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HELLY NUMBERS OF ALGEBRAIC SUBSETS OF Rd

AND AN EXTENSION OF DOIGNON’S THEOREM

J. A. DE LOERA, R. N. LA HAYE, D. OLIVEROS, AND E. ROLDÁN-PENSADO

Abstract. We study S-convex sets, which are the geometric objects obtained
as the intersection of the usual convex sets in Rd with a proper subset S ⊂ Rd,
and contribute new results about their S-Helly numbers. We extend prior work for
S = Rd, Zd, and Zd−k×Rk, and give some sharp bounds for several new cases; low-
dimensional situations, sets that have some algebraic structure, in particular when
S is an arbitrary subgroup of Rd or when S is the difference between a lattice
and some of its sublattices. By abstracting the ingredients of Lovász method
we obtain colorful versions of many monochromatic Helly-type results, including
several colorful versions of our own results.

1. Introduction

Eduard Helly stated his fundamental theorem slightly under a century ago [23].
It says that the members of a finite family of convex sets in Rd intersect, if every
d+ 1 of them intersect (see [28] for the basic introduction to this part of convexity).
Since its discovery Helly’s theorem has found many generalizations, extensions and
applications in many areas of mathematics (see [11, 13, 18, 33] and references therein).
Continuing the work of many authors (see e.g., [4, 17, 25, 26, 27, 32] and the many
references therein), our paper presents new versions of Helly’s theorem where the
intersections in the hypothesis and conclusions of the theorems are restricted to
exist in a proper subset S of Rd. The key challenge is to compute the associated
S-Helly number. It is fair to say that applications in optimization have prompted
already many papers about S-Helly numbers [4, 8, 9, 10, 20, 25, 30]. The interest
in our new S-Helly numbers is motivated not just by old and even new (see e.g.,
[12]) applications to optimization, but also in relation to algebraic structures for S
and new applications to algebraic computation with polynomials [14], where more
sophisticated values for the variables appear.

The 1970s and 1980s saw large growth in the research of abstract convexity where
Helly-type theorems were explored in abstract settings beyond Euclidean spaces. For
a proper subset S ⊂ Rd the S-convex sets, are the geometric objects obtained as the

Key words and phrases. Helly-type theorems, Convexity spaces, Lattices, Additive groups,
Colorful theorems.
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intersection of the usual convex sets in Rd with S. The S-convex sets KS =
{
S∩K :

K ⊆ Rd is convex
}

satisfy the convexity space axioms as stated in [32]. In the
literature these are called convexity spaces (see [2, 17, 25, 26, 27, 32] and the many
references therein for more on convexity spaces). For example, there is a Helly-type
theorem about the existence of intersections over the integer lattice Zd, proved by
Doignon [16] (later rediscovered in [8, 25, 30]); it states that a finite family of convex
sets in Rd intersects at a point of Zd if every 2d members of the family intersect at a
point of Zd. A second example is the work of Averkov and Weismantel [4] who gave
a mixed version of Helly’s and Doignon’s theorems which includes them both. This
time the intersection of the convex sets is required to be in Zd−k×Rk and this can be
guaranteed if every 2d−k(k+ 1) sets intersect in such a point (their formula had been
previously stated by A.J. Hoffman in [25]). Note that the size of subfamilies that
guarantees an intersection of all members of the family in S depends on S. These
are the Helly numbers of S from our title, which we now define precisely.

For a nonempty family K of sets, the Helly number h = h(K) ∈ N of K is defined
as the smallest natural number h satisfying the following:

∀i1, . . . , ih ∈ [m] : Fi1 ∩ · · · ∩ Fih 6= ∅ =⇒ F1 ∩ · · · ∩ Fm 6= ∅(1.1)

for all m ∈ N and F1, . . . , Fm ∈ K. If no such h exists, then h(K) := ∞. E.g., for
the traditional Helly’s theorem, K is the family of all convex subsets of Rd.

Finally for S ⊆ Rd we define

h(S) := h
({
S ∩K : K ⊆ Rd is convex

})
.

