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ABSTRACT OF THE DISSERTATION
Towards Engineering Computer Vision Systems: From the Web to FPGAs

By

Sajjad Taheri

Doctor of Philosophy in Computer Science

University of California, Irvine, 2019

Professor Alexandru Nicolau, Chair

Computer vision is an interdisciplinary field to obtain high-level understanding from digital

images. It has many applications that impact our daily lives, such as automation, entertain-

ment, healthcare, etc. However, computer vision is very challenging. This is in part due to

the intrinsically difficult nature of the problem and partly due to the complexity and size

of visual data that need to be processed. To be able to deploy computer vision in many

practical use cases, sophisticated algorithms and efficient implementations are required.

In this thesis, we consider two platforms that are suitable for computer vision processing,

yet they were not easily accessible to algorithm designers and developers: the Web and

FPGA-based accelerators. Through the development of open-source software components,

we highlight challenges associated with vision development on each platform and demonstrate

opportunities to mitigate them.

The Web is the world’s most ubiquitous computing platform which hosts a plethora of visual

content. Due to historical reasons such as insufficient compute performance and lack of API

support for acquiring and manipulating images, computer vision is not mainstream on the

Web. We show that in light of recent web developments such as vastly improved JavaScript

performance and the addition of APIs such as WebRTC, efficient computer vision processing

can be realized on web clients. Through novel engineering techniques, we translate a popular

xi



open-source computer vision library (OpenCV) from C++ to JavaScript and optimize its

performance for the web environment. We demonstrate that hundreds of computer vision

functions run in browsers with performance close to their original C++ version. We believe

this will result in an immersive and perceptual web with transformational effects, including

in online shopping, education, and entertainment, among others.

Field Programmable Gate Arrays (FPGA)s are a promising solution to mitigate the com-

putational cost of vision algorithms through hardware pipelining and parallelism. However,

an efficient FPGA implementation of computer vision algorithms requires hardware design

expertise and a considerable amount of engineering person-hours. We show that graph-based

specifications, such as OpenVX can significantly improve FPGA design productivity. Since

such abstraction lacks implementation details, a vision algorithm designer can only focus

on the algorithm itself and rely on another party with hardware knowledge to implement

the design efficiently on a specific platform. During this process, different implementa-

tion configurations that satisfy various design constraints, such as performance and power

consumption, can be explored. Furthermore, the graph-based model permits system-level

optimizations that are not possible with traditional function-level acceleration. Towards this

goal, we develop a framework that optimizes and implements vision algorithms that are de-

scribed in OpenVX spec on different FPGA architectures. This framework hides low-level

hardware optimization and implementation details from computer vision algorithm designers

and enables them to quickly develop and verify FPGA implementations of vision algorithms

without sacrificing performance.

xii



Chapter 1

Introduction

Computer or machine vision is a field of computer science that brings solutions for com-

puters to extract high-level understanding from images. Scientists in this field are trying to

improve the quality and quantity of understanding, automate this process, and develop high-

performance, and energy-efficient implementations. Computer vision has an ever-increasing

number of applications in our daily life. It has wide usage in object detection [83, 59], face

recognition [100, 73], autonomous vehicles [32, 45], and health care [33]. Emerging tech-

nologies such as Virtual and Augmented Reality (VR and AR) involve numerous computer

vision algorithms for tracking, scene understanding, and scene construction [34, 13, 72, 65].

Over the past few decades, several technical advances have contributed significantly to the

field of computer vision:

1. Availability of CMOS sensors with high resolution to capture high-quality images.

For instance, as Figure 1.1 shows, the quality of sensors has increased over several years.

High-quality digital cameras capture images details measure the difference between

colors with very high accuracy.
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Figure 1.1: Camera sensor size trend
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Figure 1.2: Floating-point operation performance of modern FPGAs

2. Availability of faster hardware with parallel processing capabilities: Com-

puter vision algorithms exhibit inherent parallelism such that the same set of opera-

tions applies to each pixel. Parallel hardware has always been promising solutions for

vision algorithms. SIMD processors, GPUs, FPGAs, and specialized ASIC designs can

improve performance and power consumption orders of magnitude. Applying state-

of-the-art algorithms on large data requires powerful hardware. Figure 1.2 shows the

floating-point performance improvement of several high-end FPGAs released by Intel

during recent years.

3. Software stack and open-source libraries that facilitates building computer vi-
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sion systems without reinventing the infrastructure has led to a dramatic increase in

software development productivity [16, 49, 101].

4. Advances in deep learning: Neural networks can learn the relationships between

inputs and outputs that are often nonlinear. After AlexNet breakthrough performance

in 2012 [55], Convolutional Neural Networks (CNNs) got huge attention and wide

usage. They significantly improve decision processes in different areas such as object

detection and classification and are now considered state-of-the-art techniques.

5. Availability of large image databases collections: One of the main reasons that

contribute to the success of neural networks is the availability of a large amount of

labeled training data. Datasets are often categorized toward different various vision

tasks such as image classification [28], scene segmentation [23], face detection [47], and

activity recognition [87].

1.1 Challenges of Portable and Efficient Computer Vi-

sion

Computer vision is computationally intensive and involves sophisticated algorithms. The

efficient implementation of these algorithms is very challenging and needs expertise not only

in computer vision but also software design and hardware optimization. Hence, open-source

software such as OpenCV are often used to build real-world systems. OpenCV is designed

for computational efficiency and with real-time use cases in mind [16]. OpenCV is very

comprehensive, and as shown in Figure 1.3 is implemented as a set of modules. It offers

a large number of primitive vision kernels and applications ranging from image processing,

object detection, tracking, and deep neural networks (DNNs). Furthermore, it supports a

wide variety of operating systems and is optimized for a range of parallel hardware such as

3
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Figure 1.3: OpenCV source code structure and platform support

multicores, vector extensions, and GPUs. It is developed in C++, but bindings for languages

such as Python and Java are available.

A critical requirement of real-time computer vision is efficiency. Researchers have devel-

oped software, hardware, and software-hardware optimization methods to improve resource

consumption, performance, and energy efficiency of computer vision systems. Implement-

ing systems that are portable in regards to performance and power efficiency is not trivial.

Since many of the optimizations depend on the underlying hardware, in practice, software

implementations such as OpenCV have platform-specific optimizations that are hard-coded

and enabled at compile-time. However, manual optimization is very tedious. Utilizing hard-

ware parallelism efficiently without sacrificing portability is the subject of extensive research.

Many works have used portable and high-level abstraction of programs and compilers that

convert them into optimized binary for the underlying hardware [15, 30, 80].

1.2 Thesis Contributions

This dissertation’s contributions include two disjoint efforts. We consider two platforms that

are suitable for computer vision processing, yet they were not easily accessible to algorithm

designers and developers: (1) the Web and (2) FPGA-based accelerators.
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1. The Web is the most ubiquitous computing platform with billions of connected de-

vices. Its popularity in online commerce, entertainment, science, and education has

been increasing tremendously. There is also an ever-growing amount of multimedia

content on the Web. Despite such rapid progress in quantity and quality of content,

computer vision processing on the web browsers has not been a common practice. One

approach taken by developers was to offload vision processing tasks to the server. This

approach, however, sacrifices user privacy and suffers from always-online requirements

and the increase in data transfer bandwidth and latency. With a massive boost in

JavaScript execution performance, and HTML5 APIs to access media devices, the Web

can unleash the huge potential in education, entertainment, and commerce. However,

a web-based computer vision library with quality and quantity of OpenCV to work as

infrastructure to build computer vision systems is lacking.

2. Computer vision acceleration improves performance and energy-efficiency dramatically

and is in high demand. For example, some applications require detecting hundreds of

objects in a few milliseconds. This task is not feasible on modern CPUs even with

expert implementation. FPGAs are a promising solution to improve the speed and

5



mitigate the computational cost of vision algorithms through hardware pipelining and

parallelism while offering excellent power efficiency [63, 114, 46, 67]. However, an

efficient FPGA implementation of a vision algorithm requires hardware design expertise

and a considerable amount of engineering person-hours. Unfortunately, developers may

not be familiar with FPGA design, let alone efficient implementation. Even a CPU

implementation of vision algorithms using programming languages such as C/C++ is

time-consuming and error-prone. Moreover, despite advances in High-Level Synthesis

(HLS) tools, they are still not able to generate efficient hardware implementation for

vision algorithms developed in general-purpose programming languages. The main

reason is that HLS tools do not incorporate specific optimization methods of vision

algorithms, which are critical to the efficient implementation of such algorithms.

