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Abstract
How can we explain that people are capable of performing new
tasks with no or little instruction? Earlier work has proposed
that new tasks can be acquired by a rapid composition of cog-
nitive skills, and implemented this in the ACT-R and PRIMs
cognitive architectures. Here, we discuss a possible applica-
tion of rapid composition in building tutoring systems. The
goal is to identify underlying skills through unsupervised ma-
chine learning from a dataset of arithmetic learning for stu-
dents in a Dutch vocational program. The resulting skill graph
is used as a basis for a tutoring system. The results show evi-
dence for predictive power of the system and tentative evidence
of a learning benefit compared to control groups.
Keywords: cognitive architecture; cognitive skills; tutoring
systems; ACT-R

Introduction
Humans have the remarkable ability to carry out arbitrary new
tasks if they have the right prior knowledge and skills. In psy-
chological experiments, subjects can perform new tasks they
have never done before with only a short instruction and a few
practice trials, if any. Researchers hardly ever pay attention
to this translation of a short instruction to a task representa-
tion (with exceptions, e.g., Cole, Bagic, Kass, & Schneider,
2010). Similarly, cognitive modelers tend to assume that the
sometimes extensive representation of the task knowledge is
somehow encoded in memory without explaining how. In re-
ality, we have to assume that subjects base their task repre-
sentation on a combination of elements of knowledge they al-
ready have. Earlier work by Anderson, Taatgen and Salvucci
(Anderson et al., 2004; Taatgen, Huss, Dickison, & Ander-
son, 2008; Salvucci, 2013) has looked at production rules as
a unit of reusable task knowledge within the context of the
ACT-R cognitive architecture. However, production rules are
relatively fine-grained units of representation, and many of
them are needed even for simple tasks. Earlier, Card, Moran,
and Newell (1983) identified the unit task as a basic unit of
representation, without being clear on how these can be com-
bined. Hoekstra, Martens, and Taatgen (2020) propose a level
of representation that combines several production rules in
larger, reusable units that they call skills, and show an imple-
mentation of these skills in the PRIMs cognitive architecture,
an architecture derived from ACT-R (Taatgen, 2013). As a
demonstration, they created models of a visual search task, a
simple working memory task and a complex working mem-
ory task using skills. They then showed that without any fur-
ther additions, a recombination of the skills from these tasks
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Figure 1: Example of a constructed knowledge graph

could model the Attentional Blink task (Raymond, Shapiro,
& Arnell, 1992). In that task, subjects have to recognize two
targets in a rapid stream of stimuli. If the stimuli are between
200 and 400ms apart, the second target is often missed: the
attentional blink effect. Hoekstra et al. showed that the pres-
ence or absence of an attentional blink can be attributed to the
choice of working memory skill.

Many research questions and challenges persist regarding
the concept of higher-level skills as the foundation for cog-
nitive modeling. One of the challenges is to identify which
skills people have, and how individuals differ in their skills.
In this paper, we pursue this challenge in an applied setting:
personalized education in a classroom setting. If skills play
a central role in our ability to flexibly carry out tasks, the ac-
quisition of these skills should be a major topic of study. This
goal is pursued by cognitive tutors, programs that maintain a
target representation of the material to be learned, and the ex-
tent to which the student has already acquired this (Anderson,
Corbett, Koedinger, & Pelletier, 1995). Target representa-
tions are hand-crafted by the modelers and developers. This
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Figure 2: Illustration of how items are placed in the graph. Colored boxes represent student cluster scores on the two hypo-
thetical items: green is correct and red is wrong. Left panel: if answer patterns are similar, items should be in the same node.
Middle panel: if a correct answer on B implies a correct answer on A, there should be a hierarchical relation between the two.
Right panel: if answer patterns are different, their should be no path between the nodes.

approach becomes a challenge when it is not entirely clear
what the goal representations are, or how individuals differ
in their prior knowledge. Even when the tutor is based on a
clearly specified model, it forces the student to adhere to that
particular model, disallowing potential alternative solutions
(Waalkens, Aleven, & Taatgen, 2013).

An alternative to hand-crafting a tutoring system is to use
data to derive the representation. This approach is used in
Math Garden (Klinkenberg, Straatemeier, & van der Maas,
2011), in which study items (we will use the word ”items”
throughout to refer to problems or exercises that students
need to solve) are ordered on the basis of the ease with which
students solve the items. Math Garden sets up a competition
between items and students, naturally sorting items with re-
spect to difficulty. This works very well for items that differ in
difficulty on a single dimension, for example multiplications,
but once items become more diverse, Math Garden has to set
up different competitions for different categories of items.

