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ABSTRACT 19 

The water-soluble, biotin (vitamin B7), is indispensable for normal human health. The vitamin 20 

acts as a co-factor for five carboxylases that are critical for fatty acid, glucose and amino acid 21 

metabolism. Biotin deficiency is associated with various diseases, and mice deficient in this 22 

vitamin display enhanced inflammation.  Previous studies have shown that biotin affects the 23 

functions of adaptive immune T and NK cells, but its effect(s) on innate immune cells is not 24 

known. Because of that and because vitamins such as vitamins A and D have a profound effect 25 

on dendritic cell (DC) function, we investigated the effect of biotin levels on the functions of 26 

human monocyte derived DCs.  Culture of DCs in a biotin deficient medium (BDM) and 27 

subsequent activation with LPS resulted in enhanced secretion of pro-inflammatory cytokines, 28 

TNF-α, IL-12p40, IL-23 and IL-1β compared to LPS-activated DCs cultured in biotin sufficient 29 

(control) and biotin over-supplemented media. Furthermore, LPS-activated DCs cultured in 30 

BDM displayed a significantly higher induction of IFN- γ  and IL-17 indicating Th1/Th17 bias in 31 

T cells compared to cells maintained in biotin control or over-supplemented media. 32 

Investigations into the mechanisms suggested that impaired activation of AMP kinase in DCs 33 

cultured in BDM may be responsible for the observed increase in inflammatory responses. In 34 

summary, these results demonstrate for the first time that biotin deficiency enhances the 35 

inflammatory responses of DCs. This may therefore be one of the mechanism(s) that mediates 36 

the observed inflammation that occurs in biotin deficiency. 37 

 38 

 39 

 40 
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INTRODUCTION 41 

Biotin, a member of the family of water-soluble vitamins (also known as vitamin B7) is an 42 

indispensable micronutrient for normal human health due to its essentiality for cellular 43 

metabolism, proliferation, and survival.  Marginal and severe degrees of biotin deficiency lead to 44 

a variety of clinical abnormalities that include neurological disorders and dermal abnormalities 45 

(40, 45).  Such deficiency/sub-optimal levels occur in a variety of conditions including 46 

inflammatory bowel disease (IBD) (1, 12), inborn errors in biotin metabolism (multiple 47 

carboxylase deficiency); (10), and chronic alcoholism (6) among others. At the metabolic level, 48 

biotin acts as a co-factor for five carboxylases that are critical for fatty acid, glucose and amino 49 

acid metabolism (27, 40, 45).  Important roles for this vitamin in cellular energy metabolism (i. 50 

e., ATP production) and in regulation of cellular oxidative stress (24), as well as in gene 51 

expression (where expression of over 2,000 human genes appears to be affected by biotin status; 52 

(36, 38, 40) have also been reported recently. Emerging evidence has also been accumulating 53 

showing a role for biotin in the functions of immune cells (20). In reference to the latter, biotin 54 

was shown to be important for the activity of human natural killer (NK) lymphocytes (32), for 55 

the generation of cytotoxic T lymphocytes (CTLs) (19), and for the maturation and 56 

responsiveness of immune cells (4). Defects in T cell and B-cell immunity have been reported in 57 

patients with multiple carboxylase deficiency, a condition associated with biotin deficiency (10). 58 

Increase in the levels of pro-inflammatory cytokines, (TNF-α) and interleukin-1b (IL-1β) has 59 

also been observed in biotin deficiency (20-22). Our recent studies in mice with a conditional 60 

(intestinal-specific) knockout (KO) of the biotin transporter SMVT (product of the SLC5A6 61 

gene) have shown that these animals also develop chronic spontaneous intestinal inflammation, 62 

especially in the cecum (13) , presumably in response to the moderate degree of biotin deficiency 63 
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uniformly induced by defective biotin transport. From the above, we infer that biotin deficiency 64 

leads to significant metabolic disturbances and to immune dysfunction.  65 

The majority of the previous studies have examined the effect of biotin deficiency on the 66 

functions of adaptive immune T, B and NK cells (14, 37). Virtually nothing is known about the 67 

effect of biotin deficiency on innate immune cells such as dendritic cell (DCs). DCs are the 68 

primary antigen presenting cells and key to initiating and regulating an immune response (5). 69 

