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IDOCS: Intelligent Distributed Ontology Consensus
System—The Use of Machine Learning in Retinal
Drusen Phenotyping

George Thomas,1,2 Michael A. Grassi,2,3 John R. Lee,4 Albert O. Edwards,5

Michael B. Gorin,6 Ronald Klein,7 Thomas L. Casavant,8,9,10 Todd E. Scheetz,8,9,10

Edwin M. Stone,9,11 and Andrew B. Williams12

PURPOSE. To use the power of knowledge acquisition and
machine learning in the development of a collaborative com-
puter classification system based on the features of age-related
macular degeneration (AMD).

METHODS. A vocabulary was acquired from four AMD experts
who examined 100 ophthalmoscopic images. The vocabulary
was analyzed, hierarchically structured, and incorporated into
a collaborative computer classification system called IDOCS.
Using this system, three of the experts examined images from
a second set of digital images compiled from more than 1000
patients with AMD. Images were annotated, and features were
identified and defined. Decision trees, a machine learning
method, were trained on the data collected and used to extract
patterns. Interrelationships between the data from the differ-
ent clinicians were investigated.

RESULTS. Six drusen classes in the structured vocabulary were
largely sufficient to describe all the identified features. The
decision trees classified the data with 76.86% to 88.5% accu-
racy and distilled patterns in the form of hierarchical trees
composed of 5 to 15 nodes. Experts were largely consistent in
their characterization of soft, and to a lesser extent, hard
drusen, but diverge in definition of other drusen. Size and

crystalline morphology were the main determinants of drusen
type across all experts.

CONCLUSIONS. Machine learning is a powerful tool for the char-
acterization of disease phenotypes. The creation of a defined
feature set for AMD will facilitate the development of an
IDOCS-based classification system. (Invest Ophthalmol Vis Sci.
2007;48:2278–2284) DOI:10.1167/iovs.06-1022

Age-related macular degeneration (AMD) is the most com-
mon cause of severe vision loss in the developed world,

affecting more than 10 million people in the United States
alone.1 More than 7 million people in the United States have
macular drusen of sufficient size and number that they are at
substantial risk of severe visual loss.1

Genetic predisposition plays a significant role in the patho-
genesis of AMD.2–4 Recently, several genetic variants have
been implicated as predisposing factors for this condition.5–12

Discovery, characterization, and eventual therapeutic control
of the influence of these and other genes associated with the
pathogenesis of AMD represent important goals of the vision
research community. Many forms of non-AMD have already
been molecularly characterized.13–16 All these entities have
recognizable ophthalmoscopic appearances and distinct phe-
notypic characteristics. Similarly, we hypothesize that discrete
genetic causes will be associated with differing prevalences of
identifiable AMD subtypes.

Computational methods offer several advantages in collab-
orative ontology generation and complexity reduction through
their ability to distill patterns in multidimensional data. They
can be used to define a systematic process for capturing,
organizing, and analyzing knowledge from distributed experts.
This knowledge-acquisition–based approach for formalizing a
clinical nomenclature may have greater consistency and
reproducibility than do existing methodologies used to de-
velop classification schemes. Moreover, machine learning
techniques have already been successfully used to identify
patterns in other types of complex data sets.17,18 The appli-
cation of machine learning to analyze the ophthalmoscopic
features of AMD may similarly yield insights into the critical
defining attributes and features of this disease that would
greatly facilitate the clinical training of ophthalmologists.
This approach accelerates the creation of a classification
system with improved discriminative power resulting in
greater availability of more homogenous AMD patient pop-
ulations.

The objective of this study was to use the power of knowl-
edge acquisition and machine learning to facilitate the collab-
orative development of a novel AMD classification system.
Herein, we discuss the initial steps used in retinal drusen
analysis and present the prototype for IDOCS: the Intelligent
Distributed Ontology Consensus System.19
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METHODS

Patients

The recruitment and research protocols for human subjects were
reviewed and approved by the University of Iowa’s institutional review
board and informed consent was obtained from all study participants,
in accordance with the guidelines set forth in the Declaration of
Helsinki. More than 1000 patients were ascertained from the University
of Iowa’s Department of Ophthalmology, examined by an ophthalmol-
ogist, and found to have signs consistent with the clinical diagnosis of
AMD. All patients were over the age of 50 years (average age, 75.5
years). Only white individuals were enrolled in the study. All partici-
pants were ascertained during the same period by the same clinic.