Instead of a linear ordering of all the items, they can be or-
ganized in a graph (Falmagne, Koppen, Villano, Doignon, &
Johannesen, 1990). Each node in the graph can be associated
with the presence or absence of particular skills. The bottom
node in the graph then represents items that do not require any
new skills (corresponding to the situation that all students al-
ready have the knowledge to solve these items), whereas to
top node represents items that require all the skills. Interme-
diate nodes represent particular combinations of skills. For
example, skills could be:

1. Arithmetic with large numbers
2. Simple equation solving

Figure 1 shows an example of a graph with some example
items.

Constructed knowledge graphs, such as this one, have
problems. First, we don’t know whether they are appropri-
ate for the target population. Perhaps not all students have
mastered simple arithmetic, and we have to add it as an addi-
tional skill. Second, and more critical: how do we know that
these are the skills that underly the material? It may be clear
in this simple example, but if items are more complex, which
they usually are, it may be hard to properly separate the rel-
evant skills. Or, even worse, we have no clear idea what the
underlying skills are, such as in learning programming.

We therefore propose an approach that is different from en-
gineering the knowledge representations, and that is to look
for patterns in data from students. The general idea is that if
a group of students performs systematically better on a sub-
set of items than another group, this is an indication that this
subset requires one or more skills that the first group has, but
the second group has not.

General Methodology
The input for the algorithm is an item× student matrix with
item scores in the cells. The assumption of the method is that
students who have very similar scores on items have simi-
lar skill sets. We therefore first run the k-means clustering
algorithm (Lloyd, 1982) on the student dimension of the ma-
trix. This reduces the matrix to an item x student cluster cen-
troid matrix. This matrix is the starting point for building the
graph. Building the graph involves assigning items to nodes.
Generally, we want items on which all student clusters score
similarly in the same node. But if part of the student clusters
score better on item A than on item B, but the reverse is not
the case, so very few student clusters score better on item B
than on item A, item B has to be higher in the graph than item
A, and there has to be path from A to B. On the other hand, if
student clusters have very different answer patterns on items,
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they should not have a hierarchical relationship in the graph.
Figure 2 illustrates these concepts.

The challenge is to find a solution that works for each pair
of items. Generally, there will not be a perfect solution, but so
we are looking for a solution that is closest to perfect. First,
we have to define the size of the graph in terms of the num-
ber of skills. For example, our Figure 1 graph has only two
skills, producing a 22-node graph. We then define penalties
for each pair of items to the extent they violate the constraints
illustrated in Figure 2. Finally, we use simulated annealing to
minimise the total penalty. In particular we use the GenSA
library in R (Xiang, Gubian, Suomela, & Hoeng, 2013).

To decide on the number of skills, we use the remaining
summed penalty as a guideline. Each time we want to add a
skill, we have to check whether this significantly reduces the
penalty. If it doesn’t, we have found the right number of skills
that can be derived from the data.

Once the graph building algorithm has generated the graph,
the nature of the skills has to be identified. This requires hu-
man interpretation by comparing items between the nodes,
in particular by checking what items within a node have in
common, and what skill is added when comparing nodes that
have a direct arrow between them. This interpretation should
ideally be carried out be education experts, but in this study it
was performed by the researchers themselves.

Exploratory Study
To test whether the graph-based approach produces measur-
able advantages in an educational setting, we conducted a
study in collaboration with the Alfa College in Groningen,
and Noordhoff publishers. The target population are first-year
students in the MBO (Middelbaar Beroepsonderwijs, Mid-
level vocational education, ages 16-20). All Dutch MBO stu-
dents have to take and pass an obligatory course in arithmetic.
The challenge in teaching this course is that students come
from very varied backgrounds, and therefore vary consider-
ably in the knowledge and skills when starting the course.

Noordhoff publishers provides educational materials for
this course, including an online environment in which stu-
dents can take tests, and practice on example items. The stu-
dents in the course used this environment for all their practice
work. The course consists of five units, each of which are
examined separately. This study focused on the first of these
units. At the Alfa College, this first unit is taught in a period
of ten weeks. In the first week, students take a pretest of 21
items that covers all the topics of the first unit. For the next
seven weeks they cover the seven topics that make up unit 1
with two lessons per week. They then do a midterm exam as
practice, followed by three more weeks of practice leading up
to the final exam at the end.

Method
For this study, we used pretest results from the previous year
to construct the knowledge graph, and to assign items to
nodes. This data consisted of results from 2480 students from
2022.

Subjects Three groups of students from the Alfa College
participated in the study, one experimental, and two groups
served as control. The experimental group consisted of 24
students, and the two control groups consisted of 23 and 19
students.

