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Abstract

Fast evolving regions of many metazoan genomes show a bias toward substitutions that change weak (A,T) into strong (G,C)

base pairs. Single-nucleotide polymorphisms (SNPs) do not share this pattern, suggesting that it results from biased fixation

rather than biased mutation. Supporting this hypothesis, analyses of polymorphism in specific regions of the human genome

have identified a positive correlation between weak to strong (W/S) SNPs and derived allele frequency (DAF), suggesting

that SNPs become increasingly GC biased over time, especially in regions of high recombination. Using polymorphism data

generated by the 1000 Genomes Project from 179 individuals from 4 human populations, we evaluated the extent and

distribution of ongoing GC-biased evolution in the human genome. We quantified GC fixation bias by comparing the DAFs

of W/S mutations and S/W mutations using a Mann–Whitney U test. Genome-wide, W/S SNPs have significantly
higher DAFs than S/W SNPs. This pattern is widespread across the human genome but varies in magnitude along the

chromosomes. We found extreme GC-biased evolution in neighborhoods of recombination hot spots, a significant

correlation between GC bias and recombination rate, and an inverse correlation between GC bias and chromosome arm

length. These findings demonstrate the presence of ongoing fixation bias favoring G and C alleles throughout the human

genome and suggest that the bias is caused by a recombination-associated process, such as GC-biased gene conversion.

Key words: fixation bias, weak to strong, biased gene conversion, polymorphism, 1000 Genomes Project.

Introduction

Themost divergent regions of the human genome since its last

commonancestorwith chimpanzee exhibit a bias favoring sub-

stitutions fromweak (A,T) base pairs to strong (G,C) base pairs

(Dreszer et al. 2007). A similar weak-to-strong (W/S) bias in

divergent sequences (BDS) is also found in recent fixed substitu-
tions in several metazoan genomes including mammals, fish,

insects, and worms, but not in fungi (Capra and Pollard

2011). BDS is most pronounced in very fast-evolving genome

sequences about 1 kb long and is generally strongest in regions

with high recombination rates. Many functional regions of the

human genome, including human accelerated regions (HARs)

(Pollard et al. 2006) and protein-coding exons (Berglund et al.

2009; Ratnakumar et al. 2010), show evidence of W/S bias,
underscoring that its causes couldbeplayinga significant role in

functional divergence between closely related species.

The evolutionary processes driving BDS are likely related to

the large-scale variation in GC content across mammalian

genomes—the so-called isochore structure (Bernardi et al.

1985; Eyre-Walker and Hurst 2001; Romiguier et al. 2010).

The origins and evolution of the isochores have received con-

siderable attention. Previous studies suggested two possible

causes for the isochores and BDS: variation in mutation pat-

terns across genomes and biased fixation of W/S alleles

(Eyre-Walker and Hurst 2001). Analyses of patterns of sub-

stitution and polymorphism in specific loci in the human

genome found evidence of GC-biased allele frequency distri-

butions and little evidence for GC mutation biases (Eyre-

Walker 1999; Duret et al. 2002; Lercher and Hurst 2002;

Lercher et al. 2002; Webster et al. 2003; Webster and Smith

2004; Spencer et al. 2006). Thus, GC-rich isochores (Duret

et al. 2006) and W/S BDS (Dreszer et al. 2007; Capra
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and Pollard 2011) are unlikely to have been produced by var-
iation in mutation patterns. Fixation bias could result from lo-

cal selection on GC content (Eyre-Walker and Hurst 2001;

Kudla et al. 2006) or nonadaptive processes, such as GC-

biased gene conversion (gBGC; Duret and Galtier 2009a).

The strong correlation between recombination rates and

GC content (Meunier and Duret 2004; Webster et al.

2005; Khelifi et al. 2006; Duret and Arndt 2008), as well

as BDS (Dreszer et al. 2007; Capra and Pollard 2011), in
the human genome argues for the relevance of gBGC to these

evolutionary patterns.

Several recent studies using high-resolution polymor-

phism data from specific regions of the human genome

have supported the hypothesis of ongoing GC-biased evo-

lution. Katzman et al. (2010) performed high-throughput

sequencing of neighborhoods around HARs from 22 sets

of human chromosomes from 11 Yoruban individuals to
determine derived allele frequencies (DAFs) for all single-

nucleotide polymorphisms (SNPs) in these regions. The

resulting comparison of the DAF spectra of W/S and

S/W polymorphisms revealed a significant shift toward

high allele frequencies for W/S SNPs around a subset of

the HARs. Spencer et al. (2006) identified a local association

between recombination hot spots and GC-increasing muta-

tions on human chromosome 20. A very recent study of the
effect of meiotic recombination on disease-related muta-

tions found higher frequencies for GC alleles in several likely

functional classes of polymorphism identified by the Hap-

Map project (Necsxulea et al. 2011).

The recent completion of the pilot phase of the 1000 Ge-

nomes (1000G) Project (1000 Genomes Project Consortium

2010) enables the analysis of human polymorphism at an un-

precedented scale and resolution. The low-coverage pilot
phase data from this project include approximately 15 million

SNPs from a total of 179 samples from 4 different HapMap

populations (The International Hapmap Consortium 2007):

Yorubans from Ibadan, Nigeria (YRI), individuals of European

origin in Utah (CEU), Han Chinese from Beijing (CHB), and

Japanese from Tokyo (JPT). The 1000G low-coverage data

captures in a relatively ascertainment-free manner nearly all

(;95%) of the common polymorphism in the sampled popu-
lations in the regionsof thehumangenome thatare accessible

with current technology. These data give a snapshot of se-

quence evolution over a much shorter time period than the

millions of years that separate sister species, providing the op-

portunity to capture bias inducing processes in action.

