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Abstract of the Thesis

Performance of Collinearity-Resistant Fitting

Methods in Exploratory Factor Analysis

by

Xiaoxi Xie

Master of Science in Statistics

University of California, Los Angeles, 2013

Professor Peter M. Bentler, Chair

The factor analytic model is usually an approximation that may not represent

well the latent structure of a set of variables. This paper studies the distortion to

common factor analysis due to doublets, pairwise associations in variables over and

above those postulated by the factor model. Three methodologies to estimate the

parameters of the factor model while minimizing the influence of doublets on the

solution, i.e., methodologies that are resistant to the effects of doublets and near

doublets, proposed by Yates(1987), Mulaik(2010) and Bentler(2012), are reviewed

and compared. Examples and a simulation verify that these methodologies achieve

their goal.
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CHAPTER 1

Introduction

It has often agreed that strong mathematical models of real-world phenomena,

including those of interest in psychometrics, are almost never precisely true (e.g.,

Bentler & Bonett, 1980 [BB80]; de Leeuw, 1988 [De 88]; Browne & Cudeck, 1993

[BCB93]; MacCallum, 2003 [Mac03]). This viewpoint is also popular in the field of

exploratory factor analysis (EFA). MacCallum, Browne, and Cai (2007) [MBC07],

for example, state that “...a factor analysis model is not an exact representation

of real-world phenomena. Such a model, at least in parsimonious form, is always

wrong to some degree, even in the population.” This raises the question of why

the standard estimation methods in factor analysis, such as least squares (LS) and

maximum likelihood (ML), are not modified to deal with what often is, a priori,

an inadequate model. Perhaps such default estimation methods are used because

no general alternative methodology has been accepted. This paper reviews two

methods included in Yates (1987) [Yat87], Mulaik (2010) [Mul10], and an newly

proposed exploratory factor analysis methodology by Bentler (2012) [Ben12] to

minimize the effects of a substantial part of misspecification that is due to use of

an inadequate factor model, that is, a model that allows doublets into the common

factor space.

One of the most well-known distortions in the factor model is due to associa-

tions between pairs of variables beyond that due to unidentified common factors

in the factor model, namely, doublets. A doublet can be thought of as a residual
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correlation or covariance or as a factor with nonzero loadings only for a pair of vari-

ables. The most thorough attempt to deal with this problem was made by Yates

(1987) [Yat87]. Although his book was substantially devoted to the methodology

of factor rotation, Yates (pp. 224-231) proposed a method of collinearity-resistant

fitting inspired by Tukeys (1977) [Tuk77] approach to exploratory data analysis.

He wanted to assure that the factors extracted would not be doublets or minor

group factors which he felt would not be invariant to changes in the selection of

variables as factor indicators. A different approach to this problem was proposed

by Mulaik (2010, pp. 258-262) [Mul10] in his doublet factor analysis method.

As far as we know, neither of these methods have been independently evaluated.

They will be described once the problem posed by doublets is clearly illustrated

and the notation of this paper is introduced. A new approach (Bentler, 2012) to

the doublet problem is then developed and subsequently evaluated with simula-

tions.
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CHAPTER 2

Doublets and Common Factors

2.1 Exploratory Factor Analysis

In multivariate statistics, exploratory factor analysis (EFA) is a statistical method

used to uncover the underlying structure of a relatively large set of variables. EFA

is a technique within factor analysis whose overarching goal is to identify the un-

derlying relationships between measured variables (Norris, 2010) [NL10]. It is

commonly used by researchers when developing a scale (a scale is a collection

of questions used to measure a particular research topic) and serves to identify

a set of latent constructs underlying a battery of measured variables. It should

be used when the researcher has no a priori hypothesis about factors or patterns

of measured variables. Measured variables are any one of several attributes of

people that may be observed and measured. Researchers must carefully consider

the number of measured variables to include in the analysis. EFA procedures are

more accurate when each factor is represented by multiple measured variables in

the analysis. There should be at least 3 to 5 measured variables per factor (Mac-

Callum & Robert C, 1990) [Mac90].

EFA is based on the common factor model, which seeks the least number of fac-

tors which can account for the common variance (correlation) of a set of variables.

Common factors theory proposes that different theoretical and evidence-based

approaches to psychotherapy and counseling have common components and that
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those components account for outcome more than components that are unique

to each approach (Imel & Wampold, 2008) [IW08]. Within the common factor

model, measured variables are expressed as a function of common factors, unique

factors, and errors of measurement. Common factors influence two or more mea-

sured variables, while each unique factor influences only one measured variable

and does not explain correlations among measured variables. The Common factor

model can be expressed by the following notation:

Σ = ΛΛ
′
+ Ψ2 (2.1)

where Σ is a p× p correlation or covariance matrix, Λ is a p× k matrix of factor

loadings with rows λ
′
i., and Ψ2 is a p× p diagonal matrix of unique variances.

2.2 Fitting Procedures

Fitting procedures are used to estimate the factor loadings and unique variances

of the model (Factor loadings are the regression coefficients between items and

factors and measure the influence of a common factor on a measured variable).

