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Highlights
•	 Comparative studies that provide insight into the climatic 

niche tendencies of temperate species can reveal important 
information regarding common responses to past and 
future environmental changes in montane ecosystems.

•	 The environmental and topographic heterogeneity of the 
Mexican highlands harbor environmental gradients that 
can be extreme enough to favor the divergence of closely 
related lineages.

•	 The climatic segregation of Thamnophis scalaris 
and T. scaliger allows their coexistence despite their 
morphological and ecological similarities.

•	 Cold-adapted species likely were able to subsist in highland 
climatic refugia during the interglacial periods.

•	 Regions that have maintained climatic suitability for 
montane species throughout glacial/interglacial periods 
could be relevant areas for the conservation of their 
intraspecific diversity.

Abstract
Mexico’s topographic and environmental heterogeneity, in 
combination with environmental fluctuations of the Neogene-
Quaternary, has uniquely influenced the evolutionary history 
and distribution patterns of the region’s flora and fauna, 
sometimes causing closely related species to exhibit distinct 
climatic niches. Our study aimed to characterize the climatic 
niches of Thamnophis scalaris and Thamnophis scaliger, as well 
as evaluate the impact of the Pleistocene-Holocene transition 
on their paleodistributions. We generated 357 models per 
species, each with three sets of distinct combinations of climatic 
variables, based on 108 occurrence records for T. scalaris and 
62 for T. scaliger. We evaluated the niche overlap, equivalency, 
and similarity between both species and transferred the 
present-day models to eight distinct historical periods, with 
the goal of encompassing the distinctive climatic variation of 
the Pleistocene-Holocene (P-H) transition. Both species showed 
significant differences in their respective climatic regimes and 
did not display climatic niche conservatism (the tendency 
of species to retain ancestral ecological characteristics), 
despite their previously reported ecological, morphological, 
and biogeographic similarities. Likewise, they seem to have 
responded similarly to the environmental changes in the P-H, 
with both paleodistributions experiencing expansion phases 
during glacial periods and contraction phases during interglacial 
periods. Possible areas of refugia that remained climatically 
stable and viable for both species throughout this period were 
identified. These refugia could potentially harbor a greater 
genetic diversity with respect to regions that recently acquired 
suitable conditions for the establishment of these populations. 
As such, this work offers a methodological procedure that may 
be used as an early inference for identifying specific regions of 
interest in phylogeographic studies and conservation planning.

Keywords: Climatic segregation, ecological niche modeling, Natricinae, Neogene-Quaternary, niche divergence, Pleistocene-
Holocene transition, species distribution models, Trans-Mexican Volcanic Belt
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Introduction
Climate is considered one of the most relevant and 

impactful factors affecting the evolutionary histories of 
species, directly influencing biogeographic, ecological, 
and genetic patterns. These patterns can arise as a 
consequence of environmental transitions along a 
gradient or due to climatic changes occurring on a 
geological scale (Lomolino et al. 2010, McCormack et al. 
2010, Martínez-Freiría et al. 2017). In particular, the 
drastic climatic fluctuations throughout the Neogene-
Quaternary (N-Q) impacted biota around the world in 
different ways and intensities, resulting, for example, 
in rapid changes in species distribution, divergence 
processes, and extinction events (Hewitt 1996, 2004). 
Accordingly, these events left a particular pattern that 
has been studied through approaches such as the 
Pleistocene Refugia (PR) hypothesis, via different lines 
of evidence such as genomic data, the fossil record, and 
species distribution modeling (Haffer 1969, Dynesius 
and Jansson 2000, Mestre et al. 2022).

The PR hypothesis states that, during the past 
glacial periods, the increase in ice caps across the 
northern and southern hemispheres caused an 
overall temperature decrease and consequently, the 
reduction of some species distribution areas with 
populations persisting in lowland allopatric refugia 
(Haffer 1969, Husemann et al. 2014). The subsequent 
ice cap retreat during interglacial periods provided 
favourable conditions that facilitated the spread and 
interconnection of previously isolated populations 
(Halffter 1987, Salvi et al. 2014, Valdivia-Carrillo et al. 
2017). However, contrary to the aforementioned, 
some cold-adapted montane species, such as Crotalus 
intermedius Troschel, 1865 (Bryson Jr et al. 2011a), 
Cryptotis mexicana (Coues 1877) (Guevara 2020), and 
Nelsonia neotomodon Merriam, 1897 (León-Tapia 
2021), could have responded according to the Sky-
Island dynamic (S-Id) (Mastretta‐Yanes et al. 2015), 
experiencing an expansion in their distributional ranges 
via dispersion into adjacent mountain ranges through 
lowland corridors during the glacial periods, followed 
by retreat to highland allopatric refugia during the 
interglacial periods.

