl < S
A4(2fJvfl + 1)

ran

Since v = P=7(0),

lo]l* < y"o
for any y € ran (I — T). Putting these together we get
1T (o) = T (@) = ol* = | T* () = T (o) |P + [Jo]|* = 2(T* () = T (22)) v
< |1 T*(ae) = T (@)1 + Jol* = 2]lo]?

= (17" () = T (@)l + oI UIT*(ze) = T ()| = o)

22 g2

< (2

< 2[|v|l + A2||v|| + 1))4(2HUH +1)
g2 g?

< (2 Voo =7

< 2[jv]| + )4(2”@” +1) 4

(4.9)
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for0<e<1.

Now let us bound the first term ||(T%(2%) — T*1(2%)) — (T*(z.) — T**(x.))|| on the
righthand side of (4.8). Since 7" is FNE, we have

(T () =T (22) = (T () =T () )P = 1T (") =T (e ) [P | T (%) =T ()|
Summing this inequality we have
i I(T*(2%) = T (=) = (T*(2e) = T (@) * < 127 — e (4.10)
j=0
(4.8), (4.9), and (4.10) imply that

Zk - Zk+1 — .

Furthermore,
. . M. 3
; J_ Lt < € -
ouin 127 == vl s == 4o
where M, = [|2° — x.||. As a result,
< min |27 — 27| < = 4 :Z
Joll < g, 127 = =7+ < ol + —== +3

4.2.3 Feasibility and infeasibility

We now return to conic programs. Consider the operator Ty defined by Th(2) = T'(2)+o.

As mentioned, we can view T3 as the DRS operator with ¢ set to 0 in (P).

The infimal displacement vector of T, has a nice geometric interpretation: it is the
best approximation displacement between the sets K and {z| Az = b}, and ||v|| =

d(K,{z| Ax = b}). Define the set
K—{z|Az=b}={y—x|y € K, Az = b}.

Theorem 4.2.5 (Theorem 3.4 of [19], Proposition 11.22 of [157]). The operator Ty has

the infimal displacement vector v = Pr—rr=(0).
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We can further understand v in terms of the projection Ppi(K). Note that
R(AT)
Prary(K) is a cone because K is. Pgrar)(K) is not always closed, but its closure

Prary(K) is. We prove the following result at the end of this subsection.

Lemma 4.2.6 (Interpretation of v). The infimal displacement vector v of Ty satisfies

v= PK—{x|A;c:b}(O) - PPR(AT)(K)—xO(O) - PPRMT)(K*)(QJO) — o,

where xq is given in (4.4) and K is any nonempty set.

Combining the discussion of Section 4.2.2 with Theorem 4.2.5 gives us Theorems

4.2.7 and 4.2.8.

Theorem 4.2.7 (Certificate of feasibility). Consider the iteration 21 = Ty (2*) with

any starting point 2° € R™, then

k+1/2

1. (P) is feasible if and only if 2* converges, and in this case x converges to a

feasible point of (P).
2. (P) is infeasible if and only if 2* diverges in that ||2*|| — oo.

k41 _

Theorem 4.2.8 (Certificate of strong infeasibility). Consider the iteration z
Ty(2%) with any starting point 2°. We have 2* — 2" — v and

1. (P) is strongly infeasible if and only if v # 0.

2. (P) is weakly infeasible or feasible if and only if v = 0.

When (P) is strongly infeasible, we can obtain a separating hyperplane from v. We

prove the following result at the end of this subsection.

Theorem 4.2.9 (Separating hyperplane). Consider the iteration 281 = Ty(2%) with
any starting point z2°. When (P) is strongly infeasible, 2% — ¥ — v # 0, and the
hyperplane

{z|h'x = 3},
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where h = —v € K* N R(AT) and 8 = —(vTxg)/2 > 0, strictly separates K and

{z| Az = b}. More precisely, for any y; € K and y, € {x| Az = b} we have

hTyl <pB< hTyQ.

Based on Theorems 4.2.7, 4.2.8, and 4.2.9, we can determine feasibility, weak infea-
siblity, and strong infeasibility and obtain a strictly separating hyperplane if one exists

with the iteration 2**1 = Ty(2*) with any starting point 2°.

e lim; . ||2"|| < oo if and only if (P) is feasible.

e limy o, ||2"—2F*Y| > 0 if and only if (P) is strongly infeasible, and Theorem 4.2.9

provides a strictly separating hyperplane.

e limy o [|2F]] = oo and limg o ||2% — 2¥*Y| = 0 if and only if (P) is weakly

infeasible.

With a finite number of iterations, we distinguish the three cases by testing || 251 —z¥|| <
e and ||zF|| > M for some small ¢ > 0 and large M > 0. By Theorem 4.2.4, we can
distinguish strong infeasibility from weak infeasibility or feasibility at a rate of O(1/vk).
However, distinguishing feasibility from weak infeasibility can be numerically difficult

as the rate of ||z*|| — oo can be very slow when (P) is weakly infeasible.
Proof of Lemma 4.2.6. Remember that by definition (4.4), we have zy € R(AT) and
{x|Az =b} =20+ N(A) = 2o — N(A).
Also note that for any y € R”, we have
y+N(A) = Priary(y) + N(A).

So
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and

Since zg € R(A”T), we have P ar(K)—x9 € R(AT), and, in particular, Pg(ar)(K)— o
is orthogonal to the subspace N (A). Recall
v = Pp o a) (0)-

So v € Priary(K) — 20 € R(AT) and

v=Ppr—5 . (0).

PR(AT)
Finally,
v=  argmin {HxH%} = argmin {Hy — 370”3} — T = Pm(mo) — Zo
a:GPR(AT)(K)—;BO yEPR(AT)(K)

Proof of Theorem /.2.9. Note that

v=P

K—{x|Am:b}(0) - PK+N(A)—IO<O) = PK—H\/(A) (z0) — o

Using I = Prnrary + P_(gerrary+ and (K* NR(AT))* = K + N(A) [15], we have
v = Pm(xo) — Zp = _Pf(K*mR(AT))(xO) = PK*OR(AT)(_IO)'

Since the projection operator is FNE, we have
—v'wg = (v = 0)" (=20 — 0) > || Prerary(—z0)I” = [Jv]|* > 0

and therefore vTxy < 0,8 = —vTzy/2 > 0.

So for any y; € K and y, € {z| Az = b}, we have
Ry = —vTy <0< —(vmp) /2 = 8 < —vTwg = hly,

where we have used h = —v = —Pguqgar)(—20) € —K* in the first inequality. O]
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4.2.4 Modifying affine constraints to achieve strong feasibility

Loosely speaking, strongly feasible problems are the good cases that are easier to solve,
compared to weakly feasible or infeasible problems. Given a problem that is not strongly
feasible, how to minimally modify the problem to achieve strong feasibility is often useful

to know.

The limit 2% — 2**! — v informs us of how to do this. When d(K, {x | Az = b}) =
|v|l > 0, the constraint KN{z | A(x—y) = b} is infeasible for any y such that ||y|| < ||v]|.
In general, the constraint K N{x | A(x —v) = b} can be feasible or weakly infeasible, but
is not strongly feasible. The constraint K N{x | A(x —v—d) = b} is strongly feasible for
an arbitrarily small d € relint K. In other words, K N {z|A(z —v — d) = b} achieves
strong feasibility with the minimal modification (measured by the Euclidean norm || - ||)

to the original constraint K N {x | Az = b}.

Theorem 4.2.10 (Achieving strong feasibility). Let v = Pr—ra=y(0), and let d be
any vector satisfying d € relint K. Then the constraint K N {x|A(x — v — d) = b} is
strongly feasible, i.e., there is an x such that x € relint K N {x | A(x — v — d) = b}.

Proof of Theorem 4.2.10. By Lemma 4.2.6 we have
v+ my € Preary(K). (4.12)
Because Pgr4ry is a linear transformation, by Lemma 4.2.11 below
Pr(ary(relint K) = relint Pg4r)(K).
Since d € relint K,
Prary(d) € Priar(relint K') = relint Pg 7y (K). (4.13)
Applying Lemma 4.2.12 to (4.12) and (4.13), we have

v+ o+ P’R(AT)(d) € relintPR(AT)(K) = PR(AT)(relintK).
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Finally we have
0 € Prary(relint K) — 29 —v —d + N(A) = relintK — {z | A(x — v — d) = b}.
O

Lemma 4.2.11 (Theorem 6.6 of [190]). If A(-) is a linear transformation and C' is a
convez set, then A(relintC) = relint A(C).

Lemma 4.2.12 (Theorem 6.1 [190]). Let K be a conver cone. If v € K and y €
relint K, then x +y € relintK.

4.2.5 Improving direction
(P) has an improving direction if and only if the dual problem (D) is strongly infeasible:
0 < d(0, K* + R(AT) — &) = d({(y.5) | ATy + 5 = } {(4.5) | s € K°)).

Theorem 4.2.13 (Certificate of improving direction). Ezactly one of the following is

true:
1. (P) has an improving direction, (D) is strongly infeasible, and Py(anx(—c) # 0
is an improving direction.
2. (P) has no improving direction, (D) is feasible or weakly infeasible, and Praynx(—c) =

0.

Furthermore,
Praynw (=€) = Premam—(0)-
Theorem 4.2.14. Consider the iteration 2" = Ty(2*) = T(2*) — yDc with any

starting point 2° and v > 0. If (P) has an improving direction, then

k—o0

119



gives one. If (P) has no improving direction, then

lim 2*t' — 2F = 0.
k—o0

Based on Theorem 4.2.13 and 4.2.14 we can determine whether there is an improving
direction and find one if one exists with the iteration z¢*! = T'(2*) — yDc¢ with any

starting point 2% and v > 0.

k+1

o lim;_ o 2"t — 2¥ = 0 if and only if there is no improving direction.

k+1

o limy_,,, 2"t — 2¥ = d # 0 if and only if d is an improving direction.

With a finite number of iterations, we test ||z*T! — 2¥|| < ¢ for some small € > 0. By

Theorem 4.2.4, we can distinguish whether there is an improving direction or not at a
rate of O(1/Vk).

We need the following theorem for Section 4.2.7, it is proved similarly to 4.2.7 below.

Theorem 4.2.15. Consider the iteration
2K+ = T(2F) — yDe

with any starting point 2° and v > 0. If (D) is feasible, then 2* converges. If (D) is

infeasible, then ¥ diverges in that ||2*| — oo.

Proof of Theorem /.2.13. The qualitative aspect of this theorem (duality between exis-
tence of improving directions and strong infeasibility) is known [148]. To the best of our
knowledge, the quantitative aspect of this theorem (the meaning and characterization
of Prayni(—c)) has not been explicitly addressed before. The following proof slightly

extends the argument of [148] to show both the qualitative and the quantitative parts.

(P) has no improving direction if and only if

{reRz e N(A)NK, Tz <0} =0,
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which is equivalent to ¢’z > 0 for all x € N(A) N K. This is in turn equivalent to
ce (N(A)NK)*. So
—C = P—(J\/’(A)OK)*(_C)'

if and only if there is no improving direction, which holds if and only if

Assume there is an improving direction. Since the projection operator is firmly

nonexpansive, we have

0 < [[Pxcaynk (=0)lI* < (Paanx(—c)" (=c).
This simplifies to
(Pnaynr(—c)) e <0,
and we conclude Pya)nk(—c) is an improving direction.

Using the fact that (M(A) N K)* = K* + R(AT), we have

Prayni (=€) = =Pnank(€) = (Pgam — D(€) = Pegan—(0);

where we have used the identity I = Pya)nx + PW(AT) in the second equality. [

Proof of Theorem 4.2.14 and 4.2.15. Using the identities I = Py(a) + Prary, I =
P + P_g~, and Rg(ary_sc(2) = Rgar)(2) — 27Dc, we have

Ty(z) = T(z) 1D = (1 + Reqary-eRox)(2)
In other words, we can interpret the fixed point iteration
= T(2%) — yDe
as the DRS iteration on
minimize 0
subject to x € R(AT) — ~c

r e —K*.
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This proves Theorem 4.2.15.

Using Lemma 4.2.3, applying Theorem 3.4 of [19] as we did for Theorem 4.2.5, and
applying Theorem 4.2.13, we get

2k — R Prn(l_ﬁ)(ﬂ)

= P—K* —’R(AT)—I—'yc(O)

= P —(0)

= —YPn(aynr (—c).

4.2.6 Modifying the objective to achieve finite optimal value

Similar to Theorem 4.2.10, we can achieve strong feasibility of (D) by modifying ¢, and

(P) will have a finite optimal value.

Theorem 4.2.16 (Achieving finite p*). Let w = PW(O), and let s be any

vector satisfying s € relint K*. If (P) is feasible and has an unbounded direction, then

by replacing ¢ with ¢ = ¢+ w + s, (P) will have a finite optimal value.
Proof of Theorem /.2.16. Similar to Lemma 4.2.6, we have
w= PW*PMA)(@(O)'
And similar to Theorem 4.2.10, the new constraint of (D)
K*Nn{c+w+s— ATy}

is strongly feasible. The constraint of (P) is still K N {x | Ax = b}, which is feasible.

By weak duality of we conclude that the optimal value of (P) becomes finite. O
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4.2.7 Other cases

So far, we have discussed how to identify and certify cases (a), (d), (f), and (g). We

now discuss sufficient conditions to certify the remaining cases.
The following theorem follows from weak duality.

Theorem 4.2.17 ([191] Certificate of finite p*). If (P) and (D) are feasible, then p*

is finite.

Based on Theorem 4.2.15, we can determine whether (D) is feasible with the itera-

tion Z*! = Ty(2F) = T'(2*) — yDc,

with any starting point 2 and v > 0.
e lim; . ||2"]| < oo if and only if (D) is feasible.
e lim, . ||2*|| = oo if and only if (D) is infeasible.

With a finite number of iterations, we test ||2*|| > M for some large M > 0. However,
distinguishing the two cases can be numerically difficult as the rate of ||z*|] — oo can

be very slow.

Theorem 4.2.18 (Primal iterate convergence). Consider the DRS iteration as defined
in (4.5) with any starting point 2°. Assume (P) is feasible, if 2Ft1/%2 — 2 and 2+ —

x>, then ™ is primal optimal, even if 2* doesn’t converge.

When running the fixed-point iteration with Ty (z2) = T(z) 4+ o — vDe, if || 2¥|| — oo
but zF+1/2 — 2% and 2"t — 2°°, then we have case (b), but the converse is not

necessarily true.