DCs are distributed throughout the body including below the epithelial cells lining the gut and 70 

are amongst the primary responders to infections (5, 29). DCs sense and capture pathogens via 71 

various pathogen recognition receptors (PRRs). Subsequently DCs become activated by 72 

upregulating the expression of costimulatory and antigen-presenting molecules as well as 73 

secreting pro-inflammatory cytokines. During activation, DCs migrate to the draining lymph 74 

nodes to prime and activate naïve T cells. The activation molecules and cytokines secreted by 75 

DCs have a major influence on T cell responses (16, 25). Exposure of DCs to ligands of all these 76 

PRRs results in production of cytokines that modulate the type of T cell response and functions. 77 

Upon interaction with DCs, CD4+ T cells can differentiate into a variety of effector and 78 

regulatory subsets, including classical Th1 cells and Th2 cells, follicular helper T cells, induced 79 

regulatory T cells and the more recently defined Th17 cells (16, 17, 25). The nature of the 80 

cytokines produced by DCs in response to various ligands dictates the type of Th cell responses.  81 

For example, IL-12p70 secretion by DCs polarizes towards Th1 cells while the production of IL-82 

23 along with IL-1β from DCs leads to the generation of Th17 cells (2, 3, 23). The cytokines 83 

secreted by DCs thus have a major influence on downstream inflammatory responses. Aberrant 84 

inflammatory cytokine secretion by DCs has been observed in many diseases including Crohn’s 85 

disease and rheumatoid arthritis (26, 44) among others. Accordingly, we speculate that 86 
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understanding the factors which can modulate the DC responses is likely to important in 87 

understanding the immune dysregulation in biotin deficiency.  88 

Vitamins have a profound effect on DC responses. For example, Vitamin A metabolite, 89 

retinoic acid as well as Vitamin D have been reported to induce tolerance in DCs (9, 35). Almost 90 

all studies have investigated the effect of fat soluble vitamins on DC functions and there is a 91 

scarcity of information regarding the effect of water soluble vitamins like biotin on DC function. 92 

Here we examined the effect of biotin status on DC functions. 93 

 94 

 95 

 96 

 97 

 98 

 99 

 100 

 101 

 102 

 103 

 104 
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MATERIALS AND METHOD 105 

Blood donors 106 

 Blood samples were obtained from healthy volunteers via Institute for Clinical and 107 

Translational Science (ICTS), UC Irvine. This study was approved by the Institutional Review 108 

Board of the University of California (Irvine, CA).  109 

Preparation of biotin deficient medium 110 

 DMEM deficient in B vitamins was obtained from Sigma. The media was supplemented 111 

with all the B vitamins except biotin.  Fetal bovine serum (FBS; obtained from Hyclone), treated 112 

with streptavidin beads to remove any traces of biotin, was then added to the culture medium at a 113 

concentration of 5%. Finally, biotin deficient, sufficient (control) and over-supplemented culture 114 

media were then prepared by adding 0, 10 and 100 µM biotin, respectively.   115 

Culture and stimulation of human monocyte-derived DCs 116 

 Monocyte derived DCs were prepared as described before by culturing the purified 117 

monocytes with GMCSF and IL-4. DCs (CD14-HLA-DR+CD11c+ cells) were collected after 6 118 

days (3). The purity of the DCs was > 95% as determined by the expression of CD14, CD11c 119 

and HLA-DR. DCs collected were washed and cultured in biotin deficient, control and over 120 

supplemented media for 72h.  For the last 24h, the cells were stimulated with LPS (100 ng/ml) 121 

and supernatant was collected and stored at -70°C until analyzed. Multiplex cytokine/chemokine 122 

detection was performed using Magpix kit (eBioscience) as per the manufacturer’s protocol. 123 
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 Control and LPS-stimulated DCs were stained for the expression of CD80, CD86, and 124 

