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Remarkable progress in the mathematics and computer science of probability has led to a
revolution in the scope of probabilistic models. In particular, “sophisticated” probabilistic
methods apply to structured relational systems such as graphs and grammars, of
immediate relevance to the cognitive sciences. This Special Issue outlines progress in this
rapidly developing field, which provides a potentially unifying perspective across a wide
range of domains and levels of explanation. Here, we introduce the historical and
conceptual foundations of the approach, explore how the approach relates to studies of
explicit probabilistic reasoning, and give a brief overview of the field.

The history of probabilistic models of thought is, in a sense, as old as probability
theory itself. Probability theory has always had a dual aspect., serving both as a
normative theory for “correct” reasoning about chance events, but also as a descriptive
theory of how people reason about uncertainty---as providing an analysis, for example, of
the mental processes of an “intelligent” juror. The title of Bernouilli’s great book, Ars
Conjectandi [1], “The Art of Conjecture,” nicely embodies this ambiguity, suggesting
both a “how-to” guide for better reasoning, and a survey of how the “art” is actually
practiced. That is, from its origins, probability theory was viewed as both mathematics
and psychology.

From a modern perspective, this conflation seems anomalous. Mathematics has
shaken free of its psychological roots, and become an autonomous, and highly formal,
discipline. The philosophical thesis of “psychologism,” that mathematics (including
probability) is a description of thought, fell from favour by the end of the nineteenth
century. Moreover, the mathematics and psychology of probability have become
divorced. The normative mathematical theory has seen spectacular developments in
rigor, generality, and sophistication, going far beyond unaided intuition. Yet the
descriptive study of how people judge probabilities has focussed on apparently
systematic patterns of fallacious reasoning about chance [2].

This Special Issue is based on the premise that reconciliation is long overdue and
that the mathematics of probability is a vital tool in building theories of cognition. The
articles in this issue illustrate how probability provides a rich framework for vision and
motor control, learning, language processing, reasoning, and beyond. Moreover,
probabilistic models can be applied in various ways---ranging from analyzing a problem
that the cognitive system faces, to explicating the function of the specific neural
processes that solve it. Rather than advocating a monolithic and exclusively probabilistic
view of the mind, we suggest instead that probabilistic methods have a range of valuable
roles to play in understanding cognition. We hope that this Special Issue will help further
inspire researchers in the cognitive and brain sciences to join the project of illuminating
cognition from a probabilistic standpoint; and encourage mathematicians, statisticians
and computer scientists to deploy the recent remarkable conceptual and computational
armoury that they have developed to help understand cognition.

The ubiquity of probabilistic inference

The cognitive sciences view brain as an information processor; and information
processing typically involves inferring new information from information that has been
derived from the senses, from linguistic input, or from memory. This process of inference
from old to new is, outside pure mathematics, typically uncertain. Probability theory is,
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in essence, a calculus for uncertain inference, at least according to the subjective
interpretation of probability (Box 1). Thus, prima facie, probabilistic methods have
potentially broad application to uncertain inferences from sensory input to environmental
layout; from speech signal to semantic interpretation; from goals to motor output; or
from observation to inferring regularities of nature.

Probability has, however, only recently become a major focus of attention in the
cognitive sciences. One reason is that the field has often focussed on computational
architecture (e.g., symbolic rule-based processing vs. connectionist networks), rather than
the nature of the inferences, probabilistic or otherwise, implemented in that architecture.
A second reason is that formal approaches to uncertain reasoning in psychology and
artificial intelligence have often been studied using non-probabilistic methods, such as
default logics, non-monotonic logics, or various heuristic techniques. A third reason is
that probabilistic methods have typically been viewed as too restricted in scope to be
relevant to cognitive processes defined over linguistic structural descriptions, logical
representations, and networks of interconnected processing units. These restrictions have
been substantially reduced by remarkable technical progress in the mathematics and
computer science of probabilistic models (e.g., [3]).