The effect of both scenarios (i.e., PR and S-Id) 
could have been even more drastic in geographically 
heterogeneous areas (e.g., Mexican highlands), 
uniquely modifying the distributional ranges and 
genetic diversity of many species (Mastretta-
Yanes  et  al. 2015). Environmental gradients along 
elevations can be extreme enough to promote 
diversification processes across relatively short 
geographic distances, through the tendency to 
preserve ecological characteristics in ancestor-
descendant sequences (i.e., Niche Conservatism (NC), 
Pyron and Burbrink 2009b, Gutiérrez-Ortega  et  al. 
2020) or by adaptations to new environments 
(i.e., Niche Divergence (ND), Pyron and Burbrink 
2009a). These processes stemming from elevational 
heterogeneity have been postulated as one of the main 
biodiversity drivers in Mexican montane ecosystems 
(Bryson Jr et al. 2011b, Gutiérrez-Ortega et al. 2020, 
Moreno-Contreras et al. 2020). Despite this, the effect 

of N-Q climatic oscillations on Mexican montane 
species and their possible ecological-evolutionary 
(e.g., NC and ND), and biogeographical (e.g., PR and 
S-Id) consequences are largely unexplored, with the 
exception of a few studies on birds (McCormack et al. 
2010, Moreno-Contreras et al. 2020), mammals (León-
Tapia 2021), reptiles (Cisneros-Bernal et al. 2022), and 
plants (Gutiérrez-Ortega et al. 2020).

The Thamnophis scalaris Cope, 1861 complex 
is composed of two natricine colubrid species 
endemic to the highlands of south-central Mexico 
(Rossman  et  al. 1996). Thamnophis scalaris has a 
present-day disjunct distribution across most of the 
mountains of the Trans-Mexican Volcanic Belt (TMVB), 
the southern Mexican Plateau (MP), and the Sierra 
Madre Oriental (SMOr), found in elevations from 
2100 to 4270 masl (Rossman et al. 1996). The other 
species of the complex, T. scaliger (Jan, 1863), has a 
disjunct distribution limited to the central TMVB and 
the southern MP, within a narrow elevational range 
from 2280 to 2570 masl (Rossman et al. 1996). Both 
species exhibit several similarities in their morphology 
(Rossman et al. 1996, Rossman and Gongora 1997), 
their behavior, being diurnal with peak activity in the 
rainy season (Rossman et al. 1996), and their ecology, 
being closely associated with temperate mesohabitats, 
such as subalpine grasslands (e.g., Festuca tolucensis 
Kunth) surrounded by Pinus forests (Rossman et al. 
1996, Rossman and Gongora 1997).

With this context, the Thamnophis scalaris species 
complex is an ideal model to perform a comparative 
study that explores the climatic tendencies of cold-
adapted species and their possible reaction and 
consequences to the environmental changes of the 
Pleistocene-Holocene (P-H) transition. These results 
will improve our understanding of the species diversity 
that exists in Mexico’s mountain ecosystems and help 
estimate their response to future environmental 
changes.

We hypothesized that: 1) despite their morphological 
and ecological similarities, differential habitat selection, 
through the segregation of climate niche (i.e., low 
climate niche overlap), would allow Thamnophis 
scalaris and T. scaliger to cohabit along the south-
central Mexican highlands; and 2) in response to the 
climate oscillations during the Pleistocene-Holocene 
transition, T. scalaris and T. scaliger would experience 
a drastic reduction in their ranges, consistent with 
S-Id, forming allopathic refugia in the south-central 
Mexican highlands.

We aimed to characterize the climatic niches of 
T. scalaris and T. scaliger in order to: 1) assess the 
existence of climatic niche conservatism or divergence; 
2) estimate the impact of the climatic oscillations of 
the P-H transition on their paleodistributions; and 3) 
identify areas that may have remained suitable and 
climatically stable for both species across the P-H 
transition. The results ultimately could be used as an 
early inference in phylogeographic or conservation 
planning studies to identify specific regions that may 
be housing greater genetic diversity.
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Materials and Methods

Collection of occurrence data
We first downloaded all occurrence records of 

Thamnophis scalaris and T. scaliger available on 
GBIF (GBIF 2021a, b), VertNet (VertNet 2021a, b), 
IDigBio (IDigBio 2021a, b), INaturalist (INaturalist 
2021a, b) and EncicloVida (EncicloVida 2021a, b). 
We also obtained occurrence records from deposited 
specimens in the Museo de Zoologia at the Facultad de 
Ciencias, Universidad Nacional Autonoma de Mexico. 
This preliminary dataset consisted of 926 records 
for T. scalaris and 334 records for T. scaliger. Next, 
we eliminated all records that were duplicates, 
incomplete, showed high spatial correlation (<5 km2), 
fell outside the known distribution for each species, 
had a different temporality to the range of bioclimatic 
variables (i.e., 1979–2013, Karger et al. 2017), or had 
atypical environmental values based on our biological 
knowledge of T. scalaris and T. scaliger (e.g., occurrence 
records with values outside the altitudinal range 
reported for both species) (Rossman et al. 1996).