To address the above-mentioned challenges, this dissertation makes the following list of

contributions:

Web-based platform:

1. It provides a comprehensive computer vision library for the Web by porting an exist-

ing computer vision library that is developed in a native language (i.e., OpenCV) to

JavaScript. It provides an expansive set of functions with an optimized implementation

that offers a near-native level of performance.

2. It shows how the library performance can be further improved through JavaScript

SIMD and thread-based parallelism.

FPGA-based platform:

1. It develops a scalable OpenCL library of image processing and computer vision kernels

such that they can be configured using various input parameters. This library can be

6



used in any OpenCL program or as part of a high-level vision framework.

2. It provides a heterogeneous framework called AFFIX to transform OpenVX graph-

based algorithms to CPU-FPGA implementation. It employs several algorithm and

hardware-specific optimization techniques. This enables vision developers to develop,

verify, and test FPGA implementation of a vision algorithm quickly and without the

need to know a DSL or FPGAs.

The research presented in this dissertation has been published in peer-reviewed conference

proceedings [95, 97, 96, 94].

1.2.1 Regarding Software Quality

As part of this dissertation, we developed software libraries and tools for computer vision

processing with the focus on maximizing efficiency and portability. We have taken into

account the ISO 9126 software quality standards in the development process.1

1. Functionality: Required functions are correctly implemented.

2. Usability: Provided software is easy to use and learn.

3. Efficiency: System resources (e.g., memory and CPU) are used efficiently when pro-

viding the required functionality.

4. Portability: The software can adapt to changes in its environment well.

1https : //en.wikipedia.org/wiki/Software_quality#Measurement
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Chapter 2

OpenCV.js: Computer Vision

Processing for the Open Web

platform

2.1 Introduction

The Web is the most ubiquitous compute platform with billions of connected devices. Its

popularity in online commerce, entertainment, science, and education has been increasing

tremendously. There is also an ever-growing amount of visual content on the Web. Despite

such rapid progress in quantity and quality of content, computer vision processing on the

web browsers has not been a common practice. We believe that the lack of client-side vision

processing is due to several limitations:

1. Lack of standard Web APIs to access and transfer multimedia content

2. Inferior JavaScript performance (the standard language of the Web). Computer vision

8



often complex algorithms that involve a sheer amount of computation, making them

very time-consuming.

3. lack of open-source and accessible computer vision libraries to facilitate software de-

velopment for the Web.

Newly introduced web standards address the limitations mentioned above and can empower

the Web with computer vision capabilities:

1. Addition of camera support and plugin-free multimedia delivery on the

Web: HTML5 introduced several new web APIs to capture, transfer, and present

multimedia content in browsers without the need for third-party plugins. Among

them, Web Real-Time Communication (WebRTC) allows capturing and peer-to-peer

transportation of multimedia content [52, 95], and video element API can be used to

display videos. Recently added Immersive Web API (WebXR) can be used to create

immersive user experiences through browser hosts by providing access to augmented

reality (AR) and virtual reality (VR) capabilities [9].

2. Improved JavaScript performance: JavaScript is the dominant programming lan-

guage of the Web. Since it is an interpreted language with dynamic typing, it’s per-

formance is inferior to compiled languages such as C++. With advances in Just-In-

Time (JIT) compilation [36, 42, 86, 12], and with the introduction of WebAssembly

(WASM) [41], a portable binary format for the web compilation, web clients can reach

the near-native level of performance and handle more demanding tasks.

There are already efficient computer vision libraries developed in native languages such as

C++. However, they cannot be used in browsers without relying on unpopular browser

extensions which pose security and portability issues. There have been few efforts to develop

computer vision libraries in JavaScript [113, 62, 43]. However, they often provide a handful
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of vision functions from certain domains such as object detection, video tracking, or deep

learning. Expanding them with new algorithms and optimizing the implementation is a

challenging task. On the other hand, Accelerated shape detection API [21] provides functions

to detect shapes such as faces and bar codes while the efficient implementation is left to

browser vendors. The works mentioned above suffer from the lack of either functionality,

performance, or portability. An alternative approach to the client-side computation taken

by developers was to offload vision processing tasks to the servers. This approach, however,

sacrifices user privacy and suffers from always-online requirements and the increase in data

transfer bandwidth and latency.

In this chapter, we describe our effort to provide a computer vision library for the Web

that solves the mentioned shortcomings. Our approach is to translate the popular OpenCV

library from C++ to a format that is highly optimizable on the Web. We show that this

approach works great on the Web for several reasons:

1. OpenCV provides an expansive set of functions with optimized implementations.

2. It performs more efficiently than JavaScript implementations and performance can

further improve through parallelism.

3. Developers can have access to a big collection of existing resources such as tutorials

and examples.

2.2 Compiling to The Web

Most modern standards-compliant web applications are developed in JavaScript, CSS, and

HTML [7]. In this model, HTML and CSS codes describe the HTML components, their ap-

pearance, and the layout while the JavaScript code implements the program logic. JavaScript

10
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Figure 2.1: Number of JavaScript lines of code in Gmail source code

is an interpreted language and lacks the performance of languages such as C++ where the

compiler can translate programs efficiently to the hardware beforehand. As web applications

are getting larger and more demanding, web developers are interested in higher performance

JavaScript execution. Figure 2.1 for instance shows how Gmail JavaScript code size has

increased 50x in the course of 6 years [5].

Since 2004 an era called the browser war started, in which browsers started to compete with

each other in JavaScript execution performance. Several approaches based on the idea of

Just in time (JIT) compilation were proposed to make JavaScript faster on browsers. For

instance, Gal proposed to record traces from program execution and compile the hot traces

to efficient machine code [36]. Other approaches such as [42] infer types at run-time and

compile individual functions to machine code. However, the compilation is happening at

run-time, and since compilation with higher optimization levels is time-consuming, their

scope is often limited to an execution trace or a single function. Furthermore, JavaScript is

dynamically-typed, and changes in variables type during run-time will require re-compilation

of the generated machine code. As an example, consider the example JavaScript function

from Figure 2.2. Operator + in the fourth line will have a different implementation based

on the operand types. While for numerical operands it would be an arithmetic addition; for

string operands, it would be string concatenation. To be able to compile this function to
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Figure 2.3: Chrome JavaScript engine (V8) benchmark score

machine code, the compiler must be able to infer the types correctly. Even with the correct

type inference, the types can change at run time. Hence it might be necessary to monitor

the code in case of changes in data types.

Figure 2.3 shows the steady performance improvement of executing the V8 benchmark over

time in chrome [18]. However, performance has not improved significantly since 2015. Several

approaches, such as plugins [56], ActiveX [76], and PNaCl [29], are proposed to achieve

higher (near-native) performance. While they offer high performance, they did have not

gained mainstream adoption due to portability and security issues. For instance, Apple

forbids Java and Flash plugins on iOS devices, including the iPhone and iPad.

1 function add(a, b) {
2 return a + b;
3 }

Figure 2.2: Implementation of add Function in JavaScript

2.2.1 Portable Low-level Formats for Web Compilation

Mozilla research proposed using a subset of JavaScript called asm.js to improve JavaScript

execution performance even beyond JIT capabilities. Asm.js has two properties that allow

12



JavaScript engines to perform an extra level of optimizations and even, compile the entire

program ahead of the execution.

1. It uses type coercion technique to enforce the code to be statically-typed. JavaScript

engines can compile statically-typed JavaScript code ahead of the execution. Figure

2.4 displays an example of coercion to specify integer addition.

2. It uses JavaScript arrays to represent program memory such as heap and stack. Most

modern browsers have optimized array access. Figure 2.5 shows how various sections

of program memory such as stack and heap, can be implemented using typed arrays.