There are several factor analysis fitting methods to choose from. Principal axis

factoring (PAF) and maximum likelihood (ML) are two extraction methods that

are generally recommended. In general, ML or PAF give the best results, depend-

ing on whether data are normally-distributed or if the assumption of normality

has been violated (Fabrigar, 1999) [FWM99].

The maximum likelihood method is factor extraction method that produces

parameter estimates that are most likely to have produced the observed correlation

matrix if the sample is from a multivariate normal distribution. The correlations

are weighted by the inverse of the uniqueness of the variables, and an iterative

algorithm is employed. Let S be a sample correlation or covariance matrix. The
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maximum likelihood solutions of Λ and Ψ2 are obtained by minimizing

F = tr[(ΛΛ
′
+ Ψ2)−1S]− log|(ΛΛ

′
+ Ψ2)−1S| − p (2.2)

It has many advantages in that it allows researchers to compute of a wide

range of indexes of the goodness of fit of the model, it allows researchers to test

the statistical significance of factor loadings, calculate correlations among factors

and compute confidence intervals for these parameters. ML is the best choice

when data are normally distributed and should not be used if the data are not

normally distributed. In this paper, we only study the correlation structure under

conditions of multivariate normality.

2.3 Problem of Doublet Factors

Factors are unobserved latent variables that can be inferred from a set of observed

variables. Therefore, factors cannot emerge unless there is a sufficient number of

observed variables that vary along the latent continuum. You cannot define a

factor with a single observed variable. You should have a minimum of three ob-

served variables for each factor expected to emerge. In Thurstone’s terminology,

the factors defined by only one or two observed variables are called “singlet” or

“doublet” factors, which are not desirable.

The doublet factors reflect local dependencies between pairs of individual vari-

ables. It is possible for these pairwise linkages between manifest variables to be

extremely strong because they are brought about by circumstances prevailing right

at the time of data collection; i.e., experimental dependencies produced by record-

ing several responses to the same stimulus, by obtaining alternative indicators of
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proficiency at the same task (e.g. latency to respond and accuracy of response)

or at extremely similar or overlapping tasks (e.g., adding two digit numbers and

adding three digit numbers) (Yates, 1987).

Disturbances in the form of local dependencies among manifest variables are

a serious threat to the ultimate goals of common factor analysis because they

are highly dependent on test battery composition (i.e., they are not invariant in

the least) and tend to reflect superficial methodological or variable sampling id-

iosyncrasies rather than the effects of latent determinants that are of profound

theoretical significance. In particular, they do not reflect the action of latent

determinants that are broad and general enough in their action to participate

in giving shape to the highly populated polyhedral convex cone of test vectors

required for effective application of bounding hyperplane simple structure trans-

formation (Yates, 1987).

The presence of the minor factors in an analysis jeopardizes the overall stabil-

ity of the solution. A minor factor may relate to only a few manifest variables, but

its inclusion in a final solution involves the estimation of just as many parameters

(factor pattern coefficients) as does a major factor. The fact that most of these

extra parameters are near-zero and hence contribute strongly to Thurstone’s orig-

inal criterion for a best-fitting simple structure means that the inclusion of one or

more minor factors in transformation can weaken the precision with which major

factors are located (Yates, 1987). Since pairwise linkages among variables do oc-

cur in practice, they must be dealt with in some way in order to keep them from

contaminating the results of any practical application of factor analytic methods.

Suppose that a 5 × 5 population correlation matrix with correlations among

all variables at .49 is presented for analysis. Asked to extract one factor, all stan-
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dard EFA methods will recover the correct result, a loading matrix with all .7

entries. Now suppose that only the 1,2 correlation is increased from .49 to .75,

representing the influence of a doublet. Now a 1-factor EFA method yields the in-

correct loading matrix, with ML yielding [.844, .844, .622, .622, .622]′ . The factor

has been tilted toward the doublet variables. Of course, one factor could be con-

sidered to be an incorrect number of factors, since the 1,2 correlation is not fully

accounted for by the factor model. Actually, with a 2-factor solution can perfectly

reproduce these correlations, but in the case of ML, with problems including: 1

degrees of freedom (df), arbitrary unique (“error”) variances for the 1st two vari-

ables, three linear dependencies, and two out of range standard error estimates. It

seems that the 1-factor model underfactors, while the 2-factor model overfactors

or has too many parameters. Our aim in what follows is to present and evaluate

methods for the routine detection and appropriate treatment of minor factors, in-

cluding doublets, that constitute violations of the invariant common factor model.
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CHAPTER 3

Yates’ Collinearity-Resistant Fitting Procedure

3.1 Model

Yates’ (1987)[Yat87] work is remembered today for his geomin, a widely respected

method of oblique factor rotation. He intended this method to help distinguish

invariant factors from minor factors including doublets during the rotation phase.

As noted, however, he also proposed a method to extract factors so as to minimize

the effect of minor factors using a weighted least squares methodology.

Let the exploratory factor analysis model be (2.1). Yates (1987, p. 229)

proposed to minimize

1
′
([S − ΛΛ

′
](2) ∗ V )1 (3.1)

where 1 is a unit vector, [.](2) is the matrix of squared elements in [.], “∗′′ is

the element-wise Hadamard matrix product, and V is a symmetric matrix with

elements

vij = 1− (λ
′
i.λj.)