That is, h(S) is the Helly number when the sets are required to intersect at points
in S; we will call this the S-Helly number. The problem we study here is, given a
set S, to provide bounds for the S-Helly number h(S).

For instance, note that when S is finite then the bound h(S) ≤ #(S) is trivial.
The original Helly number is h(Rd) = d + 1 and, interestingly, if F is any subfield
of R (e.g., Q(

√
2)), then Radon’s proof of Helly’s theorem directly shows that the

S-Helly number of S = Fd is still d + 1. As we mentioned earlier, we also know
h(Zd−k × Rk) = 2d−k(k + 1). However, if S is not necessarily a lattice but a general
additive subgroup (e.g., S = {(απ + β, γ) ∈ R2 : α, β, γ ∈ Z}), then the S-Helly
number is not covered by prior results. It is known that the S-Helly number may be
infinite in some situations.
Now we are ready to state our contributions. The proofs will be presented after
preliminaries in Section 2. The preliminary results were priorly obtained by other
authors, but we show that together they are a very useful toolkit for computing
S-Helly numbers.
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Our contributions. We first present bounds on Helly numbers for low dimensions
and for algebraic subsets S of Rd. For simplicity we will always assume that the
linear span of S is the whole space Rd. We begin in Section 3 with results and open
questions in dimensions one and two. For the case of dimension d = 1 it is easy to
see that for any set S, the Helly number h(S) exists and is at most two. In Section
3 we present the following two theorems:

Theorem 1.1. If S is a dense subset of R2, then h(S) ≤ 4. This result is sharp.

Theorem 1.2. Let L be a proper sublattice of Z2. If S = Z2 \ L, then h(S) ≤ 6.
This result is sharp.

In Section 4 we explore the situation where S is a set with an algebraic structure.
First we consider the case where S is an additive subgroup of Rd (not necessarily
closed) and we propose a conjecture for general subgroups. If S has additional
structure—for instance, if S is a G-module, (i.e., an additive Abelian group (S,+)
with a compatible scalar multiplication G × S → S, with coefficients in a group
G)—then we can indeed obtain better bounds for h(S):

Theorem 1.3. Let G be a dense subgroup of R. If S ⊂ Rd is a G-module then
h(S) ≤ 2d. Furthermore, this number is best possible.

We extended the classical Doignon’s theorem for a lattice by proving that the set
difference of a lattice and the union of several of its sublattices has bounded Helly
number too. We prove the following theorem which has already found applications
in stochastic convex discrete optimization (see [12]). In fact, lattices with removed
sublattices play also an interesting role in Minkowski’s geometry of numbers, see for
example [19, 24] and the references within.

Theorem 1.4. Let L1, . . . , Lk be (possibly translated) sublattices of Zd. Then the
set S = Zd \ (L1 ∪ · · · ∪ Lk) has Helly number h(S) ≤ Ck2d for some constant Ck

depending only on k.

Note that when no sublattices are removed this is exactly Doignon’s theorem.
The final contribution is about colorful versions of all our Helly theorems. Many

Helly-type theorems admit a colorful version. In this setting, each convex set is
assigned one of N colors and every N convex sets of distinct colors are required to
intersect. The conclusion is that there is a color for which all convex sets intersect.
In Section 5 we analyze and abstract a popular method due to Lovász. We show
only that very general assumptions are necessary to yield colorful versions for several
Helly-type theorems. As a result we recover older colorful Helly-type theorems and
find a few new ones.
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Figure 1. An S-vertex-polytope and an S-facet-polytope.

2. Tools to compute Helly numbers

We will be concerned with proving bounds on S-Helly numbers of specific S ⊆ Rd.
In this section we discuss some useful methods priorly used to bound the S-Helly
number of a subset S of Rd. They were studied first by Hoffman [25] in the setting
of abstract convexity, and later on refined by Averkov and Weismantel in [4], and
Averkov in [3].

Definition 2.1. We define an S-vertex-polytope as the convex hull of points x1, x2, . . . , xk ∈
S in convex position such that no other point of S is in conv(x1, . . . , xk).