We use the 1000G data to investigate signatures of

ongoing W/S bias genome-wide and to test previous

hypotheses about its causes. By comparing the DAF spectra
of W/S and S/W changes, we find strong evidence for

ongoing GC fixation bias across the human genome. The

fixation bias is widespread, occurs on a local scale

(;1 kb), and is significantly increased in regions with high

recombination rate. Our results shed new light on the scale

of and mechanisms responsible for changes in the rate of
evolution and GC content in the human genome.

Material and Methods

Data

This report uses the low-coverage pilot data from the 1000G
project released in July 2010. These comprise SNP calls for the

22 autosomes in three HapMap population panels: YRI (59

individuals), CEU (60 individuals), and CHBþJPT (60 individ-

uals). The VCF format files contain for each SNP: the position

(in NCBI36/hg18 reference coordinates), the count of each

allele, and an indication of the ancestral allele. The latter is

derived from the Enredo–Pecan–Ortheus (EPO) pipeline

(Paten, Herrero, Beal, et al. 2008; Paten, Herrero, Fitzgerald
2008), which determines the common ancestor of human

and chimpanzee at a locus by considering alignments of

the human, chimpanzee, orangutan, and rhesus macaque

genomes. This report eliminated from analysis any positions

with more than two alleles among the reference, ancestral,

or sample alleles or where the ancestral allele was not deter-

mined by the EPO pipeline. Lowercase values of the predicted

EPO ancestral allele, which result from various cases without
complete evidence in all species, were considered in the main

analysis but are excluded in the ‘‘Ancestor Match’’ control

(supplementary table S3, Supplementary Material online).

Recombination hot spots and cold spots were taken from

the supporting information for Myers et al. (2005), and re-

combination rates were downloaded from the HapMap

Project (The International Hapmap Consortium 2007). The

positions of the published centers of the hot spots and cold
spots were converted from NCBI34/hg16 coordinates to

NCBI36/hg18 coordinates using the liftOver tool of the

UCSC Genome Browser (Kent et al. 2002). Two sets of

sex-specific recombination rate maps were used. The first

set is the pedigree-based data of Kong et al. (2002) as down-

loaded at the 1 Mb scale from the UCSC Genome Browser’s

recombRate track. The second set of sex-specific maps with

higher resolution was taken from Kong et al. (2010).
The location of the PRDM9 motif (CCTCCCTNNCCAC)

sites and associated control motif (CTTCCCTNNCCAC) sites

was determined by running the findMotif tool against the

human reference genome (hg18) taken from the UCSC Ge-

nome Browser (Kent et al. 2002).

BDS of the human genome since divergence from chim-

panzee was calculated using alignments of human, chim-

panzee, and rhesus macaque as described in Capra and
Pollard (2011).

Analysis

Comparison of DAF Spectra. For a given region or

pooled set of regions, the W/S and S/W positions were

separately extracted from the set of SNPs and the two
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spectra of DAFs were constructed from the allele counts in
the VCF files. We performed aMann–Whitney U (MWU) test

for a difference between the W/S and S/W DAF spectra

using the command ‘‘wilcox.test (paired5FALSE, alter-

native5two.sided)’’ in the R language (R Development Core

Team 2009). For each test, the normalized U statistic

‘‘U-norm’’ was calculated by dividing the U statistic by its

maximum possible value in the test, the product of the num-

ber of SNPs in the two categories (Bamber 1975). As noted
in the Results, this can be interpreted as the probability that

a random W/S SNP is segregating at a higher DAF than

a random S/W SNP plus one half the probability that they

are equal. Since the possible U values for each test are nor-

mally distributed with a mean and variance that can be di-

rectly computed, confidence intervals for the U-norm

estimates were calculated with reference to this normal

distribution. As a separatemeasure of the difference between
DAF spectra, the difference in the mean values of the DAFs

for W/S and S/W SNPs was calculated for each test.

TheMWU test was performed on the set of SNPs from the

entire genome, entire chromosomes, entire chromosome

arms, and genome-wide sets of nonoverlapping windows

of sizes 40 kb, 1 Mb, and 4 Mb. Windows that did not have

SNPs in both categories were filtered out before the MWU

test. Such regions include portions of the genome that have
not been fully sequenced and assembled, regions that were

not accessible to the technology used in the 1000G project,

and regions in which the EPO pipeline was unable to deter-

mine the ancestral allele. At the 40 kb scale, 91% of the

71,703 windows passed these filters.

For the analysis of hot spots, cold spots, and PRDM9 mo-

tifs, SNPs were pooled from the neighborhoods of the cen-

ter position of each feature. For example, for the 200 bp
analysis, all SNPs within 100 bp on either side of the

25,644 hot spot centers found in the autosomes were

aggregated to perform the MWU test.

Correlation of W/S DAF Skew and Genomic
Features. To quantify the similarity of the spatial distribu-
tion of different signals, such as W/S DAF skew, recombi-

nation rate, and BDS across the genome, we calculated

Spearman’s rank correlation coefficient on the statistics

measured over nonoverlappingwindows of 40 kb and 1Mb.

Results

Preliminaries

We analyzed autosomal SNPs from all populations in the

1000G low-coverage data set. We focus on results based

on the 59 YRI individuals, which had the greatest diversity

and yielded results representative of those from the other

populations (table 1). Population-specific differences are

also described. For each SNP, we determined the ancestral
and derived alleles using several outgroup species and the

EPO pipeline (Paten, Herrero, Beal, et al. 2008; Paten, Herrero,

Fitzgerald, et al. 2008). We then classified the allele on each
of the chromosomes in a population (118 for YRI: two from

each of the 59 individuals sequenced) as ancestral or derived.

