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ABSTRACT

‘A combrehensiré analyticél analysis of the damping coefficient
and ifsvtemperature_depéndehce'associated With lattiée resonancévin
' ;puré.ibhié‘CrystélS'is;presentéd : Contributlons from cubic and quartlc
'terms in the Hamlltonlan and flrst and second order terms in the
glectrlc moment_are taken into account. A flrst-order self-cons1stent”
.imethod for‘ébtéinirg a cioéed‘system of dependent Green-funcfion
_equations_is usedrtb'derive the appropriate expressiéns for the damping
, coeff1c1ents | |
It is shown that the quartic contributlon to the damplng
‘ gcpéfficlent 1s_d1fferent.from the_prev1oust obtalned T (class1cél
limit) e#pression ' Hdwévér, our result for thé‘quartic contribution
vls ‘in qualltatlve agreement with experimental results that take 1nto
anccount the impllcit temperature dependence of the thermal expans1on

- _coefflclent,,
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I. INTRODUCTION

Theories of lattice dynamics attempt té exﬁlain the nature of
interatomic forces in‘crystals, and the variation of the associated
damping coéfficient'with temperature is of fundamental importance in
these théories. The problem of determining the proper temperature
dependence of the damping coefficient has motivated considerable
experimental‘aﬁd theoretical research for many years.l During the
last ten years, significant progress (as a result of intensive research)
has been made in idéntifying the essential features of the problem.2-l5
However, the bdéic problem remains unresolved.. A comprehensive review
of recent theoretical and experimental developments has been given by
Mooi,j.l |

The present paper is devoted to & complete and systematic
analytical analysis of the damping coefficient and its temperature
variation associated with lattice resonance in pure ionic crystals.
Contributions from the second-order electric moment and quartic
terms in the Hamiltonian are treated by use of the same method as
tha£ employed in the trivial harmonic approximation. The second step
in this investigation is the numerical evaluation of the derived
expressions for the damping coefficient in each case. This evaluation
and a detailed comparison with available experimental results will
be presented in a separate paper. In the present paper, we show that
oﬁr results are in qualitative agreement with experimental results.

The equafion-of-motion technique for two;time Green's funcfidns
is the main mathematical tool used in this &nalysis. It is well known
that an infinite set of dependent (coupled) Green-function equations-'
is implied in thié technique. We use a symmetric decoupling method to

terminate (form a closed system) this system of equations at the first-
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order self—consistent stage. ‘That is to say, ouf prescription is to
(a) write_the equations for the ofiginal Green's-functions‘(these
Green's functions will be referred to as the first kind, and their
eouations will be classified as first'order), (b) examine the generated
higher- -order Green s functions (second kind) in the first-order
equations and reduce (when poss1ble), by means of symmetric decoupling,
i,Green s functions of the second kind to those of the first kind,
(c) write equations for the irreducible second kind (second-order
equations), and (d) reduce the higher-order Green's functions in the
second-order equations to Green's functiong of the first and/or
second kind.‘.In general, higher-order equations may.be needed.
However, our problem does not require equations of orders higher than
the second before self-consistence is achieved. The crucial point is
the feduction of generated Green's functions to those previously
. defined at the earliest‘possible stage (the first-order self-
consistent,method).‘

| Byvuse‘of the dbove'prescription for obtaining a closed system
of equations, we have developed a solution for the well studied
harmonic case and extended the analys1s (same technique) to obtain
results for higher—order contributions to the damping coefficient.‘
The usual loWer-order results are_obtained, but the damping coefficient
ﬁhich includes the quartic contribution differs from the usual
explicit Tg_ (ciassical limit) expression. 'In our higher-order
results} the‘arguments of the'accompanying Dirac delta functions
contdin functions with an explicit temperature dependence.

| The essentials of two-time Green—function’theory needed in our

analysis along with details related to‘the crystal and fleld 1nter-

actions are @fesented-in Sec. II. An-analysis of the system in the



e

harmonic‘approximaﬁion is giﬁen in Sec. IITI, and the lowest-order
damping coefficients are developed in Sec. IV. Section V is devoted
to the calculation of quartic contributions to the damping coefficient.
For continuity of ppesentation, we have placed the details of lengthy

decoupling analyses in the Appendices.
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IT. MATHEMATTCAL PRELIMINARIES

In this section, we (a) preéent a brief introduction to the
theory of tﬁo—timeatemperaturehdependent retarded Green's fﬁnctions
(two-time Green's functions), (b) express the linear electric suscepti-
biiity ténsor in ferms éf the Fourier transform of a two-time Green's
function, and (c) represent the anharmonic Hamiltonian (to quartic
terms) and the electric moment (to second-order terms) of an ionic
cry§tal in terms of phoﬁon creation and annihilaﬁion operators.

‘ A. Two-Time Green's.Functions |

.Kub05l5 in_a now classical paper, developed a general
statistical-mechanical scheme for calculating transport coefficients
(response functions) without the traditional use of Boltzmann's
equation. ‘HoweVér, it is ektremely difficult to evaluate Kubo'sv
_fespénse formulas directly. By establishing a connéCtion between
Kubo's fbrmulétion and field-theoretical Green's fUnctions,l6
Bogolyubov and Tyablikovl7 develoPed.the method of two-tihe Green's
Ifunctions; .Hénég the meﬁhod of two-time Green's functions is a power-
Sful theoretiéal-tool which can be used to ascertain important physical
information in response related problems. The two-time Green's |

" function is define_d'byl8

G(t - t') = ~-ie(t - t")([A(t);B(t")])
- (a); B())) = olas B) (2.1)
where | |
1t -1 >0
o(t - t') = (2.2)

0; t - t' <0
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The causality condition, G(t - t') =0 for t - t' <O, clearly holds

because of the conditions imposed on ©. The canonical ensemble

(thermal) average is indicated by (---) and is defined by

(eee) = Ir(e = ---) B}_IBH 5 B = (KBT)’:-L . (2.3)
Tr e .
The operators ‘A and B are second quantized‘opérators in the
Heisenberg_représehtation.» The trace is denoted by‘ Tr; KB and T
are Boltzmenn's constant andvabsolute temperature, respectively. The
Hamiltonian of the isolated system undef investigdtionvis represented
by H. Throughout this paper, 4r is taken to be uniﬁy. |
leferentlatlon of a(t - t') with respect to t leads to
 the following equation of motion for the two-time Green's function:

idg(t - ') 8(t - 1) ([A(t), B(t')1) + ({[a(t), H], B(t"))) .

dt
(2.4)
The Fourier transform of G(t - t%)  is given by
o
G(E) = G(a; B)p = %; | a(r) &' ar (2.5)
. -0