Similarly, an S-facet-polytope is defined as the intersection of half-spacesH1, H2, . . . , Hk

such that
⋂

iHi has k facets and contains exactly k points of S, one contained in the
relative interior of each facet.

Figure 1 shows an S-vertex-polytope with six vertices and an S-facet-polytope
with six sides in R2.

Lemma 2.2 (Theorem 2.1 in [3] and Proposition 3 in [25]). Assume S ⊂ Rd is
discrete, then h(S) is equal to the following two numbers:

(1) The supremum f(S) of the number of facets of an S-facet-polytope.
(2) The supremum g(S) of the number of vertices of an S-vertex-polytope.

The case when S is not discrete is a bit more delicate. Averkov [3] showed that
in general f(S) ≤ h(S). Recently, new results involving these two quantities and
the S-Helly number h(S) have been obtained by Conforti and Di Summa [10]. E.g.,
they proved that when S is a closed subset of Rd and f(S) is finite, then h(S) ≤
(d+ 1)f(S). They also showed an example where f(S) = 1, yet the S-Helly number
is infinite. Fortunately, for the calculation of Helly numbers there is a very general
result due to A.J. Hoffman characterizing S-Helly numbers.

Lemma 2.3 (Proposition 2 in [25]). If S ⊂ Rd, then h(S) can be computed as the
supremum of h such that the following holds: There exists a set R = {x1, . . . , xh} ⊂ S
such that

⋂
i conv(R \ {xi}) does not intersect S.
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Note that, in particular, the points of R must be in strictly convex position. As a
direct application of Lemma 2.3 we have the following proposition.

Proposition 2.4. If S1, S2 ⊆ Rd, then h(S1 ∪ S2) ≤ h(S1) + h(S2).

The Helly number of a product is not always so well-behaved as in the mixed
integer case, but Averkov and Weismantel proved the following

Proposition 2.5 (Theorem 1.1 in [4]). If M is a closed subset of Rk then h(Rd ×
M) ≤ (d+ 1)h(M).

Averkov and Weismantel also proved that h(Zd×M) ≥ 2dh(M) for closed M ⊆ Rk,
but this is less useful for upper bounds. Similarly, one can prove a general bound in
the case of discrete sets.

Theorem 2.6 (Conforti, Di Summa [10]). If S1, S2 ⊂ Rd are discrete sets, then
h(S1 × S2) ≥ h(S1)h(S2).

3. S-Helly numbers in low dimension

We start by looking at the one-dimensional case, here there is a very general result
which immediately follows from Lemma 2.3.

Lemma 3.1. If S ⊆ R, then h(S) ≤ 2.

That is, the S-Helly number of any subset of the real line is two, or one in case S
consists of a single point. Unfortunately in R2 we no longer have such a nice theorem.
Consider the example below.

Example 3.2. Let Sn = {p1, . . . , pn} ⊂ R2 be a set of n points in strictly convex
position. Then any subset of Sn can be expressed as Sn∩K where K ⊂ R2 is convex.
Lemma 2.2 implies h(Sn) = n. If for each n we take a copy of Sn such that their
convex hulls do not intersect, then their union S will have h(S) = ∞. A simpler,
but non-discrete, example with h(S) =∞ is a circumference.

In spite of Example 3.2, we still have a general result in dimension two.

Proof of Theorem 1.1. We begin by noting that the bound of four is sharp. This
can be seen by taking S = R2 \ {0} and convex sets {(x, y) ∈ R2|x ≥ 0}, {(x, y) ∈
R2|x ≤ 0}, {(x, y) ∈ R2|y ≥ 0}, {(x, y) ∈ R2|y ≤ 0}. In this case h(S) = 4.

Now, assume that S is some arbitrary dense set with h(S) > 4. Lemma 2.3
provides a set R = {x1, . . . , x5} such that

⋂
i(R \ {xi}) does not intersect S. But

since the points of R are in strictly convex position,
⋂

i(R \ {xi}) has non-empty
interior and must intersect S, a contradiction. �

Theorem 1.1 does not hold in dimensions three and higher. In fact, we can con-
struct a dense set S in R3 with h(S) =∞.
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Figure 2. Three examples of lattice differences.