Four retina specialists with clinical and research expertise in AMD
who see patients at institutions that are physically distant from the
University of Iowa were invited to participate in the study (RK, MBG,
AOE, ACB). Collaborating retina specialists were involved in the study
to generate a vocabulary that was broad, diverse, and encompassed the
entire range of AMD terminology, so as not to be limited by either
institutional or geographic mores.

Vocabulary Generation

A retina specialist at the University of Iowa (MAG) selected 100 rep-
resentative images from the cohort. The images were displayed on a
user-friendly interface for computer-based assessment. Using a digital
dictating machine, each of the four collaborators described in detail
the ophthalmoscopic appearance of each image.

The data from the dictation were transcribed and analyzed by MAG.
Transcriptions were reviewed, and all key words and phrases were
extracted, grouping the vocabulary into a hierarchical structure with
attributes and associated values that were extensive and descriptive
enough to cover the aggregate vocabulary of the clinicians. This struc-
tured vocabulary was distributed to the clinicians for their review and
approval as representative of the spectrum of AMD vocabulary. The
semantic definitions of attribute values were not specified.

Data Collection via User Interface

A second image set was created for analysis that consisted of repre-
sentative digital images (one to seven per patient) from 100 different
patients. In all, there were 232 images. An attempt was made to
incorporate the broad spectrum of features found in AMD within this
sample set. The database included 30° and 60° digital photographs of

the posterior pole, stereo macula photos, red-free images, and selected
frames from the fluorescein angiogram (typically from an early frame
from the arterial phase and a late frame from the venous recirculation
phase).

An online web interface that incorporated the images and our
structured vocabulary was designed. Features were identified by drag-
ging and resizing a box over a specific image area, a process termed
annotating. A feature name and associated attributes were provided
by the expert. Drusen were classified according to a predefined list of
terms. Users could also enter their own specific feature names. Fea-
tures could be designated as exemplars, or classic stereotypic exam-
ples, of that drusen feature. No definition of attributes or other key-
words was presented and the interpretation was left to the individual
user. The drusen interface for a given patient is shown in Figure 1. All
images could be enlarged to facilitate review. There was also an
“index” allowing access to any patient (nonsequentially) as well as a
help section that explained various features of the tool. When the
clinicians finished entering a feature they would be taken to a “sum-
mary” page (Fig. 2), where all the various features and annotations
were listed. From this page, they could continue to the next patient.
Figure 3 shows the annotations from all three experts for a particular
fundus image.

Using this interface, three of the collaborating retinal specialists
(RK, MBG, AOE) described the ophthalmoscopic features of the pa-
tients over multiple sessions. Henceforth, the three retinal specialists
are individually referred to anonymously as E1, E2, and E3 and collec-
tively referred to simply as experts.

Ontology Analysis

Supervised machine learning algorithms work on a set of preclassified
examples, called training sets, and create a model that can best capture
the classification presented in these examples. New instances, whose
classifications are unknown, are presented to the model which then
predicts the class based on what was learned during training. In
practice, a process known as 10-fold cross validation is used. The
training set is divided into 10 folds or chunks; 1 fold is kept aside for
testing (its classifications are ignored) and the model is trained on the
other 9 folds and then tested on the 10th. After testing, the classes
predicted by the model are compared with the actual classes of those
instances as determined by the experts, and accuracy rates are gener-
ated for the model. This process is repeated 10 times so that every fold
is used once as a test set and 9 times as part of a training set. Total
accuracy rates are then averaged over the 10 test sets.

FIGURE 1. A 30° color funduscopic
image centered on the macula. A box
is used annotate the desired feature
that is described by the investigator
as calcified drusen. Right: attribute
values for the drusen feature.
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Four different machine learning algorithms from the WEKA suite20

(http://www.cs.waikato.ac.nz/�ml/weka/ provided in the public do-
main by the University of Waikato, Hamilton, NZ): (1) J48 decision
trees (C4.5, revision 8), (2) Bayes Net, (3) Lazy Weighted Learning, and
(4) Ensemble Bagging were trained with 10-fold cross validation on the
data of each expert. Based on overall accuracy of performance across
all experts, the J48 decision tree, a specific type of machine learning in
which patterns are distilled into rules, was selected as the algorithm for
training the classifiers. From the decision tree results, rules capturing
the ontologies were thus produced.