Proof of Theorem 4.2.18. Define

22 = Prox.,(2*)

2" = Prox, ;(20FT1/2 — 2F)

k+1

SRl kg gkl kL2
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as in (4.5) Define
Vg(@H2) = (1/7)(2" — 2*+72)
L) = (1) (2R = 2k gk,
It’s simple to verify that

@g(xk+1/2) c 8g(l’k+1/2)

@f(xk—i-l) c (9f(xk+1)
Clearly,
Tg(at 12 4 V) = (1) (@2 — 2t

We also have

Zk+1 — Zk _ ,Yﬁg(xk+l/2) _ ,y@f(xlwrl) — :L‘k+1/2 _ ,y@f(xlwrl)

Consider any z € K N {x| Az = b}. Then, by convexity of f and g,
g($k+1/2) . g(:v) + f(xk+1) . f(l’) < @g(xk+1/2)T<xk+1/2 . .%‘) + @f(karl)T(xknLl - QJ)
= (Vg(ah™V2) + 9 f(aH )T (@ )
+ @f(xk-i-l)T(xk-&-l _ $k+1/2)
_ (xk+1 . xk+1/2)T(@f(xk+l) . (1/,}/)<xk+1/2 o $))
= (1) — PR (@ — )
We take the liminf on both sides and use Lemma 4.2.19 below to get
9(x%) + f(2%) < g(x) + f(2).
Since this holds for any « € K N {x | Az = b}, 2> is optimal. O

Lemma 4.2.19. Let A, A2 ... be a sequence in R™. Then

lim inf(AF)T
k—o0 ‘

(2

k .
(—A) <0,
=1
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Proof. Assume for contradiction that

lim inf(A")T
k—ro0 ;

(—A") > 2e

k
=1

for some € > 0. Since the initial part of the sequence is irrelevant, assume without loss
of generality that '
j
(AN A" < —¢
i=1
for j =1,2,..., summing both sides gives us, for all k = 1,2, ...
k

J

J
(AT A" < —¢k.
=1

1 i=

Define
1,if @« < j,
1{i < j} =
0, otherwise.
We have
E ok ‘ '
S(A)TAL{ < j} < —<k,
j=1i=1
LIE 1P 1 Ey e
0< SIS A + 5> ||A < ek,
2= 23
which is a contradiction. L]

4.2.8 The algorithms

We now collect the discussed classification results as three algorithms. The full algo-
rithm is simply running Algorithms 4.1, 4.2, and 4.3, and applying flowchart of Fig-
ure 4.1. In theory, the algorithms work with any value of v > 0, although the empirical

performance can vary with ~.

The algorithms rely on detecting whether certain quantities converge to 0 or co.

This can be numerically challenging in certain cases. However, certain pathologies are
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inherently challenging, and we observe through the examples of Section 4.3 that our

method is competitive with other approaches.

Algorithm 4.1 Finding a solution

Parameters: v, M, ¢, 2°
for k=1,... do
P2 = Pre ()
ZM = D(2251/2 — oK) 4 gy — yDe
SRl kg kel k)2
end for
if ||2*|| < M then
Case (a)
2F+1/2 and 2**! solution
else if z"t1/2 — 2 and zF*' — 2> then

Case (b)

k+1/2 k+1

T and z solution

else

Case (b), (c), (d), (e), (f), or (g).
end if

4.2.9 Case-by-case illustration

In this section, we present a case-by-case illustration of the algorithms. We describe
the empirical behavior of the algorithms on cases (b), (¢), (d), and (e) and demonstrate

how the classification works.

We skip the discussion of case (a), as it is the standard non-pathological case. Algo-
rithm 1 determines whether or not we have case (a). Case (f) and (g) are the infeasible
cases, and Algorithm 2 determines whether or not we have case (f) or (g). We skip

the discussion of these cases, as we present more thorough experiments of them in
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Algorithm 4.2 Feasibility test

Parameters: M, ¢, 2°
for k=1,... do
P2 = P (k)
P = D(2aH2 — 2K 4 g
SR gk gkl k)2
end for
if ||2%]] > M and ||2*"! — 2*|| > ¢ then
Case (f)
Strictly separating hyperplane defined by (2! — 2% ((2%! — 2%)Tx4)/2)
else if ||2*]| > M and ||2*"! — 2*|| < ¢ then
Case (g)
else ||2%|| < M
Case (a), (b), (c), (d), or (e)
end if
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Algorithm 4.3 Boundedness test

Prerequisite: (P) is feasible.
Parameters: v, M, ¢, 2°
for k=1,... do
P2 = P ()
P = D(2271/2 — oK) — 4 De
S R e A TE
end for
if ||2%|| > M and ||2**! — 2%|| > ¢ then
Case (d)
Improving direction zF+! — 2%
else if ||2*|| < M then
Case (a), (b), or (c)
else

Case (a), (b), (c), or (e)
end if
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Section 4.3.

Case (b), (P) has a solution but (D) has no solution. Consider the example
problem of this case discussed in Section 4.1.2. When we run Algorithm 1, we empiri-
cally observe that ||z*| — co and 2#1/2 2**+! — 2* for v = 0.1. This tells us we have

case (b).

Case (b), —oo < d* < p* < co. Consider the example problem of this case discussed
in Section 4.1.2. When we run Algorithm 1, we empirically observe that ||z*|] — oo,

k+1

k+1/2 do not converge, and limy_,o, 2273 = —0.2 for v = 0.1. When we

and zF+!

x
run Algorithm 2, we empirically observe that 2* converges to a limit. When we run
Algorithm 3, we empirically observe that z* converges to a limit. From this, we can

conclude we have case (b) or (c).

Case (b), —co = d* < p* < oo Consider the problem

minimize 23
subject to xy —x3 =10
x5 > (/23 + 23,

which has the solution set {(0,¢,t) |t € R} and optimal value p* = 0. Its dual problem
Is
maximize 0

subject to vy > Vy? + 1,
which is infeasible. This immediately tells us that p* > —oco is possible even when

d* = —o0.

We can in fact analyze this example analytically. When we run Algorithm 1 with
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starting point 2° = (29, 29,0), the iterates 251 = (281, 2572 A1) are:
1
k1 k
=22 —
1 9°1 v
k+1 1 k 1 k)2 k)2
2 2y + 5/ (21)% + (23)
2 2
AT =0
So ||2*|| = co. Furthermore, 25+1/2 = Py (2*) satisfies ¥/ = —2, 25™/2 5 o0 and
xlng/ ? = 00, so 2F1/2 does not converge to the solution set. When we run Algorithm

2, 2% converges to a limit. When we run Algorithm 3, ||2*|] — oo and zF*1 — 28 — 0.

From such observations, we could conclude we have case (b), (c), or (e).

This example demonstrates that the converses of Theorem 4.2.17 and 4.2.18 are not

true.

Case (c). In this case, [p*| < oo but there is no solution. Consider the example prob-
lem of this case discussed in Section 4.1.2. When we run Algorithm 1, we empirically
observe that ||2*| — oo, 25t1/2 and z¥*! do not converge, and limy_,o 225™! = p* for
v = 0.1. When we run Algorithm 2, we empirically observe that ¥ converges to a limit.

When we run Algorithm 3, we empirically observe that z* converges to a limit. From

this, we can conclude we have case (b) or (c).

Case (d). In this case, there is an improving direction. Consider the example problem
of this case discussed in Section 4.1.2. When we run Algorithm 1, we empirically observe
that ||2*|| — oo and 2**1/2 2%*+! do not converge for v = 0.1. When we run Algorithm
2, we empirically observe that z¥ converges to a limit. When we run Algorithm 3, we
empirically observe that ||2*]] — oo and limy_,« ||25T1 — 2*|| > 0. From this, we can

conclude we have case (d).

Case (e). In this case, p* = —o0o, but there is no improving direction. Consider the

example problem of this case discussed in Section 4.1.2. When we run Algorithm 1,
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we empirically observe that ||z*|| — oo and 2¥+1/2) 25+ do not converge for v = 0.1.
When we run Algorithm 2, we empirically observe that z* converges to a limit. When

k+1

we run Algorithm 3, we empirically observe that ||2*]] — oo and 2**! — 2¥ — 0. From

this, we can conclude we have case (b), (c), or (e).

4.3 Numerical Experiments

We test our algorithm on a library of weakly infeasible SDPs generated by [135]. These

semidefinite programs are in the form:
minimize C e X
subject to A; e X =b,,i=1,....m
X € 5%,
where n =10, m = 10 or 20, and Ae B =", 2?21 A;;B;; denotes the inner product
between two n x n matrices A and B.

The library provides “clean” and “messy” instances. Given a clean instance, a messy

instance is created with
A« U T ;A)U fori=1,...m
j=1
b; Zﬂjbj for i = 1,...,m,
j=1

where T' € Z™*™ and U € Z™*" are random invertible matrices with entries in [—2, 2].

In [135], four solvers are tested, specifically, SeDuMi, SDPT3 and MOSEK from
the YALMIP environment, and the preprocessing algorithm of Permenter and Parrilo
[176] interfaced with SeDuMi. Table 4.1 reports the numbers of instances determined
infeasible out of 100 weakly infeasible instances. The four solvers have varying success
in detecting infeasibility of the clean instances, but none of them succeed in the messy

instances.

Our proposed method performs better. However, it does require many iterations
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Table 4.2: Percentage of infeasibility de-
tection success, C stands for “clean" and

M stands for “messy".

Table 4.1: Percentage of infeasibility de- m—=10 m =20

tection in [135], C stands for “clean" and
C M C M
M stands for “messy".

Proposed method 100 21 100 99

Table 4.3: Percentage of success deter-

SeDuMi 0 0 1 0 mination that problems are not strongly
SDPT3 0 0 0 0 infeasible, C stands for “clean" and M
PP+SeDuMi 100 0 100 O

Proposed method 100 100 100 100

and does fail with some of the messy instances. We run the algorithm with N = 107
iterations and label an instance infeasible if 1/]|z"| < 8 x 1072 (cf. Theorem 4.2.7
and 4.2.8). Table 4.2 reports the numbers of instances determined infeasible out of 100
weakly infeasible instances. Curiously, our method and other existing methods perform
better with the larger instances of m = 20. This behavior is also reported and discussed
in [135], the paper that provides the library of pathological instances. We suspect this

phenomenon is inherent to the data set, not our algorithm.

We would like to note that detecting whether or not a problem is strongly infeasible
is easier than detecting whether a problem is infeasible. With N = 5 x 10* and a
tolerance of [|2" — 2V || < 1073 (c.f Theorem 4.2.8) our proposed method correctly

determined that all test instances are not strongly infeasible. Table 4.3 reports the
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numbers of instances determined not strongly infeasible out of 100 weakly infeasible

instances.
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CHAPTER 5

DRS and ADMM for Pathological Convex Problems

5.1 Introduction

Douglas—Rachford splitting (DRS) and alternating directions method of multipliers
(ADMM) are classical methods originally presented in [173, 77, 133, 116] and [94, 103],
respectively. DRS and ADMM are closely related. Over the last decade, these methods
have enjoyed a resurgence of popularity, as the demand to solve ever larger problems

grew.

DRS and ADMM have strong theoretical guarantees and empirical performance,
but such results are often limited to non-pathological problems; in particular, most
analyses assume a primal solution exists, a dual solution exists, and strong duality
holds. When these assumptions are not met, i.e., under pathologies, the theory often
breaks down and the empirical performance may degrade significantly. Surprisingly,
there had been very little work analyzing DRS and ADMM under pathologies, despite
the vast literature on these methods. There has been some recent exciting progress in

this area, which we review in Section 5.1.2.

In this chapter, we analyze the asymptotic behavior of DRS and ADMM under
pathologies. While it is well known that the iterates “diverge” in such cases, the precise
manner in which they do so was not known. We establish that when strong duality
holds, i.e., when p* = d* € [—o0, 0], DRS works, in the sense that asymptotically
the divergent iterates are approximately feasible and approximately optimal. The as-

sumption that primal and dual solutions exist is not necessary. We then translate the
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pathological analyses for DRS to pathological analyses for ADMM.

Furthermore, we conjecture that DRS necessarily fails when strong duality fails, and
we present empirical evidence that supports (but does not prove) this conjecture. In
other words, we believe strong duality is the necessary and sufficient condition for DRS

to work.

5.1.1 Summary of results, contribution, and organization

Sections 5.4 and 5.5 present what we consider the fruits of this work, the convergence
analyses of DRS and ADMM under various pathologies. In fact, we suggest readers
read Sections 5.4 and 5.5 before reading the theory of Section 5.3, as doing so will give

a sense of direction.

We quickly illustrate, through examples, the kinds of results we show. Precise
definitions and statements are presented later. We want DRS and ADMM to find a
point that is approximately feasible and, when applicable, approximately optimal. For

example, if the primal problem is weakly infeasible, we want the DRS iterates to satisfy

Rl _ k1)

x —0

and we show this as Theorem 5.4.6. As another example, if the primal problem is

feasible but has no solution and d* = p* > —oo, we want the DRS iterates to satisfy
karl . xk+1/2 — 0, f(l'k+1/2) +g($k+1) N p*

and we show related results as Theorems 5.4.3 and 5.4.4. We can say something for all

the pathological cases, so long as d* = p*.

Section 5.3 presents the main theoretical contribution of this work. To show that
DRS and ADMM successfully achieve the 2 goals of approximate feasibility and approx-

imate optimality, we need 2 separate major theoretical components.

Section 5.3.1 presents the first component, which analyzes the “fixed-point iteration”

without a fixed point with tools from operator theory. With this machinery, we show
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results like zFt! — 28 — 0 or ¢! — 2k

— v, where v is a certificate of (primal or
dual) infeasibility. Our contribution is defining the notion of improving directions via
recession functions and fully characterizing the infimal displacement vector with this

notion.

Section 5.3.2 presents the second component, the function-value analysis, which
is based on ideas from convex optimization and subgradient inequalities. With these
techniques, we show results like f(2*+1/2)+g(2**1) — p*. This part requires the d* = p*
assumption. Our function-value analysis uses, but does not immediately follow from,
the results of Section 5.3.1. To the best of our knowledge, analyzing the convergence
of objective values for DRS or ADMM applied to pathological problems has not been

done before.

Section 5.3.3 presents a third, relatively minor theoretical component, which we use

later in Section 5.5 to translate analyses for DRS to analyses for ADMM.

As the goal of this work is to prove several theorems, one each for the many patho-
logical cases, we build up our theory in a series of lemmas and corollaries. Some of
these lemmas are rather simple extensions of known results while some are novel. All
results of Section 5.3 are eventually used in proving the 5 theorems of Section 5.4 and

the 3 theorems of Section 5.5.