2

(λ
′
i.λi.)(λ

′
j.λj.)

(3.2)

The entry within brackets in the numerator of the last term of the foregoing

expression is, of course, the k-factor reproduced correlation between variables i

and j. When this term is squared and put in ratio to the product of the associated

commonalities it yields an index of how collinear the variables in question appear
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to be within common factor space, irrespective of the sign of the reproduced corre-

lation and adjusted for variation in the respective lengths of the vectors involved.

Variables that are highly collinear in the factor space receive a low weight (3.2) and

reduce the influence of these variables during the function minimization. Since the

latter index of collinearity ranges from zero to unity, the pairwise distinguishabil-

ity weight, vij(3.2), ranges from unity, for a pair of variables between which the

common factors account for absolutely no association, to a value of zero, for a

pair of variables which relate to the common factors in exactly the same way (i.e.,

which have proportional loading patterns).

Those entries receiving little weight will correspond to pairs of manifest vari-

ables relating in parallel ways to the broad general factors common to the battery

as a whole; i.e., to pairs of variables that are apt to show excessive collinearity at

the manifest level if they are linked by any minor factor effects. Such variables

appear to have been influenced in highly parallel ways by latent determinants that

underlie the entire domain sampled, so it is likely that the action of more lim-

ited influences would only contribute further to their collinearity at the manifest

level. It is in an effort to avoid confounding invariant major common factor effects

with these more superficial local disturbances that accurate fitting of the man-

ifest association found between any pair of variables showing latent collinearity

is avoided by incorporating pairwise distinguishability weights into criterion (3.1).

Notice that diagonal cells in the residual covariance matrix need not be ex-

plicitly skipped in the summations going into (3.1) since each manifest variable

is always collinear with itself at the latent level as well as at the manifest level.

What this suggests, of course, is that the classical common factor model in which

only off-diagonals in the observed correlation matrix are fit is a special case of this

collinearity-resistant model, in which it is assumed that excessive collinearity at
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the manifest level occurs only when a variable is correlated with itself (i.e. when a

specific factor comes into play along with the postulated common factors). Yates

have simply generalized the classical model to allow for “correlated specifics” in

the form of doublet or minor group factors, the effects of which must not be al-

lowed to distort the solution for factors common to the battery as a whole. The

latter must remain invariant with respect to changes in test battery composition,

so they cannot account for the action of minor influences specific to any given

individual variable or group of highly collinear variables.

It is interesting to consider what Yates’ EFA method might do with the doublet

example given in the previous chapter. Suppose the model estimated is a 1-factor

model and the current estimated factor loadings are arbitrary values [a, b, c, d, e]
′
.

A bit of calculation shows that all the weights (3.2) are zero, and hence the

function (3.1) attains its minimum of zero at any set of parameter values. Clearly

this approach is useless in the 1-factor case.

3.2 Algorithm

In order to encourages tolerance for outliers in the form of strong linkages be-

tween isolated pairs or groups of highly similar manifest variables, Yates proposed

a simple and practical computing formula inspired by Gauss-Seidel and multi-

dimensional sectioning methods, in which the current approximation to the or-

thogonal factor matrix tΛ, after any given move t, is used to obtain the index of

distinguishability tvij, with which (3.1) is optimized for an updated t+1Λ and the

procedure is repeated iteratively. In other words, rewrite (3.2) as:

tvij = 1−

(∑k
m=1(tλim)(tλjm)

)2

∑k
m=1(tλ2

im)
∑k

m=1(tλ2
jm)

(3.3)
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where tλim is the factor loading of variable i on factor m in current estimate

tΛ. And then keep (3.3) up to date at all times, so the weighted least squares

fitting of the common factor model can be accomplished via successive replacement

of individual elements of tΛ in such a way that residual linkages corresponding

to highly collinear (indistinguishable) variables within common factor space are

accommodated; i.e. minimize

p∑
i=1

p∑
j=1

(tvij)(tr
2
ij) (3.4)

where trij is the general element of the residual covariance matrix

tR = S −t ΛtΛ
′

(3.5)

and

trij = sij −
k∑

m=1

(tλim)(tλjm) (3.6)

where sij is the general element of the sample correlation or covariance matrix S.

Through several steps of deduction, Yates proposed that an improved estimate of

the (i,k)-th element of tΛ at any stage of iteration can be expressed as

t+1λim =t λim +

∑p
j=1(tvij)(tλjm)(trij)∑p

j=1(tvij)(tλ2
jm)

(3.7)

If the pairwise distinguishability weights for the i-th variable are updated along

with the usual updating of residuals within that row and column of tR, then an

adaptive weighting system is put into effect by (3.7) that systematically relaxes

the pressure within weighted least square criterion (3.4) to fit certain entries in

the original correlation matrix. Yates suggested to use the result from principal

components analysis as the starting point of iteration, and repeat the successive

displacement of all k elements in each row of tΛ until the change in communality

with a given repetition is some fraction (e.g. one tenth) of the largest communality

11



adjustment produced by the previous major iteration cycle in order to accelerate

the iteration– but not to exceed k repetitions in any given row per major cycle

(Yates 1987, p.224). But he didn’t indicate the termination condition of the algo-

rithm. He also suggested changing all p× k individual directions of search simply

through occasional arbitrary orthogonal transformations of the coordinate system

(Yates 1987, p.223).