‘vhere T =1t - t'. On taking the Fourier transform of Eq. (2.k), we

obtain (in the energy representation)

" EG(A; B)g = .%; ([A,B]>E'+ G([A,H]; B)E (2.6)
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where E = © + ie. The frequency of the ‘external perturbing.field‘is
w, and the adiﬁbétic switching-on of the perturbation is contfolled by
' e;
- B. The Susceptibility Tensor
»Zubarevls has Shbwn that the puv- compénent of thé linear
complex suécépfibility ténsor per unit volume can be_written in the

following form: -
Xw(w) = 2n (M M)y | ‘ (2.7)

.whére, M is the;éleqtric moment of the sYstem. 'The directions of

. the applied field and the response are vy and u respectively.

| _Onelcan readily establish the connection between ‘)Cuv(w).
‘and the differential (absorption) cross section for scattering by the
system in question.19 It can also be shown that the absorptibn

coefficient corresponding to ?Cuv(w) is given‘bygo
- w | ‘ .
auv<w) - Yy = Im )Cuv(w) . A (2.8)

C. The Hamiltonian
. The sysﬁem to be placed in a perturbing electric field is a
crystal with N unit cells each containiﬁg "rigid" ions. If periodic
boundary conditibns are'impoéed on the system,‘the lattice Hamiltonian
(to quartié anhafmpnicAterms) in terms of phonon creation and annihila-
'tiOn'oﬁgrafors is21

H = H = ,H +‘H = HO +H5 +Hl+ . (2'9)



where
H, = Z w, 8] 8, |  (2.10)
- (3)
H = Z v, AR Ay Ag AY (2.11)
}B)
and
=N (h) |
H, = Z C Vauhre A As Ap AL (2.12)
Q8,70 .

The indices o, B, Y)‘and p are used to represent both the wave

vectors k and polarization (branch) index j. For example, « = kJj

and B = k'j'. Capital A 1is defined as follows: Aa = 3:1 +a.
The quantities 'aj& and a, are phohon creation and annihilation
operators respectively. Note that [a ,a+] =8 and

- _ B 0,B. _
[%3’a8] = [%;, a;] = 0. The frequency of the normal mode of vibra-
tion is denoted by w_. The V(B) and V(h) _coupling coefficients

a
are Fouriér transforms of the third- and fourth-order atomic force

 constants respectively. They are given byl

v<3) | o 1 AB}UQ o(a,p,T)

Ot B, Y 6(23/2) 1\]1/2 (wa (*)B wY)l/E .(2'15)
and
()-l-) _ | 1 A(h)(G) 2(a,B,7,p) , (2.14)
QsB,Tsp )-I-(2)+N) (w w w v )]_/' .

B
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- The 0's -are force constants, and the V's are completely symmetric

in the indices. For example (diatomic cryste.ls),l’7
z) (3) G)x (3)
v = Vv = = - o,
a,pB,7 B,0, T V"O‘;"B:"Y V'a:“B;‘Y ( 15)
and
4 S I O E () |
— . = V = V . 2-
VG;B,.Y,D Vﬁ,a,Y,p BT BT P ( 16)
In addition to Eq. (2.15), we also require that Vgs)a ... =0.
Al

Translational invariance restricts A(B)(/() by the following
: r~

relation:l’7
. L K =k+k K
sB k) - | | o (eap)
' 03 ! k" ’
KAEE v

X

-+

I3
423

where fls is the,pfimitiﬁe translational vector of the reciprocai
' lattice. A similér condition is valid for Aﬁh)Qfg). The problem
- associated Wiﬁh mixed modes (polaritons) will no£ be considered, and
the Born-Oppenheimer approkimation is assumed to be #alid.
D. -The Electric Moment

The:electric moment of our crystal can be iepresented as a
'general'Taylor_exﬁansion in the nuclear displacements.v The lipear
term iﬁ this expansion is the1isual dipole moment. Higher-order terms
result from charge deformation produced during lattice vibration. The

pth compohent of the electric moment, to second-order, in terms of

S . ’ <1 . . 1
phonon creation and annihilation operators is

Moo= utam? -  (2.18)
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where
Y '_ |
énd

o

MT o= § Z m A, A g (2.20)
a,s Yo Y8

where Mu(o) and Mh(a,-&) are the usual expansion coefficients,l
® = kj', and the index O means Oj. The following symmetry relations

hold for the second-order expansion coefficient:
’ *
Mu(a,—s) = Mu(-t‘),oz) = Mu (<,8) . (2.21)

We neglect cbntributions related to the interactions of multipole

" moments of the ions with the applied electromagnetic radiation.
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I_II.. 'LINEAR SUSCEPTIBILITY AND ABSORPTION: H, = O

Thé‘physiéal_fact thatvhigherforder effects are generated from
lower-order processes is an intrinsic feéture of»the first-order self- |
consistent method of forming a closed set of Green-function equations.
This featurevis re?ealed by use of a direct analysis of the basic
equﬁtions for our méin results in Sec. V. Our-plan_of attack,'however,
isbto proéeed from thevsimpler lower-ofder problem to the higher-order
resﬁlts. Usihg thié'pian, we are able to (a) clearly explain the
basic mathematical method by solving a well-known problem and (b) show
that the first-order'self-consistént scheme is a viable method before
obtaihing results for 'M2 and . Hh contributioné to the damping
'coéfficientsj The harmonic approximation results in Egs. (3.7) and
(3.19) are_well.known;l |
| The complete expression for the uy component of the linear

complex susceptibility tensor is

X = Xp) +Xon) #X 0w e X G
where
| » | )
X - aratgtnty X - o0y g,
Xﬁi(w) - __27‘--G(Mu2; le),E’ and Xii(w), = e G(Mue; Mvg)E.
| J
(3.2)

3-The’related'problém of nonlinear susceptibility and damping (for

W - 0) has been treated.l’
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A. The One-Phonon Process
X ‘s o, 11,
In this trivial case, we must evaluate )va(w)' Here: the .
superscript on.the left of )C refers to the order of approximation
in the Hamiltonian, and the superscripts on the right refer to the

orders of the moments considered. For example,

O’X,ﬁ(w) = -2x G(Mul; M‘Vl)E
m(0) M (o) |
- ) P eed) 6o
0,0t ‘Yo Y -

, l_ +, ' ' 2 .
where G = G(ao, AO,)E and G = G(ao, AO,)E.