The chapter is organized as follows. Section 5.2 reviews standard notions of convex
analysis, states several known results, and sets up the notation. Section 5.3 presents
the main theoretical contributions. Section 5.4 analyzes DRS under pathologies with
the theory of Section 5.3. Section 5.5 analyzes ADMM under pathologies with the
theory of Sections 5.4 and 5.3. Section 5.6 presents counterexamples to make additional

observations. Section 5.7 concludes this chapter.
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5.1.2 Prior work

As pathological convex optimization problems do arise in practice [142, 71, 78, 225, 229],
there is practical value in studying how well-behaved and robust an algorithm is in such
setups However, the there had been surprisingly little work investigating the behavior
of the popular methods DRS and ADMM under pathologies. The understanding is still
incomplete, but there has been some recent progress: [19, 24, 27, 137] analyze DRS
under specific pathological setups, [22, 23, 27| analyze DRS under general setups, and
[183, 210, 12] analyze ADMM under specific pathological setups for conic programs.
These studies, however, are limited to more specific setups and pathologies where an

improving direction exists or the primal problem is strongly feasible.

The convex feasibility problem of finding an x € ANB, where A and B are nonempty
closed convex sets, is a subclass of problems with practical importance. While it is
possible to recast convex feasibility problems into equivalent optimization problems
and apply the results of this work, prior work on the specific setup has stronger results

[19, 24, 27]. We discuss further comparisons in Section 5.4.4.

DRS has strong primal-dual symmetry, in the sense of Fenchel duality for convex
optimization [91, 190] and, more generally, Attouch-Théra duality for monotone opera-
tors [152, p. 40] and [8]. See [80, Lemma 3.6 p. 133] or [13, 26, 27| for in-depth studies
on this subject. Naturally, our results also exhibit a degree of primal-dual symmetry,
although we do not explicitly address it in the interest of space. Rather, we take the
viewpoint that the primal problem is the problem of interest and the dual problem is

an auxiliary conceptual and computational tool.

In operator theory, and especially in infinite dimensional problems arising from
physics and PDEs, the sum of two maximal monotone operators may not be maximal,
and one can consider this a pathology. One remedy to such pathology is to generalize the
notion of the sum of two operators by regularizing the operators and then considering

the limit as the regularization is reduced to zero [9, 186, 187]. This notion of pathology
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and the remedy is quite different from what we consider. For some of the pathologies we
consider, df 4 dg is a perfectly well-defined maximal monotone operator. Moreover, we
do not remedy the pathology but rather simply analyze how DRS and ADMM behave
under the pathology. We work in finite dimensions and thereby avoid the notion of

weak and strong convergence.

When a problem is known to be pathological a priori, one can first modify or regu-
larize the problem and then solve the non-pathological problem. One such approach is
facial reduction, a pre-processing step that rids a pathological conic program of difficult
pathologies (37, 39, 35, 184, 170, 55, 226, 228, 178, 144, 175, 177, 245]. In contrast, the
goal of this work is to analyze DRS and ADMM when directly applied to pathological
convex programs. To put in differently, we do not assume users of DRS or ADMM have

a priori knowledge of whether the problem is pathological.

The standard analysis for DRS proves the iterates converge using ideas from operator
theory and fixed point iterations [133, 80, 81, 57, 59, 85, 58]. The standard analyses of
ADMM prove the iterates converge by reducing ADMM to DRS [95, 81, 85] or with a
direct analysis via a Lyapunov function [92, 102, 32, 74, 53]. These analyses rely on the
existence of a primal-dual saddle point, which only exists under the non-pathological

case, and therefore do not immediately generalize to pathological setups.

The first part of our analysis relies on a classical result by Pazy [172] and Baillon et al.
[11] from the 1970s, which characterize the asymptotic behavior of fixed-point iterations
without fixed-points. There has been some recent work that analyze algorithms that
can be interpreted as fixed-point iterations without fixed-points [14, 19, 40, 6, 22, 20,
24, 7, 158, 27, 198, 137]. The analysis of Section 5.3.1 was inspired by these works.

Another recent line of analysis for DRS and ADMM is function-value analysis, which
establishes the objective values, rather than the iterates, converge [65, 67, 68]. These
analyses, however, also rely on the existence of a primal-dual saddle point and do

not immediately generalize to the pathological setups. The function-value analysis of
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Section 5.3.2 was inspired by these works.

5.2 Preliminaries

In addition to the preliminaries introduced in Sec. 1.4, we also need the following in

the chapter. Define the recession function of a PCC function f as

rec f(d) = lim fw+ad) = /()

a—r 00 e

(5.1)

for any © € dom f. Loosely speaking, the recession function characterizes the asymp-

totic change of f as we go in direction d. In fact,
f(x 4+ ad) = arec f(d) + o(«)

as @« — oo for any x € dom f. The recession function rec f : R” — RU {0} is a
positively homogeneous PCC function. If h(x) = g(—=), then rec(h*)(d) = rec(g*)(—d).
When f and g are PCC, either f(z)+g(x) = oo forallz € R™ or rec(f+g) = rec f+recg.
If fis PCC, then ogom ¢+ = rec f.

Define the proximal operator Prox; : R" — R" as

Prox;(z) = argmin {f(x) + (1/2)||x — zHQ} .

z€R™
When f is PCC, the arg min uniquely exists, and therefore Prox; is well-defined. When
C' is closed and convex, Proxs, = Illc. When f is PCC, Prox; 4 Prox;- = I, where
I :R™ — R" is the identity operator.
A mapping T : R" — R" is nonexpansive if | T(x) =T (y)|| < ||[x—y] for all z,y € R™.
Nonexpansive mappings are, by definition, Lipschitz continuous with Lipschitz constant

1. T : R"™ — R" is firmly-nonexpansive if

IT(z) = T(y)|* < (v —y, T(x) = T(y))
for all x,y € R". Proximal and projection operators are firmly-nonexpansive.
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5.2.1 Duality and primal subvalue

We call the optimization problem

minimize f(x) + g(z), (P)

zeR™

the primal problem. We call the optimization problem

maﬁiﬂgr%ize —f*(v) — g*(—v), (D)

the dual problem. Throughout this chapter, we assume f and g are PCC.

(P) is feasible if 0 € dom f — dom g, strongly infeasible if 0 ¢ dom f — dom g,
and weakly infeasible otherwise. (P) falls under exactly one of the three cases. (P)

is infeasible if it is not feasible. (D) is feasible if 0 € dom (f*) + dom (g*), strongly

infeasible if 0 ¢ dom (f*) + dom (¢*), and weakly infeasible otherwise.

We call p* = inf{ f(z)+¢g(z) | x € R"} the primal optimal value and d* = sup{— f*(v)—
g*(—v)|v € R} the dual optimal value. We let p* = oo if (P) is infeasible and d* = —oo
if (D) is infeasible. Weak duality, which always holds, states d* < p*. We say strong
duality holds between (P) and (D), if d* = p* € [—00,00]. We say total duality holds
between (P) and (D), if (P) has a solution, (D) has a solution, and strong duality holds.

Define the primal subvalue of (P) as

p- = lim inf {f(z)+g(y)|llz -yl <e}.

e—01 x,yeR”

The notion of primal subvalue is standard in conic programming [118, 234, 149, 147].
Here, we generalize it to general convex programs. The following theorem is well known

[195], although we have not seen it stated exactly in this form.

Theorem 5.2.1. If f and g are PCC, then d* = p~ < p*.

In fact, the following proof follows the exposition of [195].
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Proof. Write h(v) = f*(v) + ¢*(—v), and define

p(9) = min{f(z +0) + g(x)}.

Since f and g are proper, i.e., finite somewhere, p is proper. Since p is defined by partial

minimization of a convex function, it is convex.

Then
p'(v) = = min{p(9) — v" 6}
~ it {mipd e+ )+ o)) =75
~ — min {%&{f(x +8) -6} + g(l’)}
= — min {61%%{f(5’) T8+ v+ g(w)}

= f*(v) = min {v"z + g(2)}

= f"(v) + g (=v) = h(v).
We can rewrite the definition of the primal subvalue as

p~ =lim inf p(d) = liminf p(d),

e—=08||<e 0—0
where the second equality follows from the definition of liminf. The lower semi-

continuous hull of p is p** [195, Theorem 4 and 5], i.e.,

lim inf p(J) = p™(0).

6—0

So
p =" (0) = 1*(0) = sup {f*(v) + g (1)} = d"

veR”?

]

With Theorem 5.2.1, we can interpret strong duality as well-posedness of (P). The
primal subvalue p~ is the optimal value of (P) achieved with infinitesimal infeasibilities.
When the infinitesimal infeasibilities provide a non-infinitestimal improvement to the

function value, we can consider (P) ill-posed.
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5.2.2 Douglas—Rachford operator

Douglas-Rachford splitting (DRS) applied to (P) is

22 = Prox. ;(2")
2" = Prox,, (22512 — 2) (5.2)
Zk-i-l — Zk + xk+1 _ :Ek+1/2

with a starting point 2° € R" and a parameter v > 0. We also express this iteration

more concisely as zF*! = T (2*) where

1 1
T, = 5[ + 5(2 Prox,, —I)(2Prox,; —1I).

T, : R" — R" is a firmly-nonexpansive operator, and we interpret DRS as a fixed-point

iteration. Write T} for T, with v = 1.

The standard analysis of DRS assumes total duality, which, again, means (P) has a

solution, (D) has a solution, and d* = p*.

Theorem 5.2.2 (Theorem 7.1 and 8.1 of [13] and Proposition 4.8 of [80]). Total duality
holds between (P) and (D) if and only if T, has a fized point for some v > 0. If
total duality holds between (P) and (D), then DRS converges in that z¥ — z*, where
x* = Prox,;(2*) is a solution of (P). If total duality does not hold between (P) and
(D), then DRS diverges in that ||2*| — oo.

Theorem 5.2.2 is well known, although the term “total duality” is not always used.
More often, total duality is assumed by instead assuming a saddle point exists for an

appropriate Lagrangian.

5.2.3 Fixed-point iterations without fixed points

Theorem 5.2.2 states the DRS iteration has no fixed points under pathologies. Ana-
lyzing fixed-point iterations without fixed points is the first part of our pathological

analysis.
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Let T': R™ — R"” be a firmly-nonexpansive operator. Write
ran ([ —T)={z—-T(z)|z € R"}.

Note that T" has a fixed point if and only if 0 € ran (I — T'). The closure of this set,
ran ([ — T, is closed and convex [172]. We call

U= Hran (I-T) (0)
the infimal displacement vector of T. (The term was coined in [22].) If T" has a fixed

point, then v = 0, but v = 0 is possible even when 71" has no fixed point.

The following classical result by Pazy and Baillon et al. elegantly characterizes the

asymptotic behavior of fixed-point iterations with respect to T
Theorem 5.2.3 (Theorem 2 of [172] and Corollary 2.3 of [11]). IfT is firmly-nonezpansive

and v is its infimal displacement vector, the iteration z**1 = T(2*) satisfies
2F = —kv+ o(k), P
Theorem 5.2.3 is especially powerful when we can concretely characterize v. Re-

cently, Bauschke, Hare, and Moursi published the following elegant formula.

Theorem 5.2.4 ([23]). The infimal displacement vector v of Ty, the DRS operator,

satisfies

v = argmin{”z“\z € dom f — dom g Ndom f* —|—domg*}.

The original result in [23] is more general as it applies to the DRS operator of
monotone operators. In Section 5.3.1, we use Theorem 5.2.4 and the notion of improving

directions to provide a further concrete characterization of v.

5.3 Theoretical results

In this section, we present the main theoretical contribution of this chapter. Our
analysis requires a generalized notion of improving directions, so we define it first. Sec-

tion 5.3.1 analyzes DRS as a fixed-point iteration without fixed points. Section 5.3.2
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analyzes DRS as an optimization method that reduces function values. Section 5.3.3
directly analyzes the evolution of the #*71/2 and 2**!-iterates of DRS. Later in Sec-
tions 5.4 and 5.5 we combine these results to analyze the asymptotic behavior of DRS

and ADMM applied to pathological convex programs.

While the formula of Theorem 5.2.4 is known, the use of improving directions to
concretely characterize the infimal displacement vector v is new. An improving direction
may or may not exist, and we analyze both cases. Our analysis shows that existence of

an improving direction is a key deciding factor in how DRS behaves.

We say d € R" is a primal improving direction for (P) if
rec f(d) 4 rec g(d) < 0.

Note rec f(d) 4+ rec g(d) = rec(f + g)(d) when (P) is feasible. For simplicity, we only
consider primal improving directions when (P) is feasible. The notion of (primal) im-
proving direction is standard in conic programming [149, 162, 147]. Here, we extend it

to general convex programs of the form (P).

If (P) is feasible and there is a primal improving direction, then p* = —oo. To see

why, let d be a primal improving direction. Then
f(x+ ad) + g(x + ad) = arec(f + g)(d) + o(a)

for any x € dom f Ndom g as o — oo, and therefore p* = —oo. However, p* = —o0
is possible even when (P) has no improving direction. We discuss such an example in

Section 5.4.

Likewise, we say d' € R" is a dual improving direction if
rec(f*)(d') + rec(g*)(—d') < 0.

If (D) is feasible and there is a dual improving direction, then d* = co.
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5.3.1 Infimal displacement vector of the DRS operator

In this section, we provide a further concrete characterization of the infimal displace-
ment vector v. When (P) or (D) is strongly infeasible, Theorem 5.2.4 states v # 0.
Our contribution is to show v is an improving direction in this case. For the sake of

simplicity, we first analyze 77 and then translate the results to 7', for v > 0.
We first consider the case where (P) is feasible and characterize v based on the

primal improving direction or the absence of it.

Lemma 5.3.1. (P) has an improving direction if and only if (D) is strongly infeasible.
Write
4= igom prdomsn) (0):

If (P) has an improving direction, then d # 0 and d is an improving direction. If (P)

has no improving direction, then d = 0.

Proof. We first show

—Hm) (0) = PrOXrec f+recg<0)- (53)

Let A and B be nonempty convex sets. The identities of Section 5.2 tell us

(0x55)" (2) = oxz5(2) = 0arB(x) = oa(z) + op(2).

Setting A = dom f* and B = dom ¢* gives us

(6dom f*+domg*>*<x) = Odom f* (‘r) + Odom g (.’13‘)

Based on the identities of Section 5.2, we have

HW(O) = PI‘Osti(O)

dom f*+dom g*

= (I — Prox,

dom f*+dom g*

)(0)
== IDI.OXO'dom f*4+dom g* (0)

= — Proxgdomf*Jradom o* (0)

= — PrOXrec f+recg(0>‘
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Remember that rec f 4+ recg is a convex positively homogeneous function. Since

rec f(0) +recg(0) = 0,
0 = arg min {rec f(x) +recg(z) + (1/2)||x||2} = ProXyec f4recg(0)

if and only if rec f(z) + rec g(z) > 0 for all z € R™. By our definition of an improving
direction, rec f(z) + recg(x) > 0 for all z € R™ if and only if there is no improving
direction. By definition, 0 = g5 77gom4-(0) if and only if (D) is not strongly infea-
sible. So with (5.3), we conclude (P) has an improving direction if and only if (D) is

strongly infeasible.