In practice, we could follow the steps below to achieve collinearity-resistant

estimates: Given S, compute 0Λ as the result of principal components analysis,

and then compute 0R, 0V according to (3.5) and (3.3). For the purpose of identifi-

cation, we could implement orthogonal transformation, and fix the sign of certain

element (the element that has the largest absolute value in that column) in each

column of Λ. At time t,

• Step 1: For i=1,...,p, m=1,...,k, compute tλim, and update elements in tR

and tV accordingly in each iteration. And we get tΛ after iterations through

all p× k elements.

• Step 2: Orthogonal transformation: a) Let tΛ = UD, where U is the left-

singular vectors and D is the singular values from singular value decompo-

sition; b) Check the sign of the chosen element in each column; if the sign

is opposite to what we fixed at the beginning, multiply that column by -1

• Step 3: Compute the absolute changes in communalities from t−1Λ to tΛ,

i.e. compute |diag(tΛtΛ
′ −t−1 Λt−1Λ

′
)|

• Step 4: Update tR and tV

Let th
2
i be the communality of variable i at time t. Then if |th2

i −t−1 h
2
i | > 0.0001

for any i, i=1,...,p, go to step 1, else quit. The estimate is the last tΛ. We replicate

the covariance residual matrix given in Yates (1987, pp.240-243) by implementing

12



the above algorithm on the correlation matrix provided by Lord (1956, pp. 36-

37)[Lor56].
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CHAPTER 4

Mulaik’s Model That Includes Doublets

Explicitly

4.1 Model

Mulaik (2010)[Mul10] proposed to model doublet factors explicitly using a strong

assumption derived from Guttmans (1953)[Gut53] image analysis and the prior

work of Butler (1968)[But68]. He proposed the following model equation

Y = ΛX +K∆ + ΨE (4.1)

where

Y is a p× 1 vector of observed random variables

Λ is a p× k common-factor-pattern matrix

X is a k × 1 vector of common factors

K is a p× q doublet pattern matrix

∆ is a q × 1 vector of doublet factors, q = p(p− 1)/2

Ψ is a p× p diagonal matrix of unique-factor-pattern coefficients

E is a p× 1 vector of unique- or singlet-factor variables

14



He assume the follow relationships between the random variables of the model:

E(X∆
′
) = 0

E(∆E
′
) = 0

E(XE
′
) = 0

E(XX
′
) = I

(4.2)

He further assume that all variables have zero means and unit variances. Then

the matrix of covariances or correlations among the observed variables is given by

Σ = ΛΛ
′
+KK

′
+ Ψ2 (4.3)

The matrix K, as a factor-pattern matrix, is unique in that each column all load-

ings are zero, except two. Its nonzero elements are not identified. Furthermore,

each variable in Y is paired with each other variable with nonzero loadings in one

of the columns of K. The matrix KK
′

is the matrix of doublet variances and co-

variances. Ψ2 is the diagonal matrix of unique-factor variances. A doublet factor

is correlated with only two variables in Y and orthogonal with all the rest. He

further stipulate that in each column of λ there are at least three nonzero loadings.

So, the common factors are minimally determined if not overdetermined from the

observed variables.

He desired that the variance due to the common factors be separated from

that due to the doublet and singlet factors. Thus we will seek the matrix Σ −

KK
′ −Ψ2 = ΛΛ

′
. Factoring the matrix on the left-hand side of the equality will

yield a solution on the right (with suitable constraints). Knowing that partial

correlation matrix P ,

P = 2I − [diag(Σ−1)]−1/2Σ−1[diag(Σ−1)]−1/2 (4.4)
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of which an element is the partial correlation between a pair of variables that

obtained when all (p− 2) other variables are held constant, contains the (approx-

imate) information about doublet correlations between pairs of variables, Mulaik

makes the strong assumption that

KK
′
+ Ψ2 = UPU (4.5)

where U is some unknown diagonal matrix. Then the matrix we want to analyzed

by finding its eigenvectors and eigenvalues and obtaining an orthogonal solution

for the factors is

Σ− UPU = ΛΛ
′

(4.6)

Clearly, this specifies that the residuals are allowed to be correlated, specifically,

to be proportional to the partial correlations among variables.

Actually, Mulaik seems to base P on the sample covariance or correlation ma-

trix S instead of Σ, according to the iterative methodology he described later

(Mulaik 2010, p.261). He computed P at the start of computations and does not

update it. A consequence is that model (4.6) is an odd combination of population

parameters and sample data.