Example 3.3. In R3, consider a set of points S0 on the plane {z = 0} with h(S0) =
∞. Let S = (R3 \ {z = 0}) ∪ S0. Then S is clearly dense and h(S) =∞.

One very important family of subsets of Rd are lattices, i.e., discrete subgroups
of Rd. As we mention before, Doignon in [16] made an interesting investigation of
the Helly number of a lattice S of rank d and showed that h(S) = 2d (his work was
independently rediscovered by D. Bell and H. Scarf [8, 30]). Recently in [1] this result
was generalized to force not just a non-empty intersection with the lattice, but to
control the number of lattice points in the intersection. Next we state a particular
case of the results:

Lemma 3.4 (See Theorem 1 in [1]). Let k = 0, 1 or 2. Assume that F is a family of
convex sets in R2 such that their intersection contains exactly k points of Z2. Then
there is a subfamily of F with at most 6 elements such that their intersection contains
exactly k points of Z2.

The set consisting of the difference between two lattices is a rather rich set of points
in Rd: they have interesting periodic patterns but contain complicated empty regions,
and are closely related to tilings of space [22]. See Figure 2 for some examples. In the
case of dimension two, Theorem 1.2 deals with finding h(S) for this type of sets, and
we achieve a tight result. In contrast, Theorem 1.4 presents a more general theorem
for arbitrary dimensions but the bounds are far from tight. It is worth noting that
the proof of Theorem 1.4 contains a surprising application of Ramsey’s theorem.

Proof of Theorem 1.2. From Lemma 2.2 it is enough to bound the number of
edges of an S-facet-polygon. Assume k > 6 and there is an S-facet-polygon K
determined by the semi-planes H1, H2, . . . , Hk.

Note that if |int(K) ∩ Z2| ≤ 2, (were int(K) is the interior set of K) then by
Lemma 3.4 applied to the interiors of the Hi, we can find Hi1 , . . . , Hi6 among our
original semi-planes such that int(

⋂
j Hij ) contains no additional points of L. But

the relative interior of at least one side of K is contained in int(
⋂

j Hij ), contradicting

that there is a point of S in each side of K. Therefore |int(K) ∩ Z2| ≥ 3, but since
the points cannot lie on Z2 \ L then we may assume |int(K) ∩ L| ≥ 3. We look at
two possible cases:
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1. Suppose there is a triplet of non collinear points in int(K) ∩ L. Then we may
choose p, q, r ∈ int(K) ∩ L such that T = conv(p, q, r) contains no other point from

L. Consequently, the area of T is equal to d(L)
2

, where d(L) is the determinant of the
lattice L. On the other hand, since int(K) ∩ S is empty, int(K) ∩ L = int(K) ∩ Z2

and therefore T ∩ Z2 = {p, q, r}. Hence the area of T is also equal to d(Z2)
2

. This
contradicts the fact that L is a proper sublattice of Z2.

2. Suppose that the points of int(K) ∩ L are collinear. After applying a suitable
Z2-preserving linear transformation we may assume that int(K) ∩ L is contained in
the x-axis. Since K intersects the x-axis in an interval with at least 3 interior lattice
points, its length is greater than 2. Suppose K contains a point with y-coordinate
say at least 2. Then by convexity K ∩ {|y| = 1} has width greater than 1 and
contains an interior lattice point p. Because the elements of int(K)∩L are collinear,
p cannot be in L, thus p must be in S. However, this is impossible as K is S-free.
Therefore K ⊆ {|y| < 2}. Similarly, it can be shown that K ⊆ {|y| > −2}. Each
edge of K contains a point from S in its relative interior and every lattice point in
K has y-coordinate −1, 0, or 1. But since a convex set intersect a line in a whole
line segment then intersects each of the three lines {y = −1}, {y = 0}, {y = 1}
in at most two points. It follows that K has at most six sides, contradicting the
assumption that K has at least seven sides or edges. �

We conclude with a conjecture that stresses interesting connections to number
theory.