Accessible area
The geographic accessibility area, or “M” according 

to the BAM diagram (see Soberón and Peterson 2005), 
is characterized as the region that is accessible to the 
species without barriers to their dispersion (Soberón 
and Nakamura 2009). In order to train the Thamnophis 
scalaris and T. scaliger climatic niche models, we 
defined an “M” for each species based on three 
criteria: 1) having a geographic shape similar to the 
known area of distribution, assuming the distribution 
range is the result of the adaptation and dispersion 
capacity of the species (Zunino and Zullini, 2003), as 
well as factors related to their physiological limitations 
(Root, 1988) and biotic interactions (Wisz  et  al. 
2013); 2) considering the shape and extent of the 
biogeographic provinces proposed by Escalante et al. 
(2021) and their associated terrestrial ecosystems 
proposed by Olson et al. (2001); and 3) including a 
margin of approximately 10 km radius around the 
presence records to account for possible dispersion 
of individuals (Gregory and Stewart 1975, Shonfield 
and Koskin 2019) (Fig. 1). This framework aimed to 
delimit accessibility areas using both biological and 
geographic evidence that effectively restricts the set 
of climatic conditions used, which is critical to the 
development of the models and subsequent analyses 
(Barve et al. 2011, Peterson 2011).

Environmental data, model calibration, and model 
construction

To quantify the climatic niches of T. scalaris and 
T. scaliger, we obtained bioclimatic data from CHELSA 
v1.2b (Karger  et  al. 2017). This data set includes 
a set of 19 variables spanning distinct aspects of 
precipitation and temperature from 1979 and 2013 at 
a resolution of 2.5 arc min. (~5 km2 per pixel) (see 
Supplementary Table S1 for the description of each 
bioclimatic variable).

We trimmed the 19 bioclimatic variables to the 
shape of the “M” for each species. Next, we created 
3 sets of variables. We selected Set 1 to capture the 
extreme conditions of the study area, considering 
the same variables for both species: Bio1, Bio5, Bio6, 
Bio12, Bio13, and Bio14. Set 2 was selected according 
to the Variance Inflation Factor (VIF) to identify those 
variables that present collinearity problems (i.e., 
VIF >10) (Montgomery and Peck, 1992, Naimi et al. 
2014), considering the same variables for both species: 
Bio1, Bio4, Bio12, Bio14, and Bio15. Set 3 was chosen 
based on the biological knowledge of each species 
(Rossman et al. 1996), using the variables Bio1, Bio4, 
Bio11, Bio12, Bio15, Bio16, and Bio17 for T. scalaris, 
and Bio1, Bio4, Bio7, Bio11, Bio12, Bio15, Bio16, and 
Bio17 for T. scaliger.

Using the kuenm package (Cobos et al. 2019b), we 
generated 357 calibrated models per species, using 
17 combinations of regularization multipliers (0.1 to 
1 in 0.1 increments, followed by 2, 3, 4, 5, 6, 8, 10) 
and every possible combination of linear, quadratic, 
and product classes in Maxent 3.4.1 to determine the 
optimal configuration that minimizes overfitting model 
(Phillips et al. 2004). We based model selection on three 
criteria: 1) statistical significance of the lowest values 
of partial receiver operating characteristics (pROC); 
2) the predictive power denoted by low omission 
rates (OR) <5% (Cobos et al., 2019); 3) lowest values 
of Akaike Information Criterion corrected for small 
sample sizes (AICc) (Lobo et al. 2008, Peterson et al. 
2008, Cobos et al. 2019b).

Figure 1. Occurrence records and accessibility areas for 
Thamnophis scalaris (a) and T. scaliger (b).
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We constructed the final model based on the best 
set of previously mentioned parameters, using 75% of 
the data to generate the model and 25% to evaluate 
it, with 10 bootstrap replicates (Phillips et al. 2004, 
Cobos et al. 2019b). We binarized every model output 
using the 10th percentile for the minimum training 
presence to classify the prediction (0 = inadequate; 1 = 
adequate), excluding 10% of the lowest aforementioned 
values because they may be representing erroneous 
records in the dataset. (Pearson et al. 2007).