Using these counts, we constructed DAF spectra for different

sets of SNPs.

We tested for an ongoing fixation bias genome-wide and

in specific genomic regions by comparing the DAF spectra of

W/S and S/W SNPs using the MWU test. Since this is

a two-sided test, we further quantify the strength and direc-
tion (W/S versus S/W) of bias by calculating a statistic we

call ‘‘U-norm.’’ U-norm is the U value from the MWU test

divided by the maximum possible U value for the test. U-

norm is an estimate of P(Y . X ) þ 0.5P (Y 5 X), where

X is the DAF of a random S/W SNP and Y is the DAF of

a random W/S SNP (Bamber 1975). When U-norm 5

0.5, there is no shift in the DAFs. U-norm . 0.5 indicates

higher frequencies for the W/S alleles compared to the
S/W alleles and U-norm , 0.5 indicates the opposite.

Hence, the value of U-norm helps to distinguish W/S fix-

ation bias (U-norm . 0.5), in which strong alleles are rising

to higher frequencies in the population, from S/Wfixation

bias (U-norm , 0.5). We repeated our analyses using an al-

ternative statistic, the difference in average value of the DAF

spectra (Necsxulea et al. 2011) and obtained similar results

(e.g., supplementary table S4, Supplementary Material
online).

W/S Changes in All Populations Have Higher
DAFs Genome-Wide

Figure 1A compares theDAFs ofW/S and S/Wautosomal

SNPs in the YRI population. TheW/S SNPs have significantly

higher DAFs than the S/W changes (U-norm 5 0.558;

P � 0). In other words, a randomly selected W/S allele is

significantly more likely to be observed at high frequency
in the population than an S/W allele. We henceforth refer

to this pattern as ‘‘W/S DAF skew’’ or ‘‘W/S bias.’’ This

result indicates that a fixation bias favoring GC alleles has

been active in the recent evolution of the YRI population.

Although we primarily focus on the YRI panel, with its

larger set of SNPs, we also repeated our analyses on two

additional populations: 60 individuals in the CEU panel

and 60 individuals from the combined CHB and JPT panels
(table 1). In both these populations, W/S SNPs are also sig-

nificantly (MWU tests; P� 0)more likely to have higher DAFs

Table 1

Ongoing W/S Fixation Bias in HapMap Populations

Population Samples SNPs W/S DAF skew

YRI 59 8.5M 0.558

CEU 60 6.1M 0.552

CHBþJPT 60 4.8M 0.553

NOTE.—W/S DAF skew is quantified by the U-norm statistic.
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than S/W SNPs (fig. 1B and C). SNPs in the latter two data

sets are generally segregating at higher frequencies than
those in the YRI panel, with mean DAF for CEU SNPs approx-

imately midway between those for YRI and CHBþJPT (sup-
plementary table S4, Supplementary Material online).

However, since the differences between populations are

nearly the same for both W/S and S/W SNPs, the net ef-

fect is less than a 1% difference among populations in the

strength of the W/S DAF skew as quantified by U-norm

(YRI: 0.558; CEU: 0.552; CHBþJPT 0.553).

W/S DAF Skew Is Widespread across the Genome
and Shows Local Variation

The significant difference between theW/S and S/Wge-

nome-wide spectra demonstrates a global W/S fixation bi-

as in the genome, but it does not determine its scale or

spatial distribution. To investigate these questions, we com-

pared W/S and S/W DAFs within nonoverlapping win-
dows of various sizes across the genome. Starting at

a rather large scale—4 Mb windows—we analyzed 699

windows with high-quality data (see Materials and Meth-

ods). Of these, a striking 690 windows (98%) show signif-

icant W/S DAF skew (MWU test; P , 0.05) in the YRI

population, whereas none show S/W skew at P ,

0.05. This result clearly demonstrates that there are only

a handful of 4 Mb regions of the genome that do not show
evidence of W/S fixation bias.

Next, we took advantage of the high density of SNPs in

the 1000G data to localize the W/S DAF skew at an even

higher resolution. At the scale of 40 kb, 65,510 of the

71,703 windows (91%) in the YRI data set passed our filters

for performing the MWU test (see Materials and Methods).

Of these 40 kb windows, 14,697 (22.4%) show W/S DAF

skew at the P , 0.05 level. On the other hand, only 183
windows (0.3%) show significant S/W DAF skew. This

is nearly 10-fold more W/S DAF skew than would be ex-

pected in the absence of bias from our two-sided test for

significance. The enrichment for W/S DAF skew (and

the depletion of S/WDAF skew) in these tests is even high-

er at more stringent significance levels (supplementary fig.

S1, Supplementary Material online). It is also present across

a range of smaller window sizes evaluated on a single chro-
mosome (supplementary table S1, Supplementary Material

online). For subsequent analyses, 40 kb windows were used

because they generally provide enough polymorphism to

give the MWU test sufficient power to detect W/S DAF

skew and are computationally tractable.

Despite strong evidence that W/S DAF skew is nearly

ubiquitous in the human genome, analyses of local fixation bi-

as (40 kb windows and smaller) revealed variation in the mag-
nitude of this bias across the chromosomes. Figure 2 shows the

strength of the W/S DAF skew across chromosome 2 as

quantified by U-norm. An increase in W/S DAF skew near

the telomeres was observed in the majority of chromosomes

(supplementary fig. S2, Supplementary Material online).
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FIG. 1.—Genome-wide, W/S SNPs have significantly higher DAFs

than S/W SNPs. The DAF spectra of W/S SNPs (dark bars) have

significantly (P � 0) higher DAF than S/W SNPs (light bars) in the (A)

YRI population, (B) CEU population, and (C) CHBþJPT population.