The focus in this Special Issue is modelling cognitive abilities using such
sophisticated forms of probabilistic inference. The term “sophisticated” is intended in at
least two ways. First, the knowledge and beliefs of cognitive agents are modeled using
probability distributions defined over structured systems of representation, such as
graphs, generative grammars, or predicate logic. This development is crucial for making
probabilistic models relevant to cognitive science, where structured representations are
frequently viewed as theoretically central.   Second, the learning and reasoning processes
of cognitive agents are modeled using advanced mathematical techniques from statistical
estimation, statistical physics, stochastic differential equations, and information theory.

Early examples of sophisticated probabilistic models include Grenander’s pattern
theory [4] and Pearl’s work on Bayesian networks [5]. This approach has led to broad
advances in the design of intelligent machines, with implications for computer vision,
machine learning, speech and language processing, and planning and decision making
(see [6], for a survey). Applying these ideas to modeling aspects of human cognition was
not straightforward, despite pioneering work by Shepard [7] and Anderson [8]. Indeed,
classic work in cognitive psychology by Kahneman, Tversky, and their colleagues
suggested that human cognition might be non-rational, non-optimal, and non-
probabilistic in fundamental ways (see Box 2).

Yet it seems increasingly plausible that human cognition may be explicable in
rational probabilistic terms and that in core domains, human cognition approaches an
optimal level of performance based on the statistical properties of the domain.
Nevertheless, these new ideas remain unfamiliar to most cognitive scientists and it is
only in the last five years that they have started making a significant impact on the field.

Vision is the subfield of cognitive science where these models are most advanced.
Mumford [9], and Kersten and Yuille [10],  give overviews of this approach from
mathematical and cognitive science perspectives. Recent work [11,12] has used these
techniques to extend the classical ideal observer (who performs optimally) to complex
stimuli, using Bayesian decision theory, and show that these models can account for
many aspects of human visual perception. There have also been successes at formulating
the classic Gestalt laws of perceptual organization in terms of probabilistic models [13]
that relate to earlier psychological  models of grouping and scene perception [14, 15].
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Researchers have begun to explore grammatical models of vision using
compositionality  [16] and developed stochastic grammars for image parsing [17].
These provide links between vision and probabilistic approaches to language processing
[18 , 19] which are becoming increasingly successful at modeling experiments in
psycholinguistics [20]. Indeed, whereas hierarchical symbolic representations have been
viewed as problematic for probabilistic approaches, recent work in both vision and
language has focussed instead on taking these as the structures over which sophisticated
probabilistic models are defined. Specifically, determining which structure is most likely
to underlie image or speech data requires using Bayes’ theorem to combine a prior
probability distribution over structures, and the probability of the data, given each
structure. Computing this latter quantity amounts to ‘synthesizing’ the data, from
candidate structures. Thus, in both language and vision, ‘analysis-by-synthesis’ becomes
natural from a probabilistic viewpoint [3, 21].

An advantage of the probabilistic perspective is that it leads to techniques for
coupling different sensory modes and for integrating perception with planning. Recent
work [22-24] has built on theoretical studies [25] to model the integration of visual and
haptic cues, yielding good fits with experimental data. Stankiewicz et al [26] have made
use of modeling by Kaelbling et al [27] to design an ideal observer model for how
humans navigate through mazes and demonstrated that this model fits data where people
navigate mazes in virtual reality.

More recently, these ideas have started making an impact in causal learning and
inference. This work has built on artificial intelligence approaches to probabilistic and
causal reasoning using Bayesian networks [5, 28, 29].  Cheng’s causal power model
[30, 31] explains people’s judgements about the strength of causal relations,as
essentially a form of parameter estimation in a simple Bayesian network.  Tenenbaum,
Griffiths and colleagues [32-35] show that judgments about causal structure – which
variables are causes of which other variables – could be explained using Bayesian model
selection among a set of candidate Bayesian networks of the same class.  Gopnik and
colleagues [36] argue that children’s causal learning could be modeled in this way.