Niche overlap, equivalency, and similarity
We evaluated the existence of environmental 

similarities associated with the occurrence data of each 
species with a student’s t-test with p values adjusted 
by Holm-Bonferroni, using the bioclimatic variables 
from Set 1. In order to determine the existence of 
ecological niche overlap between T. scalaris and 
T. scaliger, we calculated the density of occurrences 
and environmental factors under the PCA-env approach 
as proposed by Broennimann  et  al. (2012) using 
Schoener’s D index (Schoener 1968) in the ecospat 
package (Di Cola et al. 2017). After this, we performed 
a niche equivalence test, due to both species share 
quite similar environmental conditions (Rossman et al. 
2016), and this test may confirm if the occupied climatic 
niches of both species were equivalent and mutually 
predictable across their distribution (Warren  et  al. 
2008). This test was determined by comparing the 
real niche overlap values (D) to a null distribution 
of 1000 pseudo-replicates overlap values. The non-
equivalence of ecological niches was determined if 
the niche overlap value of T. scalaris and T. scaliger 
was significantly lower than the overlap values from 
the null distribution (p < 0.05) (Warren et al., 2008).

To assess the potential climatic niche similarities 
in both species, we conducted a niche similarity test 
using rand.type = 1 and “greater” arguments in the 
ecospat package (Di Cola et al. 2017), which effectively 
tests for the presence of NC (i.e., the overlap of both 
species’ niches is more similar than expected by 
chance). This is accepted when the observed overlap 
(Schoener’s D) is significantly different (p < 0.05) with 
respect to the overlap values of the niche obtained 
through the pseudo-replicates (Warren et al. 2008, 
Broennimann et al. 2012). Given that the niche similarity 
test is unidirectional, we conducted two tests: 1) 
T. scalaris vs. T. scaliger; and 2) T. scaliger vs. T. scalaris. 
This test was repeated 1000 times to be sure that the 
null hypothesis could be rejected with a high level of 
confidence (Warren et al. 2008, Broennimann et al. 
2012). To facilitate the interpretation of the results, we 
followed the metric proposed by Rödder and Engler 
(2011): null or very limited overlap (0–0.2), low overlap 
(0.2–0.4), moderate overlap (0.4–0.6), high overlap 
(0.6–0.8), and very high overlap (0.8–1.0).

Additionally, we compared the climatic niches of 
T. scalaris and T. scaliger through a minimum-volume 
ellipsoid model to test the null hypothesis that the two 
ellipsoids adjusted to the real observations overlapped 
at least as much as the random data ellipsoid using the 
ellipsenm package (Cobos et al. 2019a). We generated 

1000 pseudo-replicates to compare with the real 
niche overlap value. In this context, we rejected the 
null hypothesis if the real niche overlap value was 
significantly different (p < 0.05) with respect to the 
overlap values obtained from the pseudo-replicates. 
We calculated the overlap value, known as Jaccard’s 
Index (J), as the proportion of total points contained 
within the intersection of the two ellipsoids (A and B); 
J = A⋂B/A⋃B. Ranging between J =0 (no overlap) and 
J =1 (complete overlap) (Mammola 2019).

Model Transferring
We transferred the final model for each species to 

eight distinct historical time frames that encompass 
the climatic variation of the P-H transition: the late 
Pleistocene, including the Interglacial Period (130 ka) 
(Otto-Bliesner et al. 2006), the Last Glacial Maximum 
(20 ka) (Karger  et  al. 2017), the Heinrich H1 Event 
(17.0–14.7 ka), Bøllling-Allerød (14.7–12.9 ka), and 
the Younger Dryas (12.9–11.7 ka) (Fordham  et  al. 
2017); and the Holocene, partitioned into the early 
(11.7–8.3 ka), middle (8.3–4.2 ka), and late Holocene 
(4.2–0.3 ka) (Fordham et al. 2017). Transferring models 
entails the need for extrapolation, due to the possible 
existence of non-analogous climatic conditions (i.e., 
extreme temperature values than those present in 
the calibration area). According to Anderson (2013), 
we allow the model to estimate the response value to 
the truncation point (i.e., extrapolation by clamping) 
based on response curves obtained for each species 
(Supplementary Figure S1, S2), making constant the 
response outside of the range of the training area 
(Phillips et al. 2006, Cobos et al. 2019b).

We performed an analysis of Mobility Oriented 
Parity metric (MOP) in order to avoid an incorrect 
interpretation of the transferred areas using the kuenm 
package (Cobos et al. 2019b). Positive values indicate 
the existence of analogous climates between the two 
comparisons, while negative values indicate the presence 
of non-analogous conditions (Owens et al. 2013).

We estimated the impact of the Pleistocene-
Holocene transition on T. scalaris and T. scaliger 
distribution range, calculating the proportion of 
change in the current distribution model compared 
with each of the of P-H transition temporalities, by 
quantifying the loss or gain of pixels with a value of 
1 (i.e., presence) on each previously binarized map.

We performed all analyses in R v. 4.1.3 (R Core Team 
2022). R-scripts generated in our study are available 
from the first author upon request.