Counts are binned for display purposes only. The values in the legends

indicate the genome-wide count of SNPs of each category used in the

test.
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Taken together, these results argue that the forces driving

the fixation bias operate at a local scale, vary across the ge-
nome, and arewidespread. In the next sections, we examine

these patterns of variation in the W/S DAF skew to inves-

tigate possible causes.

The Strength of W/S DAF Skew Varies Inversely
with Chromosome Arm Length

As a first step in investigating the genome-wide distribution of

W/S DAF skew, we examined each chromosome arm indi-

vidually. Several signatures of GC-biased evolution between

species, such as current and stationary GC content and

BDS, have been found to be inversely correlatedwith chromo-

some length (Fullerton et al. 2001; International Chicken Ge-

nome Sequencing Consort 2004; Dreszer et al. 2007). To test
for this pattern in W/S DAF skew, we calculated U-norm

between all W/S and S/W SNPs on each chromosome

arm. The magnitude of the W/S DAF skew varies between

arms with shorter arms showing stronger bias (fig. 3). Chro-

mosome arm length explains a large amount of the variance in

W/S DAF skew between arms (R25 0.62). A similar pattern

of W/S DAF skew was observed in DAFs over entire chro-

mosomes (R2 5 0.50).
Recombination rate is thought to be elevated on shorter

chromosome arms compared to longer arms due to the

proposed requirement of one chiasma per arm per meiosis

(Kaback et al. 1992, 1999; Coop and Przeworski 2007);

however, there is still debate about the causes and extent

of this pattern (Turney et al. 2004; Fledel-Alon et al. 2009).

Correlations with chromosome length have been used to

support the theory that a recombination-driven process,
such as gBGC, influences patterns of BDS (Duret and Arndt

2008; Duret and Galtier 2009a).

W/S DAF Skew Is Elevated in Neighborhoods of
Recombination Hot Spots

Because BDS, which is based on fixed substitutions between

sister metazoan species, is correlated with recombination
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skew among chromosomes arms.
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rates in several species, we predicted that W/S DAF skew

would also be enriched near current recombination hot

spots and would be correlated with recombination rate
across the genome. To test the first of these predictions,

we investigated W/S DAF skew in neighborhoods around

human recombination hot spots and cold spots (regions

with no evidence of recombination), identified from pat-

terns of linkage disequilibrium in HapMap polymorphism

data (Myers et al. 2005). We computed U-norm on the DAFs

of W/S and S/W SNPs in windows of increasing size

(from 200 bp to 8 kb) around the center of each recombi-
nation hot spot and cold spot.

Regions around recombination hot spots show signifi-

cant W/S DAF skew (fig. 4A). This bias is strongest in

small windows (0.595 ± 0.008 for 200 bp compared with

0.573 ± 0.001 for 8 kb). For each window size considered

(even windows as large as 8 kb), the W/S DAF skew near

recombination hot spots is significantly greater than the

genome-wide level (0.558) and the level found in windows
of corresponding size around recombination cold spots.

SNPs near the cold spots do not show significantly less

W/S DAF skew than the genome-wide background level.

The increase in W/S DAF skew with proximity to a hot

spot argues that the process producing it is likely local, op-

erating on the scale of hundreds of base pairs to a few

thousand base pairs. This is in agreement with current es-

timates of the scale of the conversion tracts in gBGC events
(Duret and Galtier 2009a).

W/S DAF Skew Is Elevated around PRDM9-
Binding Sites

The human protein PRDM9 has recently been identified as

a major determinant of recombination hot spots in human

(Baudat et al. 2010; Berg et al. 2010; Myers et al. 2010;

Parvanov et al. 2010). This histone methyltransferase con-

tains a highly variable array of DNA-binding C2-H2 zinc fin-

ger domains, and the particular DNA sequence specificity of

these domains is thought to partially determine sites of re-

combination. Myers et al. (2008) identified a 13 bp motif

(CCTCCCTNNCCAC) that is predicted to be bound by

PRDM9 and involved in defining around 40% of all known

meiotic hot spots.
We identified ;7,000 potential PRDM9-binding sites by

scanning for the motif genome-wide and then carried out

neighborhood-based analyses around these sites. As for re-

combination hot spots, SNPs near PRDM9-binding motifs

show significant W/S DAF skew and are more biased than

a set of control sites defined by a very similar, but nonrecom-

binogenic motif (CTTCCCTNNCCAC) used by the 1000G

project (1000 Genomes Project Consortium 2010) (fig.

4B). The overall strength of the W/S DAF skew around

PRDM9 motifs is greater than that around predicted hot

spots for most neighborhood sizes, although this difference

is only significant for 200 bp windows (where hot spot

U-norm 5 0.595, PRDM9 motif U-norm 5 0.623). It is pos-

sible that hot spots containing a full copy of the motif are
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FIG. 4.—W/S DAF skew is stronger in the neighborhood of recombination hot spots and PRDM9-binding motifs. The strength of W/S DAF

skew increases with decreasing distance from (blue squares) (A) the center of recombination hot spots and (B) predicted PRDM9-binding motifs (true

motif). Control points (green triangles) are (A) recombination cold spots and (B) an altered version of the PRDM9 motif (‘‘control motif’’, see Materials
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‘‘hotter’’ than the average hot spot, many of which do not

contain the full motif. The W/S DAF skew near control

non-PRDM9 sites is slightly elevated over the background

(fig. 4B); this could indicate that some of these control mo-

tifs actually influence recombination or did so in recent evo-

lution before gaining disabling mutations.