Conjecture. Let P be the set of prime numbers. Then h(P2) =∞.

We have been able to show that h(P2) ≥ 14 and h((Z \P)2) is finite (e.g., through
a simple modification of the argument used in Theorem 1.4 and Lemma 2.3). This
problem appears to be related to the Gilbreath-Proth conjecture [29] on the behavior
of differences of consecutive primes.

4. Helly Numbers for Subgroups of Rd and differences of lattices

Now we move to spaces of arbitrary dimension and to sets S with rich algebraic
structure.

4.1. Subgroups of Rd. We look at the case when S is an additive subgroup of Rd.
The most famous examples are lattices. We recall a lattice is defined as a discrete
subgroup of Rd; it is well known that lattices in Rd are generated by at most d
elements (see [7]). This is precisely the context of Doignon’s theorem, which says
that h(Zd) = 2d.

If a group S ⊂ Rd is finitely generated by m elements, then the natural epimor-
phism between Zm and S given by linear combinations yields a linear map from Rm
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onto Rd. From here Doignon’s theorem implies that h(S) ≤ 2m. However, there is
no dependency on d here, and m could be large compared to d.

On the other hand, it is known in the topological groups literature (see e.g. [15])
that every closed subgroup that linearly spans Rd is of the form φ(Zd−k×Rk), where
φ : Rd → Rd is a linear bijection. In this case the mixed version of Helly’s and
Doignon’s theorems by Averkov and Weismantel [4], guarantees that h(Zd−k×Rk) =
2d−k(k + 1).

The closure S̄ of a group S is also a group; therefore we may assume that S̄ =
Zd−k ×Rk. This allows us to express S as a product of the form Zd−k ×D, where D
is a dense subgroup of Rk. In this case, we might expect that h(S) ≤ (k + 1)2d−k,
but the following example shows that this is not the case.

Example 4.1. Let k ≤ d and let 1, α1, α2, . . . , αk ∈ R be linearly independent
over Q. Let {e1, e2, . . . , ed} be the canonical basis of Rd and consider the group S
generated by

S := 〈e1, . . . , ek−1, α1(ek + e1), . . . , αk−1(ek + ek−1), αkek, ek+1, . . . , ed〉.
Note that S = Zd−k ×D, where

D = 〈e1, . . . , ek−1, α1(ek + e1), . . . , αk−1(ek + ek−1), αkek〉
is a dense set in Rd, so the closure of S is Zd−k ×Rk. Observe that if we intersect S
with the space {xk = 0} we obtain a (d− 1)-dimensional lattice. Since

h(S ∩ {xk = 0}) = 2d−1,

we can construct a family F of S-convex sets with 2d−1 + 2 elements containing
{(x1, x2, . . . , xd) ∈ Rd | xk ≥ 0} and {(x1, x2, . . . , xd) ∈ Rd | xk ≤ 0} to show that
h(S) ≥ 2d−1 + 2. If k ≥ 3, then h(S) is larger than (k + 1)2d−k.

In spite of this, we state the following conjecture:

Conjecture. For any subgroup G ⊆ Rd, the Helly number h(G) is finite.

Note that this conjecture is true for all finitely generated groups by Doignon’s
theorem. One might be tempted to conjecture that h(G) ≤ 2d. As we see in the next
example, this is not always the case.

Example 4.2. Let G0 ⊂ R be the group generated by 1, π and e, so that G = Z2×G0

is a subgroup of R3. Consider the points x1 = (0, 1, 3), x2 = (2, 1, e) and x3 = (2, 3, π)
in R3. The important property these points have is that the 3 midpoints they define
are not in G. Let H ⊂ R3 be the plane through x1, x2, x3. Consider three additional
points x4, x5, x6 ∈ G above (0, 2), (1, 0), (3, 3) ∈ Z2 and slightly above H and another
3 points x7, x8, x9 above the same three points in Z2 but this time slightly below H.
Concrete coordinates for these points are
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x1
x2

x3

Figure 3. The convex hull of 9 points in Z2×G0, in dark gray is the
projection of the intersection described in Lemma 2.3.