1 function add(x, y) {
2 x = x | 0;
3 y = y | 0;
4 return (x + y) | 0;
5 }

Figure 2.4: Using type coercion to force the JavaScript engine to generate integer addition

1 var buffer = new ArrayBuffer(32*1024);
2 var HEAP8 = new Int8Array(buffer);
3 var HEAP32 = new Int32Array(buffer);
4
5 function access_byte(index) {
6 return HEAP8[index];
7 }
8
9 function access_word(index) {

10 return HEAP32[index];
11 }

Figure 2.5: Using arrays to represent program memory in asm.js

Developing programs manually in asm.js is tedious. In fact, asm.js is intended as a target for

translating programs developed in other languages to the Web using a tool called Emscripten.

Emscripten is a compiler toolchain developed by Mozilla research to translate LLVM (Low-

Level Virtual Machine) bit code to asm.js [112]. Using LLVM will make it possible to convert
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many languages such as C++ or Java to JavaScript since there a large number of language

frontends supported by LLVM. The ability to port programs developed in compiled languages

such as C++ to browsers is very compelling. Since not only programs can run faster, a vast

amount of existing code becomes available to the Web. Some programmers might even prefer

them to develop in JavaScript. For example, Figure 2.7 shows a sample C++ source file that

is converted to asm.js equivalent code via Emscripten.

While asm.js performance is impressive, there are several shortcomings. Generated JavaScript

programs tend to be very large, and parsing and compiling big JavaScript files becomes the

bottleneck, especially on mobile devices with weaker processors. This issue was one of the

main motivations for the development of WebAssembly [41].

WebAssembly (WASM) is a binary format that is designed to be a compiler target for the

Web. It models an abstract stack machine, where instructions either pushes or pops values

to/from the stack. WASM instructions are designed to be as close to native instructions

as possible. It is fast to load and runs safely at predictably near-native speed. Although

WASM is modeled by a stack machine, browsers will not necessarily follow that execution

model and compile it to a format that runs more efficiently on modern processors. WASM

can be represented in binary and textual format. The textual format is intended for human

maintainability while the binary format is intended for production.

Figure 2.8 shows a simple function in WASM that performs integer addition. It starts with

an empty stack, pushes the input parameters into the stack, then the last instruction pops
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1 int sum_five(unsigned char* array) {
2 int res = 0;
3 for (int i = 0; i < 5; ++i) {
4 res += array[i];
5 }
6 return res;
7 }

(a) Sample C++ program

1 var buffer = new ArrayBuffer(32768);
2 var HEAP8 = new global.Int8Array(buffer);
3 function sum_five($0) {
4 $0 = $0|0;
5 var $1 = 0, $10 = 0, $11 = 0, $12 = 0, $13 = 0, $14 = 0,

$15 = 0, $2 = 0, $3 = 0, $4 = 0, $5 = 0, $6 = 0, $7 =
0, $8 = 0, $9 = 0, label = 0, sp = 0;

6 sp = STACKTOP;
7 STACKTOP = STACKTOP + 16|0; if ((STACKTOP|0) >= (

STACK_MAX|0)) abortStackOverflow(16|0);
8 $1 = $0;
9 $2 = 0;

10 $3 = 0;
11 while(1) {
12 $4 = $3;
13 $5 = ($4|0)<(5);
14 if (!($5)) {
15 break;
16 }
17 $6 = $1;
18 $7 = $3;
19 $8 = (($6) + ($7)|0);
20 $9 = HEAP8[$8>>0]|0;
21 $10 = $9&255;
22 $11 = $2;
23 $12 = (($11) + ($10))|0;
24 $2 = $12;
25 $13 = $3;
26 $14 = (($13) + 1)|0;
27 $3 = $14;
28 }

(b) Emscripten-emitted asm.js code

Figure 2.7: Compilation of a sample C++ program into asm.js by Emscripten.
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1 (func (param $0 i32) (param $1 i32)
2 local.get $1
3 local.get $0
4 i32.add)

Figure 2.8: WASM implementation of an integer addition function in textual format

the operands, calculates their sum, and pushes the result into the stack again. The return

value of the function will be the last element left on the stack.

Compared to asm.js, WASM is more compact and is much quicker to parse and compile.

WASM will eventually make asm.js obsolete. However, WASM is still under development and

not fully supported by older JavaScript engines. We have used Emscripten to compile the

OpenCV source code into both asm.js and WASM. Both versions offer the same functionality

and can be used interchangeably.

2.3 Generating OpenCV.js

This section describes the process of generating OpenCV.js from OpenCV source doe. We

have used Emscripten to compile OpenCV to the web. However, for two reasons, several

OpenCV components must be excluded:

1. Not all of OpenCV’s offerings are compatible with the web. For instance, functions

to access media devices such as cameras, and graphical user interfaces, are platform-

dependent and cannot be compiled to the web. Those functions, however, can be

implemented using HTML5 primitives. For instance, media capture getUserMedia

can be used to access media devices, and the Canvas element can display graphics.

2. Some of OpenCV functions are only used in certain application domains that are not

common in typical web development. For instance, camera calibration functionality
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1 int sum_five(unsigned char* array) {
2 int res = 0;
3 for (int i = 0; i < 5; ++i) {
4 res += array[i];
5 }
6 return res;
7 }

(a) Sample C++ program

1 (module
2 (type $t0 (func))
3 (type $t1 (func (result i32)))
4 (func $__wasm_call_ctors (type $t0))
5 (func $sum_five (export "sum_five") (type $t1) (result i32)
6 i32.const 0
7 i32.load8_u offset=1024
8 i32.const 0
9 i32.load8_u offset=1025

10 i32.add
11 i32.const 0
12 i32.load8_u offset=1026
13 i32.add
14 i32.const 0
15 i32.load8_u offset=1027
16 i32.add
17 i32.const 0
18 i32.load8_u offset=1028
19 i32.add)
20 (table $T0 1 1 anyfunc)
21 (memory $memory (export "memory") 2)
22 (global $g0 (mut i32) (i32.const 66576))
23 (global $__heap_base (export "__heap_base") i32 (i32.const

66576))
24 (global $__data_end (export "__data_end") i32 (i32.const 1029))
25 (global $array (export "array") i32 (i32.const 1024))
26 (data (i32.const 1024) "\01\02\03\04\05"))

(b) Emscripten-emitted WASM code in textual format

Figure 2.9: Compilation of a sample C++ program into WASM by Emscripten.
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Module Provided Functions
Core Image manipulation and core arithmetic
Image Processing Numerous functions to process and analyze images
Video Video processing algorithms such as tracking, background segmen-

tation and optical flow
Object Detection Haar and HOG based cascade classifiers
DNN Inference of Caffe, Torch, TensorFlow trained networks
GUI Helper functions to provide graphical user interface, to access web

images and videos, and to display content

Table 2.1: OpenCV.js modules and provided functions

has applications in automation and robotics. To reduce the size of the generated library

for general usage, we have identified the least commonly used functions from OpenCV

and excluded them from the library. However, since many of the excluded functions

can be useful in special use cases, we have provided a mechanism to extend the library

with a list of user-selected functions.

.

Table 2.1 categorizes and lists the functions that are included within OpenCV.js.

Computer vision programs developed in C++ can access configuration files on the host

machine. Browsers, however, are sandboxed for security purposes and do not give web

applications access to regular files on the local machine. OpenCV.js provides a virtual file

system that can pack all the necessary files that the program will have to access. The virtual

file system can be modified at run-time by adding or modifying the files.

Figure 2.10 shows an overview of OpenCV.js and how it interacts with web applications

and standard web APIs. Web applications will use Opencv.js API to access the provided

functions as listed in Table 2.1. While the vision functions from OpenCV are compiled

either into WASM or asm.js, GUI features, and media capture capabilities are provided by

a JavaScript module (util.js). OpenCV.js utilizes standard web APIs such as WebRTC and
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Figure 2.10: OpenCV.js components and its interactions with web applications and web
APIs

Video/Canvas for media access and GUI capabilities and uses web workers and SIMD.js to

implement parallel algorithms.