Ontology Reconciliation

The data for all experts were aggregated into one set, and classifiers
were trained on this set by using J48 decision trees with 10-fold cross
validation. To examine the relationships between the different ontol-
ogies, the J48 decision tree classifier trained on the individual data from
each expert was used to classify the data from each of the other two
experts. The predictions of the classifier were then compared with the
assigned drusen names of the other two experts. Accuracy rates were
generated from this step. Accuracy rates were also computed for
testing each expert’s data against the paired, aggregate classifier of the
other two experts.

Data Sets

Experiments were performed on three data sets in all. In the first data
set, DS1, the drusen data from the experts were used without modifi-
cation. In the second data set, DS2, nominal attributes of size and
number were mapped to a numeric format, and multivalued attributes
of morphology and pattern were converted to multiple single-valued
attributes each. Apparent synonyms among the attribute values such as
“many” and “extensive” were merged and any omitted values were
converted to missing data in WEKA format. In the third data set, DS3,
all instances of reticular drusen and any other drusen that had only one
instance in the data set were excluded. Consequently, DS3 was com-
posed of drusen instances of only soft, hard, basal laminar/cuticular,
dystrophic, and calcified.

RESULTS

Vocabulary

Figure 4 shows the structured drusen vocabulary deduced
from the vocabulary-generation step. In addition to the drusen
feature name, which can also be user defined, there were five
attribute classes consisting of number, color, morphology,
size, and pattern. Of these, morphology and pattern are mul-
tivalued attributes, whereas the remaining are single valued.
Multivalued attributes are those that can have multiple values
simultaneously.

FIGURE 2. Summary page with three
funduscopic images displayed.

FIGURE 3. Annotations by three experts identifying crystalline mor-
phology. Each expert’s annotations are represented by a unique color.
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Figure 5 shows the statistical distribution of the various
drusen types across the data of the four experts. The distri-
bution indicates that a representative sample of the AMD
drusen spectrum was captured with six main drusen types.

Soft were the most numerous type observed, with hard
having a large number of examples for two of the experts.
The remaining four drusen types had example instances
ranging from 1 to 15. There were also five user-defined

FIGURE 4. AMD drusen vocabulary
with attributes and their possible val-
ues. Morphology and pattern are at-
tributes that can take multiple values
simultaneously.

FIGURE 5. Statistical distribution of drusen types across experts.
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drusen types by expert E3 with a total membership of seven
instances.

The scope of our generated, structured IDOCS vocabulary
was validated by the fact that only one expert needed more
than the six predefined drusen names, creating five additional
drusen names that were used in only 7 of 190 instances. The
overall capture rate of the vocabulary hierarchy was 98.4% for
all three experts.

Machine Learning

Table 1 shows the results of 10-fold cross-validation for each
expert over the different data sets. For each expert and data
set, the number of correct instances, percentage accuracy rate,
� statistic and relative absolute error (RAE) rate are given. The
RAE is a normalization of the absolute error. The accuracy rates
for the three experts increased, in general, across data sets DS1
to DS3 (76.86%–88.5%). The � statistic increased (0.5784–
0.7221) and error rates consistently decreased across the data
sets for each expert (58.3%–36.1%). The accuracy range among
the experts across data sets is 76.84% to 88.5%. The accuracy
rate for cross-validation on the aggregate data of all three
experts ranges from 75% to 82%. The most commonly misclas-
sified drusen type by IDOCS was reticular drusen. In 6 of 9
instances, E1 classified reticular drusen as soft; E2 classified a
single instance as soft; and E3 classified all 10 instances as soft.
For the aggregate classifier, we see that hard (90/99) and soft
(232/248) classifications had a very high accuracy; dystrophic
(13/19) had a high accuracy; and calcified (5/22), basal laminar
(0/18), and reticular (1/18) had a low accuracy.