x4 =
1

2
(6− e+ π) + ε, x5 =

1

2
(6− e+ π)− ε, x6 =

1

2
(3 + 2e− π) + ε,

x7 =
1

2
(3 + 2e− π)− ε, x8 =

1

2
(−3 + e+ 2π) + ε, x9 =

1

2
(−3 + e+ 2π)− ε,

Where ε = 1/5 or smaller (a bit larger also works). Finally note if R = {x1, . . . , x9}
then the hypothesis of Lemma 2.3 are satisfied (see Figure 3), and therefore we have
h(G) ≥ 9.

If the group G has some additional structure, we are able to bound its Helly
number.

Proof of Theorem 1.3. We prove the stronger statement that h(S) ≤ 2d for all
S ⊆ Rd with the following property (which is satisfied by G-modules with dense G):
S ∩ A is affine for all affine subspaces A ⊆ Rd.

We have already proved in Lemma 3.1 the case d = 1 and in Theorem 1.1 the
case d = 2. For the general case we use induction over d. Let d > 1 and let S be a
set such that S ∩ A is affine for all affine A. Assume that the theorem is false and
h = h(S) > 2d. This means that there is a family F of convex sets such that

⋂
F

does not intersect S, but for every subfamily G with h − 1 elements,
⋂
G intersects

S.
If S is not dense in Rd, it must have dimension less than d; in this case h(S) < 2d

by induction. Thus S must be dense. It follows that int(
⋂
F) = ∅ —that is,

m = dim(
⋂
F) < d. We claim that there exists a subfamily H ⊂ F with 2(d −m)

elements such that dim(
⋂
H) = dim(

⋂
F), which can be constructed as follows. For

simplicity assume that the origin O belongs to the relative interior of
⋂
F and for

every K ∈ F , consider the cone VK of vectors v such that

K ⊆ {x ∈ Rd : 〈v, x〉 ≥ 0}.
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Recall that a family V of vectors positively spans a vector space if every element
of the vector space can be expressed as a linear combination of elements of V with
non-negative coefficients.

Note that
⋃

K∈F VK positively spans the orthogonal complement of
⋂
F . In par-

ticular dim(
⋃

K∈F VK) = d−m. Consequently, by Steinitz’s theorem [31, 18], there
are vectors v1, v2, . . . , v2(d−m) ∈

⋃
K∈F VK which positively span the orthogonal com-

plement of
⋂
F . For each i = 1, . . . , 2(d−m) choose Ki ∈ F such that vi ∈ Ki and

let H = {K1, K2, . . . , K2(d−m)}; then dim(
⋂
H) = dim(

⋂
F).

Take R = aff(
⋂
H) ∩ S. Since R satisfies the same property that S does, h(R) ≤

2m by the induction hypothesis. Let J = {K∩(
⋂
H) : K ∈ F\H}. By the definition

of F , every (h − 1) − 2(d −m) elements of J intersect in R. However,
⋂

(J ) does
not intersect R, as then

⋂
F would intersect S. Thus (h − 1) − 2(d −m) < h(R),

and therefore h ≤ h(R) + 2(d−m) ≤ 2d. This contradicts our choice of h. �

To show that this is best possible we have the following example.

Example 4.3. Let a1, a2, . . . , ad, b1, b2, . . . , bd, c1, c2, . . . , cd be linearly independent
numbers when considered as a vector space over Q and satisfying ai < ci < bi for
every 1 ≤ i ≤ d. Consider the Q-module S generated by the 2d vectors of the form

Ai = (c1, . . . , ci−1, ai, ci+1, . . . , cd),

Bi = (c1, . . . , ci−1, bi, ci+1, . . . , cd).