HLADR (BD PharMingen) using specific antibodies (3). Analysis was performed with Flow jo 125 

(Treestar Inc). 126 

DC-T cell co-cultures 127 

 LPS-stimulated and unstimulated DCs were cultured with magnetic bead purified 128 

(StemCell, Vancouver, Canada), allogeneic CD4 T cells at a ratio of 1:10. After 6 days of 129 

incubation, the supernatant was collected and the secretion of IFN-γ, IL-10, IL-17 and IL-22 was 130 

assessed using multiplex (eBioscience). IL-22 was assayed using ELISA (RnD systems). 131 

Phospho AMPK and Total AMPK detection 132 

 DCs cultured in Biotin deficient, control and over supplemented media for 72h were 133 

stimulated with AMPK activator, 5-Aminoimidazole-4-carboxamide 1-β-D-ribofuranoside, 134 

Acadesine, N1-(β-D-Ribofuranosyl)-5-aminoimidazole-4-carboxamide (AICAR) (1mM) for 45 135 

min. Subsequently the cells were lysed. Phospho AMPK and total AMPK in the lysates was 136 

determined using specific ELISA kit as per the manufacturer’s instructions (RnD systems).  137 

Statistical analysis 138 

 Statistical analysis was performed using Graph Pad Prism. Within group differences 139 

between unstimulated and stimulated conditions were tested using paired t-tests. Values of p < 140 

0.05 were considered significant. 141 

  142 
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RESULTS 143 

Biotin deficiency has no significant effect on DC phenotype 144 

Biotin deficiency may alter the activation of DCs. Therefore, we investigated whether the 145 

up-regulation of DC activation markers in response to LPS were altered in biotin deficient (0 146 

µM) or over-supplemented (100 µM) DCs as compared to DCs cultured in control biotin (10µM) 147 

media. Stimulation with the LPS resulted in substantial activation DCs cultured in all biotin 148 

media (Figure 1). DCs cultured in all three media displayed significantly enhanced (p < 0.05) 149 

expression of co-stimulatory marker CD80 (Figure 1A), CD86 (Figure 1B) and HLADR (Figure 150 

1C) in response to LPS compared to un-stimulated DCs. However, the expression of CD80, 151 

CD86 and HLADR was comparable between DCs cultured at various concentrations of biotin 152 

both at the level of MFI as well as percent positive cells (Figures 1A-C). These data suggest that 153 

biotin levels (deficiency or over supplementation) have no significant effect on DC phenotype.  154 

Biotin deficiency enhances pro-inflammatory cytokine secretion from LPS-stimulated DCs 155 

Next, we investigated the cytokines secreted by stimulated DCs. After stimulation with 156 

LPS for 24h, supernatants were collected and assayed with multiplex to quantify cytokine 157 

secretion. In keeping with activation markers, stimulation of DCs with LPS resulted in the 158 

production of significantly enhanced (p < 0.05) levels of several pro-inflammatory cytokines 159 

including IL-6, TNF-α, IL-1β, IL-1α, IL-23, IL-12, IL-10 and chemokines such as CXCL-10, 160 

CCL-3, CCL-4 (Figure 2) in all groups. However, the level of the pro-inflammatory mediators 161 

was substantially different between LPS-stimulated DCs cultured in biotin deficient medium 162 

(BDM) compared to control medium. Compared to DCs cultured in control medium DCs 163 

cultured in BDM secreted significantly (p<0.05) increased levels of TNF-α (BDM ~500pg/ml 164 
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vs. control ~345pg/ml), IL-1β (biotin deficient ~53pg/ml vs. control ~27pg/ml), IL-23 (BDM 165 