The first three data rows of Table 2 show the results of
training a classifier on one expert’s data and using the other
two experts’ instances as test data for this classifier. The num-
ber of correct instances and the percentage accuracy rates are
given. Expert E1 performed the worst with 30% and 41%
accuracy, respectively. E2 performs roughly the same against

both the other experts (49% and 50%, respectively). E3, how-
ever, performs significantly better with an accuracy of 70% and
75%. The next three data rows of the table show the results of
the classifier trained on the combined data of two experts and
tested against the data of the remaining expert. E3 combined
with the other two experts performed better against E1
(72.95%) and E2 (76.03%) than did the combined E1-E2 classi-
fier against E3 (57.37%). To eliminate the possibility that the
differing sizes of the test sets affected the accuracy rates for
each expert, we repeated these tests on 10 sets of 100 in-
stances randomly chosen from each expert’s data set. The
averaged results are consistent with our prior findings.

AMD Drusen Ontology

With the use of J48 decision trees, our tool achieved 77% to
82% accuracy (on data set DS1) in correctly predicting the
drusen classes of the instances defined by each expert. A
graphic depiction of these rules as a tree composed of multiple
levels and nodes is shown in Figure 6. The elliptical nodes
represent attributes, branches represent attribute values, and
rectangular leaf nodes represent the predicted drusen types.
The numerical values in the rectangular nodes indicate how
many instances were classified by that node and how many
were incorrectly classified by our tool. At each level of the tree,
J48 uses the concept of entropy as a differentiating measure, to
select the attribute that best partitions the data (or reduces the
chaos). The trees of experts E2 and E3 were very similar. For
each, the attributes size and crystalline morphology served as
the deciding characteristics. The tree of expert E1 was larger
but it also had these same attributes as key nodes. Overall, the
trees indicate that size, crystalline morphology and color were
the deciding attributes that achieved approximately 80% accu-
racy.

DISCUSSION

Computer engineering may have an important role in the
process of AMD classification. Previous studies of knowledge
acquisition have used system designers to define a set of crite-
ria, which experts then assessed over a set of given examples.
In IDOCS, the experts themselves implicitly defined the criteria
through vocabulary generation, which was further structured
by another expert. We are not aware of any previous perfor-
mance-evaluation studies of knowledge elicitation that are
comparable to our work.

Machine learning techniques have been successfully used in
a variety of domains to extract patterns hidden within complex
data that would be impossible to discern by human observation
alone. In the biological sciences, these techniques have been
applied to the fields of genomics, proteomics, and systems
biology.21 Even in the field of AMD genetics, machine learning
has found early application in creating models that can clarify

TABLE 1. Accuracy Rates of Classifiers Trained on Different Data Sets of Experts Using 10-fold Cross Validation

DS1* DS2† DS3‡

n % � %RAE n % � %RAE n % � %RAE

E1 100 81.97 0.5817 48.50 103 84.43 0.6550 42.14 100 88.50 0.7221 36.06
E2 93 76.86 0.5807 51.57 94 77.67 0.6146 51.25 94 78.33 0.6263 50.16
E3 147 77.37 0.5784 58.34 146 76.84 0.5931 54.67 150 85.23 0.7158 44.42
All 325 75.06 0.5214 64.70 339 78.29 0.6135 54.47 339 82.89 0.6791 46.08

n, and % are the number and percentage of accurate classifications, respectively.
* Drusen data with no modification.
† Quantification of attributes; conversion of multivalued attributes to single-valued; missing data representation.
‡ Exclusion of reticular, flecked, granular, peau-d and reticulated.

TABLE 2. Accuracy Rates from Classifying Data Instances of an
Expert Using Classifier Trained on Another Expert’s Data

Classifiers E1 Test Set E2 Test Set E3 Test Set

E1 50 (41.32) 57 (30.00)
E2 61 (50.00) 93 (48.95)
E3 86 (70.49) 91 (75.21)
E1–E2 109 (57.37)
E1–E3 92 (76.03)
E2–E3 89 (72.95)

The first three rows show the number and percentage (in paren-
theses) accuracy rates of a classifier trained on one expert’s data to
classify data instances of the other two experts. The next three rows
show the same data for a classifier trained on the combined data of two
experts to classify data instances of the third expert.
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the significance of interactions between multiple genetic risk
factors.22 If one were to envision the complexity of this ex-
periment represented in graphic form, the data would appear
the following way: more than 120 feature instances per expert
plotted on five different attribute axes comprising more than
600 total data points for each expert. Our tool was able distill
all the information with higher than 80% accuracy into a flow
chart that, in the case of E3, had as few as two decision nodes.
Such remarkable findings reflect the power of this approach in
identifying patterns in complex datasets, which has potential
for significant applications in novice training and as an inte-
grated part of clinical medical training to develop more stan-
dardized phenotyping for a variety of conditions.