During the compilation process with Emscripten, C++ high-level language information such

as class and function identifiers are replaced with mangled names. It is almost impossible

for developers to develop programs through mangled names. We develop an interface for

the library that exposes OpenCV entities such as functions and classes to JavaScript similar

to normal OpenCV that many programmers are already exposed to it. Since OpenCV is

enormous, and growing continuously through new contributions, continually updating the

port by hand is impractical. Hence, we propose a semi-automatic approach that takes care

of the tedious parts of the translation process while allowing the expert insight that enables

high-quality/efficient code production. Figure 5.9 lists the steps involved in the process of

converting OpenCV C++ code to JavaScript.

At first, the OpenCV source code is configured to disable components and implementations

that are platform-specific or translate poorly to the web. Emscripten provides a framework

called Embind that can call arbitrary functions in Emscripten-compiled C++ and pass ar-

guments (which involves type translation) from a JavaScript. To use Embind, we extract

information about classes and functions from the OpenCV source code automatically. Fig-

ure 2.12 shows the binding information that is generated for a sample OpenCV class. For

19



1 bool haar_cvt::convert(const String& oldcascade ,
2 const String& newcascade)

(a) Original function signature

1 function __ZN2cv8haarcvtL7convertERKNS_6StringES3_(
2 $oldcascade ,
3 $newcascade)

(b) Generated function signature with the mangled name

Figure 2.11: Compilation of a sample C++ function into JavaScript by Emscripten.

the sake of efficiency, binding information of OpenCV core module, which includes OpenCV

main data structure (i.e., ”cv::Mat”), is manually provided.

We maintain a white list of OpenCV classes and functions that are included in the final

JavaScript build. This list can be updated by users to include or exclude OpenCV modules

and functions. By providing the binding information and functions white list, Emscripten

generates a glue code that maps JavaScript symbols to C++ symbols and compiles it along

with the rest of the OpenCV library into JavaScript. The output of this process will be a

JavaScript file (opencv.js) that serves as the library interface along with WASM or asm.js

implementation of OpenCV functions. utils.js which includes GUI, I/O, and utility functions,

and is implemented separately, will also be linked with the rest of opencv.js.

2.4 Using OpenCV.js

OpenCV.js API is based on OpenCV C++ API and shares many similarities with it. For

instance, it exports C++ functions to JavaScript with the same name and signature. It

also supports function overloading and default parameters. This similarity makes migration

to JavaScript easier for users who are already familiar with OpenCV development in C++.

Although OpenCV.js ports C++ classes to JavaScript objects with the same member func-
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1 class CV_EXPORTS_W MSER : public Feature2D {
2 public:
3 CV_WRAP static Ptr<MSER> create(
4 int _delta=5, int _min_area=60, int _max_area=14400,
5 double _max_variation=0.25, double _min_diversity=.2,
6 int _max_evolution=200, double _area_threshold=1.01,
7 double _min_margin=0.003, int _edge_blur_size=5);
8
9 CV_WRAP virtual void setDelta(int delta) = 0;

10 CV_WRAP virtual int getDelta() const = 0;
11 // The rest of class declaration
12 };

(a) MSER class declration in OpenCV source code

1 emscripten::class_<cv::MSER, base<Features2D >>("MSER")
2 .class_function("create",
3 select_overload <Ptr<MSER>(int, int, int, double,double,int,double

,douboe,int)>
4 (&Wrappers::create_MSER_wrapper)
5 .function("setDelta",
6 select_overload <int(cv::MSER&)>(&Wrappers::MSERT_set_delta_wrap),
7 pure_virtual())
8 .function("getDelta",
9 select_overload <int(cv::MSER&)>(&Wrappers::MSERT_get_delta_wrap),

10 pure_virtual())
11 // The rest of class bindings
12 ;

(b) Generated binding information for MSER class

Figure 2.12: Example of binding generation
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Figure 2.13: The flow of generating OpenCV.js from OpenCV source code

tions and properties, basic data types are different between the two versions. For instance,

JavaScript is using double-precision floating-point numbers for all numerical types, whereas,

in C++, numerical values have several type options (e.g., short, int, and floating-point).

JavaScript engines use the garbage collector(GC) to manage program memory. However, GC

activity hurts performance. Hence, OpenCV.js uses static memory management, and pro-

grammers are responsible for freeing OpenCV.js objects when they are no longer in use. Since

manual memory management for primitive types is tedious, we have used JavaScript equiv-

alents for basic C++ types such as numbers, boolean values, and strings. All std :: vectors

are translated into JavaScript arrays except for vectors of cv :: Mat. This is particularly

helpful since by removing the vector, it will remove all the cv :: Mat elements automatically.

Table 2.2 shows equivalent JavaScript data types for basic C++ data types.

Figure 2.14 shows a sample JavaScript program. This program uses MOG2 method (based

on the Gaussian mixture model [118]) provided by OpenCV.js to subtract the background
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C++ Type JavaScript Type
Numerical types (e.g., int, float) Number
bool Boolean
enum Constant
std::string String
Primitive types (e.g. cv::Point) Value objects
std::vector (of primitive types) JavaScript Array
std::vector (of cv::Mat) cv.Vector

Table 2.2: JavaScript equivalent types of basic OpenCV C++ data types

from the input video. This example works on top of a simple HTML page with an HTML5

video element named videoInput serving as the input source and a canvas element named

canvasOutput which renders the program output. In the line 21, cv.V ideoCapture utility

function is invoked to access input video frames from the video element. In lines 22 and

23, two OpenCV matrices are created to hold the input and output frames. In the 24th

line, a background subtractor is instantiated. The background subtraction algorithm needs

to access the history of frames from the input video to correctly partition the image in the

foreground and background. This example assumes that the input video contains 30 frames

per second. Hence, a timer is used to invoke processV ideo function every 1/30 of a second.

At every invocation of processV ideo function, we feed the next frame of the video to the

background subtractor and extract the foreground mask (line 10). In line 11, we will display

the result on the output canvas and then schedule the function for processing the next video

frame (line 14). Figure 2.15 shows two snapshots of running this program inside a browser.

2.5 Performance Evaluation

This section presents the performance evaluation of OpenCV.js. Our evaluation workloads

include both primitive kernels that perform simple operations such as pixel-wise addition

or convolution and more sophisticated vision applications. Our selected vision applications
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1 function processVideo() {
2 try {
3 if (!streaming) { // clean and stop.
4 frame.delete(); fgmask.delete(); fgbg.delete();
5 return;
6 }
7 let begin = Date.now();
8 // start processing.
9 cap.read(frame);

10 fgbg.apply(frame, fgmask);
11 cv.imshow('canvasOutput', fgmask);
12 // schedule the next one.
13 let delay = 1000/FPS - (Date.now() - begin);
14 setTimeout(processVideo , delay);
15 } catch (err) {
16 utils.printError(err);
17 }
18 };
19
20 var video = document.getElementById('videoInput'),
21 cap = new cv.VideoCapture(video),
22 frame = new cv.Mat(video.height, video.width, cv.CV_8UC4),
23 fgmask = new cv.Mat(video.height, video.width, cv.CV_8UC1),
24 fgbg = new cv.BackgroundSubtractorMOG2(500,16,true);
25 const FPS = 30;
26 // schedule the first frame
27 setTimeout(processVideo , 0);

Figure 2.14: Example OpenCV.js program to subtract background from the input video
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a) First snapshot

b) Second snapshot

Figure 2.15: Two snapshots of the sample OpenCV.js program from Figure 2.14 running in
a web browser
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include implementation of Canny’s algorithm for finding edges [20], finding faces using

Haar cascades [58], and finding people by using histogram of gradients as features [26]. We

have used an instance of Firefox 56 running on Intel Corei7-3770 CPU with 8GB of RAM

with Ubuntu 16.04 as our set up and ran experiments over sequences of video data (400-600

frames) collected from Xiph.org archive. Figures 2.16 and 2.17 show the performance of

simple kernels and vision applications running in the browser compared to their desktop

equivalent with parallelism disabled. Experiments are repeated for different pixel types that

are supported by the benchmarks. As was shown, in all cases, the performance is close to

the native.