The equations for Gl and GE in the ehergy representation

are
1 1"' +. + . '
and
B? = R (lag,a g + 6(lag,H) 05 A (3.5)
= 21( o) Ol E O’ _O’ OIE‘ . '5

ron solving Eqs. (3.4) and (3.5) for Gl and G2 respectively and

substituting the result into Eq. (3.3), we obtain

.
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0. 11 _ _1\12 MuM© »~ 1
Xuv = 2 £ " E+w. E-o
O.

o A 0 0

i
nnz

ZM(O)M(O) N 1' N
. | pCﬂ“"wO/ w—u)o/“‘

+ ix[8(w - wy) _-' 5w + QO)V]. . (3.6)

We have used the Dirac identity,

. 1 0\ 1N - .
lim ( - > = _p(—) i 8(X),
e 0 X t1ie _ X

to obtein the final result in Eq. (3.6). The corresponding expression

for the absorption coefficient is

s

éll v (_lb_t_> ZM[S(w-wo)-s(w+w) .

(3. 7

The a.bsorptlon, 3w - u)o), consist_s of 8-functionfty'pe
'absorptlon llnes at W - W (no damping). This 1s th'e well-known
' 'result‘for'the absorption by a system composed ef? N independeﬁt
harmonie'osciliaters all of frequency Wy

represents a 'f)ole in the compiex frequency (energy) plane for negative

The -S(w + wo) term

':"wo. This latter condition is needed to satisﬁy the requirements of

. cauea.lity and frea.lvity of the response function (Kra;rmner-—Kronig

0 ll

relations){ Note that u (w) has no- exp11c1t temperature

dependence .
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: 0. . 12
_ B. Two-Phonon Processes and ~y " (w)

Here we are interested in determining the effecf of the

second-order electric moment on the absorption. We must evaluate

Q)Cla(w): Q}Cuv(g)’ and jx;uv(w) The reQuired expression
for Q)é}z(w) (one-phonon process) is
MV
0 12 o 2 M (0) M (a' -5')
wl) = = —75 (" +8°) (5. 8)
f 0,a7,8' (2‘*’0 Car Yt

1 + .2
where S = G(%? A A_a,)E and S =G(a.0; Ay A

_gt)g + The
required equations for st and s° are
1 1 3+ + . o
ES = 5 <[aof Aa'A-5'3>E + G([ao: Ho]’ AafA_sf)E (3'9)
and \
ES” —3‘—<[ AA.D + G([la ,H.]; A & _,) (3.10)
T 2x O’ ! B 0’702 T8 'E T )

On solvings Egs. (3.9) and (3.10) for s* and sgv respectively, we
obtain gt = s2 = 0. Hence >6Ln£w) C; similarly, )Cuvﬁu) = 0.
‘In obtaining this result, we have assumed that the thermal average

of an.odd number of creation or annihilation operators is equal to
zero. We thus conclude that the interaction between the‘first- and
second-order electric moments introduces no contribution to the

absorptlon coefficient in the harmonic approximation.

We now proceed to evaluate )(Lan), its basic equation is
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M“(a' b -3' ) _.Mv(a"_) '5")

0 220y 2x
Xuv v)= 16 ' ( o W )1/2
a,s' o",s" gt Yot Wgnr
X (28 +28° + ®) (3.11)
where
: Hl = 'G(a_ar 5863 A(X" A-E")E’ H2 = G(a_ar a_8c3 AOL" A-S")E P)
and . H5 ‘= G(aa' a-ﬁ'; Aa" A'B")E .

The appropriate equations for the H-type Green's functions are

8

and

‘where

R u)n

+ n

~

.6&,‘_

1 ey
?—n“H])E

E+w, + Vg (3.12)
.l : )
B 2 (3.13)
E +'wa,, - ws, .
1 v
= ([ J> -
C 2
' Jh
E - W, - wb, (3.14)
[nsl 681 6" 6_a al + (n + l) 6 1 8' Sa 61
" 88' n + (na' + l) Say*,_a' 85','6"] (5.15)
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([H2]>E =~ nac 60(',8" ‘58',(1" + (nOC' + l) 60[",-06' 6-5',6"

= (né" + l) b_ n B

8,8 ' - o 5 "og sal’a"

<[H5]>E ] (nSH + l) 6-5’,6" 6(1',-(1" + nOL" 5 l!,sg 5(1"511

+ (ns,, +1) 8 8

05'5"6 w+tn .y d
)

3',a a “aal

-6' ,8"

The susceptibility is

0%22((,;) a Z M (a,-8) M (Ot, 5)
td g “a 6
n, +ng+1 2(n8 - gj) n, +0g +1
,x Ero o, Fte -0 E-o -o ‘
o [+2 o ol o [}

The corresponding absorption coefficient is

' *
2 M{a,-8) M (0,-d
o2 (w) = Y 5, 0) 1, (0,9) (n, +n_ +1)
* v “Bec . W, Ve o 3]
) (.'X,s

¥ [8(w - v, - wb) - 8(w + w, + ma)] + 2(n - n ) 8(w + W,

U

W

(5.10)

(3.17)

(5.18)

Ny
J

(3.19)

We have restricted the calculation to the case of nonpiezoelectric’

crystals, Woy = W _ye The n quantities are the usual average-

-

- boson occupation numbers, n, = (exp B w, - l)-l. Here we have

- absorption away from w = Wy
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The summation over X in Eq. (3.19) indicates continuous
ébsorption.‘ This continuous dbsorption provides a mechahism for
explaining the presence of absorption peaks on the short-wavelength
side of the maiﬁ peak in the spectra of alkali halide crystais. That
is to say;_short—wavelength modes produce charge deformations that
‘result in absorption by a pair of short-wavelength phonons. The
explicit temperature dependence of qaﬁi(w) is contained in the
definition of the n's.

In homopéiar materials (such as diamond, silicon, and
.germanium),‘ M} = 0. Hence the intrinsic lattice absorption is
exélained by use of ME. This process is clearly demonstrated in
Bq. (5.19). |
' The results in this harmonic approximatipn are quite well
known. However;_it is important ﬁo ndté the straightforward manner
in which they were obtained. Note particularly the ease at which
the absorption coefficient for the second-order moﬁent, Eq. (3.19),
"was obtained without solving a complicated integral equation.22
Equation (3.19) has also been derived by use of the thermodynamic
Green's function‘meﬁhod which makes use of diagra.ms.5 The results

for higher-order contributions will be obtained using the same

procedure.
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IV. LINEAR SUSCEPTIBILITY AND DAMPING: Hy {0

o 3 11
A‘, One-Fhonon Process: )Cuv( w)

 The rlght-hand s1de of Eq. (3.3) is the required expression

vfor the susceptibility in this case. The equatlons for Gl and G2

now become

(8 +ug)et = - 20 s Z O) (&2’ v &) )

and

(B - w

S N .
& = 25 ) O (gt ee ). (n2)