For i = 1, . . . , d. It is easy to see that C = (c1, . . . , cd) 6∈ S.
Let K−i and K+

i be the two half-spaces with boundary through C orthogonal to ei

so that Ai ∈ K−i and Bi ∈ K+
i . If F is the family consisting of these 2d half-spaces

then Ai ∈
⋂

(F \ {K+
i }) and Bi ∈

⋂
(F \ {K−i }) but

⋂
F = {C} does not intersect

S; therefore h(S) ≥ 2d.

4.2. Difference of lattices in Rd. Recall that the Ramsey number

Rk = R(3, 3, . . . , 3︸ ︷︷ ︸
k

)

is the minimum natural number needed to guarantee the existence of a monochro-
matic triangle in any edge-coloring with k colors of the complete graph with Rk

vertices. We now prove Theorem 1.4 with constant Ck = Rk − 1.

Proof of Theorem 1.4. Assume that h(S) > (Rk − 1)2d. Lemma 2.2 implies the
existence of an S-vertex-polytope K with h(S) vertices. We say that two elements
of Zd have the same parity if their difference has only even entries, or equivalently, if
their midpoint is in Zd. Since the vertex-set of K has more than (Rk−1)2d elements,
it contains a subset V consisting of Rk points with the same parity.
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By definition of K, if A,B ∈ V then their midpoint cannot be in S; it must be
contained in some Li. Consider V as the vertex-set of the complete graph with Rk

vertices. We call it G and assign to each edge AB a color i so that the midpoint of
A and B is in Li.

Since G has Rk vertices, by Ramsey’s theorem it contains a monochromatic trian-
gle. This means that there exist A1, A2, A3 ∈ V ⊂ S such that the three midpoints
M1 = 1

2
(A1 +A2), M2 = 1

2
(A2 +A3) and M3 = 1

2
(A2 +A1) are in some Li. But then

A1 = M1 −M2 +M3 ∈ Li which contradicts the fact that A1 ∈ S. �

5. Analysis of a popular method to color Helly-type theorems

In this final section, we will see the colorful version of Helly’s theorem. It can
be interpreted as a situation when the constraints are divided into colors, where the
colors indicate constraint types or categories. What the theorem guarantees then
is a situation in which at least one entire color class has a common solution. We
discuss the essential features of a general method to obtain colorful versions of some
Helly-type theorems in the sense of Bárány and Lovász. This method has been used
in a number of occasions [4, 6] and can be applied to the usual Helly’s theorem,
Doignon’s theorem, Theorem 1 in [1] and our Theorems 1.2 and 1.4 presented in this
paper. This idea has been around for some time and it is based on Lovász’s proof of
Helly’s theorem, but as far as we know it has never been abstracted to its essential
features.

Let P(K) be a property of a convex set K ⊂ Rd. By a property we mean a function
from the set of convex sets in Rd that takes values in {true, false}. As examples of
properties P(K) we have:

(i) K intersects a fixed set S,
(ii) K contains at least k integer lattice points,

(iii) K is at least k-dimensional,
(iv) K has volume at least 1.

The following generalizes the definition of Helly number we gave in the introduction
to properties shared by sets.

Definition 5.1. For a property P as above, the Helly number h = h(P) ∈ N is
defined as the smallest number satisfying the following.

∀i1, . . . , ih ∈ [m] : P(Fi1 ∩ · · · ∩ Fih) =⇒ P(F1 ∩ · · · ∩ Fm)(5.1)

for all m ∈ N and convex sets F1, . . . , Fm. If no such h exists, then h(P) :=∞.

Let us look at the four examples of properties above. If P is property (i) then
h(P) = h(S). For property (ii), the quantitative Doignon theorem in [1] gives bounds
for h(P). A result from Grünbaum [21] bounds and determines h(P) for property
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(iii) with 0 ≤ k ≤ d. In the case of property (iv), it is easy to show that in fact
h(P) =∞, despite the existence of a quantitative Helly theorem [5].