While we found WASM and asm.js performance to be close, the WASM build of the library

is significantly faster to initialize (more than 20x faster) and is more compact. To reduce

the library size, we have used a JavaScript port of the Zlib library to decompress a zipped

version of the OpenCV.js at run-time. Figure 2.18 shows the size comparison of different

builds of OpenCV.js. Note that the size of the library depends on the list of functions that

are distributed with the library, which is subject to frequent changes.
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Figure 2.16: Performance comparison of native and WASM versions of primitive kernels
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Figure 2.17: Performance comparison of native and WASM versions of vision applications
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Figure 2.18: Size comparison of asm.js and WASM versions of OpenCV.js*

2.6 Availability

OpenCV.js is released as part of the master branch of OpenCV library1 and can be compiled

directly from the latest OpenCV source code releases. This will also ensure that it will be

tested to work with all future OpenCV releases and features.

1https://www.gihtub.com/opencv/opencv
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Chapter 3

Parallel Processing in OpenCV.js

Computer vision is computationally demanding. On our evaluation platform, each iteration

of Canny, face, and people applications developed with OpenCV.js take on average 7 ms,

345 ms, and 323 ms to process an image with a resolution of 640 by 480 pixels respectively.

While in this case, Canny is fast enough to be computed in real-time, face, and people de-

tection examples do not support real-time and interactive use cases. Fortunately, computer

vision algorithms are inherently parallel, and with good algorithm design and optimized im-

plementation for parallel hardware, a significant speedup can be achieved. OpenCV already

comes with parallel implementations of algorithms for various hardware architectures. In

this section, we demonstrate how two parallel processing techniques that target multicore

processors (multithreading) and SIMD (Single-Instruction-Multiple-Data) units can be used

to significantly improve the performance of OpenCV.js. We have skipped GPU implementa-

tions at the moment due to the lack of a standard web API for general-purpose programming

on GPUs.
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Figure 3.1: Scalar vs SIMD addition of four integers

3.1 Parallel Processing using ECMAScript SIMD

ECMAScript SIMD, formerly known as SIMD.js, is a web API that exposes processor vector

capabilities to the web [6, 50]. ECMAScript SIMD is compatible with the common subset of

Intel SSE2 and ARM NEON instruction sets that runs efficiently on both architectures. Both

instruction sets define vector instructions that operate on 128-bit wide vector registers. SIMD

instructions can operate all vector data points simultaneously. Figure 3.1 shows how vector

registers can be utilized to add four integers using one vector instruction. ECMAScript

SIMD defines integer vector types of i8x16, i16x8, i32x4, i64x2 that can hold eight short

integers, sixteen bytes, four integers, and two long integers, respectively. It also defines two

floating vector types of f32x4 and f64x2 that can hold four floating-point and two double-

precision floating-point numbers. Table 3.1 lists ECMAScript SIMD vector instructions that

are available for use on each vector type.

SIMD is proven to be very effective in speeding up multimedia, graphics, and scientific work-

loads [79, 50, 93]. Many OpenCV functions, including core routines, are already implemented

using vector intrinsics [79]. We have adopted the work done by [48] to translates OpenCV

vectorized implementations using SSE2 intrinsics into JavaScript with SIMD.js instructions.

The inclusion of SIMD.js parallel implementations will not affect the library interface. Cur-

rently, SIMD.js can only be used in the asm.js context and is supported by Mozilla Firefox

and Microsoft Edge browsers. Since SIMD in WASM is planned to have the same spec as

SIMD.js, similar performance numbers are expected.
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Vector Types Operations
i8x16, i16x8, i32x4,
i64x2, f32x4, f64x2

splat, extract_lane_s, replace_lane, add,
sub, neg, eq, ne

i8x16, i16x8, i32x4,
i64x2

shl, shr_s, shr_u, any_true, all_true, lt_s,
lt_u, le_s, le_u, ge_s, ge_u, gt_s, gt_u

f32x4, f64x2 lt, gt, le, ge, abs, min, max, div, sqrt, con-
vert_to_int

i8x16, i16x8, i32x4,
i64x2, f32x4

mul

i8x16, i16x8 add_saturate_s, add_saturate_u, sub_sat-
urate_s, sub_saturate_u, narrowing

i8x16, i16x8, i32x4 widening
v128 and, or, xor, not, bitselect, load, store

Table 3.1: ECMAScript SIMD types and operations
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Figure 3.2: Performance comparison of vectorized and scalar JavaScript implementation of
matrix operations (asm.js version)
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Figure 3.3: Performance improvement with JavaScript vectorization (asm.js version)

Figure 3.3 shows the speedup that is obtained by SIMD.js on selected kernels and applications

running on Firefox. Up to 8x speedup is achieved for primitive kernels. As expected, the

speedup is higher for smaller data types, since more data points are packed in vector registers.

There are fewer vectorization opportunities in complex functions such as Canny, face, and

people detection.

3.2 Thread-level Parallelism Using Web Workers

JavaScript programs use web workers [8] for parallel processing of compute-intensive tasks.

Web workers communicate by passing messages, which incur a high cost for transferring

large messages such as images. SharedArrayBuffer [4] is recently proposed as storage that

can be shared between multiple web workers. It can be used to implement the shared-

memory parallel programming model. OpenCV uses the parallel_for framework for parallel

implementation of algorithms. In this framework, parallel implementations of algorithms

implement the base class ParallelLoopBody that process a portion of images. As shown in

Figure 3.4, at run-time workloads are partitioned into multiple smaller workloads that a range
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Worker N

Range 1
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Figure 3.4: multi-threaded image processing with Parallel_for implementation

1 public ParallelLoopBody
2 {
3 public:
4 virtual void operator () (const Range& range) const;
5 }

Figure 3.5: Base class for implementing parallel algorithms in OpenCV

specifies each. These workloads can be distributed among available compute threads for

concurrent processing. OpenCV supports a variety of multithreading backends depending on

the operating system such as Intel Threading Basic Blocks (TBB) [75], Windows threading,

Apple GCD, OpenMP [25], and Posix Threads [17]. With recent Emscripten developments,

we were able to translate P-threads API into equivalent JavaScript using web workers with

shared array buffers. OpenCV.js build with multithreading support has a pool of web workers

and allocate a worker when a new thread is spawned. Besides, it exposes OpenCV API to

dynamically adjust the concurrency such as changing the number of concurrent threads such

as ”cv.SetNumThreads”.

To observe the performance using multiple web workers, we measured the performance of

three application benchmarks that did not gain from SIMD vectorization. We used different
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Figure 3.6: Speedup achieved using multiple web workers (asm.js)

numbers of workers up to 8. OpenCV load balancing algorithm divides the workload evenly

between threads. Figure 3.6 shows that on a processor with 8 logical cores, between 3 to

4 times performance speedup is obtained. Note that a similar trend is observed on native

p-threads implementation of the mentioned functions. It should be noted that parallelism

improvement from multiple threads and SIMD are additive.
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Chapter 4

A Library for FPGA Implementation

of Vision Algorithms

The ever-growing usage of computer vision in our daily lives [2] requires real-time and power-

efficient implementations. FPGAs are very effective in accelerating various computer vision

algorithms [63, 114, 46, 67]. Unfortunately, developers may not be familiar with FPGA

design, let alone efficient implementation. Even a CPU implementation of vision algorithms

using programming languages such as C/C++ is time-consuming and error-prone. More-

over, despite advances in High-Level Synthesis (HLS) tools, they are still not able to generate

efficient hardware implementation for vision algorithms developed in general-purpose pro-

gramming languages (e.g., C++) [19, 107, 84]. The main reason is that HLS tools do not

incorporate specific optimization methods of vision algorithms, which are critical to the effi-

cient implementation of such algorithms. On the other hand, popular vision libraries, such as

OpenCV [16], only provide efficient implementations for CPUs and GPUs. FPGA designers

often consider the application-specific design and implementation on FPGAs. For example,

several computer vision applications including stereo vision [51, 104, 53], SIFT [103, 74],

CNNs and DNNs [35, 38, 115, 116] have been designed and implemented for FPGA acceler-
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ation.

This chapter presents a scalable library developed in OpenCL that provides the basic blocks

for building computer vision systems on FPGAs. This library supports a wide variety of

vision kernels and can be configured with different structural and functional parameters.

It can be used as part of an OpenCL program independently or as part of a high-level

framework. To make the library portable, We have tried to use vendor-specific functions as

little as possible.

4.1 Introduction to OpenVX

OpenVX is an open standard for cross-platform acceleration of computer vision algorithms [81].