- The higher-ordérrGreen's functions are giveﬁ by ”gl = G(a;' B, AO,)

2

G(a a_; AO’)E’ and g5 G(a_ ofa’ AO,)E. To solve the equations

p ap

for G and GQ, we must first find the appropriate expressions for

the g Green}s”functions. The decoupled equations for the g Green’s

functioné are

@+ oy + aet = 6190 (a, +n, + 1
B SURCEES RS (1.3)
(E + w, - mﬁ)gz‘ = 6Vé33 B(n - ng )G + 6V(33 5(%u - nB)G2
(&.%)

and
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( - w, - (;)B_)g5 = 6V0(45()) B(n + nB + l)G
+ 6V(3) (n, +n +.l)G2 . (b.5)
A Q,0,-p p | )

A symmetric decoupling scheme which consiSts.éf re%égﬁiﬁé oniy
diagonal terms ﬁas used to terminate the equations for the g. Green's
fUnctions.. This schéme is made self—consistent by terminating the
system of dépeﬁdent gquations in such a way that the original dreen's
vfunctibns-appear in the‘decoupled equations for fhe higher-order

Green's functions. For example,

R .. 1
‘<(a-alaf3a-v’ Ao")> ~ [nﬁ 5-0,6 + (nB + 1)56,—'Y S_Q,O,]G

(k.6)
on solving Egs. (%.:3), (4.4), and (h.5) for ’gl, g, and
g§ respectively, substituting the results into Eqs. (4.1) and (4.2),

and neglecting terms of order i/Ne,_the susceptibility becomes

M (0) M (0)
- W+ 20y 5Yll(n E)

2 ll(w) - N Z (+.7)
. 0. ‘”o
where -yt (n,E) = St (n w) - i 5Fll(n,w). The frequency shifts,

5A}l, and damping coefficient, 3I‘ll, are given respectively by
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_ ‘ e
11 B ‘ :
BA, (n,w) = 18 2: lvgzzo,al (na + nB + 1)  D er—qgiTTE'
| Ca,p : p
1 ‘ 1
- p W+ (k)a ¥ "(Lé) + 2(na ." nB) p W + wa - w6> ()4‘ 08)

and

+1)[8(w - W, - w )

B

)

_ : | : 2
51"11(11,9’)_ = 1Bx Z IVS‘)O,Bl {(n, +n X
B :

- 8w + W, + wB)] + 2(%3 - nB) s(w + ng— wB)}_. ) (4.9)
The corresponding absorption coefficient is

3 11@ B BN Z ¥ (0) 1, (0) ‘*’o 5rtt (n,E) -
o~ 2V + (ot~ D) 3 am)
(k.10)

0

Here'we obtain'the usual result of a damping coefficient which has an
explicit T dependence inbthe classical limit. However, a complete‘
analysis requires a detailed ﬁssessment of the implicit temperature
dependence of the V(B) coefficient. This resultrfor_ 5)(ii(w)
was first obtained by Vinogradov>) and Wallis and Maradudin.*

In cummary, we fiﬁd that M (HA = 0) leads to &-function-
 type absorption lines (no damping), and H5 removes the infinite
vsharpness (introduces frequency shifts and damping) of the‘absorption

lines. The second-order electric moment, M2, gives rise to
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continuous gbsorption which leads to secondary absorption away from
the main absorption peak.

B. One-Phonon Prbcess. 5)¢i2
: v

The required expression for the susceptibility is given in
Eq.'(5.8). The equetions for the S Green's functions in this case |

‘are

(E +wy)st = -3 z g?a, (X 4 252 4 &3) | (h.11)
V o,B ‘ - . N e
and -
(E - wo)32' = 3 Ei VS§25,0(81_+ 2s2_+ s5) . (4.12)

The higher-order Green's functions are defined as follows:

_ + + . 2
s G(a_a aiBf = G( A-a')E’ and

A A 6')E, 6’

3 .
s” = G(a aB’ A_S,)E.

The standard procedure of solving the appropriate equations
' 12 3 N .
for s, s, and s” and substituting the result into Egs. (k.11)
and-(h.lE)'is used to resolve this system of dependent equations. The
equations for the higher-order Green's functions are

+ l)Sl

(E +}q3 +~mg)él - %; ([sl]) GWéjg B(na + né

6vé33, B(n + ng 1)s | | (h.i})‘
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(B + oy =) = 3 (0D + 0] o (n, - np)st
RPEY (n - n)s® (h.1h)
a:O: BT B '

“and

e mw)e? = Loqsd (5) 1
(E .%x-f wB)s : EJT.([s ])E + 6Vd,0,-6(na + FB +1)8

(5) 2 , |
+ 6Vd,o,-g(na + n6 + 1)3 (k.15)
whefe
1 |
Ly = olng B g Bgpn (95 + 18y 5 By g
o, Qx,s' §_B’a, + (na + 1)541¢1’ 56,5'] (4.16)
o .
((s"Dg = n, qz,_s, B ot * (n, + l)qa,’a B g
~ (g + 108 ov By v T My B o By e (417)
and

v ([S ]>E — (n81 + 1)86’51 8a,a! + nat s_al )B Sv_a’st
,+ (%, + l)s_a,s, 56,-04' g Byt o B g .(4.18)

On solving Eqs. (4.1%), (4.14), and (4.15) for the higher-order
Green's functions, substituting the results into Eqs. (4.11) and
(4.12), and negleéting terms of order l/Ne, we find that the

susceptibility becomes
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o 5 v 1‘2. . . _ /2 v ‘ M (Q) M (a _51) |
Xy ) = J%y N;__.‘ e 1/2» .
e o : Co,anee ( W th' ws,) | {ﬁ;
: W flg(n E) .
- ' ' (.19
' X w02 - W+ 2y 3‘r‘ll(n,E) /- N )
v.rhe.r'e o
©)
flz(n E) ] V_a' 8.0 2(na, + ns, + l)
i . E -_wCX' - u)s,
(3) (3) . (3) B I
al,s',0 a',s' )( , +1) +,V-_<'x',6',o 2(ng, - n,)
) E ,+ (Ua' E + wa, - (,.)a' . _
(5) 8' 2(n ¢ - n8 ) _ ' | ‘ .
.* E+w,-w5 . - (s.20)

&

This result was previously obtained by Cowley’ using thermodynamic
Green's functiqhs;, The éorresﬁonding absorption coefficient is given

Mp(o) M-br(oc" -6' )

5Otw(m) = _% v/

| Q.,CX"‘ J6'

(éw W 6') r .