Results

Environmental data
Cleaning the original dataset based on the above 

criteria left us with a total of 108 occurrence records 
for T. scalaris and 62 for T. scaliger to be used in the 
subsequent analyses (Fig. 1). Of the 357 models 
generated for T. scalaris, three complied with the 
statistical criteria previously described. The best model 
obtained an RM = 0.4, feature classes = l, pROC = 0, 
OR = 0.037, AICc= 1.913 and was constructed from Set 
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1, whose contribution percentages per environmental 
variable were as follows: Annual Mean Temperature 
(71.1%), Min Temperature of Coldest Month (9.4%), Max 
Temperature of Warmest Month (8.5%), Precipitation of 
Wettest Month (2.5%), Annual Precipitation (2%), and 
Precipitation of Driest Month (0.6%). Of the 357 models 
generated for T. scaliger, five models complied with the 
statistical criteria, of which the best model obtained 
an RM = 0.6, feature classes = q, pROC = 0, OR = 0, 
AICc= 1.837 , and was constructed from Set 1, whose 
contribution percentages for each environmental 
variable were: Max Temperature of Warmest Month 
(71.1%), Precipitation of Driest Month (14.5%), 
Min Temperature of Coldest Month (7.1%), Annual 
Precipitation (4.8%), Precipitation of Wettest Month 
(1.9%), and Annual Mean Temperature (1.5%). All tests 
showed statistically significant values, indicating that 

the generated models for each species were sufficiently 
robust to continue with the remaining analyses.

The student’s t-test found significant differences 
in variables associated with temperature: Bio 
1 (t = -5.5956, df = 153.68, p = 0.0001), Bio 5 (t = 45.401, 
df = 169.46, p = 0.0001), Bio 6 (t = -58.581, df = 129.21, 
p = 0.0001), and precipitation: Bio 12 (t = 3.6925, 
df = 164.94, p = 0.0003), Bio 13 (t = 2.0102, df = 
146.59, p = 0.0462), Bio 14 (t = 5.0095, df = 123.57, 
p = 0.0001) (Fig. 2). According to the PCA analysis, the 
first two principal components (PC) were statistically 
significant, representing 48.46% and 38% of the 
variation, respectively. These two components were 
used to represent the climatic niches of T. scalaris 
and T. scaliger in a bidimensional gradient. PC1 was 
comprised of variables associated with temperature, 
while PC2, on the other hand, was made up of variables 
associated with precipitation (Fig. 3a). Even though 

Figure 2. Violin plots of the selected bioclimatic variables, from values extracted for occurrence records of Thamnophis 
scalaris (red) and T. scaliger (blue). Annual Mean Temperature (a), Max Temperature of Warmest Month (b), Min Temperature 
of Coldest Month (c), Annual Precipitation (d), Precipitation of Wettest Month (e), and Precipitation of Driest Month (f).
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both species occupied a small fraction of the available 
environmental space, T. scalaris showed a wider 
climatic niche with respect to T. scaliger based on the 
first and second PCs (Fig. 3; Supplementary Figure S6).

The MOP comparison between the calibration area 
and the nine previous scenarios revealed different 
magnitudes of areas of strict extrapolation, the same 
ones that were omitted from the geographic projection 
of the potential areas of distributions of each species 
in every period previously mentioned (Supplementary 
Figure S7, S8).

Niche overlap, equivalency, and similarity
According to the observed values of Schoener’s 

D (D = 0.14), T. scalaris and T. scaliger present a 
null or very limited overlap of climatic niche space 

(Fig. 3b). Furthermore, the equivalency test (p < 0.05) 
indicated that the climatic niches of both species 
are not equivalent amongst themselves. The results 
obtained from the similarity test indicate that the 
climatic niches are not more similar than expected 
by chance in both directions (p > 0.05), causing us to 
reject the hypothesis of climatic niche conservatism 
(NC) (Supplementary Figure S5). The overlap analyses 
based on ellipsoids indicated little overlap of climatic 
niche between T. scalaris and T. scaliger. (J = 0.11). 
Based on the significance values of the null models 
with respect to the niche overlap values (p < 0.05), 
we reject the null hypothesis, and consider the 
climatic niches of the two species to be different 
(Supplementary Figure S6b).