OpenVX defines a set of primitive and widely used vision kernels that can be connected to

describe computer vision pipelines as Directed Acyclic Graphs (DAG). In such DAGs, nodes

represent data processing kernels while the edges represent data dependencies between them.

This model maps nicely to computer vision development since many vision pipelines can be

modeled as DAGs. Figure 4.1 shows how OpenVX specification can be used in computer vi-

sion algorithm development process. While it can be used directly to model the application,

it can also be used as an implementation backend for high-level computer vision frameworks.

Figure 4.2 shows different stages in lifecycle of an OpenVX algorithm graph. Initially, the

vision developer instantiates the OpenVX elements to describe the algorithm graph. After

the graph definition is finalized, the graph is verified for soundness. For instance, the graph

must be connected, should not include any loops, and parameters passed to the graph el-

ements must have values within the valid range. Upon successful verification, graphs can

be executed, possibly for repeated times. No graph verification is needed for subsequence
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OpenVX is designed to achieve the following list of objectives:

• System-level optimization: OpenVX graph-based model provides greater optimiza-
tion opportunities above the traditional function level that applies to the whole sys-
tem [81]. An example of such optimizations is kernel aggregation, in which a specific
set of nodes in a graph are replaced with a single node that offers the same functional-
ity. Another example is tiling, in which, images are broken down to smaller sub-images
called tiles that can be processed separately. Processing tiles lead to a smaller memory
footprint and cache-friendly implementations. Tiles can also potentially be processed
in parallel.

• Portability: OpenVX abstracts away hardware-specific details from the algorithm
specification. Hence graphs can target different platforms.

• Improved productivity: Decoupling the specification and the implementation makes
developing vision algorithms easier. Computer vision developers can focus on algorithm
design and rely on platform vendors to provide the optimized implementation. In
addition, a single specification can be translated into different implementations that
meet different performance and power budget constraints.

Computer Vision Application

High-Level Vision Frameworks

OpenVX

Hardware (CPU) Hardware (GPU) Hardware (FPGA)

Figure 4.1: Typical OpenVX use cases
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Graph Construc-
tion

Graph Verifica-
tion

Graph Execution

Graph Decon-
struction

Figure 4.2: OpenVX graph lifecycle

executions unless there are changes in the graph definition. Finally, after the execution is

finished, the graph will be deconstructed to free up resources.

Various hardware vendors have provided their implementation of OpenVX run-time for op-

timizing and executing the graphs such as Nvidia VisionWorks [3] and AMD AmdoVX [1].

Tagliavini et al. proposed a run-time solution for optimizing OpenVX graphs on embedded

many-core accelerators [91, 92]. OpenVX has also been investigated for building computer

vision systems with real-time constraints [46, 108, 31, 109].

OpenVX defines several vision processing constructs to describe algorithm graphs:

1. Vision function nodes: OpenVX provides a set of widely used primitive vision

functions that act as basic blocks of building more complex algorithms. We have

thoroughly analyzed all the vision functions provided1 and classified them based on

the pattern that they access to input image pixels. Table 4.1 lists various categories

of vision functions.

1Based on OpenVX version 1.2
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(a) Pixel-wise (b) Statistical

(c) Fixed-rate stencil (d) Multirate stencil (downsample)

Memory

(e) Geometric (f) Table lookup

Figure 4.3: Vision function data access patterns
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Category Formal Definition Vision Functions
Pixel-wise out(x, y) = f(in(x, y)) absolute difference, accumulate, accumulate

squared, accumulate weighted, addition/sub-
traction, bitwise operations, channel com-
bine, channel extract, color convert, convert
bit depth, magnitude, phase, pixel-wise mul-
tiplication, threshold, min, max

Fixed-rate
Stencil

out(x, y) =
∑i=k

i=−k

∑j=k
j=−k f(in(x+ i, y + j)) Box filter, Sobel filter, non-maxima sup-

pression, custom convolution, erode, dilate,
Gaussian blur, nonlinear filter, integral im-
age, Median filter

Multi-rate
Stencil

out(x, y) =
∑i=k

i=−k

∑j=k
j=−k f(in(Nx+ i, Ny + j)) down-sample, scale image

Statistical out =
∑i=Width

i=0

∑j=Height
j=0 f(in(i, j)) histogram, mean, standard deviation,

Min,max location
Geometric out(x, y) = in(h(x, y), h′(x, y)) remap, warp affine, warp perspective
Table
lookup

out(x, y) = table[in(x,y)] table lookup

Non-
primitive

N/A equalize histogram, fast corners, Harris cor-
ners, Gaussian image pyramid, optical flow
pyramids, Canny edges, LBP, HOG, Hough-
LinsP

Table 4.1: Categorization of supported OpenVX vision functions
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Figure 4.4: An image pyramid with four levels

2. Data object nodes: OpenVX defines several objects to represent data used by algo-

rithms, including images, scalars, arrays, and image pyramids. Image pyramids (Fig-

ure 4.4) represent an image at multiple scales. For robustness and scale-invariance,

computer vision systems often process multiple scales of images. Data objects have

properties associated with them, such as their type and size that must be either set

during the DAG construction time by the designer or be inferred from the rest of the

graph.

3. Select nodes: Select nodes implement predication in vision algorithms. They have

two input images and produce one output image, all with the same pixel type. A

Boolean input value is used to select one of the inputs and set it as the output.

4. Delay object nodes: Delay objects are nodes that provide access to arbitrary data

objects (e.g., image, array, scalar) from the Nth previous DAG invocation where N

is a parameter provided by the algorithm designer. They are in particular used in

video processing algorithms that require information from multiple frames. Examples

of such algorithms include optical flow, motion detection, and background extraction.

4.1.1 Examples

OpenVX can be used to implement a wide variety of image processing and computer vision

algorithms. In this section, we describe several illustrative examples.
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Lane Detection (LD) Algorithm One of the fundamental vision algorithms in autonomous

driving cars is Lane Detection (LD). Many LD algorithms are proposed over time [110, 45].

A simple LD algorithm is described in Figure 4.5 while the corresponding OpenVX graph is

shown in Figure 4.6. Figure 4.7 shows the output of different stages of the algorithm on a

sample input frame. Color input frame captured by a camera in front of a vehicle (Figure

4.7(a)) will be converted to a gray-scale image (Figure 4.7(b)). Then, using a perspective

transform, a certain area of interest is considered for further processing (Figure 4.7(c)). The

image will be enhanced using a filter and threshold operation to highlight the lanes better

(Figure 4.7(d,e)). Finally, lane segments will be detected using probabilistic Hough trans-

form (Figure 4.7(f)). The Hough transform algorithm detects geometric shapes such as lines

and circles in an image [64].

1 Inputs : Image in_img , Matrix transoform_mat , Matrix f i l t e r ,
2 I n t eg e r thresh_val
3 Output : Array l ine_segments
4 begin
5 y_img ← convert_to_graysca le ( in_img )
6 b_img ← warp_perspect ive (y_img , transoform_mat )
7 f_img ← f i l t e r (b_img , f i l t e r )
8 t_img ← th r e sho ld ( f_img , thresh_val )
9 l ine_segments ← houghl insp ( t_img )

10 return l ine_segments
11 end

Figure 4.5: Lane detection algorithm example
,

Automatic Contrast adjusts the contrast of the input color (RGB) image based on the his-

togram of pixel intensity values. Figure 4.8 shows the OpenVX graph of automatic contrast

graph.