It is interesting to evaluate model (4.6) for the doublet example given in chap-

ter 2. The partial correlation matrix is

1.0000 0.6070 0.1215 0.1215 0.1215

0.6070 1.0000 0.1215 0.1215 0.1215

0.1215 0.1215 1.0000 0.2219 0.2219

0.1215 0.1215 0.2219 1.0000 0.2219

0.1215 0.1215 0.2219 0.2219 1.0000


(4.7)

Clearly, this matrix correctly identifies the doublet – the (1,2) element is quite

elevated as compared to all other values. However, since any rescaling of this
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matrix by a diagonal U maintains all off-diagonal elements as nonzero, model

(4.6) cannot recover the correct model structure whether Λ is taken as a 1-factor

or 2-factor model. Mulaik provides an iterative method to estimate Λ and U , but

does not specify what objective function is being optimized by it.

4.2 Algorithm

The matrix P is easily obtained in (4.4), and substitute population correlation Σ

with sample correlation S. The solution for U may require an iterative algorithm.

Mulaik suggested to begin with a good approximation for U in the matrix B =

[diag(Σ−1)]−1/2. Then

Σ−BPB = Σ +B2Σ−1B2 − 2B2 = G (4.8)

This suggests that factoring G will yield eigenvalues that may tell us how many

factors to retain.

The iterative solution for the matrix U is as follows. Given S, a sample

covariance or correlation matrix, compute S−1 and B2 = [diag(Σ−1)]−1. Find

B = (B2)1/2. Then compute P = −BS−1B + 2I. Now let U2
(0) = S2. Compute G

in (4.8) and determine the number of factors to retain from its eigenvalues. Let

this number be r and do not change it afterward during the iterations. Now, the

iterations are as follows:

• Step 1: Obtain the eigenvectors A and the eigenvalues D of C(i) = S −

U(i)PU(i). Compute Λr(i) = Ar(i)D
1/2
r(i)

• Step 2: Compute W(i) = S − Λr(i)Λ
′

r(i)

• Step 3: Compute U2
(i+1) = diag(W(i)). Compute U(i+1).
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By u(j)2
(i) denote the value of the jth diagonal elements of U2

(i) in the ith iteration.

Then if |u(j)2
(t+1) − u(j)2

(t)| > .0001 for any j, j=1,...,p, go to step 1, else quit.

Print the last Λr(i).

In practice, for the purpose of identification, we could fix the sign of certain

element (the element that has the largest absolute value in that column) in each

column of Λ. And after every iteration, check the sign of the chosen element in

each column; if the sign is opposite to what we fixed at the beginning, multiply

that column by -1. We replicate the solution for Λ given in Mulaik(2010, p. 261)

by implementing the above algorithm on the correlation matrix from Carlson and

Mulaik (1993)[CM93].
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CHAPTER 5

Bentler’s Correlation Structure Methodology

5.1 Partial Correlations in a Universe of Variables

Mulaik used the idea that a partial correlation matrix can provide clues about

associations among variables beyond those that depend on invariant common fac-

tors. This idea can be made more precise and then utilized in a different way.

With the common factor model given by (2.1), it is well known that

Σ−1 = Ψ−2 −Ψ−2Λ(I + Λ
′
Ψ−2Λ)−1Λ

′
Ψ−2 (5.1)

Re-parameterizing so that A = Ψ−1Λ, the model itself is Σ = Ψ(AA
′
+ I)Ψ

and the inverse in (5.1) can be written as

Σ−1 = Ψ−2 −Ψ−1A(I + A
′
A)−1A

′
Ψ−1 (5.2)

For identification, we may take A
′
A to be diagonal. Now let the universe

of variables be one where the number of variables gets arbitrarily large but the

number of factors does not increase, that is, p → ∞ while k/p → 0. Then the

diagonal of A
′
A contains the sum of squares of an infinite number of (rescaled)

loadings, which becomes arbitrarily large and hence, as is well known

Σ−1 → Ψ−2 (5.3)
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This means that the partial correlation matrix (4.4) becomes PΣ → 2I−ΨΨ−2Ψ =

I, i.e., the partial correlations vanish.

In practice, one never has a universe of variables, but this ideal case suggests

that in real data analysis, a good common factor solution should have enough

indicators of each factor so that all partial correlations among variables become

very small. When factors do not have enough strong indicators, partial correla-

tions remain nonzero.

5.2 Model

In contrast to Mulaik, Bentler(2012)[Ben12] proposed to accept the standard fac-

tor analysis model, but use a new objective function to estimate parameters for

this model. Since EFA is virtually always defined for correlations, we take model

(2.1) to refer to a correlation structure model with S being the sample correlation

matrix. He proposed to fit model (2.1) using a weighted least squares function.

With the matrix of sample partial correlations given by

P = 2I −DS−1D (5.4)

where D = [diag(S−1)]−1/2, and the i, jth element of P as pij , we consider a

weight matrix W with elements wii = 0, and off-diagonal elements wij = 1− p2
ij.

Then, analogous to Yates(3.1), we may define the weighted least squares function

1
′
([S − ΛΛ

′
](2) ∗W )1 (5.5)

The proposed methodology is to consider W as fixed during the iterations, and

to minimize (5.5) iteratively with respect to the factor loading matrix Λ, where
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the matrix is specified in some arbitrary identified form (e.g., as lower triangular).