It remains to show that
d = arg min {rec f(z) +recg(z) + (1/2)Hx|\2}
is an improving direction, if d # 0. Since d is defined as a minimizer, we have
rec f(d) +rec g(d) + (1/2)||d||* < rec £(0) + rec g(0) + (1/2)]|0]]* = 0.
This implies rec f(d) +rec g(d) < —(1/2)||d||* < 0, i.e., d is an improving direction. [J
Lemma 5.3.2. Assume (P) is feasible. Then
v =—d = gm7rdems0)

1s the infimal displacement vector of T}.

Proof. Let xy be a feasible point of (P). Since rec f(d) + recg(d) < 0 < oo by

Lemma 5.3.1 and the definition of an improving direction, we have z, € dom f,

xo + d € domg, and thus —d € dom f — domg C dom f —domyg. Since —d is

the minimum-norm element of dom f* + dom g*, Theorem 5.2.4 tells us that —d is the

infimal displacement vector of T7. O]

Corollary 5.3.3. Assume (P) is feasible, and (D) is feasible. Then v = 0 is the infimal

displacement vector of T, for any v > 0.
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Corollary 5.3.4. Assume (P) is feasible, and (D) is weakly infeasible. Then v =0 is

the infimal displacement vector of T, for any v > 0.

Corollary 5.3.5. Assume (P) is feasible, and (D) is strongly infeasible. Then

v = —’yd = VH—domf*—i-domg* (0) 7£ 0

is the infimal displacement vector of T, for any v > 0. Furthermore, d is an improving

direction of (P).

Next, we consider the case where (D) is feasible and characterize the infimal dis-

placement vector based on the dual improving direction or the absence of it.

Lemma 5.3.6. Assume (D) is feasible. Then

v=—d' = g 7dom,(0)

is the infimal displacement vector of T7.

Proof. Following the same logic as in the proof of Lemma 5.3.1, we have

o 7=domy(0) = —arg min {rec(f*)(v) + rec(g") (=) + (1/2)[|v[*}
and
d' = — o 7=aomy (0)

is a dual improving direction, if d’ # 0.

Let vy be any feasible point of (D). Then vy € dom f* and —vy — d’ € dom g*.

Therefore, —d’ € dom f* + dom ¢* C dom f* + domg*. Since —d' is defined to

be the minimum-norm element of dom f — dom g we conclude the statement with

Theorem 5.2.4. N

Corollary 5.3.7. Assume (D) is feasible, and (P) is weakly infeasible. Then v = 0 is

the infimal displacement vector of T, for any v > 0.
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Corollary 5.3.8. Assume (D) is feasible, and (P) is strongly infeasible. Then

v= _d/ = Hdomf—domg(o) 7& 07

is the infimal displacement vector of T, for any v > 0. Furthermore, d' is a dual

improving direction.

Note that for Corollary 5.3.8, the infimal displacement vector is independent of the

value of .

5.3.2 Function-value analysis

In this section, we present the second major theoretical component to our analysis.
Section 5.3.1 analyzed the infimal displacement vector of T,. This, however, is not
sufficient for characterizing the asymptotic behavior of DRS in relation to the original
optimization problem (P).

Let us briefly discuss why function-value analysis is necessary. Consider the convex
function h(z,y) = 2?/y defined for y > 0. Note that h has minimizers, (0,y) for any
y > 0, and the operator I — Vh has fixed points. It is straightforward to verify that
h(\/y,y) —inf f - 0, but Vh(\/y,y) — 0 as y — o0, i.e., ({/y,y) for large y is not an
approximate minimizer for h but does approximate satisfy the fixed point condition for
I — Vh. It is possible to construct a similar example with the DRS operator. If we let
f=hand g =0, then DRS reduces to the proximal point method on h. This operator

exhibits the same exact issue.

This means approximate fixed points do not always correspond to approx-
imate solutions of the original problem. This is why we need a separate and
distinct function-value analysis to accompany the fixed-point theory.

k+1/2

We now present function-value analysis. Throughout this section, write x and

¥+ to denote the DRS iterates of (5.2).
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Lemma 5.3.9. Forall k=0,1,... and any v € R”

F@ )+ g(a™) = f(2) = g(@)

< (L) (= a2 p = M),

An inequality similar to that of Lemma 5.3.9 has been presented as Proposition 2

of [67]. We nevertheless quickly show a direct proof.
Proof. Write

V(@) = (L))" = 2*12)
@g(zk—i-l) _ (1/7)(2$k+1/2 _ Zk: _ xkz—i—l).
From the definition of the DRS iteration (5.2), we can verify that
V@) € af(at1), Vg(atth) € ag(att)
and that
@f(karl/Z) + vg(karl) (1/7)( k+1/2 karl).

We also have
ZkJrl _ Zk _ ,y@f($k+l/2) _ ,}/@g(mk+1> _ xk+1/2 _ ’Y@g(ljﬂrl).

If x ¢ dom fNdom g, then f(z)+g(x) = oo for all x € R™ | and there is nothing to

prove. Now, consider any x € dom f N dom g. Then, by definition of subdifferentials,

F@12) = f(x) + g(a*) = g(2)

< <@f($k+l/2)’xk+l/2 > <Vg( k:—i—l) k+1 ZE>

_ (@f(xk+1/2) (Vg( k+1) k+1/2 > (Vg( k+1> k+1 _xk+1/2>

= (@M — 2 () — (1)) (@2 — )
(

1/7)<$k+1 _ $k+l/2’x _ Zk+l>.
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The following result, which is well known for non-pathological setups, also holds

under pathologies, so long as d* = p*.

Lemma 5.3.10. Assume p* = d* € [—00, 00|. Assume the infimal displacement vector

v of T, satisfies v = 0. Then

k
li z+1/2 i+1 S
k—{{olo k+1 ;] f + g( ) p

and
hmlnff( k:+1/2)_|_g( k—l—l) p*.

k—o0

Proof. If A° Al ... is any sequence in R”, then

383 A) = 35 1 < A

=0
1 . 1 12
— = Az 25 A
I ED
Let AF = 2kl — ok — gkt _ k412 and sum the inequality of Lemma 5.3.9 to get

Vz%f(xi+l/2) ~ f(a) + g(z*th) Z (N x — 2°) — ;)(Aj,zjgﬁ )

1 1 .
— <Zlc+1 _ ZO,ZL‘ _ ZO> _ 7||zk+1 _ ZO||2 - Z ||zz+1 _ zz||2
2
1H2k+1”2

1 1 . .
4 5”'20”2 + <Zk+1 o 207x> = Z sz+1 o ZzHQ_

Divide both sides by (k +1)/2 to get

2y & .
7 2 (F@) = f@) + 9@ — g() (5.4)
=0
S T (R o P CH R P

forall k=0,1,... and any x € R".

We now show

k

: i+1/2 i+1 «
hin_igpk—klg(f(x )+ g(x ))Sp.
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Assume p* < 00, as otherwise there is nothing to prove. Let  be any x € dom fNdom g.
By Theorem 5.2.3, z¢ = —kv + o(k). If v # 0, then the first (negative) term on the
right-hand side of (5.4) dominates the positive terms. If v = 0, then both nonnegative

terms on the right-hand side of (5.4) converge to 0. In both cases, we have

limsup —— 32 f@ ) + g(a™) < f(2) + gla) (5.5)

k
k—o00 k +1 i—0

(2

for all z € dom f N dom g. We minimize the right-hand side to obtain p*.

By Theorem 5.2.3, v = 0 implies 2**1/2 — zF*1 — 0. In turn, by Theorem 5.2.1, we
have

h’gnlnff(xkﬂﬂ) +g($k+1) > p*.
—00
Combining this with (5.5) gives us the first stated result.

It is straightforward to verify that if a real-valued sequence a” satisfies

k

liminf a* > a, lim — Za’ =a,
k—o0 k—o0 kj i1

then
liminf a* = a.
k—o0
The second stated result follows from this argument. O]

Lemma 5.3.10 provides the function-value analysis when v = 0, and the first part of
Lemma 5.3.11 provides the analysis when v # 0. The later parts part of Lemma 5.3.11
is used in translating the analyses for DRS to analyses for ADMM in Section 5.5.

Lemma 5.3.11. Assume (P) is feasible and v # 0, i.e., (P) has an improving direction.
Then
FE2) 4 g(a*) = p* = —oo

Moreover, |f(xF+1/2)] < O(k) and |g(z**1)| < O(k) as k — oo. Assume (P) is feasible
and v =0. Then |f(z*/2)| < o(k) and |g(z**1)| < o(k) as k — oc.
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Proof. When (P) has an improving direction, Corollary 5.3.5 and Theorem 5.2.3 tells

us

SRHL Lk okl k412 ~d.

Then Lemma 5.3.9 tells us that
(L/R)(f(2"2) 4 (")) < =(1/7) (2" — 22 (1K) M) + O(1/k)

which tells us

limsup(1/k)(f(z"17%) + g(a"*1)) < —1d||*. (5.6)

k—oo

This proves the first statement.

Assume v = 0. With the same reasoning as for (5.6) we get

lim sup(1/k)(f («"*1/2) + g(«*+1)) < 0.

k—o0

Assume (P) feasible, without making any asumptions on v. Write V f(z'/?) for any

subgradient of f at z/2. Then

f(xk+1/2) > f($1/2) + <@f($1/2)’xk+1/2 . 1’1/2>

> f(@'?) = IV f @) la™2 = 222 = k|| [V £ (V)] + o(k),

and we conclude

lim inf (1/k) f (2" 712) = = [ld|[[|V £ (2"/2)]].
— 00
With a similar argument, we get

lim inf(1/k)g(a"") > —y[|d|l[| Vg(2")]]

where Vg(z') is any subgradient of g at #'. Combining these with (5.6) gives us the

remaining statements. O

Lemma 5.3.12. Assume p* = d*. Assume z*t1/% and "t are the DRS iterates as

defined in (5.2). If 2*T1/2 gkl 5 0% for some x*, then x* is a solution.
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Proof. We first note that closed functions are by definition lower semi-continuous, and

that f and g are assumed to be closed. By Lemma 5.3.10 we have
fla*) +g(a®) < liminf f(@"12) + g(a"™*!) = p,
— 00

and we conclude f(z*) + g(a*) = p*. O

5.3.3 Evolution of shadow iterates

Section 5.3.1 characterized the evolution of the z*-iterates, which we could call the main

k+1/2 k+1

iterates. The x and z" T -iterates of DRS are called the shadow iterates. Here, we

analyze the evolution of the shadow iterates.

Although the results of this section are are not as fundamental or important as
the results of Sections 5.3.1 and 5.3.2, we do need these results later, especially when

translating the analyses for DRS to analyses for ADMM.

Lemma 5.3.13. If v =0, then 2*+3/2 — 25t1/2 & 0 and 2*2 — 2% — 0.

Proof. Since v = 0, we have z¥*! — 2¥ — 0. Since the map the defines 2* — z*+1/2 and
2Ry 2F+3/2 s Lipschitz continuous, 2¥+3/2 — £F+1/2 — 0. Finally, 2**! — 2 — 0 and

ht3/2 — k172 5 0 implies 2#+2 — 2F1 — 0. ]

Lemma 5.3.14. If (P) is strongly infeasible and (D) is feasible, then x*+3/2 — gk+1/2

0 and xFt% — k1 — 0.

Proof. Write —d’ for the infimal displacement vector as given by Corollary 5.3.8. By

Theorem 5.2.3, we have

g S e N LN
The projection inequality states

(v —Hez, ez —2) >0 (5.7)
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for any nonempty closed convex set C, v € C, and x € R™. Since —d' = gsr7—gom4(0);
(5.7) tells us that
(d =™ ) + || d[* <0

for any z € dom f. Using 2"t1/2 = Prox, ;(z*) and firm-nonexpansiveness of Prox, we

get

|| Prox, (2" + d') — a*2||> < (d', Prox, (2" + d') — 2*T1/2)
= (d', Prox, ;(z" + d') — 2"y 4 (', 2T — k12

— 0

since (d', "1 — 2k+1/2) — ||d'||%. So Prox,;(2* + d') — Prox,;(z*) — 0. Since Prox is

kL _ 2k — d' — 0 implies

Lipschitz continuous, z
Prox, (¥ + d') — Prox,;(z"*!) — 0.

Putting everything together we conclude

Prox, ;(25%1) — Prox, ;(2F) = aFt3/2 — gF+1/2 5 0,

Since
P N R R e o ($k+3/2 _ xk+1/2) d
—d’ —0
we also conclude that z*+2 — zFt1 — 0. 0

Lemma 5.3.15. If (P) has an improving direction, and (P) is feasible, then x*+3/% —
ZH U2 5 nd and 2R — 2 S yd, where —yd = ”YHW(O) is the infimal

displacement vector as given in Corollary 5.5.5.

Proof. For simplicity, assume v = 1. For v # 1, we scale f and g to get the stated

result.
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Rewrite the DRS iteration as

2" H1/2 = Prox;(2")

PRHLZ = ok k12 — Prox . (2)
2" = Prox, (207712 — 2F)
PEHL = gk H1/2 _ ok gkl — Proy (2812 k)

AL = gk (R g Ry

By Theorem 5.2.3, we have

k+1 ko gkl _ k412 g

By the same reasoning as in Lemma 5.3.14, we can use (5.7) and firm-nonexpansiveness

to show that

VRS2 M2 — Prox . (K1) — Prox . (%) — 0.

Since

SRk R3/2 L R1/2 o k3/2 k2 d,

—0

we have xFt3/2 — ph+t1/2 _ g

Since
SRR R Rk k2 R (heB/2 k2) g
—d —d
we also conclude that zF+2 — gkl — (. ]

5.4 Pathological convergence: DRS

In this section, we use the theory of Section 5.3 to analyze DRS under pathologies. We
classify the status of (P) and (D) into 7 cases and provide convergence analyses for the

first 6 cases, the ones that assume strong duality.
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5.4.1 Classification

The primal-dual problem pair, (P) and (D), falls under exactly one of the following 7

distinct cases.

Case (a) Total duality holds between (P) and (D).

In other words, (P) and (D) have solutions, and d* = p*. For example, the primal
problem
minimize x — logx

and its dual problem

maximize 1+ log(y)
subject to y =1

both have solutions, and d* = p* = 1.

Case (b) d* = p* is finite, (P) has a solution, (D) has no solution.

For example, the primal problem

MINIMIZe O (y; ) [a2+a2<1} (L1, T2) + T2 + Of(1,20) | 2121} (T1, T2)

I () g(z)

has a solution but its dual problem

maximize —m + v — 5{:/2:1}(—’/2)

does not. Nevertheless, d* = p* = 0.

Case (¢) d* = p* is finite, (P) is feasible, but (P) has no solution.