Characterizing the relationships between the ontologies of
the various experts is the first step in developing a classifica-
tion scheme for more homogenous AMD subtypes. In our
experiments, the results of testing each expert’s classifier on
the data instances of the other two experts and the results of
testing on pair-wise combined classifiers seem to indicate that
E3’s classifier was the most general (it also had the lowest
individual accuracy) and was able to classify the other experts’
data the best, due to this generality. The other experts had
higher individual accuracy rates but lower generalization
power. E3’s generalization power was further supported by

the fact that its decision tree was the smallest of the three. E1’s
low accuracy rates (30%–40%) can be explained by the fact
that E1 had very few hard drusen instances (n � 3) and hence
would heavily misclassify those instances from the other ex-
perts. The high number of matches for soft drusen among
semantically equivalent features and the high accuracy rates for
hard and soft drusen for the classifier trained on the aggregate
data seem to indicate that the experts have very similar ontol-
ogies with respect to soft and, to a lesser extent, hard drusen.
The lower accuracy rates for the other drusen types may
indicate that the ontologies differ here or that there were just
insufficient instances of each of them. In general, the more
example instances that are available for a class, the better the
decision tree can learn all the different patterns for the mem-
bership of that class.

There are several limitations to our study. Only three retina
specialists participated in this initial experiment. A greater
number of experts and a larger sampling of images would give
us more confidence in our findings and a better sense of the
generalizability of the study results. Future experiments will
easily accommodate the involvement of more retina specialists.
We envision the evolution of this classification system as being
an iterative process incorporating both independent image
analysis and group consensus meetings. This phase of IDOCS

FIGURE 6. (A) Decision tree rules for the machine learning classifier for expert E1. Elliptical nodes are attributes, with the branches giving the
attribute values on that path. Rectangular nodes at the end of a path are the drusen type deduced, with the first number in the parentheses being
the number of instances that came down that path, and the second number being the number of instances that ended up misclassified by the
decision tree on that path. (B) Decision tree rules for the machine learning classifier for expert E2. (C) Decision tree rules for the machine learning
classifier for expert E3.
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entailed only the first half of this model. Future work will
include the latter half as well. Although IDOCS was able to
learn and classify soft and hard drusen satisfactorily, classifica-
tion of less frequently used AMD feature names such as retic-
ular had a paucity of examples as well as from the lack of
consensus among the three graders regarding the definition of
these rarer drusen types. Future iterations will benefit from a
more uniform distribution of drusen types. IDOCS also exhib-
ited a certain degree of bluntness in its descriptive power, in
terms of its inability to capture the difference between reticu-
lar and soft drusen through the defined vocabulary. Finally,
only one aspect of AMD was studied in this phase, retinal
drusen characteristics, due to the limited data generated for the
different retinal pigment epithelium characteristics like geo-
graphic atrophy and pigmentary abnormalities noted in our
cohort. Future studies will be improved by the inclusion of the
entire range of manifestations encompassed by AMD.

In summary, a structured vocabulary was generated, and
three recognized AMD experts used it in a Web-based tool to
formalize their knowledge by describing individual ontologies
for retinal drusen. Decision tree machine learning algorithms
were trained on these data with approximately 80% classifica-
tion accuracy, and the ontologies were distilled into a set of
simple rules. From these rules, it is observed that size and
crystalline morphology (Fig. 6) of the drusen are critical at-
tributes in classification. The experts were largely consistent
among themselves in defining soft drusen; and expert E3,
whose ontology could be described by the most general set of
rules, performed the best in classifying instances described by
the other experts, with a 70% to 75% accuracy. Future work
will examine the IDOCS ontology in the context of novice
training and improving clinical consistency of reporting diag-
nostic features of AMD.

The IDOCS prototype serves as a useful starting point to-
ward the creation of more homogenous AMD subtypes. Having
a defined feature set for AMD is a critical step toward an
IDOCS-based classification system.
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