Note that if a squared partial correlation is large, the i, jth residual (sij − λ
′
i.λ

′
j.)

2

in (5.5) is down-weighted during the next optimization step, i.e., fit of the factor

model to that particular correlation or covariance becomes relatively less impor-

tant. If all the partial correlations are about equal, the weighting will have little

or no effect and the solution will approach a standard least squares solution. Sim-

ilarly, when the variables are well sampled from the universe, r2
ij → 0 and wij → 1

and the weighting has no effect. Given the estimator Λ̂, the unique variances are

estimated as Ψ̂2 = diag(S − Λ̂Λ̂
′
).

5.3 Algorithm

Minimization of (5.5) can be achieved in standard ways with a little modification,

since not all the elements in Λ is free. Let Λf be a vector of free elements of Λ,

e.g., the vector of lower triangular elements of Λ when the upper triangle is fixed

at zero for identification. A modified quasi-Newton optimization method can be

implemented with the gradient

∂f

∂Λf

= −4Λ̇fvec{[(S − ΛΛ
′
) ∗W ]Λ} (5.6)

where Λ̇f = ∂Λ/∂Λf is a matrix of 0s and 1s that selects the free elements of Λ.

Again, we could fix the sign of certain element (the element that has the largest

absolute value in that column) in each column of Λ for the purpose of identifica-

tion. And in every iteration, after getting a new Λ̂, check the sign of the chosen

element in each column; if the sign is opposite to what we fixed at the beginning,

multiply that column by -1, and then update gradient and approximate of Hessian

matrix accordingly.

21



In fact, we can compute the same residual covariance matrix using standard

optimization packages in softwares without imposing any constraints on the model

(i.e., fixing the upper triangle elements, and fixing the sign of certain element in

each column of Λ). However, the factor loading estimates would be different from

what we get from the above algorithm.
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CHAPTER 6

Simulations

6.1 Methodology

To analyze the performance of Yates’, Mulaik’s and Bentler’s proposed collinearity-

resistant fitting method, compared with maximum likelihood extraction under

normality assumption, we firstly generated a dataset of 10 variables and 500 ob-

servations, with zero mean and the following covariance matrix (which is the same

as its correlation matrix), which follows multivariate normal distribution:

1 .75 .49 .49 .49 0 0 0 0 0

.75 1 .49 .49 .49 0 0 0 0 0

.49 .49 1 .49 .49 0 0 0 0 0

.49 .49 .49 1 .49 0 0 0 0 0

.49 .49 .49 .49 1 0 0 0 0 0

0 0 0 0 0 1 .75 .49 .49 .49

0 0 0 0 0 .75 1 .49 .49 .49

0 0 0 0 0 .49 .49 1 .49 .49

0 0 0 0 0 .49 .49 .49 1 .49

0 0 0 0 0 .49 .49 .49 .49 1


10×10

(6.1)

Clearly, the doublets here are produced by variable 1 and 2, and variable 6 and

7. If we could eliminate the effect of doublets completely, the theoretical factor
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loading matrix should be.7 .7 .7 .7 .7 0 0 0 0 0

0 0 0 0 0 .7 .7 .7 .7 .7


′

(6.2)

In our simulation study, we randomly generated 5000 datasets which follow

the multivariate normal distribution stated above, and implemented all the four

extraction methods on them. It should be noted that the factor numbers are all

set to 2, since we do not want to discuss how to determine the number of factors

here. We will not discuss factor rotation methods neither. So in order to com-

pare the results between different random samples, we specified the factor loading

matrix in some arbitrary identified form. Specifically, we implemented orthogonal

transformation through singular value decomposition (see algorithm in chapter 3)

for Yates’ method, and fix the sign of the elements [1,1] and [1,2] of the factor

loading matrix to be positive. For Mulaik’s method, since it is derived through

eigendecomposition, we do not need to specify an identified form; but we need

to fix the sign of the elements [1,1] and [10,2] of the factor loading matrix to be

positive. Lastly, we fixed the upper triangle of the factor loading matrix to be

zero for Bentler’s method, i.e., the value of element [1,2] is 0 and only 19 elements

of the matrix is estimated, and fix the sign of the elements [1,1] and [1,2] to be

positive.

We also specified some control parameters for the simulations. For Yates’, the

termination condition of the iterations is that the changes in communalities are

less than 10−4. For Mulaik’s, the tolerance is 10−6. For Bentler’s, we used BFGS

to approximate Hessian matrix in quasi-Newton method, and stop the iterations

when the norm of gradient is less than 10−6. It should be noted that for each

method in a given sample, when the iteration times is larger than 105, we would
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take it as a case of non-convergence. In such situation, we stop the iterations,

and take the last value as the result, while the replication number is marked for

further analysis.

Last but not least, besides the estimated factor loading matrix, we define the

doublet covariance residual(DR) as another measurement of the performance of

the collinearity-resistant fitting methods. Since the covariance residual matrix is

R = S − Λ̂Λ̂
′
, the doublet covariance residual is

dr =
1

n

∑
ij

r2
ij (6.3)

where variable i and j, i, j = 1, ..., p, are detected doublets, n is the number of

detected doublets, and rij are the corresponding elements in covariance residual

matrix. Here in our datasets, dr = (r2
12+r2

67)/2. The larger the doublet covariance

residual is, the higher tolerance of doublet the method has.