0 o'

[2w 3I‘ l(n; )f +. (w - w2)+ Pw" 2 ll(n,w)fa]i

(mO?-- W ) + o (w - u 2y > ll(n w)

(k.21)
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Here the form of the damping coefficient
3 11(w>

' e
where £(n,E) = £ + if,.

is the same as in the case for However, the absorption

coefficient is mod1f1ed by 2 (n, E)

N | 21, 3 o
C. Two-Phonon Pr : 5
. : ng v ocgssesv )cuv(w) AND )Cuv(w)
- . 3 2L
The.exprgsslon for. )va(“) is
5)(21(0))- = 2“ Nl @t +a1? + 1)
By (2w w )1/2
' o' ,al, 6‘ o' a’ Ygr
(4.22)
thére the._L_vGreen'siquctions are defined as follows:
1 + + 2 +
L o= G(g_a,- 813 Agrdp, LT = Gla_ 8 o5 Ag)ps a.nd»r
1 - G(qu. &_gi3 Ayr)g. The equations for the L Green's functions
are | ' /
(B e Y oo (et &l I3 A ) (h.23)
ot St/ T -OL' 81) 5 H 0! E - .
(B tw, - m: )L2 = G([é.+ a. H, 1; A )“v : (4.24)
u' 6'. - e _a' "6" 5-, Ol E ) d
and
(® - wy, - "‘)a??LB-_" = &llags 8_gs Bl Ao,)E'- ) (%.25)
TheICOmﬁlete expressioné for Ll + 2L2 + L3 and

Hl +’?_H2 + H3 “for H5 4 0 are derived in Appendix A. Hence we can:
obtain expressions for 5>Ciijw) and - 2g(w) The form of the

contribution to the damping coefficient is the same in both cases.
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. For simplic,ity,fwﬂe‘ _ﬂconsid"er the following approximate expression for

ﬁ;‘(q'.’ -5 ) Mv (Q’";"B' )

at Vst

ot \ns") |
3 21(n 5

w4+ W

n_, +n5, '+l

x al " 5 . (h.26)

W+ Wy t g + (n,E)

To. obta,ln Eq (l+ 26), we have neglected terms of order 1/1\T5/2 . The

correspondlng ex-pressions for the da.mping coefflcients are

(na_'.-r nB + 1) 7

5B (n,u) = -6(18:0 Z |§;g o

Y (3) L
X 80y oy +og) =186 3 [V g - my 4 )
E : :B ’ :

'.X:'S'(Q. tu, +u - 9’6’) -

-_1_81{ Z éf% 5" _;(;5na - 3nB'+l) 8(w + mﬁ W - (-"oc)

0B
+ 16x Z é)g 8,\ (3n *omg e ng, +3) B0 gy - gy )
ap

(n.27)



> 21(n w) = -3(1210 Z

X 8(w + %1 + wB - W ,)

+18nz <3(65f;8’l(5na'n5+%) 5(w+wd-w§—w,)

a,p
(5) -
+ 16 3 o p, " (5n
o

5080 z o 0,
+30180) ) “ga] (n,

w3k ) |3 5,{ (ny

,B 8!

2

32 ¥y (Bg o

and

2
(n,

(na+n +§) 8w +w,, - w

-6~

(3) f

2
OtBE' +n +§)

"o p

0]

a

n, + ) 8(w + wB - W o8

)

+n +1)8(w-w, -w, -

B a o p

+n + 1) 8w +w, +w, +w)

B o a B

+—;—) 5(w+wa, +wa-w)

B

+_33:) 8(w N wy * wd, - u)a)

- w )

B 3 o o p

(%.28)
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3.21, . |
: 2I‘5 (n,u)) = -187‘7‘ Z O(?g 8', (Bn + BnB + ;{)
s a,B.

+ 18“ Z l éBg 5:.’ (én, LtnB + —) S(w + woz‘_' wB - 1)

+ 18x Z /) ‘ (8n, - b, +2) 8w + 0

v, 3,8" - Wy - %1)
o,B

B

+1) 80 - u - = By« (1.29)

+l‘8:f Z (3) . (na g

ocsa'
a,B

Agaln, we flnd that the expllc1t temperature dependence of the damplng

coefflclent in the class1cal limit is T.
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V. LINEAR SUSCEPTIBILITY AND DAMPING: HA # 0]

2 hoo11 4L 12
A. One-Phonon Pr :
1 ocesses )Cuv(w) AND )C“V(w)

The equations forv Gl and Ga to quartic terms in the

Hamiltonian are

. .
1 “0,0
B rugde - - 2+ Gllag, H5 Ag,)p + 6llad, 115 &gy
(5.1)
and
' 2 0,0 . .

(5.2)

Qur first-order self-consistent approach requires the reduction of
terms involving vHu in Egs. (5.1) and (5.2) to the original G |
Green's fUnctions, AThis procedure must ﬁe followed even if one is
dealing with a model for H3 only since the above Hh terms are of

order 1/N. The H) terms give rise to the usual Hartree-Fock

“approximation to the self-energy. This reduction introduces following

%)all(w)‘

contribution £6 the :
( v

@ = Y u(0) 1, (0)
0

(5.3)

o o
| X ("02 - o+ 20 [ T(0) + P (n,E)]
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" where E:(O) = 12'-23 Vfg)a 0 _o(2n +1). Here the damping coeffi-
: ) . ) .

e e311, 3 12 |
cient for ‘)(uv(w) and )(u (w) remains the same, but' the

frequency shifts must be modified in the following manner :

it = T + 785 (m0).

hew
| The decoupled equations for the higher-order Green's functions

(I-I-3 .terms)'ih—Eqs. (5.1) and (5.2) to quartic terms in the Hamiltonian
are |
. S "',1'1' (3) _ ' 1
(E tuy bt R, lg = [6V B(na + ny + 1)¢
+ 6{&?26, (n +. nB + l)G + Rl2 g2.+ Rl5 g3] = o (5.4)
. a2 L (3) 1
(B + Qq f w6~ R, lg& = 621 0, _B(na - nB)G
+ 6“&53 B(qx —‘nB)Gg + R2l gl + R25 g3 S | (5.5)
and
s )
[E wﬁ. Wy = Rs ]g = 6Va,o B(n +nB+l)G
+ 6%&33 S(Hd ; né“+ l)G2 + R5l gl +_R5'2 g2 . o (5.6)

The details of the decoupling andvexpressionsvfor the R functions -

are given in Appendix B. The susceptibility is
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: w = ‘: 0 . 1 . : .
7(41 oy = N Z M ( )' M (0) N g £(0) + hYJ‘l(n,E)])