Recombination Rate Is Spatially Correlated with
W/S DAF Skew across the Genome

To further explore the relationship of W/S DAF skew and

recombination, we correlated the W/S DAF skew in win-

dows across the genome with the estimated recombination
rate for each window for the YRI population from HapMap

(The International Hapmap Consortium 2007). At a 40 kb

window size, the raw Spearman correlation across the entire

genome is 0.20 (P� 0).When larger 1Mbwindows are con-

sidered, the correlation becomes much stronger (q 5 0.53;

P � 0). Figure 5 illustrates this strong spatial correlation be-

tween bias and recombination rate across chromosome 2

(q 5 0.43; P � 0). The dramatic increase in correlation with
increasing window size is consistent with models of the evo-

lution of recombination hot spots in which there is a large

amount of local variation between individuals and over time,

but this variation is mainly contained within larger-scale re-

gions with fairly constant recombination rates (Myers et al.

2005).

The W/S DAF skews in the CEU and CHBþJPT popula-

tions are also significantly correlated with HapMap recom-
bination rates (table 2). This holds for both the

recombination map specific to the population considered

and the combined map based on all polymorphism data.

A population-specific map is not available for CHBþJPT.

For both the YRI and CEU populations, the correlation is

slightly greater with the combined map than the population

specific maps (table 2). This result is somewhat surprising

but may reflect differences in the hot spot distribution in

the ancestral population (in which many high frequency al-

leles first appeared) compared withmodern day populations

(see Discussion).

Correlations between W/S DAF Skew and
Recombination May Be Less Different between
the Sexes than Previously Thought

In specieswith a pedigree-based recombinationmap, it is pos-

sible to estimate sex-specific recombination rates. Previous

sex-specific analyses found stronger correlations between

W/S substitution biases and male recombination rate than

female recombination rate in several mammalian species

(Capra and Pollard 2011), including humans (Webster

et al. 2005; Dreszer et al. 2007). To explore the possibility

of a similar sex-specific association with W/S DAF skew,
we considered two pedigree-based, sex-specific recombina-

tion maps from deCODE (Kong et al. 2002, 2010). The first

map was estimated from microsatellite markers in 146

Icelandic families; it has a resolution of;1 Mb and was used

inmany previous studies. The secondmap is based on 15,257

parent–offspring pairs from the Icelandic population and has

higher resolution (;10 kb).

Using both Icelandic recombination maps, W/S DAF
skew in all three populations is significantly correlated with

recombination rates in males and females (table 2). How-

ever, the magnitude of these correlations is smaller than

those observed with sex-averaged, population-based Hap-

Map maps. Considering all the maps and populations to-

gether yielded a surprising result. The YRI population is

more strongly correlated with every recombination map

than any other population. This is true even when the other
population is more closely related to the source of the map;

for example, we might expect the CEU population to have
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a stronger correlation with the Icelandic maps. But for both
male and female rates, it has a smaller correlation than does

YRI (table 2).

W/S DAF skew shows less differentiation in its correla-

tion with recombination between the sexes than does BDS

(Webster et al. 2005; Dreszer et al. 2007). And although

W/S DAF skew is slightly more correlated with male re-

combination rate than female rate using the initial Kong

et al. (2002) maps, the opposite is true using the higher res-
olution Kong et al. (2010) maps with windows of 1Mb or 40

kb (table 2; supplementary table S2, Supplementary Mate-

rial online). These findings suggest that W/S biases in hu-

man may not be consistently male-driven as previously

hypothesized (Webster et al. 2005; Dreszer et al. 2007).

Comparison of the Spatial Distribution of W/S
DAF Skew across Populations

To compare patterns of W/S DAF skew between the three

populations, we calculated pairwise correlations of U-norm

in 40 kb and 1 Mb windows across the genome. The spatial

distribution of the bias is significantly correlated in each
pair of populations (Spearman rank correlation; P � 0 for

all): q5 0.36 for YRI vs. CEU, q5 0.29 for YRI vs. CHBþJPT,

and q 5 0.38 for CEU vs. CHBþJPT. As expected the two

more closely related populations (CEU and CHBþJPT) show

a stronger correlation than either doeswith the YRI; however,

this is no longer true at the 1 Mb scale: q 5 0.67 for YRI vs.

CEU, q5 0.54 for YRI vs. CHBþJPT, and q5 0.60 for CEU vs.

CHBþJPT. Although all these correlations are significant, the
lack of stronger correlation at these scales may reflect varia-

tion in the location of recombination hot spots between the

populations.

Comparison of Spatial Distribution of W/S DAF
Skew and BDS

Overall, the spatial distribution of BDS (since divergence

with chimpanzee) and W/S DAF skew across the human
genome are qualitatively similar. The telomeres show peaks

of both types of bias, and each has a significant correlation

with recombination rate. To quantify this similarity, we
directly compared patterns of W/S DAF skew (U-norm sta-

tistic) to those of BDS (log of an odds ratio) computed in

1 Mb windows across the human genome by Capra and

Pollard (2011).We found aweak, but significant, correlation

between the two measurements (q5 0.18; P � 0). The cor-

relation of BDS with current recombination rates (from Hap-

Map) is of similar magnitude (q 5 0.19; P � 0).

There is, however, one dramatic difference in the patterns
of BDS and W/S DAF skew in the human genome. Dreszer

et al. (2007) observed a significant peak of BDS in the middle

of chromosome 2 (fig. 2). This pattern is consistent with el-

evated BDS near telomeres (possibly driven by high recombi-

nation rates in those regions) because human chromosome 2

resulted from a fusion of two separate chromosomes in the

ancestor of human and chimpanzee (Hillier et al. 2005). In

contrast, there is not a significant peak of W/S DAF skew
in the middle of chromosome 2 (fig. 2). The recombination

rate in the region of the fusion is not currently elevated

and much of the polymorphism studied in this paper likely

occurred after the fusion (estimated to have occurred

;0.75 Ma by Dreszer et al. (2007)). Hence, the lack of

W/S DAF skew near the fusion provides further support

to the model in which peaks of W/S DAF skew and BDS

are driven by a recombination-associated process that varies
in intensity along the chromosomes and over time.