6.2 Results

Before showing the result of simulations, let’s first check how these methods work

on the illustrative example given in chapter 2. As mentioned before, Yates’

method is useless in the 1-factor case, so here we only estimate the example

using Mulaik’s and Bentler’s method. We know that the maximum likelihood

estimate is [0.844, 0.844, 0.622, 0.622, 0.622]
′
. Mulaik’s method yields a loading of

[0.676, 0.676, 0.599, 0.599, 0.599]
′
, and Bentler’s yields [0.783, 0.783, 0.67, 0.67, 0.67]

′
.

The doublet covariance residuals of Mulaik’s and Bentler’s are 0.0859, 0.0187 re-

spectively, while that of ML is 0.00142. From this small example, we finds that

both Mulaik’s and Bentler’s method are better than ML, and Mulaik’s method

produce better doublet covariance residual.
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The result of 5000 times simulations is as follows. We notice that 9 out of

5000 cases cannot yield converged solutions using Yates’ method, while all cases

converged using other methods. It is also worth mentioned that this rate of con-

vergence of Yates’ method is under the tolerance of 10−4, which was stated in

the previous section; if we lower the tolerance (e.g., 10−6) or change the measure-

ment (e.g. use the change in loadings instead of commonalities as the termination

condition), this algorithm would become much harder to converge. Therefore, we

need to examine the difference of the results between the 4991 converged samples,

and the 5000 complete samples.

From Table 6.1, we can see that the difference of mean and standard deviation

of the factor loadings between these two groups are very small. In fact, the mean

of doublet covariance residuals of the total 5000 samples is 0.080542, while that

of converged samples is 0.08046, and the standard deviations are 0.186353 and

0.186447 respectively, which indicates that we can ignore the difference between

these two groups. Therefore, we can use the 5000 complete samples’ results to

compare with that of other fitting methods.

Table 6.2 and Table 6.3 shows the means and standard deviations of fac-

tor loadings. Comparing the means cannot provide much information, since we

didn’t rotate the factors. However, comparing the standard deviation would show

the stability of the estimator since they are all specified in some identified form.

We can see that among the three resistant estimator, the stability of Bentler’s

is comparable with ML, while the variances of Yates’ and Mulaik’s are relatively

large.

Doublet covariance residuals are shown in Table 6.4. We can see that Mulaik’s

has the largest DR mean, and its standard deviation is relatively small. Further-
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Mean N=5000 N=4991

Factor 1 Factor 2 Factor 1 Factor 2

Variable 1 0.509515 0.431093 0.509358 0.431545

Variable 2 0.507473 0.429744 0.507125 0.42993

Variable 3 0.444275 0.392055 0.44387 0.39205

Variable 4 0.446907 0.39032 0.446417 0.390405

Variable 5 0.447485 0.392607 0.447508 0.392969

Variable 6 0.001456 -0.00992 0.001368 -0.01016

Variable 7 0.001021 -0.01193 0.000576 -0.01154

Variable 8 -0.00061 -0.01044 -0.00059 -0.01045

Variable 9 0.002542 -0.0114 0.00246 -0.01114

Variable 10 0.001121 -0.01106 0.001061 -0.01085

Std Factor 1 Factor 2 Factor 1 Factor 2

Variable 1 0.324028 0.27672 0.323854 0.276562

Variable 2 0.324536 0.280712 0.324273 0.280551

Variable 3 0.291425 0.273548 0.289821 0.272312

Variable 4 0.292914 0.26838 0.292208 0.267985

Variable 5 0.290784 0.270755 0.290661 0.270556

Variable 6 0.578148 0.532744 0.578435 0.532681

Variable 7 0.575164 0.5321 0.574299 0.530117

Variable 8 0.515414 0.497398 0.515596 0.497216

Variable 9 0.510276 0.499207 0.510423 0.498936

Variable 10 0.514335 0.499995 0.514663 0.499836

Table 6.1: Factor Loading Means and Standard Deviations of Yates’ Method,

Complete Samples vs Converged Samples
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Mean Maximum Likelihood Yates

Factor 1 Factor 2 Factor 1 Factor 2

Variable 1 0.8440 0.0002 0.5095 0.4311

Variable 2 0.8436 0.0001 0.5075 0.4297

Variable 3 0.6223 -0.0002 0.4443 0.3921

Variable 4 0.6214 -0.0003 0.4469 0.3903

Variable 5 0.6216 0.0006 0.4475 0.3926

Variable 6 0.0002 0.8438 0.0015 -0.0099

Variable 7 -0.0001 0.8441 0.0010 -0.0119

Variable 8 0.0004 0.6223 -0.0006 -0.0104

Variable 9 0.0005 0.6222 0.0025 -0.0114

Variable 10 0.0004 0.6217 0.0011 -0.0111

Mulaik Bentler

Factor 1 Factor 2 Factor 1 Factor 2

Variable 1 0.4551 -0.0001 0.7835 0.0000

Variable 2 0.4549 -0.0004 0.7822 -0.0003

Variable 3 0.4035 -0.0006 0.6687 -0.0006

Variable 4 0.4027 -0.0005 0.6679 -0.0007

Variable 5 0.4027 0.0000 0.6681 0.0003

Variable 6 0.0005 0.4230 0.0007 0.7810

Variable 7 0.0004 0.4228 0.0002 0.7814

Variable 8 0.0006 0.3755 0.0007 0.6683

Variable 9 0.0007 0.3751 0.0008 0.6683

Variable 10 0.0008 0.3756 0.0006 0.6678

Table 6.2: Factor Loadings – Means
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Standard Deviation Maximum Likelihood Yates