0 0
(5.7)
where |
: e 2. n_ + n._+ 1
""laE) - 1 @ B
: . L -a,O’B E W - W R 5
; p B 73
’ 5 +n ;_l.. ~ 2(n, - n)) '
- . o B ‘ T + . & B 5 v e (5.8)
E + Wy +_wB + R E+w, -w - R2 '

1 a B

The frequency shifts, b ll(n w), and damping coefficient, uFll(n,m),
can be obtained in the usual manner. The expression for the damping

coefficient is

l&ll(n u)) ' 1831, Z | 52)0 B‘ {(n +n + 1)[8(w - w, - wB _ R}B)

a,p

- 8(w + %i,+'Q

B

+ R+ 2y = mg) (0 + oy - ug - R,")} +(5.9)

The damping coefficient for %k:ig(w) has the same form as that

‘given in Eq.(5.9).
By ﬁse of this approach‘ the introduction of Hh leads to an

. expression for the damplng coeff1c1ent which 1s different from the

prev1ously obtalned T (classical limit) expression. The essentlalb_

 difference between Brll and Mrllr is the pfesence of the R
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functions in the'argﬁments of the 5—functions»in Eq. (5.9). The
’R _fﬁnctions have explicit temperature dependence-
‘ RPN 22
. Two-Ph : b
~B. Two-P epeneProeesses )Cuv( w) AND ( )
The expression for the damping coefflclent associated with
u 21, L 2 |
(w) (w).

)<’ is the same as that for ‘)ﬁuv

important to note that %jcé (0) 1is at least & factor of Nl/2

'However, it is

larger than . w The equations for Ll,, L_, and L3 to
\ 7¢uv : _ :

quartic terms.in the Hemiltonian are

(EV + wat + wsv)L = G([ +-C¥' aﬁv: H 13 Aol)E |
ro(lal, al,, B15 AL, | (5.1k)
(E + Wyt T ‘*’6.1).1"_ = G([a’fal a‘_su H5]’ YAQ')E
+ G([afa| a‘_agJ H)_'_]; AO')E A (5‘15)
‘and
R e R : .
(E ‘.T Wyt v(,l)ﬁt).L = G([a‘av a'_bn HBJ: Aol)E

We must reduce the Hh terms to the orlglnal type Green's. func-

" t1ons and wrlte equatlons (to/quartlc terms in the Hamiltonlan) for the

‘ﬂ hlgher -order Green s functlons generated by the H5 terms. The

vequatlons for the_ L Green's functions become



(B +uy +og + BT = a(laly, ag,, H) Aor )
2 .2 -
- (R L+ R L3) - (5.17)
(E + wyr = g = Ry )} A G([aqu, &_g1s H ] AO,)
ﬁél Lt o+ §23 =i (5.18)
| ' '

and

e e -
(& - iy =g = KW = 6llags ages 5 Ap)g
~1.1 ~2:.2 - :
L +R, L -~ 5.1
5 L7 +Rg L7 | »(5_9).
: where'
~ees Q- 8! L oo
R =R LI .,v Rooo - R-.a ) and
1 |8 o 2 2 lg -8’
~ BRI -
R-oo - R_-o. .
3 ;5 Bﬁw

The resolutlon of the higher-order Green's functions in Eqs.'~
‘(5 17), () 18), and (5 19) is accomplished in & manner s1m11ar to that

“used in Appendlx A._ The required change is the addltlon of a term

1nvolv1ng HM to.the equations for the I generator Green's functions.

The reduction of these Hh terms in the equations for the I Green's
functions gives rise to a damping coefficient of the same form as in

(5.9). That is to say, the damplng coefficient for ’&)Cii(w)'

L 22(u)

and >va contains an explicit temperature dependent argument
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for the accompanying S—functions.v It is therefore clear that the

important contribution of Hh to the damping coefficient is

kr;l(n,m) since u)iii(w)g” is at least a factor Nl/2 larger than
b 21 . | b 22,
N )cuv(u): ~and at least a factor N larger than Z)CHV(w).
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VI. DISCUSSION

In.thié paper, we have (a)‘presented‘the‘details of a first-
order self—consistent metﬁod for developing a cloéed system of Green-
function equatlons, (b) used this method to show that the contrlbutlons
of M2 and Hu to the damping coefficient can be treated in a way
that is consistent with lower-order calculatlons, (c) made unnecessary
aiscussions concerning which diagrams to include or exclude, (d) circum-
vented the inherent diffiéulty associated with thé‘use of arbitrary
expansion parameters in the Hamiltonian, and (e) demonstrated the
impact.on the final results of each approximation made.

The main results are (a) the derivations of the expres31ons

for the damplng coefficients associated with 2)$uv(w) and

u)ﬁij(w) and (b) the comprehensive analysis of M2 and H) béontri;
butions to the‘damping coefficient. It is shown that the damping
“coefficients ésédciated with‘two—phonon‘processes are much smaller.
than»those‘for3oné—phonon processes. The derived expressions for the
various damping coefficients are valid for the whole temperature range.
The expression for Arll(n,w) contains &-functions with explicit
temperatﬁre‘dépendent arguments.

In the classical limit, we find that 5P (n,w) is proportional
t0 IV<))| T which is the same as prev1ously derived results.>>’ 2k
However, our expression for MF (n,w) is proportional to
(fv(B)[ 2 {v(u)i 2)% whichdiffers from the previously obtained T
dependent expression in the classical limit..6’7 Our result for the

‘quartic contribution is therefore in qualitative agreement with

Mooij's experimental results for kBr..
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If the Gfeen-function eqﬁatibnsrare decoupled so that a T?
(¢1&ssical liﬁit;;g@érﬁig'contxibution) eipieésiqn iS'férced, it has
b:ee‘n‘ shown_ thg.t_ this'co’hfribution is incbnsis_vtent with th’e_ order §f |
~ the approximatidn'ﬁsedviﬁ the overall calculatidn;lq.-Moreover, this

contribution has_been shown to be negligible in comparison with the

‘bcubic contribution.lO
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APPENDIX A.

This Appendix is devoted to the details leading to the solution

of the equations for the L Green's functions. The higher-order

Green's functions in Egs. (4.23), (b4.24), and (4.25) reduce to

G([a t 3619 H ] AO') = '6 Z V(j) 8,(ﬂl + 52 + 23 + Eh)
@P (A.1)
| | @,p
- (zl + 82+ z{“)] - (A.2)
G([aa, 8 _g1o Hs 13 Ao,)E = 6 Z v(3) 8,(1& + 146 P 58) .