Materials The Noordhoff method for arithmetic consists of
a textbook and an online environment in which the students
can make assignments, both the pretest and practice items for
the seven topics. The topics were the following:

1. Numbers and units

2. Length

3. Weight

4. Time

5. Other measures

6. Reference measures

7. Rules of the thumb and equations

The pretest consists of 21 items. The course materials them-
selves consist of 106 items divided over the seven topics.

Procedure On the basis of the results from the previous
year, a knowledge graph was constructed. Subsequently, on
the basis of the analysis of the content of the nodes, items
from the course materials were assigned to the nodes in the
graph. Therefore, each node consisted of items from the
pretest, and items from the topics of the lessons.

In the first week of the course, students took the pretest,
producing an initial estimate on how well they performed on
each of the nodes in the graph. This was presented to them
in an interactive interface, in which they could see their per-
formance on each node, and in which they could click on
each node to select additional practice items belonging to that
node.

In each of the subsequent seven lesson weeks, students
used the interactive interface to select practice items that be-
longed to the topic of the week. The students were encour-
aged to select items at the level indicated by the graph, but
were given freedom to select their own strategy. Twice per
week the graph was updated to reflect the students’ current
mastery of each of the nodes.

After seven weeks, students took a practice (midterm)
exam. After the midterm exam, they had three more weeks
to use the interactive interface to select additional practice
items. They were again given the freedom to pick any item
they wanted, but were encouraged to pick items that were in
nodes that they still needed more practice with. During this
period, we gave them a survey, in which we asked them about
their experience with the system.

At the end of the three weeks, they took a final exam. The
two control classes followed the same curriculum as the ex-
perimental class, with the same topics in each of the weeks,
and the same pretest and practice items, but without the inter-
active interface.
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Figure 3: Knowledge graph from pretest for the first unit of
the arithmetic course. Note that the example items in the
nodes are not from the actual test: the real items are all quite
elaborate and would not fit the figure. Each node represents a
subset of the four skills, with the top node all four skills, and
the bottom node no skills.

Graph Construction and Interface
Knowledge Graph

To determine the optimal number of student clusters, we used
AIC as the criterion, This revealed that the optimal number
in the data from the previous year was 11. We used those 11
clusters as the basis for the graph algorithm, and found that
four skills provides the best description: there is hardly any
gain in error with five skills. An examination of the items
and related skills revealed that the best explanation for the
individual differences is to assume the following four skills:

Simple arithmetic The ability to do simple calculations, in-
cluding addition, subtraction, multiplication and division.

Large numbers and estimation To have a sense of numbers
beyond small numbers, such as numbers with many zeros,
calculations with kilo/mega/giga, and making estimations.

Story problems The ability to translate a verbal description
into a calculation.

Multi-step reasoning The ability to carry out calculations
that require multiple calculations steps.

Figure 3 shows the graph. Problems that involved only units
and measurements were made correctly (> 90%) by almost
all students, so we can consider this a skill students already
have. Basic arithmetic is the first skill that some students
have not mastered, and is required before any of the others.
Problems that require multi-step reasoning as a skill always
also require the Story problem skill, because students have to
deduce these steps from the text.

Interactive Interface
On the basis of the knowledge graph we constructed the in-
teractive website depicted in Figure 4. The graph has small
icons representing the skills involved, which are also listed
on the right side of the screen. Students were able to see
their performance on each of the nodes, and could click on
nodes to see scores on individual items and items they had
not yet tried. They could also click on the arrows on the top-
left of the screen, allowing them step through the history of
the developing graph. Clicking an item would take them to
the Noordhoff website on which they could try to solve the
item. The graph was updated twice per week (i.e. before
each classroom session) to show the student’s progress.

Results
Survey
Table 1 shows the results of the survey. Students were pos-
itive about the system and the insight it gave them. They
also indicated that it did not improve their motivation for
the course, and were uncommitted about the remaining ques-
tions.

Table 1: Survey results (n = 12). Scores are on a five point
Likert scale.

Question Score
Star rating (max 5 stars) 3.75
Did the program give you insight in your level of
arithmetic?

3.92

Did the program motivate you for arithmetic? 2.58
Did you do more exercises? 3.08
Did you do more useful exercises? 3.25
Was practice with the system useful for the final
test?

3

Was practice with the system useful for the indi-
vidual topics?

3.17

In open questions students indicated they were generally
positive about the systems, and found it easy to make de-
cisions. They did not like the fact that they had to switch
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Figure 4: Interactive interface depicting the graph for an in-
dividual student. Nodes are color-coded to reflect the level of
mastery (brown to green), and additionally show a progress
bar. Students can click on or hover over a node (lower panel)
to see the items they have attempted before, and the score
they obtained. They can click on items they have not yet tried,
which takes them to the Noordhoff website on which they do
the item. Translated into English, original is in Dutch.

between two websites: the website with the graph, and the
website with the assignments.