To get such an example, swap the role of the primal and the dual in the example

for case (b).
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Case (d) d* =p* = —o0, (P) is feasible, but there is no improving direction.
This implies (D) is weakly infeasible. For example, the primal problem
minimize g (z>13(2) — logx

has no solution and has optimal value p* = —oco. Since the derivative of the objective,
—1/x, goes to 0 as x — oo, the primal problem has no improving direction. The dual

problem

maximize y+ 1+ log(y)
subject to y <0

is weakly infeasible.

Case (e) d* =p* = —o0, (P) is feasible, and there is an improving direction.
This implies (D) is strongly infeasible. For example, the primal problem
minimize x + x

has an improving direction, namely d = —1, and the dual problem
maximize g3 (x) + g1y (—2)

is strongly infeasible.

Case (f) d* =p* = 0o and (P) is infeasible.

For example, the problem

minimize 1/y/—x — log(x)
is infeasible, and its dual

maximize (3/22/3)y'/3 + 1 + log(y)

subject to y >0

has optimal value d* = oc.
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Case (g) d* < p*, i.e. strong duality fails.

5.4.2 Convergence results

Theorem 5.4.1. [133, 67] In case (a), x*+Y/2 2*1 — 2% where x* is a solution of
(P) and
lim f(xk+1/2) —|—g(l’k+1) :p*'

k—o0

Theorem 5.4.2. In case (b), z*+' — 2F+1/2 5 0 and
k

1 . |
. i+1/2 i1y ok . k+1/2 k+1y _ o o*
,}ggoﬁrlgf(x ) +g(@™) =p*  liminf f(2"77) + g(a") = p*.

Furthermore, if 2*+1/2 — 2* (or equivalently if z**' — a*) then x* is a solution.

Proof. This follows from Theorem 5.2.3, Corollary 5.3.3, Lemma 5.3.10, and Lemma 5.3.12.
O

Theorem 5.4.3. In case (c), oFt1 — 2#+1/2 = 0,

k

Do SE) 4 g™ =pt, liminf f(@"T2) 4 g™ = p",
1=0 ~

lim ——
kgg()k—l-l

and (xF+1/2 2*1) do not converge.

Proof. This follows from Theorem 5.2.3, Corollary 5.3.3, Lemma 5.3.10, and the con-

trapositive of Lemma 5.3.12. O]

Theorem 5.4.4. In case (d), (D) is weakly infeasible, x*+! — zF+1/2 5 0,

1k , ‘
- i+1/2 iHly S k+1/2 k+1y _
m iEZOf(fB ) +9(@™) = =00, liminf f(z"7) 4 g(z"") = —oo,

and (xF+1/2 281 do not converge.

Proof. This follows from Theorem 5.2.3, Lemma 5.3.1, Corollary 5.3.4, Lemma 5.3.10,

and the contrapositive of Lemma 5.3.12. O
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Theorem 5.4.5. In case (¢), (D) is strongly infeasible, "' — x*+1/2 — ~vd, where d

is an improving direction,

lim f(z"72) + g(a**") = —o0,
k—o0

and ("2 z*+1Y do not converge. Furthermore, dist(z*+'/2 dom g) — 0 and

dist(z*"!,dom f) — 0.

Proof. All but the last assertions follows from Theorem 5.2.3, Lemma 5.3.1, Corol-
lary 5.3.5, Lemma 5.3.11, and the contrapositive of Lemma 5.3.12. By Lemma 5.3.15

aFHt1/2 — gk=1/2 5 4d and by Theorem 5.2.3 and Corollary 5.3.5 2% — 2¥=%/2 — ~4d. So

k+1/2

x — 2% — 0. Since z¥ € dom g, we have

dist(zF+1/2, dom g) < dist(«**1/2 2F) — 0.
Since z#*1/2 € dom f, we have

dist(z*, dom f) < dist(z*, z¥*1/2) = 0.

Theorem 5.4.6. In case (f), ||z**! — 2*+1/2|| — dist(dom f,dom g).

Proof. This follows from Theorem 5.2.3 and Corollaries 5.3.7 and 5.3.8. m

5.4.3 Interpretation

We can view the DRS as an algorithm with two major goals: make the iterates feasible
and optimal. With some caveats, DRS succeeds at both. As an auxiliary goal, we want
the shadow iterates of DRS to converge to a solution if one exists. With some caveats,
DRS succeeds at this as well. Finally, DRS provides a certificate of infeasibility in cases
(e) and (f).

In cases (a), (b), (¢), and (d) the iterates become approximately feasible in that

g+t — pF+1/2 5 0. In case (e) the iterates become approximately feasible in that
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dist(2**1/2 dom g) — 0 and dist(z**! dom f) — 0. In case (f), feasibility is impossi-
ble, but DRS does its best to achieve feasibility.

In cases (a), (b), (c¢), (d), and (e), the function values on average converge to the

optimal value. In other words, DRS finds the correct optimal value in these cases.

In case (a), the shadow iterates, the z*+'/2 and x*+! iterates, converge to a solu-
tion. In case (b), we do not know whether the shadow iterates converge to a solution.
However, if they converge, the limit is a solution. In cases (c), (d), and (e), the shadow

iterates do not converge, which is good since there is no solution to converge to.

In cases (e) and (f), the limit 25! — 2¥ — —v # 0 provides a certificate of dual and
primal strong infeasibility, respectively. These may be computationally useful when

verifying the validity of a certificate is easy, which is the case for conic programs.

We quickly clarify the contribution. The analysis of case (a) is well known and is not
the focus of this work, but we include it’s discussion here for completeness. Approximate
feasibility in cases (a), (b), (¢) and (d) directly follows from prior work, in particular
from Theorems 5.2.3 and 5.2.4. The approximate feasibility results for cases (e) and (f)

are contributions of this work.

5.4.4 Feasibility problems

Consider the problem of finding an x € AN B, where A and B are nonempty closed
convex sets. Recasting this convex feasibility problem into an equivalent optimization
problem and using Theorem 5.2.4 [23], Theorem 5.2.3 [172, 11], Theorem 5.4.1 [133],

and basic convex analysis provides us the following results:

e Case (a). If AN B # () then z*+1/2 zk+1 — 2* where 2* € AN B.
e Case (f). If dist(A, B) > 0, then ||z**! — 2*|| — dist(A4, B).

e Case (g). If AN B # 0 but dist(A, B) = 0, then a*+1/2 — zk+1 — 0.
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Specifically, one can recast the convex feasibility problem z € AN B into the primal
problem

mini]%lize da(x) + 0p(x),
TreR™

which has the dual problem

maximize —oa(v) —op(—v).

When AN B # (), then p* = 0 with z € AN B and d* = 0 with v = 0. Therefore total
duality holds (i.e., we have case (a)) and Theorem 5.4.1 applies. When dist(A, B) > 0,
then p* = oo since AN B = (). For the dual, define 7 = P;—5(0), which satisfies

(a—b,7) > |7

for all @ € A and b € B by the optimality conditions defining the projection. Then we

have
—oal=np) —op(tn) = il (0~ b,5) > o)
for n > 0. Since ||7| = dist(A,B) > 0, with n — oo we conclude d* = oco. So

we have case (f) and Theorem 5.4.6 applies. However, the results of this work say
nothing for case (g). The contribution of this work is to consider improving directions
and function-value analysis, but both notions are not relevant in the setup of convex
feasibility problems. Therefore, our work does not provide any new results for the

convex feasibility problems.

Prior work on the convex feasibility setup provides further stronger results. By [19,
Theorem 3.13], we have

g — g2 TI—(0).

Furthermore, by [27, Theorem 4.5], we have

(xk+1/2,xk+1) — (a®b*P) € argmin {|la — b||}
(a,b)eAxB

if the arg min is nonempty. (The pairs in the argmin are called “best approximation

pairs” between A and B.) These results show that the relevant dichotomy is whether a
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best approximation pair exists, rather than whether strong duality holds. These results

cannot be obtained from the analysis of our work.

5.5 Pathological convergence: ADMM

We now analyze ADMM under pathologies. Consider the primal problem

minimize  f(x) + g(y)
zERP YR (P-ADMM)
subject to Az + By = c,

where f : R? - RU{oo} and g : R? - RU {o0} are PCC, A € R"*?, B € R"*9, and

c € R”, and its dual problem

maximize —f*(—ATv) — g*(—=BTv) — v (D-ADMM)

veR”?

Write p* and d* for the primal and dual optimal values. ADMM applied to this primal-

dual problem pair is

1
M € argmin { f(2) + (U7, Az + By® — ¢) + —||Az + By* — c|?
TE€RP 2’}/

1
y* ! e argmin { g(y) + (VF, A" + By — ) + —|[|Az" + By — |
yER4 2’)/

P =0k (1)) (AT Byt — ¢). (5.8)

For ADMM to be well-defined, the argmins of (5.8) must exist. Throughout this

section, we furthermore assume the regularity conditions
(ran AT) Nri dom (f*) # 0, (5.9)
(ran BT) Nri dom (g*) # 0. (5.10)
Here, ri denotes the relative interior of a set. These conditions ensure the subproblems
are solvable [190, Theorem 16.3].

Without these regularity conditions, the subproblems of (5.8) may not have so-

lutions. This is often overlooked and sometimes even misunderstood throughout the
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ADMM literature. (The highly influential paper [41] mistakenly claimed it is enough for
f and g to be PCC. Chen, Sun, and Toh [53] pointed out that additional assumptions

are needed.)

5.5.1 Classification and convergence results

Under (5.9) and (5.10), the status of (P-ADMM) and (D-ADMM) falls under exactly

one of the following 5 distinct cases.

Case (a) d* = p*, both (P-ADMM) and (D-ADMM) have solutions.

Theorem 5.5.1 ([103, 41, 67]). In case (a), Az* + By* —c — 0 and

: k k *
Jim f(2%) +g(y") = p".

Case (b) d* =p*, (P-ADMM) has a solution, (D-ADMM) has no solution.

Theorem 5.5.2. In case (b), Ax* + By* —c — 0 and

1
lim

k
Jim =37 f(a) +g(y) = p', liminf f(2¥) + g(y*) = p*.
=1

Furthermore, if (2%, y*) — (2*,y*), then (z*,y*) is a solution.

Case (c¢) d* =p* € [-00,00), (P-ADMM) is feasible but has no solution.

Theorem 5.5.3. In case (¢), Ax* + By* —c — 0 and

. 1 b i 7 * s k k *
,}E{}og;f@Hg(y)_p’ liminf f(z%) + g(y") = p",

and the sequence (x*,y*) does not converge.

Case (d) d* =p* = o0, (P-ADMM) is infeasible.
Theorem 5.5.4. In case (d),

|Az* + By* —c|| — inf |Ax+ By — ¢
rz€dom f
yEdom g
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Case (e) d* <p*, i.e. strong duality fails.

5.5.2 Interpretation

With some caveats, ADMM succeeds at achieving feasibility and optimality. In cases
(a), (b), and (c) the iterates become approximately feasible in that Axz* + By* —c¢ — 0,
and the function values on average converge to the solution. In case (d), feasibility is

impossible, but ADMM does its best to achieve feasibility.

5.5.3 Proofs

ADMM is often analyzed as DRS applied to (D-ADMM) [95]. In this proof, however, we
take the less common approach shown in [80, 238], which derives ADMM directly from
the primal problem. We do so as the function-value analysis of Section 5.3.2 translate

nicely with this primal approach.

Consider the equivalent primal optimization problem

minimize f(z)+9(2)

with
f(z) = inf{f(x)| Az + 2 =0}, §(z) = inf{g(y) | By — c = 2},
which are PCC functions, as we assume (5.9) and (5.10) [190, Theorem 16.3]. We apply
DRS to this form to get
2 = argmin {73(7) + (1/2)]17 — 2"}
= argmin {yf(%) + (1/2)]17 — 281/ + 24|}
SR kg skl k12

where we perform the g-update before the f-update. We introduce and substitute the

variables z¥, y*, and v* defined implicitly by ##t1/2 = By#+! — ¢, ##+t1 = — A2F*2, and
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2P = —yF — AzF! to get

ytt = arg min {19(y) + 7 (V*, Ax* + By — ¢) + (1/2)[| A" + By — ¢|*}
"2 = argmin {7 f(z) + 7(**!, Az + By*! — ¢) + (1/2)|| Az + By**' — ¢|*}

Vk+1 — l/k + (1/7)(141,]{54—1 + Byk—i-l . C).
Reordering the updates to get the dependency right, we get

4 = argmin {g(y) + 204, AP + By = )+ (DA + By — ]}

VkJrl — I/k + (1/7)(A.1‘k+1 + Byk+1 . C)

2% = arg min {yf(x) + WA Az 4+ By"™ — ) + (1/2)|| Az + By — c||2} :

k+1

Finally, redefine the start and end of an iteration so that it updates z**!, y**! and

v* 1 instead y* 1, vAL and 2%2. With this, we get (5.8).
The the last step, where we redefine the start and end of an iteration, introduces
a subtlety when translating the results of Section 5.4.2. In particular, the results of

Section 5.3.3 are necessary because of this.

Theorem 5.5.2 follows from Theorem 5.4.2 and Lemmas 5.3.2, 5.3.11, and 5.3.13.
Theorem 5.5.4 follows from Theorem 5.4.6 and Lemma 5.3.14.

Case (c) of this section corresponds to cases (c), (d), and (e) of Section 5.4.2. For the
three cases, we use Theorem 5.4.3 and Lemmas 5.3.2, 5.3.11, and 5.3.13, Theorem 5.4.4
and Lemmas 5.3.2, 5.3.11, and 5.3.13, and Theorem 5.4.5 and Lemma 5.3.11, and 5.3.15.

Combining the three results into one gives us Theorem 5.5.3. O]

5.6 When strong duality fails

In the analyses of DRS, we assumed strong duality holds. When strong duality fails,

i.e., when d* < p*, we conjecture that DRS fails.
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Conjecture. When strong duality fails, DRS necessarily fails in that

liminf f(z*1/2) 4+ g(2*1) < p*.

k—o0

In other words, DRS finds the wrong objective value.

As discussed in Section 5.4.2, DRS tries to achieve feasibility and optimality. As
discussed in Section 5.2.1, strong duality is well-posedness. Therefore, when the problem
is ill-posed, we expect DRS to reduce the function value below p* while achieving an

infinitesimal infeasibility. We support the conjecture with examples.

We first present an analytical counter example. Consider the problem taken from
[137]

minimize 5{(@@@3)|x32(x§+xg)1/2}(93) + o1+ 5{(x1,x2,zs)|x2=x3}(517)

f(z) g(z)
which has the solution set {(0,t,¢) |t € R} and optimal value p* = 0. Its dual problem

maximize —5{(V1,u2,y3)\fugz(ufwg)w}(V) - 5{(u1,u2,u3)\ulzl,uz:—us}(—’/)

is infeasible. Given z° = (27, 29,0), the DRS iterates have the form

1
At =
RN Y S Y e k)2
2 5% 5/ (21) + (23)
2 2
=0,
With this, it is relatively straightforward to show z#+1/2 — zk+1 — 0, 25™/2 5 _9,
2h T2 L oo, 2B o oo, and f(2FTV2) 4 g(a*HY) — —2y. Also, 2FTY/2 - dom f N

dom g even though z*+1/2 — z#+1 — 0.