~181pg/ml vs. control ~100pg/ml) and IL-12p40 (BDM ~4080pg/ml vs. control ~1842pg/ml) 166 

after stimulation with LPS (Figure 2A). LPS stimulated DCs cultured in biotin over-167 

supplemented medium displayed comparable level of these cytokines to controls except for IL-168 

12p40 which was significantly reduced in this group (p=0.02). IL-23 secretion was also reduced 169 

although not to a significant level (p = 0.7). 170 

In addition to the above cytokines, LPS-stimulated DCs cultured in BDM also secreted 171 

significantly (p < 0.05) higher levels of IL-1α, IL-6, CXCL-10 and IL-10 (Figure 2B) compared 172 

to un-stimulated DCs. Though there was no significant difference in the level of these cytokines 173 

between DCs cultured in BDM verses the control medium, nevertheless DCs cultured in BDM 174 

displayed higher secretion and increased significance levels for all these cytokines compared to 175 

control and biotin over supplemented DCs. For example, IL-1α levels were significantly (p < 176 

0.022) increased after LPS stimulation only in DCs cultured in BDM and not in control or biotin 177 

over-supplemented DCs (Figure 2B). CXCL-10 secretion was also significant (p <0.005) in LPS-178 

stimulated biotin deficient DCs verses biotin over supplemented DCs. The secretion of 179 

chemokines CCL-3 and CCL-4 was comparable between the three groups (Figure 2C). 180 

Chemokines, CCL-2 and CXCL-8 were not induced at significant levels (p > 0.05) after LPS 181 

stimulation in all groups (Figure 2C). In summary these data demonstrate that biotin deficiency 182 

enhances the capacity of LPS-stimulated DCs to secrete pro-inflammatory and Th1, Th17 183 

promoting cytokines and chemokines.  184 

Biotin deficient DCs bias the Th cell response towards Th1/Th17 185 
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Our own studies (3) as well as evidence from the literature indicate a key role for the type 186 

of cytokine secreted by DCs in controlling the polarization of Th cell responses towards Th1, 187 

Th2, Treg or Th17. High IL-23 and IL-1β favor IL-17 production from Th cells, while high IL-188 

12p70 favors IFN-γ production (16, 25). Therefore, given the distinct profile of cytokine 189 

secretion by biotin deficient DCs, we explored its effect on Th cell responses. DCs were cultured 190 

in medium with various concentrations of biotin and stimulated with LPS as described in Figure 191 

1. Subsequently, the DCs were washed and cultured together with purified, CD4 T cells for five 192 

days to allow differentiation of T cells towards Th17 or Th1.The results showed (Figure 3) that 193 

LPS-stimulated biotin deficient DCs induced significantly higher (p < 0.05) levels of IFN-γ, IL-194 

17 and IL-22 from CD4 T cells compared to biotin control DCs. Biotin over-supplemented DCs 195 

were comparable to control DCs. The secretion of IL-10 was also comparable between the 3 196 

groups. Altogether, these data demonstrate that biotin deficiency enhances the secretion of TNF-197 

α, IL-1β, IL-23 and IL-12p40 from DCs which biases the Th cell responses towards Th1/Th17. 198 

Biotin deficiency thus favors inflammation since these are all highly pro-inflammatory 199 

responses. 200 

Biotin deficiency impairs the activation of AMP Kinase (AMPK) signaling pathway in DCs 201 