Predictive Power of Node Score
If the graph gives a good assessment of the state of the skills
of an individual student, it should have predictive power on
the probability of success for a new item for that node. To
test this, we fitted a linear mixed effects model to predict the
score on new items. We also added student ID as a random ef-
fect, to correct for individual differences. Data from both the
experimental and the control groups were used, because the
predictive power can be tested even if the students themselves
did not use the system.

The node score (β = 0.15,std = 0.025,df = 1934, t =
5.966, p < 0.001) has a significant impact on the score. Fig-
ure 5 illustrates the predictive power of node score. The graph
shows the student score on a node on the x axis, and the devi-
ation from the average score of that student for new items in
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Figure 5: Predictive power of the system

that node on the y axis.

Comparison between Experimental and Control
Groups
It is not possible to make a reliable comparison between the
experimental and control groups, because they are taught by
different teachers. In addition, not all students make all the
tests, and students drop out of the course. We therefore chose
not to perform a statistical test on the data, because this would
suggest an exactness that we cannot warrant.

Nevertheless, it is interesting to look at the results from the
students. Figure 6 shows the average scores on the pretest,
the midterm test, and the final test. Note that the tests do not
have the same difficulty, so we cannot conclude that students
have learned nothing. However, we do not see any difference
between the experimental group and the two control groups
with respect to test score.

The scores do not tell the whole story. Students frequently
drop out of the course. Figure 7 presents a different view on
how well students are doing: here we see that in the Control
groups more students dropped out, and that in the end the
passing rate for the Experimental group is 58%, compared to
35% and 37% in the Control groups.

Discussion
The skills identified in the graph approach are quite differ-
ent from the learning goals set by the educational publisher.
This does not mean that those goals are wrong, but rather
that we look at a different aspect of learning. Instead, both
can be considered orthogonal. The learning goals are focused
on the specific topics and knowledge, but the skills are more
general. Also, the publisher’s learning goals concern topics
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Figure 6: Test scores on pretest, midterm and final test.
Scores are on scale between 0 and 100.

Figure 7: Enrollment, students taking the final test, and stu-
dents passing the final test.

that all students have been exposed to before in elementary
school. This means there is no or very little really new ma-
terial. For some of the students, though, the skills to handle
assignments on these topics may be absent, or have been for-
gotten. We therefore believe the approach of going through
the topics following the course materials, but with an individ-
ual focus on weak skills may be the optimal way of offering
the material.

In the results we see some appreciation of the students for
the system, even though it did not increase their motivation
for the topic. They did not like switching back and forth be-
tween websites. For this experiment, integration of the two
websites was not feasible, but in a future application this is
recommended.

The data show that the assignment of items to nodes has
predictive power, and can therefore help students select the
right item to study. We could demonstrate this on the dataset
as a whole, so also for the control groups. Therefore it is
possible to conclude that working with the order proposed
in the system’s graph provides opportunities for students to
identify areas of optimal difficulty for them (zone of proxi-
mal development). Also, choosing their own path instead of
using a predetermined path teaches autonomy and autonomy

in choosing exercises has been shown to improve learning re-
sults.

The comparison between the groups suggested that the
passing rate of the experimental group is quite a bit higher,
because fewer students drop out of the course. However, we
have to be careful with this conclusion, because this may be
attributable to other factors, even though we did not identify
any. A larger study is needed to substantiate this result.

The approach in this paper has been inspired by theoretical
work in cognitive architectures. The grain-size of the skills
identified from the data is not as fine as that in the theoretical
models, as we already saw in work by Akrum and Taatgen
(2023). Bridging this gap requires more fine-grained data,
potentially with items that are designed to find subtle distinc-
tions. It also depends on the data: if students do not differ on
the dimension of a particular skill, the methodology presented
here will not find it.

Our approach has parallels with Knowledge Space Theory
(Falmagne et al., 1990; Doignon & Falmagne, 2012). The
perspective from the viewpoint of cognitive architectures and
skills is different from that theory, as well as the algorithm to
construct the graph, but it is worthwhile to explore synergy
between the approaches.

Limitations
This study has a number of limitations. As indicated, the
experimental group only consisted of a single group of stu-
dents. The difference in outcome between that group and the
two control groups might be attributable to other, unknown
factors. Another limitation is that the skills that have been
assigned to nodes in the graph have been identified by the au-
thors. Subsequently, additional test items were assigned to
the nodes on the basis of this identification. There are several
future options to mitigate this, by asking multiple education
experts to identify skills, or to use Large Language Models
for the identification.

Conclusions
In this paper, we have shown that the theory of skills can be
used as a basis to construct skill graphs on the basis of student
data. An experimental study to test the educational benefits
of the approach shows promising, but not definite results.
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