Definition 5.2. We say that property P is:

1. Helly if the corresponding Helly number h(P) is finite.
2. Monotone if K ⊂ K ′ and P(K) is true implies that P(K ′) is true too.
3. Orderable if for any finite family F of convex sets there is a direction v ∈

Rd\{0} such that for everyK ∈ F where P(K) is true, there is a containment-
minimal v-half-space (i.e., a half-space of the form {x : vTx ≥ w} for some
w ∈ R) HK such that:
(a) P(K ∩HK) is true.
(b) There is a unique containment-minimal convex set K ′ ⊂ K ∩ HK with
P(K ′) true.

4. N-colorable if for any given finite families F1, . . . ,FN of closed convex sets in
Rd (each a colored family), such that P(

⋂
G) is true for every rainbow family

G (i.e. a family consisting of one element from each Fi), then P(
⋂
Fi) is true

for some family Fi.

It is not too difficult to see that property (i) is Helly, monotone and orderable
when S is discrete or the whole space. Property (ii) is also Helly, monotone and
orderable, whereas property (iii) fails to be orderable and property (iv) is neither
Helly nor orderable. Under this definition we can state the key result:

Theorem 5.3 (Generic Colorful Helly). A Helly, monotone, orderable property P is
always h(P)-colorable.

Proof. Set N = h(P) and let F1, . . . ,FN be finite families of closed convex sets in
Rd such that P(

⋂
G) holds true for every rainbow family G.

We need an auxiliary construction. Recall that for a family of convex sets H,
⋂
H

denotes the intersection of all elements in H (we go from a family to a single set). A
family G of convex sets selected from the Fi in such a way that for some j, |G∩Fj| = 0
and |G ∩Fi| = 1 for every other i 6= j will be called almost rainbow. Note that there
are many possible almost rainbow families with respect to F1, . . . ,FN (but there
are finitely many almost rainbow families if Fi are finite). For each almost rainbow
family G we apply the intersection operator

⋂
G. Now, we focus our attention on

F , the family consisting of all the convex sets
⋂
G for each possible almost rainbow

family.
Since property P is orderable, there is a direction v ∈ Rd \ {0} associated to the

family F as in part 3 of Definition 5.2. By hypothesis and monotonicity, P(K) is
true for every K ∈ F and therefore there is a v-half-space HK and a convex set
K ′ ⊂ K ∩HK as in part 3 of Definition 5.2. This set K ′ will be used a bit later.
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Among all elements in F pick a K ∈ F such that the corresponding HK is
containment-maximal, we may assume that K = K1∩· · ·∩KN−1 with Ki ∈ Fi for i =
1, . . . , N−1. For a fixed LN ∈ FN , consider the family F ′ = {K1, . . . , KN−1, LN , HK}
which consists of N + 1 convex sets. We now show that for every subfamily G ′ of F ′,
consisting of N elements, P(G ′) is true. There are three possibilities for G ′:

• If G ′ = F ′ \ {HK}, then P(
⋂
G ′) = P(

⋂N−1
i=1 Ki ∩ LN) is true by hypothesis.

• If G ′ = F ′\{LN}, then P(
⋂
G ′) = P(HK∩(

⋂N−1
i=1 Ki)) is true by the definition

of HK .
• If G ′ = F ′ \ {Kj} for some j < N , then P(

⋂
G ′) = P(HK ∩ (

⋂
i 6=j Ki) ∩ LN)

is true. Otherwise, the half-space from part 3 of Definition 5.2 corresponding
to
⋂

i 6=j Ki ∩LN exists and is to the right of HK , contradicting the definition
of HK .

Since N = h(P), by Definition 5.1, P(
⋂
F ′) is true. The minimality of K ′ then gives

K ′ ⊂
⋂
F ′ ⊂ LN . We conclude that K ′ is contained in every element of FN , so by

monotonicity P(
⋂
FN) is true. �

As a corollary we can obtain colored versions of three new Helly-type theorems:

Corollary 5.4. Let P be one of the following properties, all of which have an asso-
ciated Helly-type theorem:

(1) K intersects a fixed set S ⊂ Rd, where h(S) <∞ and S discrete,
(2) K contains at least k integer lattice points (see [1]),
(3) K contains at least k points from a set difference of lattices (see [13]),

Then P is h(P)-colorable.
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