Many other cognitive abilities may be explicable within this framework. How
people learn the forms and meanings of words from linguistic and perceptual experience
has been the subject of recent work [37-40], which draws on, and advances, state-of-
the-art techniques developed in information retrieval, computational linguistics, and
machine learning [18]. In earlier, related work, Anderson [8] and Shiffrin and Steyvers
[41] considered how people form long-term memories, and prioritize the retrieval of
memories, as a function of the statistics of their experience with the relevant events.
Work on concept learning by Tenenbaum and Griffiths [42-44] showed that many
phenomena of inductive generalization and similarity could be explained in terms of
Bayesian inference over a hypothesis space of candidate concepts, on the assumption that
the observed examples of a concept are a random sample from the concept’s extension.
In reasoning, work by Oaksford and Chater [45, 46], McKenzie [47, 48], and Krauss,
Martignon, and Hoffrage [49] helps explains why people use simple heuristics for
certain judgment and decision tasks as approximations to Bayesian inference. This
approach relates to theoretical analyses [50-52] showing that simple heuristics can be
sometimes serve as surprisingly good approximations.

Finally, studies of the temporal characteristics of human causal learning [53]
suggest relationships to stochastic differential equations. Causal relationship models can
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be learnt by variants of the Rescorla-Wagner associative learning model. The equilibria
of this model have recently been classified [54] and the convergence rates analyzed
using stochastic approximation theory [55]. Related techniques have been applied by
Dayan and colleagues [56, 57] to analyzing the dynamics of animal learning behavior,
and to understanding connections between basic human and animal learning processes.
This approaches promises to provide a deeper understanding of learning phenomena that
have typically been viewed in purely mechanistic, associative terms. More generally, the
probabilistic viewpoint may help explain why the computational and neural mechanisms
of the brain have the structure they do.

Levels of probabilistic explanation

Sophisticated probabilistic models can be related to cognitive processes in a variety of
ways. This variety can usefully be understood in terms of Marr’s [58]  celebrated
distinction between three levels of computational explanation: The computational level,
which specifies the nature of the cognitive problem being solved, the information
involved in solving it, and the logic by which it can be solved; the algorithmic level,
which specifies the representations and processes by which solutions to the problem are
computed; and the implementational level, which specifies how these representations and
processes are realized in neural terms.

The probabilistic models and methods described in this Special Issue have
potential relevance at each of these levels. As we have noted, the very fact that much
cognitive processing is naturally interpreted as uncertain inference immediately
highlights the relevance of probabilistic methods at the computational level. This level of
analysis is focussed entirely on the nature of the problem being solved---there is no
commitment concerning how the cognitive system actually attempts to solve (or
approximately to solve) the problem. Thus, a probabilistic viewpoint on the problem of,
say, perception or inference, is compatible with the belief that at the algorithmic level,
the relevant cognitive processes operate via a set of heuristic tricks, rather than explicit
probabilistic computations (e.g. [59, 60]).

One drawback of the heuristics approach, though, is that it is not easy to explain
the remarkable generality and flexibility of human cognition [52]. Such flexibility seems
to suggest that cognitive problems involving uncertainty may, in some cases at least, be
solved by the application of probabilistic methods. Thus, we may take models such as
stochastic grammars for language or vision, or Bayesian networks, as candidate
hypotheses about cognitive representation. Yet, when scaled-up to real-world problems,
full Bayesian computations are intractable, an issue that is routinely faced in engineering
applications. From this perspective, the fields of machine learning, artificial intelligence,
statistics, informational theory and control theory can be viewed as rich sources of
hypotheses concerning tractable, approximate algorithms that might underlie
probabilistic cognition.

Finally, turning to the implementational level, one may ask whether the brain
itself should be viewed in probabilistic terms. Intriguingly, many of the sophisticated
probabilistic models that have been developed with cognitive processes in mind map
naturally onto highly distributed, autonomous, and parallel computational architectures,
which seem to capture the qualitative features of neural architecture. Indeed,
computational neuroscience [61] has attempted to understand the nervous system as
implementing probabilistic calculations; and neurophysiological findings, ranging from
spike trains in the blow-fly visual system [62], to cells apparently involved in decision



6

making in monkeys [63] have been interpreted as conveying probabilistic information.
How far it is possible to tell an integrated probabilistic story across levels of explanation,
or whether the picture is more complex, remains to be determined by future research.
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Box 1. Subjective probability in a nutshell
The mathematical properties of probability are relatively uncontroversial. But the
interpretation of probability is not. Most scientists are familiar with the “frequentist”
interpretation  [64]: that probabilities are limiting relative frequencies of repeated
identical “experiments,” such as coin flips or dice rolls.