The maintenance of cellular defense systems and removal of pathogens is an 202 

energetically demanding process that requires integration of multiple checkpoints to maintain 203 

immune cell energy homeostasis(28). AMP-activated protein kinase (AMPK) has emerged as an 204 

important regulator of inflammatory responses in immune cells including DCs (31). Given that 205 

biotin deficient DCs display increased secretion of inflammatory cytokines, we compared the 206 

phosphorylation of AMPK-α in un-stimulated and AICAR stimulated DCs from the three 207 

different biotin level groups using ELISA. AICAR is an activator of AMPK and was used as a 208 
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positive control. As evident from the results shown in Figure 4A, phospho AMPK levels were 209 

significantly reduced (p=0.025) in biotin deficient DCs compared to control DCs before 210 

activation with AICAR. Furthermore, activation with AICAR enhanced the pAMPK levels 211 

significantly in (p < 0.05) in both control and biotin over-supplemented DCs but had no 212 

significant effect on biotin deficient DCs (Figure 4A). The levels of total AMPK were 213 

comparable in all 3 groups both before and after activation AICAR. These results suggest that 214 

biotin deficiency impairs the activation of AMPK in DCs which in turn enhances inflammation.  215 

 216 

 217 

 218 

 219 

 220 

 221 

 222 

 223 

 224 

 225 

 226 

 227 
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DISCUSSION 228 

Previous studies have shown that biotin deficiency impacts the functions of immune function 229 

particularly those of NK and T cells (20). Our investigations into the effect of biotin on DC 230 

functions revealed that deficiency of this vitamin results in enhanced pro-inflammatory cytokine 231 

secretion from DCs. The DCs produce significantly high levels of TNF-α, IL-1β, IL-23 and IL-232 

12p40 which prime the Th cell responses towards IFN-γ and IL-17 producing Th1/Th17 233 

inflammatory cells (Figures 1 &2). This is in keeping with previous studies in which an 234 

enhanced secretion of TNF-α was also observed in murine macrophages cultured in biotin 235 

deficient (21). Moreover, biotin starvation is also reported to enhance the production of reactive 236 

oxygen species (ROS) (24). Our own results with SMVT KO mice (all of which develop biotin 237 

deficiency) (13) and with mice made biotin deficient via dietary means (39) also demonstrate the 238 

association between biotin deficiency and intestinal inflammation. Furthermore, both the IL-239 

12/Th1 as well as IL-23/Th17 responses though essential for generating immunity against 240 

pathogens have also been shown to play a major role in numerous inflammatory diseases. For 241 

example, excessive Th1 responses are associated with multiple sclerosis, Crohn’s disease, 242 

rheumatoid arthritis, and crescentic glomerulonephritis (15). A distinctive positive clinical 243 

response to very high dose biotin supplementation has been reported in multiple sclerosis (34, 244 

41). This reversal of clinical impairment has not been achieved with any other therapy to date.  245 

 Similarly, increased levels of IL-23/Th17 have been demonstrated to be of pathogenic relevance 246 

in a growing number of chronic inflammatory diseases (7). GWAS studies in humans suggest 247 

that Th17 cells have a major role in inflammatory diseases of the mucosal tissues including the 248 

gut, lung and skin (33). In this regard increased activity of IL-23/Th17 axis has been implicated 249 

in Crohn’s disease, ulcerative colitis and colon cancer in the gut (42, 46). Asthma, chronic 250 
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obstructive pulmonary disease (COPD) and autoimmune diseases of the lung also display 251 

enhanced activation of the Th17 pathway. IL-23/Th17 pathway is also considered a major 252 

perpetuator of skin disorders such as Psoriasis and atopic dermatitis(46).  Recent studies also 253 

suggest that in each of the Th17-associated chronic inflammatory diseases both Th17 and Th1-254 

like cells are found in the involved tissues (11). Thus the enhanced induction of Th1/Th17 cells 255 

by biotin deficient DCs may be one of the mechanisms of increased inflammation associated 256 

with biotin deficiency 257 

 Biotin has a major role in cellular energy homeostasis because it functions as a key 258 

cofactor in various carboxylases which are essential for the mitochondrial metabolism of 259 

glucose, fatty acids and amino acids (19, 24, 27, 40). A recent study in yeasts has also shown that 260 

biotin starvation alters cellular respiration. Emerging evidence indicates a major role of AMPK 261 

as a metabolic and energy sensor of DC activation (8, 31). AMPK is a serine/threonine kinase 262 