Census Transform calculates visual descriptors based on census transform for an input

grayscale image [111]. Figure 4.9 shows the OpenVX graph of automatic contrast graph. We

have extended OpenVX with census transform vision function to implement this algorithm.
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Bird Eye View

vxWarpPerspective

RGB Image

vxColorConvert (RGB-to-YUV)

YUV Image

vxChannelExtract (Y)

Y Image

vxConvolve

Edges

vxThreshold

Mask

vxHoughLinesP

Line Segments Array

Vision Function Data Object

Figure 4.6: Lane detection algorithm graph

(a) Input image (b) Grayscale image

(c) Bird-eye view (d) Filtered image (e) Mask

(f) Input image with detected lanes drawn in red

Figure 4.7: Demonstration of lane detection algorithm, (video obtained from intel.com)
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RGB Image

vxColorConvert (RGB-to-YUV)

YUV Image

vxChannelExtract (Y) vxChannelExtract (U) vxChannelExtract (V)

Y Image U Image V Image

vxEqualizeHistogram

Virt Image

vxChannelCombine

YUV Image

vxColorConvert (YUV-to-RGB)

RGB ImageVision Function Data Object

Figure 4.8: Automatic contrast algorithm graph

Grayscale Image

vxSobel

Gx Image

vxMagnitude

Mag Image

userCensus

Census Image

Gy Image

Vision Function Data Object

Figure 4.9: Census transform algorithm graph
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4.2 A Computer Vision Library for FPGAs

This section presents and discusses a library for implementing various OpenVX vision com-

ponents on FPGAs. This library can be used either directly by developers or as a target for

code generation by high-level vision frameworks.

4.2.1 FPGA Technology and High-level Syntheis

Field Programmable Gate Arrays (FPGAs) are integrated circuits that can be configured

by designers to implement different hardware designs after the manufacturing process. The

majority of modern FPGAs use static on-chip RAM to implement programmable digital

logic and interconnections. Although programmable logic can implement complex hardware,

it is common for modern FPGAs to have hardened processor cores, digital signal processing

(DSP) units, dedicated SRAM based memories, and high-performance transceivers. FPGAs

offer excellent power and performance efficiency and are used successfully in various appli-

cation domains such as scientific computing [14, 27, 117], computer vision [105, 60], and

artificial intelligence [22].

Hardware Description Languages (HDLs) such as Verilog or VHDL are specialized program-

ming languages that are used to describe concurrent hardware. FPGA Vendors usually

provide the toolchain for converting HDL representation to FPGA hardware implementa-

tion (referred to as synthesis). HDLs describe systems at a low level, and with exponential

growth in design size, it is becoming complicated and time consuming to use them in pro-

duction. This has led to the popularity of design processes that interpret designs at a higher

level of abstraction. Numerous tools have been proposed that use higher-level languages such

as C [40, 102, 19], C++ [69], or embedded languages [68] to describe the hardware. They

provide a higher level of abstraction to the programmer and postpone hardware compilation
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until the very end of the design process. Such tools usually convert the input design in

a higher-level programming language to HDLs first and then use vendor-provided tools to

synthesize the design.

Open Computing Language (OpenCL) is a framework for writing programs that execute

across heterogeneous platforms [90]. Supported platforms include CPUs, hardware accelera-

tors such as graphics processing units (GPUs), digital signal processors (DSPs), and FPGAs.

OpenCL uses C99 to describe the program on the devices and provide a C++ API to man-

age the platforms. OpenCL is an open standard maintained by the non-profit technology

consortium Khronos Group. OpenCL has received strong support from two major FPGA

vendors as well. For instance, Intel offers OpenCL SDK, and Xilinx offers the SDAccel

toolkit. A study found that using OpenCL to develop image processing compared to HDL

design methods improves design productivity up to six times while achieving similar perfor-

mance and resource usage. However, OpenCL designs incurred extra area overhead of (59%

to 70% more logic) [44].

Figure 4.10a shows an example OpenCL kernel that multiplies two arrays element-wise and

stores the results in the destination array. In this example, arrays are annotated with

__global identifier to specify that they are allocated on FPGA off-chip memory. There is no

implicit memory hierarchy such as caches on the FPGAs, and the designer must explicitly

decide on the memory allocation. Usually, both off-chip and fast on-chip memories are

available. However, since on-chip memory resources on FPGA are limited, larger data types

such as images will be allocated on external DRAM. Figure 4.10b shows the generated FPGA

hardware after synthesizing the sample kernel using the Intel OpenCL SDK. It consists of load

and store modules and a floating-point multiplication unit. In this example, global memory

is mapped to the FPGA external SDRAM. While external SDRAM has high latency, it is

possible to stream consecutive data with no additional latency penalty in a pipelined fashion.

Loop pipelining is an effective technique to improve the throughput of loops synthesized on
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1 float mul(float a, float b) {
2 return a * b;
3 }
4 __kernel void kernel_mul(
5 __global const float* in_a,
6 __global const float* in_b,
7 __global float* out,
8 const unsigned int N) {
9 for(uint i=0; i < N; i++) {

10 out[i] = mul(in_a[i], in_b[i]);
11 }
12 }

(a) An OpenCL sample program

Kernel

Global
Memory

... in_a[N − 1] · · · in_a[1] in_a[0] Load

... in_b[N − 1] · · · in_[1] in_[0] Load

*

Storeout[0] out[1] · · · out[N − 1]...

(b) Streaming contigous data between external SDRAM and FPGA

Figure 4.10: Synthesis of a sample OpenCL kernel
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Load 1 Mul 1 Store 1

Load 2 Mul 2 Store 2

Cycles

(a) Normal loop execution

Load 1 Mul 1 Store 1

Load 2 Mul 2 Store 2

Load 3 Mul 3 Store 3

Cycles

(b) Pipelined loop execution

Figure 4.11: Effect of pipelinig in FPGA synthesis of loops

FPGAs by overlapping multiple invocations of the loop body. Figure 4.11 demonstrates the

effect of loop pipelining on overall FPGA throughput. To fully benefit from this technique,

however, all the operations of the loop body must be fully pipelined [24]. Computer vision

workloads often involve processing large arrays of data (i.e., images). Hence, loop pipelining

will be critical for having high throughput.

4.2.2 Library Design and Implementaion

This section discusses the OpenCL library that provides the basic blocks for building com-

puter vision systems on FPGAs. We believe that with the comprehensive support and

popularity of OpenCL in FPGA development, it is an excellent implementation choice. To

make the library portable, We have tried to use vendor-specific functions as little as possible.

However, during development, we used Intel FPGAs and their OpenCL SDK for evaluation
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of the library [11, 10].

We have designed the library with the following considerations in mind:

1. Dataflow support: FPGA designs that support stream processing or dataflow im-

prove the computation throughput and save on on-chip memory usage.

2. Configurability: The ability to configure the vision components with different struc-

tural parameters such as parallelism and arithmetic precision is essential for exploring

the design space and find various trade-offs in terms of performance, energy consump-

tion, and resource usage.

3. Genericity: Several vision functions have similar data access patterns or apply to the

same data type with varying bit-width. Hence, having multiple base templates that

are highly optimized leads to better productivity and improves the maintainability of

the library.

4. Scalability: Developed FPGA vision kernels can process pixels in parallel to improve

the throughput. It is desired that the kernel resource usage grows linearly with the

higher parallelism. We also desire the maximum FPGA working frequency not to drop

significantly with higher parallelism since it affects the overall system performance.

The proposed library consists of the following elements: (1) compute kernels, (2) communi-

cation pipes, and (3) memory access kernels.

Compute Kernels

Compute kernels implement various OpenVX vision functions. The list of supported vi-

sion functions provided by OpenVX is categorized in table 4.1. These categories comprise
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primitive functions such as Pixel-wise, Fixed-rate Stencil, Multi-rate Stencil, Statistical, Ge-

ometric, and Table-lookup and non-primitive functions that can be represented by a set of

primitive functions. Figure 4.3 demonstrates the behavior of each category. Such classifi-

cation is useful for two reasons: (1) It allows us only to implement a generic form for each

category. Generic implementations are highly optimized and can be customized at compile

time to represent specific vision functions. This categorization also facilitates extending the

list with additional vision functions that are not part of the OpenVX specification. (2) Data

access patterns can guide graph optimization, graph pipelining, and partitioning.

We have implemented several template classes depending on data access patterns of kernels.

They can be customized with different vision functions, but many parts of the design can

be reused. Vision function nodes operate on data streams specified by FPGA pipes. They

can be connected to form deep pipelines on the FPGA. Parameters that can configure the

behavior of kernels at compile-time include input/output data types (e.g., uchar, short,

float), SIMD width to set the parallelism, numerical precision, and internal buffer size. Each

kernel template also accepts an OpenCL function as the vision operator. Such functions can

be developed by users to extend the OpenVX list of vision functions. Vision functions can

be configured to operate on different values of SIMD width ranging from 1 to 32 (limited

by hardware constraints such as communication bandwidth). By increasing SIMD width,

kernels work on super-pixels, which are a collection of neighboring pixels.