W/S DAF Skew Is Not the Result of CpG
Dinucleotide Hypermutability

Context-dependent differences in mutation rate (e.g., as

caused by CpG site hypermutability) can lead to misidentifica-

tion of the ancestral state of an SNP when using parsimony

(Hernandez, Williamson, and Bustamante 2007), potentially

generating false signatures of a fixation bias (Hernandez,

Williamson, Zhu, and Bustamante 2007). Our analysis uses

the ancestral state predicted by the 1000G project to infer

the derived allele. These predictions weremade using Ortheus
(Paten, Herrero, Fitzgerald, et al. 2008), a probabilistic

alignment-based method. Ortheus considers alignments of

Table 2

Correlation between W / S Fixation Bias and Recombination across Populations

Type of Bias

HapMap deCODE 2002 deCODE 2010

Population Specific Combined Male Female Male Female

W/S DAF skew

YRI 0.528 0.535 0.371 0.330 0.403 0.471

CEU 0.442 0.454 0.318 0.275 0.351 0.396

CHBþJPT NA 0.314 0.258 0.182 0.259 0.261

BDS

All NA 0.189 0.179 0.0787 0.166 0.146

NOTE.—NA, not applicable. The Spearman rank correlation (q) of W/S DAF skew in each population with HapMap population-based (The International Hapmap Consortium

2007) and deCODE sex-specific, pedigree-based (Kong et al. 2002, 2010) recombination maps at the 1 Mb scale is shown. Correlations are all significant but vary in strength across

HapMap populations and recombination maps (see Discussion). The correlation of BDS Capra and Pollard (2011) with each recombination map is consistently lower than the

correlation of W/S DAF skew and recombination rate. BDS also shows a different sex-specific pattern. These results are similar when considering 40 kb windows (supplementary

table S2, Supplementary Material online).

GC-Biased Evolution in the Human Genome GBE

Genome Biol. Evol. 3:614–626. doi:10.1093/gbe/evr058 Advance Access publication June 21, 2011 621

http://gbe.oxfordjournals.org/cgi/content/full/evr058/DC1
http://gbe.oxfordjournals.org/cgi/content/full/evr058/DC1
http://gbe.oxfordjournals.org/cgi/content/full/evr058/DC1
http://gbe.oxfordjournals.org/cgi/content/full/evr058/DC1
http://gbe.oxfordjournals.org/cgi/content/full/evr058/DC1
http://gbe.oxfordjournals.org/cgi/content/full/evr058/DC1


human, chimpanzee, orangutan, and rhesus macaque, but it
does not explicitly model context-dependent substitution

rates. Thus, we expect it to be less subject to the ancestral

misidentification bias than parsimony. However, since its sen-

sitivity to CpG hypermutability has not been addressed di-

rectly, we performed three control analyses based on either

correcting for CpG effects on DAF spectra or removing poten-

tial CpG sites from our calculations (see supplementary results

S1.1, Supplementary Material online). These analyses consis-
tently show that CpG effects contributed little or no signal to

the patterns of W/S DAF skew we observed in the human

genome (supplementary fig. S3, Supplementary Material on-

line) and their correlation with recombination rates (supple-

mentary table S3, Supplementary Material online).

Discussion

We used polymorphism data from the 1000G low-coverage

pilot project to investigate evidence for ongoing evolution-

ary biases throughout the human genome. The scale and

coverage of the 1000G data allowed us to search recent

evolutionary history for signatures of possible causes of these

biases at an unprecedented scale and resolution. We found

that polymorphic sites in human populations are more likely
to have higher DAFs if they convert ancestral A or T nucleo-

tides to G or C nucleotides than vice versa. Our results

establish that this W/S DAF skew is widespread across

the human genome and increases in strength near recom-

bination hot spots.

W/S DAF Skew Demonstrates an Ongoing
GC-Fixation Bias

By considering current variation in the human population,

we are able to catch polymorphic sites ‘‘in the act’’ of be-

coming fixed. The consistent and significant shift of

W/S SNPs toward higher frequencies reflects the action

of a process that favors strong alleles over weak. An ongo-
ing fixation bias has been proposed previously as a possible

cause of the observed BDS (Dreszer et al. 2007; Berglund

et al. 2009), wherein fixed changes along the human lineage

exhibit W/S bias at certain loci. Several studies have estab-

lished the presence of a GC fixation bias from analysis of

DAFs in specific genomic elements (Lercher and Hurst

2002; Duret et al. 2002; Webster et al. 2003; Webster

and Smith 2004; Spencer et al. 2006; Katzman et al.
2010). Our genome-wide results across three populations

are consistent with these previous findings and demonstrate

the presence of a GC fixation bias throughout the human

genome.

gBGC Is Likely a Cause of the Fixation Bias

gBGC is a nonselective, recombination-driven process that pro-

duces an evolutionary bias for GC alleles. gBGC results from

the DNA repair machinery’s handling of mismatches in short
(;1 kb) heteroduplex DNA regions that form near

recombination-initiating double-strand breaks. When there

is heterozygosity, the alleles from one chromosome are copied

to the other,with a bias for conversion of A or Talleles toGor C

alleles (Strathern et al. 1995; Marais 2003; Meunier and Duret

2004; Duret and Galtier 2009a). Over time, gBGC is proposed

to hasten the fixation ofW/Smutations independent of their

fitness effect (Galtier and Duret 2007; Duret and Galtier
2009b). The previously observed correlations between recom-

bination rate and GC content (Meunier and Duret 2004;

Webster et al. 2005; Duret and Arndt 2008), BDS (Dreszer

et al. 2007; Capra and Pollard 2011), and GC-biased polymor-

phism (Spencer et al. 2006) make gBGC a prime candidate for

the cause of GC fixation bias in metazoan genomes.