Figure 3. Visualization and quantification of the climatic niches of Thamnophis scalaris and T. scaliger. (a) Correlation 
plot for the principal component analysis (PCA) indicating the contribution of the six bioclimatic variables: Mean Annual 
Temperature (Bio1), Max Temperature of Warmest Month (Bio5), Min Temperature of Coldest Month (Bio6), Annual 
Precipitation (Bio12), Precipitation of Wettest Month (Bio13), and Precipitation of Driest Month (Bio14). (b) Available 
environmental space of T. scalaris (green solid line) and T. scaliger (red solid line) in a bidimensional space, based on the 
principal component analysis. The green and red shadings represent the occurrence density of each species, and the 
blue shaded area represents the niche overlap. Individual climatic niche space of Thamnophis scalaris (c) and T. scaliger 
(d). The solid and dashed lines represent 100% and 50% of the available environmental space, respectively. Shaded areas 
represent the density of each species occurrences (high density in black).
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Current potential distribution

Thamnophis scalaris
The current potential distribution of T. scalaris 

shows a disjunct pattern, restricted to the high 
elevational regions within the TMVB, the southern 
SMOr, and the northern SMS (Fig. 4a). Specifically, four 
main zones of climatic suitability across these three 
mountain ranges were recovered. The largest of these 
is concentrated in the eastern TMVB and southern 
SMOr, forming a continuum between the states of 
Queretaro, Hidalgo, Veracruz, Puebla, Tlaxcala, Ciudad 
de Mexico, Morelos, and Estado de Mexico. The other 
three zones of climatic suitability for this species were 
found in the western of TMVB (Jalisco and Michoacan 
states) and in the southeast (Oaxaca state). These 
last three areas are separated from each other by 
lowland zones (<2000 m) dominated by grasslands, 
scrublands, and oak forests (Rzedowski and Huerta, 
1994, Espinosa et al. 2008) that are environmentally 
uninhabitable for this species due to their warmer, 
drier climates (Fig. 4a).

Thamnophis scaliger
The current potential distribution of T. scaliger 

shows a disjunct pattern restricted to the high 
elevations of the TMVB and in the southern MP that is 
comprised of three principal zones of climatic suitability 
(Fig. 4b). The first is located in the central TMVB, 

forming a continuum between the states of Queretaro, 
Hidalgo, Puebla, Tlaxcala, Ciudad de Mexico, Morelos, 
and Estado de Mexico. The second zone is located in the 
western TMVB in Michoacan, while the third is made up 
of small, isolated regions situated in the southern MP, 
in the states of Aguascalientes, Guanajuato, and Jalisco. 
Even though this third province comprises several 
mountainous regions that provide adequate climatic 
conditions for the persistence of its populations, the 
lowlands (<2000 m), with warmer and drier climates 
dominated by xeric vegetation (Rzedowski & Huerta, 
1994; Espinosa et al. 2008), possibly represent a barrier 
that impedes the connectivity of the populations from 
the TMVB (Fig. 4b).

Paleodistribution
Except for the Late Holocene, our models showed 

that the climatically favorable areas for T. scalaris have 
been decreased drastically in size throughout the P-H 
transition compared to the extension obtained for 
current models: Late Holocene (19%), Mid Holocene 
(-15%), Early Holocene (-45%), Younger Dryas (-64%), 
Bølling-Allerød (-90%), Heinrich Stadial (-76%), Last 
Glacial Maximum (-87%), and Last Interglacial (-44%) 
(Supplementary Figure S3). A similar pattern is 
observed for T. scaliger: Late Holocene (-45%), Mid 
Holocene (-53%), Early Holocene (74%), Younger Dryas 
(48%), Bølling-Allerød (-77%), Heinrich Stadial (-62%), 
Last Glacial Maximum (-81%), and Last Interglacial 
(96%) (Supplementary Figure S4).

We identified a possible climatic refugia for 
T. scalaris and T. scaliger in the central region of the 
TMVB, in present-day southern Hidalgo state and 
north-central Estado de Mexico. Our models indicate 
that these regions have remained climatically stable 
and suitable for both species throughout the P-H 
transition (Fig. 5).

Discussion
Using ecological niche modeling (ENM), species 

climatic tendencies can be quantified and contrasted to 
estimate the effects of distinct environmental factors 
on species’ evolutionary histories (McCormack et al. 
2010, Pyron et al. 2015, Moreno-Contreras et al. 2020). 
This methodology has received growing attention due 
to its fluid integration with evolutionary biology and 
biogeography (Wooten and Gibbs 2012, Burbrink et al. 
2021). Comparative studies that provide insight into 
the climatic niche tendencies of montane species 
can reveal patterns of common responses to past 
environmental changes, resulting in an improved 
understanding of the mechanisms linked to the origin 
and persistence of diversity in mountain landscapes 
(Mastretta-Yanes  et  al. 2018, León-Tapia 2021, 
Cisneros-Bernal et al. 2022). Our results expand on 
the ecological, biogeographical, and evolutionary 
knowledge regarding the Thamnophis scalaris species 
complex. Furthermore, we explain how these two 
closely related species in morphology and ecology 
(Rossman et al. 1996, Rossman and Gongora 1997, 
Manjarrez et al. 2007, Reguera et al. 2011) can coexist 

Figure 4. Current potential distribution based on climate 
suitability of Thamnophis scalaris (a) and Thamnophis 
scaliger (b).
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in a particular region, specifically through habitat 
selection (see below).