(4.3)

The £ higher order Greén!s>functibns»are given by

, o+ + S+

‘ . 2 ' + . ., .
o= G(a*a a—a"a—B?on')E’ b= G(aaz' aB & o AO')E
(A.4)
3 + + b
£ = G( - %o —OL"-AO’)E’ £ = G(aa a__ 3-57 AO')E
and
5 . . 6 :
£’ =c(a_, 8, a 8’ Agi)gs & = G(a.B o By Agt)
(A.5)
_ 8 .
27 =G(a., & 8y O')E £ (aa &yt aﬁ§ AO:)
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Thé solution dfjthe eéﬁationé féf the £ Green's functions can.
bevgenerétéd from.fhe-éolution of thé eqﬁaﬁions for four generator
Green's funcfions; :The gehefator Green's functions will be denoted

by I; their equations are -

(@ vy vy v - ole] ) o), %1 Ao') - we
(B +u + w3_"92)1, == ¢([a; &, a5, H, 13 Ao.) @)
v . SR 5 v([I5]>E N
. (E i+ u)2 —_Ql - wB)I = '—;"'— + G([al‘ag &5, H5], AO')E (Aa8)
and v
(& - wi.- wé -'93514- = olle; 8, 2, K Aodg O (A.9)
whefe
<[12]>E’ = '[(n * 1)53 o 81 1ty By o By 3 | (A;lO)
Cend
<[15]>E"- = n2 :52-,5_:507,1 +n, 8, 7&30,,5 . | o (A1)

The decoupling, of thé;higher-order Green's functions in the equatioﬁs
v'for'the ‘I Green's functions leads to thé-followingvresults:

e ke 1.1 . .32 .2
 G([§l1a2la52;H5J,vAo,)Evvz L+ 0L . o (Afle)
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where
f5l = -j[v(j). H(n +n +E)5 +V(5) (n;, +n, +3)8
| 1,20 T2 T3 T a3 3 3%,
b
+ Vé?) 5,(n + n8 + —-)8 o + Vé?{ _g (nl + n3 + 3)82,_@,
(3) 2 v(3) L
+ V5 o 5(n +ng + 5)51’5,. + 3,2,_5, (n2 + ng + 5)151,_(1, (A 13)
and
32 (5) (3)
f = )[V 6,(n -i-n2 + )f;3 o V5 1, 5,(n + ng + )82 o
4+ V§5g 8,(n + n3 + —-)Sl ot V(B)2 l(nl + n2 + )85 8t
(3) o 2y (3)
+ Voz',3 1(nl + n, + 3)52’5, A 5,2(n + n3 + )sl 8' (A.1h)
| o E 21 22 2 |
G(lay 8y 85, HyJ5 Agi)g ~ £ LT+ LW +f 512 (4.15)
-where
21 (5) : _ 1 (3) o - Lye
to .= 3[" oL, oy =y #3080 + VT, gr(By ! 3085,
(3) (3) |
+Va,,1’_8,(n3+l)8 AT 23(n -n + )51 5!
(3) _1 (3) .
+ VS,_Q _5,(1'1? - n} 3)81 __al o+ va!’5 8! nl 81’2] (A’l6)

o
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(3)

1
= -B[V 2 6' (n = nl = 3‘)5 al l 3(n + n} + )82 -5!
. . ’ ,
| (3) . ) !
“ - IN 1, 67 2(n5 + 1)6‘2’5 + V3 o, 6,(n2 ng 3)61,—a'
G) woem ol ev® oo L1
* Va' 1,-0(m -1y )63 5" V3, o{n, - n, 3)_5_1,6'
G I by (3) | |
+ Vl 5,8 (n + n5 + 5)62)(1, + QY 3,-8" 61 2] (A.17)
a.nd.
) f25. = —3[V§3i 6,(n + n3 + —)82 oc' + Vo(t?zl,ﬁ(nl + nﬁ)aé,_s,
() (3) ‘
: + VOL','j’, 6! nl 61 2 l 5, (n + 1)62 3 (A,l8)
| 'G(.[a‘l 3, Hy ] O.) ~ 'f_ll T SN LI (A.19)
’ whére
1 (5)*% (3)*
f - 5[Vl 5 51 (n +.1n )6 2va1’3 l 52 6'
(3) ‘ (3) (5) |
Vg ,-1, 5(’“ ‘n;:e - 2)62 ,8" 6’ 1,8t 1,03, a') %2 a1
+3) s e vld) oLy A20)
" " 2,5 * ot 5,51 (% * 308 0) (8.20) -



e

By +ny B ot 5y B
+ 2V(5) ,-5' ng 52,3 * Wg?)Q 5(n ) n ' %)511'5'
+ Vo(t?f 3' -8 2(n2 + %)181',.2 NN LA
v W) 8,(n = n} +_.)51 e v(5) s, ‘l(n . ) 8 o] (A:21)
and |
P13 5[v(5)l  8,(n - nl + 1)55 ot V(523 RO )8y o
| + Vé?z 5,g(n n, - ) et V(3) ,2(52 ‘ “1_' %)83,-6'
ol S +_) ey 1" sl )

The decoupling ofvthe’final generator Green's function is

G([a a, 8y H ] o,) f02 L2 210 ' (a.23)
where
. by
f02 = B[V(B) -1, 2(1’1 + n2 —)65 8' + V({)_g 3(1'1 +'n5 + 3)_81’_
(3) o G)* . 2
ORI R )82 5 " Ve SR UG/
4 Vg?i 6'(nl + n5 + 3)62,a' + V§3% 6’(n + n3 + ) 1, a,] . (A.2h)




S

and

0
'.f 3 = 3[V(3) 5,(n + n, + —)63 ot t gBi 5'(n + n5 + )62 a'
* V§52 6'(n M )61 ot V(E)- 1,200 * 8 ¥ %)63;-6'
(3) Nyt )0y g * V(i)-i,-z(ne tns )0 gl

for

exe

the

1,5 F g 4 3)
(A.25)

. We are howcin a position to obtain the solution of the equations
the generator,  I, Green's functions. Extreme care must be
rcisedehen-dealing with the coefficients of Ll” and L5 In

se cases, one may . obtaln an apparent zero because of the symmetry

propertles of the V(B) coeff1c1ents This s1tuat;on may be resolved

by

interchanging an index in V(3) with an index in the accompanying

s-function. The solutions of the equations for the I's are

_;1. - 2, 2 5)L + f32 2 S (A.26)
° - dz(l,z;a)-; Y,2 3)L + £ (l 2,5)L + f23(l,2,5)L
v»(A.27)
P P25 ¢ et « 22,2512 + £9(1,2, 517
| . (a.28)