Note that

d* < lim f(z"tY?) 4+ g(zF*1) < p*.

k—o0
So this counterexample proves, at least in some cases, that DRS solves neither the

primal nor the dual problem in the absence of strong duality.
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Next, we present more experimental counter examples that support the conjecture.

We run DRS on these problems report the experimental results.

The problem, taken from [31],

minimize  exp(—/Z122) + 8f(z1.,25) | 2120} (Z)

zeR?2
f(z) g(z)

has p* = 1 but d* = 0. Experimentally, for all v+ > 0 and choice of z° we observe
d* < hmk%oo f($k+1/2) —i—g(ka) < p*'

The problem, taken from [78],
minimize 65:1 (X) + Xoz + 0 xes? | Xa5=0,Xap+2X15=1} (X)),

XeSs3
F(X) 9(X)

where S? and S? respectively denote the set of symmetric and positive semidefinite 3x 3
matrices, has p* = 1 but d* = 0. Experimentally, we observe d* = lim_,, f(z"*'/2) +
g(x®*1) for v > 0.5, and d* < limy_,o f(z¥+1/2) + g(2**1) < p* for 0 < v < 0.5. This

behavior does not depend on 2°.

The problem, taken from [239],

minimize 5Si (X) + 2X12 + 5{X€S3 | X22=0,—2X124+2X33=2} (X)

Xes?
F(X) 9(X)

has p* = 0 but d* = —2. Experimentally, we observe d* =
limy oo f(2571/2) 4 g(2*1) for v > 1, and d* < limg_o f(2F1/2) + g(2F+1) < p* for

0 < v < 1. This behavior does not depend on 2°.

The problem, taken from [219],

minimize 583_ (X) + Xy + X55 + 5{X€S3 | X11=0,X20=1,X34=1,2X134+2X45+X55=1} (X)

Xesb
(X 9(X)

has p* = (v/5 — 1)/2 but d* = 0. Experimentally, we observe d* =
limy_yoo f(2FH1/2) 4 g(2F 1) for v > 0.8, and d* < limy_,o f(2*T1/2) 4 g(2*) < p* for

0 < v < 0.8. This behavior does not depend on 2°.
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The conjecture holds for all examples. Interestingly, for some examples, there is a
threshold Yy, such that d* < limy_ f(z"F/2) + g(z**!) < p* when 0 < v < i, and
d* = limy_,o0 f(z¥/2) + g(z**!) when Y < 7. We do not have an explanation for

this phenomenon.

5.7 Conclusion

In this chapter, we analyzed DRS and ADMM under pathologies. We show that when
strong duality holds, the iterates of DRS and ADMM are approximately feasible and
approximately optimal in the sense discussed in Sections 5.4.3 and 5.5.2. Furthermore,
we conjectured that DRS necessarily fails when strong duality fails, and we provided

empirical evidence supporting this conjecture.

As discussed in Section 5.6, DRS exhibits an interesting behavior in the absence of
strong duality, and we do not have an explanation for it. Analyzing this phenomenon

and addressing the conjecture is an interesting direction of future research.

For non-pathological problems, DRS can be generalized with an over-under relax-
ation parameter between 0 and 2. The pathological DRS analysis of this chapter imme-
diately extends to this generalized setup. For non-pathological problems, ADMM can
be generalized with an over-under relaxation parameter between 0 and (1++/5)/2. This
generalization arises when ADMM is analyzed directly through a Lyapunov function,
and not through DRS [92, 102, 32, 89, 74, 53, 52]. The pathological ADMM analysis
of this chapter does not immediately extend to this generalized setup. Analyzing this
form of ADMM applied to pathological problems is an interesting direction of future

research.
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Part IV

Convergence Behaviors on

Nonconvex Problems
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In this part, we present the results of [139], in which the convergence behaviors of
FBS and DRS on nonconvex problems are analyzed. The main result is that under some
smoothness conditions, FBS and DRS can avoid the strict saddle points® almost surely,
in the sense that the probability for DRS and FBS iterations with random initializations
to converge to strict saddle points of their respective objectives is zero (see Theorem

6.5.6).

The main technical tools to achieve this are (i) Forward-Backward Envelope (FBE)
[215], Douglas-Rachford Envelope (DRE) [171] from nonconvex analysis, and (ii) Stable-

Center Manifold Theorem [206] from dynamical systems.

FBE and DRE are functions with nice properties even in the nonconvex settings. In
Section 6.4, we show that they share the same stationary points, global minimizers, local
minimizers, and strict saddle points with the objectives of FBS and DRS, respectively.
Furthermore, the FBS and DRS iterations can be written as (preconditioned) gradient
descent iterations on FBE and DRE. In Section 6.5, we analyze these gradient descent
iterations with the Stable-Center Manifold Theorem, and show that whenever FBS
and DRS converge, their limits will not be the strict saddles of FBE and DRE almost
surely, which are exactly the strict saddles of their corresponding objective functions.
Consequently, for many practical models that satisfy the strict saddle property®, FBS

and DRS will almost always avoid the strict saddle points whenever they converge.

As a byproduct, we also generalize FBE and DRE to the Davis-Yin Envelope in
Section 6.3, which is an envelope function for the Davis-Yin splitting®. Many results in

Section 6.4 and 6.5 also hold for Davis-Yin Splitting and Davis-Yin Envelope.

T.e., saddle points with a negative curvature.
2That is, the stationary points of the objective are either local minimizers or strict saddle points.

3Davis-Yin splitting [69] is a generalization of FBS and DRS.
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CHAPTER 6

Strict-Saddle Point Avoidance of FBS and DRS

6.1 Introduction

The most general model considered in this chapter minimizes the sum of three functions,
where one of them is differentiable, and all the three functions can be nonconvex. A
mathematical formulation is given in Section 6.3. The results of this chapter, of course,
apply to simpler models, where any one or two of these three functions vanish. Problems
that can be written in our general model are abundant. Examples include texture

inpainting [134], matrix completion [48], and support vector machine classification [63].

Our model can be solved by the splitting iterative methods based on Douglas-
Rachford Splitting (DRS) [133] and Forward-Backward Splitting (FBS) [168], as well
as their generalization, Davis-Yin Splitting (DYS) [69]. In these methods, the problem
objective is split into different steps, one for each of the objective functions. Their
implementations are typically straightforward. By exploiting additional sum and coor-
dinate friendly structures, they give rise to parallel and distributed algorithms that are

highly scalable. The details of these methods are reviewed in Section 6.3 below.

These splitting methods are traditionally analyzed under the assumption that the
subdifferentials of the objective functions are maximally monotone. The subdifferentials
of nonconvex functions are generally non-monotone. Therefore, the majority of the

existing results apply only to convex objective functions.

Recently, FBS and DRS are found to numerically converge for certain nonconvex

problems, for example, FBS for image restoration [209], dictionary learning, and ma-
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trix decomposition [215], and DRS for nonconvex feasibility problems [125], matrix
completion [6], and phase retrieval [54]. Theoretically, their iterates have been shown
to converge to stationary points in some nonconvex settings [10, 125, 216, 108]. In par-
ticular, any bounded sequence produced by FBS converges to a stationary point when
the objective satisfies the KL property [10]; By using the Douglas-Rachford Envelope
(DRE), the authors of [125] show that DRS iterates converge to a stationary point when
one of the two functions is Lipschitz differentiable, both of them are semi-algebraic and
bounded below, and one of them is coercive; Later, the boundedness assumption is
removed in [216]; In [124], similar convergence is established for Peaceman-Rachford
Splitting; In [108], when one function is strongly convex, and the other is weakly convex,
and their sum is strongly convex, DRS iterates are shown to be Fejer monotone with
respect to the set of fixed points of DRS operator, thus convergent. Though unlikely,
it is still possible that the limit of a convergent sequence is a saddle point instead of a
local minimum (except when all stationary points are local minima, which is the case

studied in [108]).

On the other hand, some first-order methods have been shown to avoid so-called
strict saddle points, with probability one regarding random initialization [120, 119].
These results make skillful use of the Stable-Center Manifold Theorem [206]. So far,
their results apply only to relatively simple methods such as Gradient Descent, Coor-
dinate Descent, and Proximal Point methods. We give an affirmative answer (under
smoothness assumptions) that splitting methods also have this property. This result

also matches the practical observations made in [213].

This chapter makes the following contribution regarding the envelopes and saddle
point avoidance of FBS and DRS iterations for nonconvex problems. We first gener-
alize the existing Forward-Backward Envelope (FBE) and Douglas-Rachford Envelope
(DRE) into a Davis-Yin Envelope (DYE) and establish relationships between the latter
envelope and the original optimization objective. Then, under smoothness conditions,

we show that the probability for DRS and FBS iterations with random initializations
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to converge to strict saddle points of their respective DRE and FBE is zero. Finally, by
the connection between the envelopes and the original objectives, we extend the above
avoidance results to the strict saddle points of the original objectives. That is, when
our problem has the strict saddle property, DRS and FBS with random initialization
will almost surely converge to local minimizers. The strict saddle property is satisfied in
several applications including, but not limited to, dictionary learning [213], simple neu-
ral networks [46], phase retrieval [212], tensor decomposition [97], and low-rank matrix

factorization [33].

Recently, another generalization of FBE and DRE is proposed[101]. Some properties
of the more general envelope are provided and some of them sharpen the corresponding
results of FBE and DRE. Also, a new interpretation of FBS and DRS as majorization-
minimization algorithms applied to their respective envelopes is given. Compared to
[101], the envelope proposed in this chapter also applies to DYS, we interpret DYS as
gradient descent of this envelope under a variable metric, and establish the strict saddle

avoidance property of FBS and DRS.

The rest of this chapter is organized as follows. In Section 6.2, we introduce notation
and review some useful results. In Section 6.3, we review DYS, and define the envelope
for DYS. In Section 6.4, we rewrite DYS equivalently as a gradient descent of the
envelope, and establish a strong relationship between the envelope and the objective.
Then, in Section 6.5, we analyze the avoidance of strict saddle points of the objective.

Finally, we conclude this chapter in Section 6.6.

6.2 Preliminaries

In this section, we review some basic concepts, introduce our notation, and state some
known results. For the sake of brevity, we omit proofs and direct references. We refer

the reader to textbooks [194, 16].
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We let 0 € R* denote the vector zero, (-, ) the usual dot product, || -|| the ¢5 norm,

and FixT the set of fixed points of a single-valued operator T'.
A function f : R* — RU {+o0} is called f—weakly convex (or f—semiconvex) if
the function f(-) := f(:) + 2| - ||* is convex. Clearly, f can be nonconvex.

Let y Iy & denote y — x and f(y) — f(z). Then, the subdifferential of f at
x € dom f can be defined by

Of (x) ::{v cR": 3t L x,v" — v, with
. A A
L F() = fa) (o2 — a)

2vat Iz = |

> 0 for each t}.
If f is differentiable at =, we have df(x) = {V f(z)}; If f is convex, we have
Of(x) ={veR": f(z) > f(z) + (v,z — x) for any z € R"},

which is the classic definition of subdifferential in convex analysis.

A point x* is a stationary point of a function f if 0 € df(x*). x* is a critical point
of f if f is differentiable at z* and V f(z*) = 0.

A point z* is a strict saddle point of f if f is twice differentiable at x*, z* is a critical
point of f, and Apin[V2f(2*)] < 0, where Apiy[-] returns the smallest eigenvalue of the
input. Local minimizers of a function are always its stationary points, but not strict

saddle points.

For any v > 0, the Moreau envelope of a function f is defined by

yeR®

i 1
f(x) = inf {f(y) + ZHy —a|*}.
The proximal mapping of f is defined by

. 1
Prox. (x) : = = argmin{f(y) + 5_ly — |},
yeR® Y

assuming that the arg min exists, here = denotes a possibly set-valued mapping. When

[ is convex, Prox, is single-valued and equals Prox,¢(x) = (Id +v9f) ™!, where Id is
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the identity map. For any proper, closed, convex function f, its Moreau Identity is

Id
Id = Prox, ¢ +7v Prox s o—, (6.1)
v

where f*(u) = sup,epn{(u,z) — f(x)} is the convex conjugate of f.

We also need the Inverse Function Theorem: let F': R* — R® be a C! mapping, if
the Jacobian Jp(z) of F' at © € R" is invertible, then, there exists an inverse function

F~! defined in a neighbourhood of F(z) such that F~! is also C' and

Je-1(F@)) = (Je(@) . (6.2)

6.3 Davis-Yin Splitting and its Envelope

In this section, we will introduce a function, which we call an envelope, such that DYS
iteration can be written as the gradient descent of this function under a variable metric.
Since DYS generalizes FBS and DRS, the envelope of DYS is also a generalization of
FBE and DRE, the respective envelopes of FBS and DRS, which were introduced in
[171, 215].

6.3.1 Review of Davis-Yin Splitting
DYS [69] can be applied to solve the following problem:

mifeiﬂr{%ize o(x) = f(x)+ g(x) + h(x), (6.3)
where f,g,h: R* - RU{oc0}.

DYS iteration produces a sequence (z¥)>¢ according to 251 = T2* where
T2k =28+ a(Profo (2 Prox, (%) — 2F — ’yVh( Proxw(zk))) - Proxvg(zk)>,

where v and « are positive scalars. We rewrite this operator into successive steps with
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designated letters as

¢ = Vh(Proxvg(zk)),
r¥ = 2 Prox, (2*) — 2,
p" = Prox,;(r* — yq"),
wk = p* — Prox,, (%), (6.4)

A =Tk = 2F 4 aw”, (6.5)
In [69], convergence is established when f,g and h are proper, closed, and convex,

h is Lp—Lipschitz differentiable, and

Y
2L 2— —.
y G]O, h[, a € ]O, 2Lh|:

When h = 0, (6.5) simplifies to DRS iteration,
AR LN &(Proxwf(rk) — Proxvg(zk)).
When g = 0, Prox,, reduces to Id and thus (6.5) simplifies to
= 28 4 a(Prox, s (2% — v¢¥) — 2F),

which is FBS iteration.
When f = 0, Prox,; reduces to Id and (6.5) simplifies to Backward-Forward Split-
ting,
= 2P 4+ a(Prox,,(27) — v¢* — 2%).
When f = ¢ =0, (6.5) simplifies to gradient descent iteration

kgt
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6.3.2 Envelope of Davis-Yin Splitting

We define the envelope function of DYS as:

9(2) = g"(2) = 7| Vg" (2)|* = 7(Vh( Prox,y(2)), V" (2)) + h( Prox,(2))

— %HVh(PrOXW(z)) 12+ £ (z —27Vg'(z) — ’yVh(PrOXW(z»). (6.6)

When g = 0, this envelope reduces to the FBE proposed in [215]; When h = 0, it
reduces to the DRE introduced in [171]. When g = h = 0, it is the Moreau envelope.