The climatic niche suitability for T. scalaris reflects 
a greater extension in the west-central TMVB, 
specifically in areas closely associated with high-altitude 
stratovolcanoes such as the Nevado de Toluca, the Sierra 
de Ajusco-Chichinauhtzin, Popocatépetl, Iztaccíhuatl, La 
Malinche, and the Citlaltépetl. Thamnophis scaliger, on 
the other hand, presents a distribution geographically 
restricted to the lower-elevation mountainous regions, 
including the plains of the Toluca Valley, the Mexico 
Valley, and the Puebla-Tlaxcala Valley. Interestingly, 
T. scaliger has not been recorded from this latter 
region, possibly due to the existence of physical and/
or climatic barriers such as the Popocatépetl and 
Iztaccíhuatl volcanoes, with highlands to the north 
(>2700 masl) and lowlands to the south (<2000 masl). 
This is concordant with the altitudinal range reported 
for this species (Rossman et al. 1996), and likely is a 
relevant factor limiting the species’ dispersion towards 
the eastern part of the TMVB.

Despite the potential distributions and climatic 
niches of both species being modeled based on the 
same set of variables (see above), a lack of similarity 
exhibited in their climatic niches indicates that each 
species is taking advantage of different forms or 
intensities of the environmental conditions present in 

their areas of distribution, including the central portion 
of the TMVB, where both coexist (Rossman et al. 1996). 
This is relevant given that sympatry is considered to be 
contingent on morphological or trophic diversity that 
allows the coexistence of two similar species (Pigot and 
Tobias 2013), something apparently absent in T. scalaris 
and T. scaliger (Rossman and Gongora 1997). Therefore, 
based on our findings and in situ observations, both 
species could be reducing competition by segregating 
their climatic niches, possibly being separated by an 
altitudinal gradient (Arlettaz 1999). In this sense, each 
species could have acquired its particular climatic niche 
identity independent of their ancestral conditions, 
exhibiting a similar pattern as seen in other vertebrates 
such as Nelsonia (León-Tapia 2021), Aphelocoma 
(McCormack  et  al. 2010), and Arremon (Moreno-
Contreras et al. 2020). This seems to be a common 
response in montane species to the topographic and 
environmental heterogeneity of regions such as the 
TMVB, as detailed below.

Hallas  et  al. (2022) proposed that the common 
ancestor between T. scalaris and T. scaliger diverged 
in the early Pliocene by dispersal events. This is 
consistent with the absence of niche conservatism 
(NC) registered between both species, where niche 
divergence (ND) would favor dispersal along the 
heterogeneous landscape of the TMVB and ultimately, 
the adaptation to distinct environmental conditions 
(Burbrink and Pyron 2010). According to Pyron et al. 
(2015) and Burbrink and Pyron (2010), if populations 
have experienced drastic ecological changes causing 
ancestral niche conditions to no longer be available, 
natural selection could favor speciation through 
the divergence of ecological niches. Therefore, 
the climatic ND within a species complex could be 
considered an additional line of evidence for taxonomic 
diversification. This is congruent with reported genetic 
and biogeographic information (Hallas et al. 2022), 
providing a more solid hypothesis of the independence 
of evolutionary lineages from an ecological perspective, 
as reported by Rissler and Apodaca (2007).

The impact that climatic changes of the Neogene-
Quaternary had on distributions of different taxa has 
been backed up by both fossil and molecular evidence 
(Hewitt 1996, 2004, López-García et al. 2010, Lowe and 
Walker 2014). Our models add an ecological perspective 
that agree with both lines of evidence, indicating 
that the low temperatures prevalent throughout the 
Pleistocene caused the geographic range expansion 
of T. scalaris and T. scaliger through the lowlands 
of south-central Mexico. This is also supported by 
fossil evidence for T. scalaris (~14 ka) (Álvares and 
Huerta 1975) (Supplementary Figure S1f) and other 
co-distributed mountain species in the TMVB such 
as Crotalus triseriatus (Wagler, 1830), Storeria sp., 
and Barisia sp. (Cruz et al. 2021). In all these cases, 
fossil material has been recovered from lowlands 
(~2300 masl), which are currently not environmentally 
suitable for any of the aforementioned species. At the 
same time, highlands (>3000 masl) of volcanoes such 
as the Nevado de Toluca, Popocatépetl, Iztaccíhuatl, La 
Malinche, and Citlaltépetl, which are currently inhabited 

Figure 5. Geographic projection of the areas that have 
remained climatically suitable for Thamnophis scalaris (a) 
and Thamnophis scaliger (b) throughout the Pleistocene-
Holocene transition. The black arrows indicate the areas 
corresponding to the Toluca valley and the Lerma River basin.
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by T. scalairs and T. scaliger, were climatically unsuitable 
for both species during the LGM due to the expansion 
of volcanic glaciers, which caused the mountainous 
vegetation of which both species are associated to 
descend below their present-day altitudes, facilitating 
the snakes’ dispersion through intermontane corridors 
(D’Antoni 1993, McDonald 1993, Mastretta-Yanes et al. 
2015) (Supplementary Figure S1, S2).