Our analysis points to gBGC as a likely source of W/S

DAF skew. As suggested by the correlation of recombina-
tion rate with GC content and BDS, we find a striking as-

sociation of the W/S DAF skew with three different

characterizations of recombination. First, the magnitude

of W/S DAF skew increases with decreasing chromosome

arm length (R25 62%). Because recombination rate per nu-

cleotide per meiosis is thought to correlate with chromo-

some length (Coop and Przeworski 2007; Fledel-Alon

et al. 2009), this ties high rates of recombination to the
W/S DAF skew on the chromosome level. Second, our

analysis of neighborhoods immediately surrounding recom-

bination hot spots connects W/S DAF skew with recom-

bination on a much more local scale. We find significantly

more bias a few thousand base pairs around recombination

hot spots than in the genome-wide background. The scale of

this effect is consistent with the conclusion of the 1000G pro-

ject that the extent of recombination hot spots is smaller than
previously thought, perhaps only;2 kb (1000 Genomes Pro-

ject Consortium 2010). Finally, the spatial distribution of

W/S DAF skew across the genome is correlated with esti-

mates of recombination rate at several scales.

These results argue for gBGC, or some other recombina-

tion-associated process, as a cause of W/S DAF skew, but

mechanistically testing this hypothesis will require further

modeling and experiments.

Why Do Correlations between W/S DAF Skew
and Recombination Vary across Data Sets?

Although we consistently observe strong and significant cor-

relations between W/S DAF skew and recombination rates

across all 1000G populations and a variety of human recom-

bination maps, the magnitude of these correlations differ.

These differences may shed some light on the processes that

generated current patterns of W/S DAF skew in the human

genome and our ability to detect these processes.
First, W/S DAF skew in all populations is more

highly correlated with HapMap linkage-based estimates
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of recombination than with pedigree-based estimates from
the Icelandic population (Kong et al. 2010). This could result

from the fact that HapMap recombination data are from the

same populations as the W/S DAF skew data. It may also

suggest that patterns of W/S DAF skew are driven by

a combination of current and recently extinct hot spots, with

the latter being detected by linkage but not pedigree esti-

mators. The stronger correlation of the HapMap-combined

recombination map versus the population-specific maps for
YRI and CEU offers further support for the idea that W/S

DAF skew largely reflects differences in the frequencies of

older high frequency alleles, many of which likely arose prior

to differentiation of the four populations for which we have

recombination maps and could have been produced by

currently extinct hot spots.

Second, W/S DAF skew in the YRI population is more

strongly correlated with recombination compared with the
other populations. This result holds across length scales and

even when comparing YRI W/S DAF skew to a recombina-

tion map from another HapMap population or the Icelandic

population. A number of factors could contribute to this

pattern. The YRI genome has not experienced the out-of-

Africa event and therefore ismore diverse, contains a greater

number of old polymorphisms, and could potentially have

a more stable and/or ancestral distribution of recombination
hot spots compared with CEU and CHBþJPT genomes.

These variables could lead to more accurate W/S DAF

skew estimates and greater correlation between W/S

DAF skew and recombination in YRI. Such effects would

be particularly strong if current patterns of W/S DAF skew

reflect the combination of mutation and recombination pro-

cesses over hundreds of thousands of years, including biases

driven by extinct ancestral hot spots.
Finally, we were surprised to observe a stronger correla-

tion ofW/S DAF skewwith male recombination rate in the

older sex-specific maps and the opposite pattern— stronger

correlation with female recombination rate—in the new

maps. BDS is more strongly correlated with male recombi-

nation rate in both maps; however, the difference between

the correlation of BDS with male and female rates is dramat-

ically lower for the newer maps (table 2). This lack of agree-
ment between comparisons using different data sets

suggests that there may not be a sex difference in the

strength of association between W/S fixation bias and re-

combination. Rather, sex-specific recombination maps

themselves may differ dramatically across studies, even

within the same Icelandic population. Indeed, estimated re-

combination rates are no more correlated between the two

Icelandic sex-specific maps than they are between either
map and the YRI map (Kong et al. 2010). These differences

warrant further exploration.

If we consider only the new, higher resolution sex-specific

map, then the correlations of W/S DAF skew and BDS with

male and female recombination rates do not agree. Although

we believe that W/S DAF skew is likely involved in the
creation of BDS, these two phenomena are not analogous.

BDS represents historical biases over the entire branch from

human to the human–chimp ancestor, whereas W/S DAF

skew considers only recent biases detectable in human poly-

morphism data. Because the distribution of recombination

events across the genome evolves rapidly, it is possible that

the stronger correlation between W/S DAF skew and fe-

male recombination rate represents a recent change in re-
combination dynamics. For example, a higher fraction of

female recombination events might now result in gBGC,

whereas in the past the opposite might have been true. Thus,

it is possible that over the entire human branch, male recom-

bination rates are a better predictor of gBGC rates. In addi-

tion, there are a number of other factors that are likely to

influence the strength and genomic distribution of BDS

but are unlikely to affect W/S DAF skew. For example,
the production of BDS requires variation in recombination

rate over time or across the genome (Capra and Pollard

2011), whereas this is not necessary for the production

W/S DAF skew. Until we have a better mechanistic under-

standing of meiotic recombination and its evolution, as well

as the observed variation between recombination maps,

these discussions will remain speculative.