This envelope is well defined when g is f—weakly convex, h is differentiable, and

v € (0, %) This is justified by the following lemma.

Lemma 6.3.1. Let & be proper, closed, B—weakly convexr. Choose v such that v €
(0, %) Let £7(2) = mingega{&(u) + %Hz — u||*} be the Moreau envelope of &. Define
() = 5()—|—§|| |2, which is convex. Then, prozimal mapping Prox.¢(z) is single-valued

and satisfies

1
1—~9p %)
Ve (2) =471 (z — Proxyg(z))

Prox.¢(z) = Proxﬁg(

. 1 . . .
Furthermore, Prox,¢(z) is _—,Yﬁ—szschztz continuous.

1

Proof. We have

p

2
1—~p 1 B
3l = el = gl

1
¢(2) = min{¢(u) + Zflul® + o= 2|* - g\IUIF}

= min {g(u) +

ueR
where the second equality follows from the definition of &.

As a result, for v € (0, %), Prox. is single-valued and

Prox.¢(z) = Prox%é(
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Since Prox s ¢(#) is 1—Lipschitz continuous, we know that Prox,¢(2) is Lipschitz con-

tinuous with constant —L—.
1-—8

Finally, since £ is convex, [16, Prop.12.29] tells us that £ is differentiable and

R i N
Vf”(z)_l_wvg ﬂ(l—’yﬁz) 1—~8°
R ETI LB
=15 (1 _’yﬂz—Prozxclng(1 —752» . _752
= i(z — Proxwf(z)). O

6.4 Properties of Envelope

In this section, we show that DY iteration can be written as the gradient descent of this
function under a variable metric. Furthermore, the global minimizers, local minimizers,
critical (stationary) points, and strict saddle points of the envelope 7 defined in (6.6)

correspond one on one to those of the objective function ¢ in (6.3).

We now analyze the properties of the DYS envelope (6.6) under the following as-

sumption:

Assumption 6.4.1.
1. g : R" = R is Ly—Lipschitz differentiable.
2. h:R" — R is L,— Lipschitz differentiable.
3. ¢ R* - RU{oc} is lower bounded.
47 €0, 47,)-

Compared to the assumption in Section 6.3.1, a main restriction is that g is Lipschitz

differentiable. On the other hand, all f, g and h can be nonconvex.
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First, we show lower and upper bounds of the envelope, which generalize [215, Prop.

2.3], [208, Prop. 4.3], and [171, Prop. 1].

Lemma 6.4.1. Under Assumption 6.4.1, the following three inequalities hold for any

z € R":
©(z) < <p(Proxvg(z)), (6.7)
#"(2) > ¢(p(2)) + CL(M)Ip(2) — Pros,y(2)|?, (6.8)
#"(2) <p(p(2)) + Co()[Ip(2) — Prox, ()|, (6.9)

where ©¥(z) is defined in (6.6),

1—~Ly —~L, -

Ci(7) = 2 0,
14+ ~yLy+~L
Coly) = = >0,

and p(z) is any element of Prox.s (2 Prox,,(z) —z — ’yVh(Proxvg(zD).

Proof of inequality (6.7). By applying Lemma 6.3.1 to g, ¢7(2) can be written as
o 1 N :
@ (2) =min{g(u) + o-llz = ul'} =717 (= = Prox, (2))|
1
- ’y(Vh(Proxvg(z)), S (z - Proxwg(z))>
i
+ h(Prox,(z)) - §y|Vh(Proxw(z)) 2
1
+ min{f(u) + %H — 2+ 2Prox,4(z) — 'yVh(Proxyg(zD —ul|?}.  (6.10)
Taking u = Prox,,(2) in the two minimums of (6.10), we have

#(2) < g(Prox,y()) + |12 — Prox,, ()2 - vlli(z — Proxa,(2)) |

2y
— (Vh( Prox,y(2)), 2 — Prox,y(2))
+ h( Prox,(2)) — %HVh(Proxw(z))Hz
+ f(Prox.,(2)) + 217” — 2 + Prox,(2) — YVh( Prox,y(2))|*
=p( Prox,,(2)). O
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O

Proof of inequality (6.8). According to Assumption 6.4.1, we know that f(-) + %H .

|2 is bounded below for v € (0 Therefore, [194, Thm. 1.25] tells us that

LT
Prox, s (2 Prox,,(z) —z — 7Vh<Proxvg(z)>) # @ for v € (0, ﬁ))

By taking u = Prox,,(2) in the first minimum of (6.10) and u = p(z) € Prox, (2 Prox,,(z)—
z— ’yVh(Proxw(z)>) in the second, we have
2 1 2
"(2) = g( Prox,(2)) + 5 12 = Proxs(2)]
1
- 7<Vh< Proxvg(z)), 5 (z - Proxwg(z))>
g
+ h( Prox,,(2)) - §HVh(Pr0X7g(z)> [&
1
() + 551l = 2 4+ 2Prox () = yVh(Prox, () = (). (611)
By making use of

L
h(y) > h(z) = (Vh(y).z = y) = |z = y||* forany z.y € R",

we arrive at

1
#7(2) 2 g(Prossy (2)) = 3=l = Proxs, ()]

— <Vh(Proxvg(z)), z — Proxp.y(2))
+h(p(2)) = (Vh(Prox,y(2)), (p(2) — Prox,y(2)))
— 2 p(z) — Pros,y(2)|* — L[ V(Pros(2)) P
+ f(p(z)) + 21’y||2 Prox.,(z) —z — 'yVh(Proxw(z)) —p(2)|]
Next, by making use of |la+ b+ c||* = ||a||® + ||b]|* + [|c]|* + 2(a, b) + 2(b, ¢) 4+ 2{a, c) for
a = Prox,4(z) — p(z),

b = Prox,4(z) — 2,

c= —WVh< Proxyg(z))a
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we obtain

#7(2) 29(Proxsy(2)) + h(p(2) — 2 Ip(2) — Prowy ()]
() + 5l Prossy(2) = P + (Proxsy(2) = p(:). ~(Pro,y(2) = 2).
Finally, by substituting
Vg(Prox,yg(z)) = —ﬁly(Proxw(z) —2),

L
9(y) = g(z) — (Vy(y),z — y) — fo —y||* forany z,y € R",

we arrive at (6.8). O O

Proof of inequality (6.9). Similarly to the proof above, we can also start from (6.11)

and apply
Lg 2 n
h(y) < h(x) — (Vh(y),z —y) + EHx —y||* forany z,y € R,
LQ 2 n
9(y) < 9(z) = (Vg(y), 2z —y) + o' llz — y||” forany 2,y € RY,
which gives (6.9). O O

6.4.1 Global Minimizers Correspondence

Now we can establish the direct connections between the global and local minimizers

of ¢7 and those of ¢. These results generalize [215, Prop. 2.3] and [208, Thm. 4.4].

Theorem 6.4.2. Under Assumption 6.4.1, we have

1. infepn (x) = inf,eprn ¢7(2),
2. argmin, g, () = Prox,, <arg min,cpn (gzﬂ(z))).
Proof of 1. From (6.7) we have
e () <
RCERe)
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If inf,epn @7 (2) < infiern (), then, there exists z; € R™ such that

©V(z1) < infiern p(z). So (6.8) gives

inf 9(2) > ¢ (1) 2 9(p() + CLl Proxeg () — (1) 2 (p(=1)),

which is a contradiction. Il Il
Proof of 2. Let us first show that

arg min ¢(x) C Prox,, (arg min (gp”(z))) :
reRn z€R®

Without the loss of generality, we may assume arg min, g, p(x) # &, then, for any
r* € argmingcpn (), we have z* = Prox,,(z*) for z* = (I +vVg)(z*). As a result,

(6.7) and (6.8) give us
xienlgn o(x) = p(x*) = gp(Proxwg(z*))
> ©7(2") > ¢(p(z")) + C1(7)|| Prox,, (=) — p(=")|%,

which enforces Prox,,(z*) = p(z*) and go(Proxvg(z*)) = ¢7(z*). So for any z € R* we

have

P(2%) = inf o(z) < o(p(2)) < "(2) = CL()|| Proxsy(2) — p(2)|* < ©7(2),

zeR®

which yields z* € argmin, pn ¢7(2), 2" € Prox,, (arg min, cgn (cp”(z)))

Now let us show that

Prox,, (arg min <g07(z))) C arg min ().

z€ER® zeR®?

Again, we can assume that argmin, ps (go”(z)) # &. For any

Z* € argmin,p. ¢ (2), we need to show Prox.,,(z*) € arg min . ().

Let 2 = (I +vyVg)p(z*), then, Prox.,,(2**) = p(2*) and (6.7) and (6.8) give us

©(27) < p(Proxy, (27)) = ¢(p(27)) < ¢7(2%) = Ca(y)]| Prox,e(z") — p(=")|>
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Since z* € argmin,g. ¢7(2), we must have
Prox,,(z*) = p(z*) = Prox,,(z*"),
#7(2) = ¢7(27) = p( Proxsy(2")).
Consequently, for any z € R" we have
p(Prox,y(27)) = ¢7(2") < ¢7(2) < o Prox,y(2)),

which concludes Prox.,,(z*) € arg min, gn (). O O

6.4.2 Davis-Yin Splitting as Gradient Descent of the Envelope

We now show that (6.5) can be written as a gradient descent iteration of an envelope

function under the following assumption.
Assumption 6.4.2.
1. fis fr—weakly conver and v € (0, é)

2. g,h are twice continuously differentiable.

We begin with a technical lemma regarding the twice differentiability of the Moreau

envelope of g.

Lemma 6.4.3. Under Assumptions 6.4.1 and 6.4.2, Prox,, has a Jacobian at z°, g7

is twice differentiable at z° with the Hessian
2 0 1 2 o)
V297 (") = 5 I— <I+7V g(Proxw(z ))> :
In addition, the mapping
A(z) =1 —27V?q"(2) — nyQh((Proxvg(z)) ([ — *yVQg’Y(z)) (6.12)
is tnvertible.
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Proof. Since v €]0, L%,[’ Prox,, is single-valued and
Prox,,(2%) = (Id + yVg)'2°, (6.13)

where (Id + yVg)~! is the inverse mapping of Id + yVyg. Since V?g(Prox,, (zo)) is
symmetric and its eigenvalues are bounded by L,, we know that

I+ 7V2g(Pr0XW(z0)) is invertible, which is the Jacobian of Id + vVg at Prox,,(z°).

Applying the Inverse Function Theorem to (6.13) by setting F' as Prox,, and z° as

p in (6.2), we have
-1
JProx-yg (ZO) = (I + 'YVQQ(PI'OX,YQ(ZO))>
Hence, Lemma 6.3.1 yields
2 0 1 2 0 -1
V29 (") = 5 I— <I+7V g(PrOXW(z ))> :
According to (6.12),
A(2%) = Ay — yA,. (6.14)
where
-1
Ay = 2([ + vvzg(Proxvg(zo)D -1,

Ay = V2h(Proxyg(zo)) (I + nyzg(Proxw(zOD)_l.

Since v € (0, %9)7 Ay is invertible, as a result,
det (A(z0)> = det(A; — yAs) = det(I — yA; AT )det(A)
=TT = (A A7) )det(Ay),
i=1

where \;(A3A7"),i = 1,...,n are the eigenvalues of AyA; .

Let us set

C=1+ ’}/V2g(PI'OX,yg(ZO)) =C" =0,
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and rewrite A,A7! as
A ATY = V2h( Prox,, (%)) C (207" = 1)™! = V2h( Prox,, (=) ) (2 — C) .
Note that VQh(Proxvg(zo)) is symmetric and (27 — C')~! is symmetric, positive
definite. Therefore, \;(4,A7") € R, and we can set
A(A2ATY) > Ma(A2ATY) > > A (A2ATY).
In order to show det(A(zO)) # 0, it suffices to show that 1 — yA;(A247") > 0 when

1
7 €0, 75

We have

M(AAT) 2, <V2h(PrOXW(20)>> (@1 -0y

gbh(vawpumwcfn)-g_(fivLﬁ
- ||(V2h(Pr0ng(ZO)>H2 1 —17Lg
(%) ||V2h(P1"0ng(zo>> I2 1 —1’YL9
1
< Lhm’

where (a) is by [242, Corollary 11], and (b) is by Cauchy-Schwartz. Since

v € (0, Lngth)v we have

8
> 0.
1 —~L,

Therefore, det (A(ZO)> # 0. O O

1-— ”y)\l(AgAl_l) 2 1-— Lh

Theorem 6.4.4. Under Assumptions 6.4.1 and 6.4.2, DYS iteration (6.5) can be writ-

ten equivalently as
= T(2F) = 28 — ay AT (ZF) Vi (2F), (6.15)
where the metric is given by
A(2) = T = 29V?g7(2) = yVh( Prox,y(2)) (T = V97 (2)),
and the envelope ¢ is given by (6.6).
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Proof. In view of Lemma 6.3.1 and (6.4), we have

wF = p(2*) — Prox,,(2") = Prox,;(r* — v¢*) — Prox,,(2*), (6.16)

where

Prox,;(r* —7¢") = r* —y¢" =V f1(r* —1q").
Prox.,,(2") = 2F — 4V g7 (%),
¥ = 2 Prox,,(2F) — 2F = 2F — 29V g7 (2F),

¢" =q(") = Vh((zk - 'Ng”(zk)))

By substitution,
wh = =V (") = yq() =V [ (zk — 29V (") - W(Z’“))
Let V, denote taking gradient to z; then,
V. f7 (z —29Vg7(2) — ’yVh( Proxvg(2)>)
= A(z)V 7 (z —29Vq(z) — ’yVh( Proxq,g(z))>,
where A(z) is given in (6.12). After some computation, we can verify that

ARk = = 4 (V.g"(") = 4V, Vg (H)]?)
_ 7( — V. ((Vh( Prox, (=), Vg”(zk»))
— V. h( Prox,y () = 7( — %vzuw( Prox., (")) |I°)
e <zk — 2V () — 7Vh(Proxw(z)))

= — Ve (2F).

Since A(2") is invertible, we can rewrite DYS iteration (6.5) as (6.15). O O
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6.4.3 Local Minimizers Correspondence

Theorem 6.4.5. Under Assumptions 6.4.1 and 6.4.2, we have:

1. If Prox,(2%) € argming,epprox,(2),5) () for some 6 > 0, then, z* is a local

minimizer of @7.
2. If ¥ € argmin,cp,« .y 7 (2) for some e > 0, then,
gp(Proxvg(z*D < go(Proxq,g(z)) for all z such that ||z — 2| <e.
That is, Prox.,,(2*) is a local minimizer of ¢(z).