Factor 1 Factor 2 Factor 1 Factor 2

Variable 1 0.0196 0.0368 0.3240 0.2767

Variable 2 0.0196 0.0367 0.3245 0.2807

Variable 3 0.0331 0.0386 0.2914 0.2735

Variable 4 0.0331 0.0379 0.2929 0.2684

Variable 5 0.0331 0.0381 0.2908 0.2708

Variable 6 0.0366 0.0197 0.5781 0.5327

Variable 7 0.0368 0.0192 0.5752 0.5321

Variable 8 0.0383 0.0335 0.5154 0.4974

Variable 9 0.0384 0.0337 0.5103 0.4992

Variable 10 0.0388 0.0335 0.5143 0.5000

Mulaik Bentler

Factor 1 Factor 2 Factor 1 Factor 2

Variable 1 0.1869 0.4645 0.0234 0.0000

Variable 2 0.1874 0.4645 0.0234 0.0335

Variable 3 0.1689 0.4116 0.0299 0.0487

Variable 4 0.1683 0.4114 0.0298 0.0475

Variable 5 0.1692 0.4113 0.0298 0.0478

Variable 6 0.4974 0.1781 0.0563 0.0241

Variable 7 0.4977 0.1783 0.0565 0.0233

Variable 8 0.4418 0.1571 0.0546 0.0301

Variable 9 0.4417 0.1581 0.0540 0.0304

Variable 10 0.4415 0.1562 0.0541 0.0300

Table 6.3: Factor Loadings – Standard Deviations

29



more, one-way ANOVA indicates significant difference between the means, and

Figure 6.1 visualize the DR means with confidence intervals, in which the CIs are

too small to be plotted except Yates’. Also, two group t-test between ML and

other three methods shown in Table 6.5 demonstrates that all these three resistant

estimators have significant effect on reducing the influence of doublets in factor

analysis.

ML Yates Mulaik Bentler

Mean 0.0015 0.0805 0.0859 0.0194

Std 0.0006 0.1864 0.0089 0.0050

Table 6.4: Doublet Covariance Residuals

Yates Mulaik Bentler

t value -30.0047 -667.34 -250.875

DF 4999.116 5049.478 5159.631

p value 2.20E-16 2.20E-16 2.20E-16

Table 6.5: T Test Result between Maximum Likelihood and Others
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Figure 6.1: Mean Plot with 95% CI
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CHAPTER 7

Conclusion and Discussion

In sum, we can conclude that all these three collinearity-resistant fitting meth-

ods, Yates’, Mulaik’s and Bentler’s, can help reduce the distortion resulted from

doublets. Among the three estimator, Mulaik’s estimates produces the largest

doublet covariance residual with small variance, and Bentler’s estimated loadings

have the smallest variance, according to our simulation results.

In Yates(1987), he introduced this collinearity-resistant fitting procedure very

thoroughly, including how to deal with “Heywood case”, how to accelerate the

algorithm with little calculation wasted on displacement of nearly stabilized el-

ements of the factor matrix. The simulations in this paper did not take all the

suggestions he gave. Improvement might be able to seen if some modification is

implemented according to Yates’ suggestions.

It is also interesting to mention that since the weight V is a function of Λ, we

can rewrite the (3.2) to

V =


1 · · · 1
...

. . .
...

1 · · · 1


p×p

− (ΛΛ
′
)(2)

(Λ(2)1k×1)(Λ(2)1k×1)′ (7.1)

and then use a standard optimization method(e.g., quasi-Newton) to minimize the

function (3.1). However, we cannot replicate the table(Yates 1987, pp.240-243) in

this way. The reason of this problem should be studied in the future.
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Bentler(2012) mentioned that the minimization function (5.5) is not the only

approach, e.g., we also could minimize 1
′
([S −ΛΛ

′ −Ψ2](2) ∗W )1 with respect to

both Λ and Ψ2, assuring that now wii = 1. And while this methodology seemed

to work well in our simulations, it did not do well when the added doublet as-

sociation was negative rather than positive. The reason for this is quite simple:

a positive doublet association has the consequence that its associated observed

variable partial correlation (5.4) is increased over and above the baseline of no

doublet. On the other hand, a negative doublet association in the correlation

matrix has the effect of reducing the associated partial correlation. Hence such a

doublet will not be down-weighted by the proposed procedure. Although doublets

most likely will be positive in empirical research due to similarly acting method

or extraneous influences, this limitation is an inadequacy of the current approach.
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