1= ‘fO?(l,é,s)L2*+ £3(1,2,5)1° ‘\ B (A.29)
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whefe
51 z) = £
The other f"'(’ ) are defined in a similar manner. The d's are
defined by
o) - Uy « Ses) (e
: 1,2,3) = — - an 1,2,3) = - pa)
E +‘wl.+ wB vwe K E +vw2 .'wl w3

: Equations‘(h;EB), (k.24), and (4.25) now become

[E + uyy + g *+ 3Yil( Bt - o -FP -FP Y (a0)

-where

3 2l<n B) - 6 Z ) 5.,|rf31<_<x,’ o, -p) + i, B, )
21(—5, o o) + e, o, )] (A.31)
‘Fle = 6 Z (5) 5'[.:632(.'(}: "d’: "3)"" f22('a": B -Ot) E

Pt P, o, )] ()
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: FlB = .6.5: éf% Bc[fEB(*x', B: -a) + f23( -B» a: ')
a,B '
1 - _ o
+ f 5(oz, ', g)l » g (A.33) _
and
D. = 6 E: é5g 6'[d (', B *?) +d (-8, a, <a')
+ @, o, )] . | (a.3h)
The equation for I° is
[E+u, - g " 3Y§l(n,E)]L2. - Do o2 (a3
where
3 l(n E) ,_» (5g 5'[f 2(%11'0', ‘B)—+ fl B, <, Q")

.:6
N s |
v,+ fl (a') B> q)'f fo_(a’ a','B)‘- fag(*m, *3:: 75)

- feg(*j': ﬁ:-%l) "fge(‘ﬁ) a,qu')‘- le(a, *i,: B)] ,,(A-56) |



A

Pl }‘_ ©) [, o', ) + £, <, @)

a 2B,8"

fll(a': -6, Q) - 'f5l('a; ', -B) - f-.zl('aig B, )

-0 ) - e, p)] )

Z v<5> 6.[f%wc, o, -p) + £ 5(5, <, a')

+ fl5(a', -B, @) + fOB(a, a', ) - f 5(«1', B, =)

- 3(-p, 0, ') - £2(a, o', B)). (a.38)
and
D = 3 S 55% 6'[6“‘2('0“_ a', .'5) + dB(B: 'd: O").
B .

+ d5(d': —B,—Ot) '_'d?('a'),B, "a) "dz('B: a, 'd')v' dB(O‘) —Ot', B)]

(8.39)

The L3 equation-réduces to

."[E - Wy T Wy - 3 Pl(n E)IL° = -D° - Pt gt o PR 8 (A.40)
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where
> "‘l(n,m - 6 Z ) 5,[f25(<x, o', -p) + £7(p, <, o)
1P, -8, a) + 22, ar, )] (A.k1)
: 351’1: -6 E: éB; 6,[f («x, al, -a) + £t (5{ o, o)
a,p - - ) :
s e, e, @)1 g (A.42)
F32 = -6 Z (5) 6'[f ("O‘: a', -p) +‘f12(5: <, o).
a,p - -
'4'f12(a', -8, a) + £22(a, ar, g)] | (A.43)
and_»
¥ o= 6y Vo) 8.[d (< o', -p) + d5(a, <, o)
S ap -

&', -, )l . (A

" The required expression for the combination of L's is



. 7 s)
1 2 5/ pt 2D2 D’ opt L . D2 ot
LT +2L + L = - X—'l-r+-}—(— + T X
1 2 3 172
oL el L P 2 2 4 opd 3 L
+ X + X » (A.+))
173 273
where
: 21
X = Bro, yug ¥ 371 (n,E)
Xp = Brog mvm ¥ 5 (w,8)
and
X - E~w., - wg, 5 21(n E)

W
Q

The method for solving the equations for the H-type Green's
functions is similar to that for the L-type Green's functions. The

results are

(E + Wyt Wgr p 0 21(n E)]H B I - (A.46)
[EV+ Gyt T Wgr F BYSl(n,E)]Hg' e o 23 B | (A.k7)
[E - w, - vy, o3 ¥, E)]H - - E - P (a8)

where



-)4_7_ v

el
Il

1V.1‘ 2 1,024
,‘ZﬁﬁgDE;'- c -‘-ZﬁﬁEJE, mm‘

3 1 3
¢ = - g g

On solving the equations for the H Green's functions, we obtain

' ; 1 2 &3 121 2 .12
Hl+2H‘2+Hj = - §_+)_2(_9_+}%_ L 2C FX ;c F
| ' 1 72 3 1 %2
_+ S R o & . @ 52 4 o o3 | (A'ug)
X, X ’ X X . . .
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APPENDIX B.
Here we present the details of the decoupling of higher-order

Green's functions generated by Hy. For the one-phonon cases in Egs.

(5.1) and (5.2), we obtain , \
G([ag, Hu]5vAo})E ~ - Y(o)(a + ng | (8.1)

and
a([ay, HMJ; Bodg ~ LONE ) (8.2)

where
Z(Q). =12 Z V(,_a ;, O(2n +1) . (83)

The eQuationé for the g-type Green's functions require the

following three decoﬁplings:

.
a([a, &g

o(la; oy, H1; O,) ~ R gl+R22g + RO & (2.5)
and
| | 11 .22 | -
6lla g agr Byl Ap)y = By @ B g +R7 & (8.6)
where
1 v{#) (4) |
R~ = ok LA ', 41(2 .+ 1) + hv oy B(2n + 3n‘3 + 1)»
a’

(B.7)

VR -NE Bydg ~ [Rll o Rl & 4 R15 21  (B.4)




Q@

-Lg-

2L Z.. v( )_a, B, B(2n , + 1) + vo(t)*?a’s, (na + nB + 1)
(B.8)
. (u) | (x)
12 , a, <t ,p,- 6(2nOL' + 1) + va ,8,-p (8na - lEnB_ - 2)
a'. '
| (B.9)
12 L, (h) ',B, B(2n rr - 12 Z cgzlf)-oc',a -oc(gnoz'"Ll)
a'
o(tuzoc,ﬁ’ (13na - 21+nB + 1) , | (B.10)
- Z él,*)_a,,a _a(28n y + 13) + véuza,s, (12n - l6nB + 2)
‘ at .
(B.11)
Ry : (B._12)
_ Z Voc';-oz oo (46n , +2L)
o '
(L’) (22n_ + 2bn_ + 13) | o (BTJ.B)‘

a -x,B8,-B" O ﬁ
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and

5o s 5 gl 1)
R =2 ) Va',-a',a,-a(gnoz' +1)
&

(%) N
+ Va,-a,ﬁ,-a(lgnoz * 16n

p

+1h) .

(B.14)
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