Proof of 1. Since Prox.,(2*) is a local minimizer of ¢, according to [194, Exercise 10.10],

we have
0e 8¢<Pr0xyg(z*)) = 8f< Proxw(z*)> + Vg(Proxq/g(z*)) + Vh( Proxyg(z*)).
Since Prox,, is single-valued, this is equivalent to
* 1 * * *
0¢e 8f<Prox,yg(z )) + 7( — Prox,,(2") + 2" + nyh(Proxwg(z ))),
Since f + %H - ||* is convex and Prox.; is single valued, this is further equivalent to
Prox,,(z*) = Prox,s (2 Prox,,(2*) — 2" — ’yVh(Proxvg(z*)D = p(z").

According to Lemma 6.3.1, Prox, ¢ is ﬁ—Lipschitz continuous, we can conclude that

there exists 7 > 0 such that when ||z — 2*|| <7, we have |[p(z) — p(z*)|| < 0 and

P(2%) = o( Prox,y(2") = ¢(p(z") < ¢(p(2))
< ¢7(2) — Co(7)|| Proxa(2) — p(2)]*

< @(z). O
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Proof of 2. According to Lemma 6.4.3, A(z) is invertible at z*. Theorem 6.4.4 tells us
that (7 is differentiable at z*, so V7 (2*) = 0 and Prox,,(z*) = p(z*). As a result, for

any z € R* with ||z — z*|| < e we have

p(Prox,y(27)) = ¢7(2") < ¢7(2) < p( Prox,y(2)).
Furthermore, according to Lemma 6.4.3 we have

Prox,,(z) = Prox,,(2") + <I + 7V29(Proxw(z*))>l(z — 2"+ o(||z = 2%).

-1
Since (I + ’}/VQQ(PYOX,YQ(Z*))> is positive definite, we know that Prox,, (B(z*,e))

contains a ball centered at Prox,4(z*), as a result, Prox,,(2*) is a local minimizer of

p(z). O] N

Now, let us show the one-to-one correspondence between the critical points of the

envelope ¢ and the stationary points of the objective p(z).

6.4.4 Critical and Stationary Point Correspondence

Theorem 6.4.6. Under Assumptions 6.4.1 and 6.4.2, z* is a critical point of ¢ if and

only if Prox.,,(2*) is a stationary point of .

Proof. Since f is fy—weakly convex and v € (0, é), by Lemma 6.3.1, we know that

Prox,; is single-valued. And by Theorem 6.4.4, we have

Vi (2) = —A(:)= () = Prox,y(2)) (6.17)

where p(z) = Prox,; ((2 Prox,,(z) — z — ’yVh(Proxwg(z))). So Vg7(z*) = 0 if and

only if
Prox.,,(z*) = Prox, ¢ (2 Prox,,(2") — 2" — 7Vh(Proxwg(z*))>

= argmin{ f(z) + 217||z - (2 Prox,,(2") — 2% — ’}/Vh(PI'OX,Yg(Z*)>) 1%}

188



Since the objective in the argmin is convex, by [194, Exercise 10.10] we know that this

is equivalent to
1
0¢€ 8f(Proxvg(z*)) + 7( — Prox,,(2") + 2" + VVh(Proxwg(z*))).

By the definition of Prox,, and v € (0 , this is further equivalent to

) m)
0¢c Gf(Proxwg(z*)) + Vg(Proxw(z*)) + Vh( Proxw(z*)) = ch( Proxvg(z*)). O

]

6.4.5 Strict Saddle Correspondence

In order to establish the correspondence between the strict saddles of ¢” and ¢, we

also need the following assumption.

Assumption 6.4.3. For any critical point z* of ©7, f is twice continuously differ-
entiable in a small neighbourhood of Prox.,(z*), and there exits Ly > 0 such that

V2 f(Prox.,(2*))|| < Ly. In addition, assume that ~ € (0, %f)

Lemma 6.4.7. Let z* be a critical point of 7. Under Assumptions 6.4.1, 6.4.2 and
6.4.3, ¢ is twice differentiable at z* and
1

V207 (2%) = —A(z*);(Jp(z*) — Jproxy (2)) (6.18)

Moreover, V?¢7(2*) is symmetric.

Proof. (6.18) follows from (6.17), p(2*) = Prox,,(2*), and [208, Prop. 2.A.2].

Since f is weakly convex, by Lemma 6.3.1 we know that Prox, is continuous, so
p(z) is continuous. As a result, p7(z) is C'!, which tells us that VZp?(z*) is symmetric.

[l [l

Theorem 6.4.8. Let z* be a critical point of 7. Under Assumptions 6.4.1, 6.4.2 and
6.4.3, z* is a strict saddle point of ¢7 if and only if Prox,,(z*) is a strict saddle point

of .
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Proof. According to Lemma 6.4.7, we know that V27 (2*) exists and it is symmetric.

Let z* be a strict saddle point of ¢?(2), then, Taylor expansion gives

p7(2) =7(2") + ;(z =)V () (2 = 27) +olllz = 217),

#(p(2)) = (p(=")) + ;(W) — (=) Vo (p(") (p(z) — p(="))
+o([lp(z) = p(z")II?).

On the other hand, (6.8) gives

#1(2) = ¢(p(2)).
Let V2@ (2*)v = Av, where |[v]| =1 and XA < 0. Setting z — z* = awv, we arrive at
1
O (") + 5)\@2 + o(a?)
* 1 * T 2 * *
> o(p(=) + 5(p(2) = p(=) Ve (p(=") (p(2) — p(="))
+o(llp(2) — p(")II*) (6.19)
Furthermore, (6.7), (6.8) together with p(z*) = Prox,,(z*) yield ¢7(z*) = gp(p(z*)),
combine this with (6.19) and ||p(z) — p(z*)|| = O(]|z — z*||) = O(«), we conclude that
Amin (VQQO(Prong(Z*))) < 0.

Similarly, let Prox,,(2*) be a strict saddle of ¢(z), then, Taylor expansions gives

¢7(2) =7 (27) + ;(2 — )TV () (2 = 27) + ol = 217),

¢(Prox,, (z)) :¢<Proxvg(z*))
1 T
+ 5 ( Prox,,(z) — Proxw(z*)) V2<,0( Proxvg(z*)) (Proxw(z) — Proxvg(z*))
+ (]| Prosy () — Proxa, (7)),
On the other hand, (6.7) gives
0 (2) < @(Proxvg(z)),

Let V2<p(Prox,yg(z*))v = Mv where [[v]| = 1 and A < 0 is a negative eigenvalue

of VQQO(PI‘OX,YQ(Z*)), let us also set z = (Id + vVg)(Prox,,(z*) + av). Therefore,
Prox,,(z) — Prox,,(z*) = av, taking a — 0 gives Amin (V%ﬁ(z*)) < 0. O O
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6.5 Avoidance of Strict Saddle Points

In this section, we first show that under Assumptions 6.4.1, 6.4.2 and 6.4.3, the proba-
bility for DRS and FBS with random initializations to converge to strict saddle points
of DRE and FBE is zero, respectively. Then, by combining this result with the corre-
spondence between the strict saddle points of the envelope and the objective, as stated
in Theorem 6.4.8, we can conclude that DRS and FBS, if convergent, will almost always
avoid the strict saddle points of the objective. Therefore, when the objective satisfies the
“strict saddle property", DRS and FBS, if they converge, will almost always converge

to local minimizers.

To prove the main result, Theorem 6.5.6, we need the following Stable-Center Man-
ifold Theorem, and its direct consequence, Theorem 6.5.2.

Theorem 6.5.1 states that, if 7" is a local diffeomorphism around one of its fixed

CS

o with dimension equal to

point z*, then, there is a local stable center manifold

the number of eigenvalues of the Jacobian of T" at z* that are less than or equal to 1.

CS

Furthermore, there exists a neighbourhood B of 2*, such that a point z must be in W,

if its forward iterations T%(z), for all k > 0, stay in B.

Theorem 6.5.1 (Theorem II1.7, Shub [206]). Let z* be a fized point for a C" local
diffeomorphism T : U — R®, where U is a neighbourhood of z* and r > 1. Suppose
E=E,® FE,, where E, is the span of the eigenvectors that correspond to eigenvalues of
Jr(2*) that have magnitude less than, or equal to, 1, and E, is the span of eigenvectors
that correspond to eigenvalues of Jr(z*) that have magnitude greater than 1. Then,
there exists a C" embedded disk W that is tangent to Es at z*, which is called the
local stable center manifold. Moreover, there exists a neighbourhood B of z*, such that

TWS)N B C WS and N2 T~*(B) C W, where T™*(B) = {z € R* : T*(2) € B}.

ocC ocC oc’

The assumption of this following theorem is weaker than that of Theorem 2 of [119],

as we do not assume that 7' is invertible in R" but only around every z* € A%..
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Theorem 6.5.2. Assume that T'(z) = z—{—a(p(z) —Proxvg(z)) is a local diffeomorphism
around every z* € Ay = {z € R* : z = T(z), max; |)\Z<JT(z))\ > 1}, where Ak is
the set of unstable fived points of T, and | - | denotes the magnitude. Then, the set
W = {z": lim ¥ € A%} has Lebesque measure u(W) = 0 in R™.

Proof. Take any 2° € W, we have zF = T*(20) — z* € A%, there exists t; > 0, such
that for any ¢ > t, we have T%(z") € B,-. As a result,
T'(2°) € S := N T *(B.~) for any t > t,.

From Theorem 6.5.1 we know that S is a subset of the local center stable manifold

W whose codimension is greater or equal to 1, so we have u(S) = 0;

Finally, T%(2") € S implies that z° € T~"(S) C U2, T7(S), since
T9(8) = T3 P2y TH(Bor)) = (2 T4 (Bar) € Ay T4 (Br) = S,
we can conclude that p(W) = 0. O O

Now let us show that 7'(z) in Theorem 6.5.2 is indeed a local diffeomorphism around

its fixed points.

Lemma 6.5.3. Let T'(z) = z—l—oz(p(z)—Proxﬁ,g(z)) and z* € FixT'. Under Assumptions
6.4.1, 6.4.2 and 6.4.3, there exists ag > 0, such that T is a local diffeomorphism around

2* for a €]0, ayp].

Proof. By Assumptions 6.4.1, 6.4.2, and Lemma 6.3.1, p(z) is continuous, therefore
when z sufficiently close to 2z*, p(2) is in the neighbourhood of Prox,,(z*) guaranteed

by Assumption 6.4.3. Lemma 6.4.3 and chain rule tell us that

Jp(2) = (I + WVQf(p(z))) A(2),
Terocr () = <[ * ’)/V29< PrOXVg(Z))> 71»

where A(z) is defined in (6.12), so Jp(z) exists and Jr(z) = I + a(J,(2) = Jprox,, (2))

for z sufficiently close to z*.
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For the local invertibility of T around z*, let us show that det(Jr(z)) > 0 for z

sufficiently close to z*.

First, let us define ¢(«) = det(I + aB), where B € R™™". Then, we know that

Y () is a polynomial of « and ¥(0) = 1.

Furthermore, the coefficients of this polynomial are sums of products of the entries
of B. Since each entry is bounded by ||B||r and ||Bl|r < v/n||B||, we know that all the

coefficients of 1(«) can be bounded by some polynomial of || B||.

Now let us set

B = Jy(2) = Jprox,, (2)

= (1+9921(p()

-1

AR~ (14792 (Prox,y()))

where A(z) is given in (6.12), we know that ||B|| is bounded for all z € R".
As a result, there exists ag > 0 such that det(Jr(z)) > 0 for all « € (0, ayp). O

]

Now we are ready to show the main result of this section: when « is small enough,
the probability for DRS and FBS to converge to any strict saddle point of ¢ is 0, which

is also true for any strict saddle point of ¢.

Lemma 6.5.4. Let Assumptions 6.4.1 and 6.4.2 hold, then z* € FixT if and only if
V7 (z*) = 0.

Proof. This follows directly from Theorem 6.4.4. O] O]

Theorem 6.5.5. Define Z* = {z* € R* |V (2*) = O,)\min(VQgﬁ(z*)) < 0} as the
set of strict saddle points of 7. Under Assumptions 6.4.1, 6.4.2, and 6.4.3, if either
g =0 or h =0, then, for sufficiently small o, we have that the set W = {2 € R :
limy oo T2 € Z*} satisfies u(W) = 0.
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Proof. Take any z* € Z*, Lemma 6.4.3 states that A(z*) is invertible and symmetric.

Also, V2p(z*) is symmetric.

According to (6.18), we have
Jp(2*> - JPrOX'yg (Z*) = _VA_l(Z*)VQSOV(Z*)»

since A™1(2*)V2p7(2%) is similar to A~z (2*) V207 (2*)A~2(2%), we know that Jp(2%) —

JpProx,,(2*) has real eigenvalues and
Amac (Jo(2%) = Tpross, (27)) > 0.

Since
Ama (J7(27)) = 1+ 0max (o (27) = Tpronsy, (27)).

we know that Z* C A%. Furthermore, from Lemma 6.5.3 we know that 7" is a local
diffeomorphism around every z* € Z* C A%, therefore Theorem 6.5.2 gives u(W) =
0. O O

Theorem 6.5.6. Define X* = {z* € R" | Vip(z*) = 0, \min (V2 (2*)) < 0} as the set
of strict saddle points of p. Under Assumptions 6.4.1, 6.4.2, and 6.4.53, if either g =0
or h =0, then, the set V := {2° € R™ : limy_,o, Prox,,(T%2°) € X*} satisfies (V) = 0.

Proof. Combine Theorem 6.4.8 with Theorem 6.5.5. n n

When the objective satisfies the strict saddle property, i.e., the stationary points of
the objective are either local minimizers or strict saddle points, we can conclude that
FBS and DRS almost always converge to local minimizers of the objective whenever

they converge.

Many problems in practice satisfy the strict saddle property. Examples include
dictionary learning [213], simple neural networks [46], phase retrieval [212], tensor de-

composition [97], and low rank matrix factorization [33].
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6.6 Conclusions

In this chapter, we have constructed an envelope for DYS and established various
properties of this envelope. Specifically, there are one-to-one correspondences between
the global, local minimizers, critical (stationary) points and strict saddle points of this
envelope and those of the original objective. Then, by the Stable-Center Manifold
theorem, we have shown that the probability for FBS or DRS to converge from random
starting points to strict saddle points of the envelope is zero. If the original objective
also satisfies the strict saddle property, we have concluded that, whenever FBS and

DRS converge, their iterates will almost always converge to local minimizers.

A limitation of this work lies in its smoothness assumptions. The construction of
the envelope requires the Lipschitz differentiability of g(z). Furthermore, twice differen-
tiability of f(x) at specific points is needed for the strict saddle avoidance property of
FBS and DRS. It is undoubtedly interesting to investigate the possibility of weakening

these assumptions in the future.
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