Crucially, this interpretation is not in play here---in cognitive science
applications, probabilities refer to “degrees of belief” [65]. Thus, a person’s degree of
belief that a coin that has rolled under the table has come up heads may be around 1/2;
this degree of belief may increase rapidly to 1, as she moves her head bringing it into
view. Her friend observing the same event, may have different prior assumptions and
obtain a different stream of sensory evidence. Thus the two people are viewing the same
event, but their belief states and hence their subjective probabilities may differ.
Moreover, the relevant information is defined by the specific details of the situation. This
particular pattern of prior information and evidence will never be repeated; and hence
cannot define a limiting frequency.

Probabilistic analyses of perceptual, linguistic, learning or motor tasks typically
follow this pattern—the issue is to understand what is believed, and what can be inferred,
about the objects in the environment [3], the future state of the motor system [66], the
message being conveyed [21], or the regularities linking cause and effect [67, 68].

Why should degrees of belief follow the laws of probability? There are a range of
convergent justifications, but two of the more notable are Cox’s axioms and the “Dutch
book” argument.  Cox proposes several qualitative axioms that any reasonable measure
of degree of belief should satisfy, and it can then be proven that only probability
measures satisfy those axioms [69]. The “Dutch book” argument suggests that any
violation of the laws of probability leads to trouble, e.g., combinations of gambles that
each appear fair but which, together, guarantee a loss [65].

The subjective interpretation of probability generally aims to evaluate conditional
probabilities, Pr(hj|d), i.e., probabilities of alternative hypotheses, hj (about the state of
reality), given certain data, d (e.g., available to the senses). By the definition of
conditional probability, for any propositions, A and B, the probability that both are true,
Pr(A, B), is by definition the probability that A is true, Pr(A), multiplied by the
probability that B is true, given that A is true, Pr(B|A). Applying this identity, simple
algebra gives Bayes’ theorem:

)Pr(
)Pr()|Pr(

)|Pr(
d

hhd
dh jj

j =

The centrality of Bayes theorem to the subjective approach to probability has led
to the approach commonly being known as the Bayesian approach. But the real content
of the approach is the subjective interpretation of probability; Bayes’ theorem itself is
just an elementary, if spectacularly productive, identity in probability theory.
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Box 2. How can probability theory be hard for a probabilistic mind?

Terming probabilities as degrees of belief invites comparison with the folk psychological
notion of belief, in which our everyday accounts of each other’s behaviour are formed.
This in turn suggests that people might reasonably be expected to introspect about the
probabilities associated with their beliefs. In practice, people often appear poor at making
such numerical judgments; and poor, too, at numerical probabilistic reasoning problems,
where they appear to fall victim to a range of probabilistic fallacies [2]. The fact that
people can appear to be such poor probabilists may seem to conflict with the thesis that
many aspects of cognition can fruitfully be modelled in probabilistic terms.

Yet this conflict is only apparent. People struggle not just with probability, but
with all branches of mathematics. Yet the fact that, e.g., Fourier analysis, is hard to
understand does not imply that it, and its generalizations, are not fundamental to audition
and vision. The ability to introspect about the operations of the cognitive system are the
exception rather than the rule---hence, probabilistic models of cognition do not imply the
cognitive naturalness of learning and applying probability theory.

Indeed, probabilistic models may be most applicable to cognitive process that are
particularly well-optimized, and which solve the probabilistic problem of interest
especially effectively. Thus, vision or motor control may be especially tractable to a
probabilistic approach; and our explicit attempts to reason about chance might often,
ironically, be poorly modelled by probability theory [70].  Nonetheless, some conscious
judgments have proven amenable to probabilistic analyses, such as assessments of
covariation or causal efficacy [33, 47], uncertain reasoning over causal models [71,
72], or predicting the extent of everyday events [73].  But unlike textbook probability
problems, these are exactly the sorts of critical real-world judgments for which human
cognition should be expected to be optimized.
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