As with other montane taxa such as Crotalus 
intermedius (Bryson Jr et al. 2011a), Crotalus ravus 
Cope, 1865 (Cisneros-Bernal et al. 2022), and Vipera 
seoanei Lataste, 1879 (Martínez-Freiría et al. 2015), 
the impact of the P-H transition on the distribution 
range of T. scalaris and T. scaliger is consistent with the 
S-Id (Mastretta‐Yanes et al. 2015). This also explains 
the present-day disjunct distribution observed in the 
longtail alpine garter snake species complex, with 
shows apparently isolated populations in the highlands 
in the northern and eastern TMVB. However, it is 
important to note that, despite the similar response to 
the P-H transition by T. scalaris and T. scaliger, the latter 
taxon seems to have experienced more drastic changes 
in its paleodistribution, which could be related to a 
more limited climate tolerance (Fig. S3), as suggested 
by its narrower altitudinal range (Rossman et al. 1996). 
This would be a critical factor to consider in relation 
to conservation planning.

According to our models, the zones that maintained 
climatic suitability for T. scalaris and T. scaliger are 
situated in the Toluca Valley and the basin of the 
Lerma River. Here, both species were able to find 
favorable conditions within their physiological limits 
to persist through the P-H transition. These temperate 
alluvial plains are dominated by pine forest and 
subalpine grasslands (Rzedowski and Huerta 1978, 
Espinosa et al. 2008) and have been recognized for 
their high herpetofaunal diversity (Aguilar et al. 2009). 
This could be indicative of a common response to the 
P-H transition among Nearctic amphibians and reptiles, 
given their restricted thermal tolerances (Figs. 2,3). 
Different populations could possess genetic footprints 
associated with the historic changes previously 
mentioned and the orography of the TMVB (Hewitt 
1996, Mastretta-Yanes  et  al. 2015). By remaining 
climatically suitable and stable throughout the P-H 
transition, these regions may be housing a greater 
genetic diversity than zones that recently acquired 
adequate conditions for the establishment of these 
populations (e.g., Popocatepetl and Iztaccíhuatl) 
(Tribsch and Schönswetter 2003, Hewitt 2004, 
Mastretta‐Yanes et al. 2018, Smith et al. 2022).

Future phylogeographic studies in the Thamnophis 
scalaris complex will help determine if the regions 
identified herein as possible Holocene refugia possess 
elevated levels of genetic diversity in comparison to 
non-refugia regions. Such has been reported in other 
cold-adapted species, such as Anourosorex squamipes 
Milne-Edwards, 1872 (He  et  al. 2016). If true, the 
management of conservation-aimed strategies would 
greatly benefit from knowing whether the areas 
currently established as ecological reserves also 
constitute historical climatically suitable regions for 

cold-adapted species, and furthermore if these regions 
will remain suitable in future climatic scenarios. This 
is especially concerning considering that González-
Fernández et al. (2018) report a drastic decrease in the 
climatically suitable areas of T. scalaris and T. scaliger 
by 2050 under a scenario of moderate to medium 
climate change. On top of this, the TMVB is the most 
populated region of the country, and its ecosystems 
currently face serious threats from human activities 
(Luna-Vega et al. 2007).

Conclusions
Evidence suggests that montane species such as 

Thamnophis scalaris and T. scaliger have experienced 
a particular response in their potential distributions 
throughout the Pleistocene-Holocene transition. 
Specifically, these responses correspond with the S-Id, 
which predict an increase in climatically suitable areas 
during glacial cycles and a reduction and fragmentation 
of such areas during interglacial cycles. Regions that 
have maintained climatic suitability for these species 
throughout this period may be hosting greater genetic 
diversity than areas recently acquiring adequate 
conditions for population subsistence. These findings, 
in addition to providing an early inference for future 
phylogeographic studies, may also be valuable for 
management strategies aimed at the conservation of 
montane species, given the particular susceptibilities of 
each species under a future climate change scenario.
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modeling analyses of Thamnophis scalaris throughout 
the Pleistocene–Holocene transition fossil record 
for T. scalaris.
Figure S4. Geographic projections of ecological niche 
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nine scenarios projected for T. scaliger throughout 
the Pleistocene–Holocene transition risk areas (red).
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