What Explains W/S DAF Skew Outside of
Recombination Hot Spots?

We observe considerable W/S DAF skew outside of recom-

bination hot spots. There are several possible explanations for

this observation that are consistent with a recombination-as-

sociated processes, such as gBGC, as the main source of

W/S DAF skew.

First, our knowledge of recombination hot spots in each
population is not complete. Recombination patterns are

highly variable between individuals, even within the same

population (Coop et al. 2008; Berg et al. 2010; Baudat

et al. 2010; Kong et al. 2010). Current maps of recombi-

nation do not fully capture the dynamics of its evolution. In

addition, many recombination events do not result in cross-

over, and current linkage disequilibrium–based methods

for detecting recombination from population data are
not able to detect these events. Non-crossover events

are thought to have different distributions across the

genome than crossovers; Holloway et al. (2006) found this

in sperm-typing studies at individual hot spots. Since gBGC

still occurs without crossover (Duret and Galtier 2009a),

this would lead to W/S DAF skew outside the current

hot spot map. Supporting this interpretation, Gay et al.

(2007) found;1.5�more gene conversion than expected
from crossovers alone in a region of human chromosome 1.

It is possible that integrating W/S DAF skew into models

of the evolution of recombination could help identify

previously unrecognized hot spots and refine maps of

recombination.
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Another possibility is that gBGC is not the sole cause of
the W/S DAF skew. Natural selection favoring GC alleles

has been proposed as a possible source of the isochore struc-

ture of the genome (Eyre-Walker and Hurst 2001). Many the-

ories about potential benefits of increasedGC content—from

greater thermal stability of DNA (Bernardi et al. 1985) to pos-

itive effects on gene expression (Kudla et al. 2006)—have

been suggested. Distinguishing gBGC from natural selection

is complicated by the fact that, on the population level, the
action of gBGC resembles selection for GC alleles (Nagylaki

1983). Our observation of widespread W/S DAF skew

across the genome argues against selection as a main source

of bias since the vast majority of SNPs considered are in non-

coding sequence and are expected to be fitness neutral

(Kimura 1983). The significant correlation ofW/S DAF skew

with recombination rate strongly supports the gBGC hypoth-

esis, but it is not necessarily inconsistent with selection on
GC content. The efficiency of selection is thought to increase

in regions of high recombination due to a reduction in Hill–

Robertson interference (Hill and Robertson 1966), and

Berglund et al. (2009) proposed that this could also lead

to a signal that varies with recombination. However, Duret

and Arndt (2008) argue that Hill–Robertson effects are not

strong enough to produce a significant correlation with re-

combination rate. Overall, our results argue most strongly
for gBGC as a cause of the fixation bias, but they do not

definitively exclude the possibility of selection impacting

the W/S DAF skew at specific loci.

Why Do Some Recombination Hot Spots Lack Bias?

A small number of recombination hot spots are not biased.

When considering 40 kb windows centered on hot spots,

745 (2.9%) have significantly lower W/S DAF skew than

the genome-wide background, and 34 have U-norm signif-

icantly less than 0.5. As noted above, hot spots change lo-

cation frequently within populations. These unbiased hot

spots may be very young and thus have not been active
for a sufficient amount of time to pushW/S alleles to high-

er frequency. It is possible that, with the proper modeling

framework, comparison of DAF spectra could provide

a way to ‘‘age’’ hot spots.

We did not directly consider the effects of selection, be-

cause as described above, it is generally accepted that the

vast majority of mutations are fitness neutral. However, on

a local scale, variation in selective pressure could influence
our ability to detect W/S DAF skew if it is caused by gBGC.

Missing Data Are Likely to Reinforce Evidence for
GC Bias

The 1000G project provides themost unbiased set of human

SNPs available to date. However, the low-coverage pilot pro-

ject did not have sufficient power to find all rare variants. For

example, it is estimated that only ;25% of SNPs occurring

in a single chromosome (singletons) were identified (1000
Genomes Project Consortium 2010). We observed more

S/W than W/S SNPs at low frequencies. Furthermore,

the shift of W/S SNPs to higher DAFs that we observed

throughout the genome suggests that over timeW/S SNPs

move into the higher frequency bins of the spectrum more

readily than do S/W SNPs. Thus, we would expect the

‘‘missing data’’ in the low-frequency bins (such as single-

tons) to contain more S/W than W/S SNPs. If such data
were not missing, it would magnify the strength of the

W/S DAF skew by putting comparatively more weight

in the low-frequency S/Wbins thanW/S bins. Therefore,

we conclude that our results likely underestimate the

strength of ongoing GC bias.

Conclusions

The 1000G low-coverage pilot project enabled us to perform

a deep, genome-wide analysis that demonstrates ongoing
GC-biased evolution in the human genome. In contrast

to the limited scope of previous, more localized studies,

we can conclude that this phenomenon is widespread across

the genome. By showing thatW/S DAF skew is significantly

elevated in close neighborhoods of recombination hot spots,

we add support to the hypothesis that (adaptively neutral)

gBGC is its main driving force. These findings have important

implications for population genetics modeling in general and
for methods that use the shape of DAF spectra to draw con-

clusions about natural selection in particular. Previous studies

of fixed substitutions between species argued that gBGC can

produce false positives in common tests for positive selection

between species (Berglund et al. 2009; Ratnakumar et al.

2010). Our results suggest that this evolutionarily neutral

force is currently active throughout the genome in human

populations, so models of sequence evolution and tests
for selection based on polymorphism data must also take

the resulting biases into account.

Supplementary Material

Supplementary results, figures S1–S3, and tables S1–S4 are

available at Genome Biology and Evolution online (http://

www.oxfordjournals.org/our-journals/gbe/).
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