composed of three subunits, α,β,γ, where the α subunit is the one involved in phosphorylation. It 263 

phosphorylates targets that switch off ATP-depleting processes and turns on ATP-generating 264 

pathways(43). Recent reports suggest an important role for AMPK in modulating inflammatory 265 

responses in DCs (8, 18). APCs from mice lacking AMPK-α1, promote pro-inflammatory 266 

cytokine production in response to LPS while the presence of AMPK-α1 attenuated these 267 

responses (8). Furthermore, activation of AMPK has been shown to reduce NFκB activation via 268 

sirtuin 1 (SIRT1) - mediated deacetylation of p65 at Lys310 in macrophages (47). AMPK 269 

becomes activated when the ATP levels in the cells decrease. AMPK activation enhances 270 

mitochondrial respiration and fatty acid synthesis(43). The process of activation of DCs depletes 271 

the energy reserves of the cell to synthesize/process proteins required for the response. This 272 

creates a state of starvation in DCs and instead of obtaining energy from mitochondrial 273 
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respiration and activating AMPK, DCs shift to glycolysis to meet their demands of the energy 274 

(30). Therefore, in DCs decreased AMPK activation is associated with increased TLR induced 275 

activation (18, 30). Our results suggest that the enhanced inflammatory responses of biotin 276 

deficient DCs are a consequence of decreased AMPK activation (Figure 4) are in keeping with 277 

the role of AMPK in DC inflammatory responses.  278 

 In conclusion, these data demonstrate for the first time that biotin deficiency can enhance 279 

the pro- inflammatory cytokine responses of DCs. The increased production of pro-inflammatory 280 

cytokines, TNF-α, IL-12, IL-23 and IL-1β by DCs in turn leads to the induction of pro-281 

inflammatory Th1/Th17 responses. We also find that the activation of AMPK, a major regulator 282 

of inflammation, is reduced in biotin deficient DCs. Our studies thus highlight a possible 283 

mechanism of inflammation induced by biotin deficiency. 284 

 285 

  286 

 287 

 288 

 289 

 290 

 291 

 292 
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FIGURE LEGENDS 445 

Figure 1: Biotin deficiency has no significant effect on DC phenotype. DCs were cultured in 446 

biotin deficient (0µM), control (10µM) and biotin over-supplemented (100µM) media for 48 and 447 

subsequently stimulated with LPS for another 24h. Bar graphs depict the MFI and % positive DCs of 448 

the expression of activation molecules on LPS stimulated aged and young DCs. A. CD80; B. CD86; 449 

C. HLADR. Data is mean +/-S.E. of 3 experiments. 450 

Figure 2: Biotin deficiency enhances pro-inflammatory cytokine secretion from LPS-451 

stimulated DCs. Bar graphs depict the levels of cytokine and chemokines secreted by LPS-452 

stimulated biotin deficient, control and over supplemented DCs. A. TNF-α, IL-1β, IL-23, IL-453 

12p40; B. IL-1α, IL-6, IL-10, CXCL-10; C. CCL-3, CCL-4, CCL-2, CXCL-8. Data is mean +/-454 

S.E. of 8 experiments. 455 

Figure 3: Biotin deficient DCs bias the Th cell response towards Th1/Th17. Bar graphs 456 

depict the level of cytokines secreted by T cells after 5 days of co-culture with LPS-stimulated 457 

biotin deficient, control and over supplemented DCs. IFN-γ; IL-17; IL-22 and IL-10. Data is 458 

mean +/-S.E. of 8 experiments. 459 

Figure 4: Biotin deficiency impairs the activation of AMPKinase signaling pathway in DCs. 460 

pAMPK and total AMPK levels were determined in biotin deficient, control and biotin over -461 

supplemented DCs before and after AICAR stimulation by ELISA. Bar graphs depict the levels 462 

of A. pAMPK; B. AMPK in DCs. Data is mean +/-S.E. of 6 experiments. 463 
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