Figures 4.13, 4.14, 4.15, and 4.16 demonstrate general hardware realization of different cat-

egories of vision function nodes. Pixel-wise kernels apply the vision function on streams

of incoming pixels and produce one output pixel at each cycle. Stencil kernels use the line

buffer implementation to process a stream of incoming data [39, 88]. To maximize data reuse,

they use an internal buffer to store a window from the input image. This window includes

multiple rows of the image that is needed to calculate the output pixel. For example, Figure

4.12 highlights the image pixels that required to calculate a 3x3 convolution from the current

49



Figure 4.12: Using the line buffer for streaming image processing

Computation

Parameters

Upstream

Result Downstream

Figure 4.13: General implementation of pixel-wise kernels

window. Geometric kernels access pixels using an order that is different from the input order.

Such order is usually calculated from a geometric transformation. Geometric kernels have

no control over the order that upstream kernels produce data. Hence, to implement those

kernels, incoming data needs to be stored in the memory first. Next, data is streamed from

memory following the order specified by the geometric transformation. Statistical kernels

need to process the whole input pixels to calculate a single scalar value. Hence, they need

to process all the incoming pixels and update a scalar value. Their result is available once

all input pixels are processed.

Upstream Computation

Result

ParametersCoefficients

Downstream

Figure 4.14: General implementation of stencil kernels
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ComputationCoordinates Global Memory

Result

Coefficients

Downstream

Figure 4.15: General implementation of gemotric transformation kernels

ComputationUpstream

Result Downstream

Figure 4.16: General implementation of statistical kernels

FPGA Pipes

Compute kernels on FPGA communicate through pipes. Pipes are on-chip FIFOs that can

be customized by their width (i.e., data size) and depth (i.e., number of elements). Pipes

are also used for storing scalar values and small arrays for future references of the vision

algorithm. As shown in Figure 4.17b, pipes are a more efficient alternative for inter kernel

communication through FPGA global memory. However, they can only be realized between

two endpoint kernels (i.e., a producer and a consumer). A special kernel is provided that

replicates the input data to connect one kernel to multiple kernels.

Host Pipes

Host pipes establish low latency channels between the host and the FPGA. They bypass

the FPGA global memory (i.e., DRAM) that is used in typical data transfer between the

host and the FPGA [85]. Figure 4.18 demonstrates a comparison of two host-FPGA transfer

mechanisms. Using host pipes allows simultaneous data transfer, and computation, hence

better performance and energy efficiency can be obtained.
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(c) Kernels communicate via on-chip pipes

Figure 4.17: Comparison of kernel communication mechanism. Using pipes reduces the
number of accesses to global memory (external DRAM).
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(a) Memory-based host-FPGA communication
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(b) Pipe-based host-FPGA communication

Figure 4.18: Comparison of host FPGA transfer mechansims
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Global Memory (DRAM) Access

Even with dataflow processing, vision algorithms might require a large amount of data stor-

age that needs to be stored in the FPGA external memory. For example, vision algorithms

require to maintain a large state/model. Some algorithms are split into multiple FPGA

partitions where partitions need to communicate via a large amount of intermediate data.

We have defined two special kernels that can load to and store data from FPGA memory.

The global memory address will be obtained at run-time and will be passed to these kernels

as a kernel argument by the host program.

4.2.3 Programming Interface

We have defined a Domain Specific Language (DSL) embedded in OpenCL to describe com-

puter vision pipelines on the FPGA. In this language, C-style macros are used to instantiate

and specialize the generic vision functions and pipes, as well as establish the connection

between them. This library can be incorporated in regular OpenCL programs. Figure 4.19

shows an example usage of the library to describe a simple pipeline.
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1 #define SIMD_SZ 8
2 PIPE(p_in, uchar, SIMD_SZ, 0)
3 PIPE(p_thresh , uchar, SIMD_SZ, 0)
4 PIPE(p_out, uchar, SIMD_SZ, 0)
5 PIXEL_WISE(SIDM_SZ, threshold , p_in, p_thresh)
6 STENCIL(SIDM_SZ, filter, p_thresh , p_out)

(a) Example program

Computation

Parameters

ch_in

Result ch_thresh Computation

Result

ParametersCoefficients

ch_out

(b) Corresponding hardware

Figure 4.19: Describing a simple FPGA pipeline with the proposed library API
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Chapter 5

A Framework for FPGA Acceleration

of Computer Vision Algorithms

Implementing software that is portable in regards to performance and power efficiency is very

challenging. Since many of the optimizations are specific to the underlying hardware, most

software implementations are optimized manually for each particular hardware platform.

The manual optimization of programs for each hardware platform is a time-consuming and

complicated process. Several works have proposed the idea of decoupling algorithm spec-

ification and implementation. This way, these two tasks can be done separately and even

by different specialists. They often define a custom Domain-Specific Language (DSL) for

algorithm specification that imposes several constraints from the application domain. Such

specifications can be later translated into the hardware implementation using an optimizing

compiler.

Halide is a DSL embedded in C++ to describe image processing pipelines, designed with a

focus on computational photography [80, 77]. Halide defines a systematic model based on

stencil pipelines to explore the trade-off between locality, exploitation of parallelism, and

56



redundant re-computation. Halide, however, does not support vision kernels with complex

data access patterns. It also requires the scheduling policy and tile size to be explicitly

specified by the user. Rigel [78] extends Halide language by supporting more advanced data

access patterns, including multi-rate kernels and image pyramids. However, it still does not

support statistical and geometric kernels. In addition, it is primarily designed to describe

image processing algorithms on FPGAs, and there is no CPU support. PolyMage [66, 82]

converts an image processing algorithm developed using a custom DSL into a parallel imple-

mentation. It makes use of a polyhedral compiler to optimize image processing applications

using tiling, and fusion of image processing stages and memory allocation. Data-dependent

operations, such as statistical and table lookup operations, and also computations that have

a considerable input data reuse (e.g., matrix multiplication) are out of the PolyMage’s scope

of polyhedral overlapped tiling analysis.

All these frameworks may require manual optimizations to exploit locality and parallelism,

which require much time, effort, and expertise [37]. Besides, they lack hardware-software co-

optimization that is necessary for the efficiency of heterogeneous systems. In this chapter, we

present our framework for FPGA accelerating of vision algorithms that are described using a

high-level and graph-based specification based on OpenVX. Such high-level graphs abstract

away many implementation details such as memory allocation and hardware parallelism. We

show how such a representation can be translated into heterogeneous implementation consists

of CPU and FPGA. Towards this end, we provide an automatic acceleration framework

for FPGA implementation of OpenVX graph pipelines. To achieve this goal, we integrate

computer vision domain knowledge, hardware/software optimization techniques, and high-

level synthesis methodologies. We have developed primitive computer vision processing

elements using efficient and customizable OpenCL components that can be configured and

connected to form a larger pipeline on the FPGA. Our framework applies several high- and

low- level optimization methods to the vision graph and employs the developed OpenCL

library to generate an efficient implementation.
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Few prior works [70, 71, 96] develop solutions for FPGA implementation of OpenVX graphs.

However, these solutions support only a limited set of OpenVX kernels and are not able to

provide efficient implementations for more complex kernels. They also suffer from a lack

of automation, configurability, and hardware/software co-optimizations. In essence, none

of the previous works were able to provide a general and automatic framework to convert

high-level algorithms to CPU-FPGA heterogeneous acceleration platforms.

In summary, we make the following contributions:

• We suggest high-level graph-based and low-level FPGA-specific optimizations for vision

algorithms that are defined by OpenVX spec.

• We develop a framework for the automatic translation of algorithm graphs into op-

timized FPGA-CPU implementation. This framework enables vision developers to

develop, verify, and test vision algorithm quickly without the knowledge on a DSL or

any software/hardware description languages.

In this chapter, we suggest and describe a process for translating high-level OpenVX graphs

to optimized implementations for heterogeneous platforms consists of CPUs and FPGA ac-

celerators. In this process, the input graph is partitioned into CPU and FPGA partitions.

Also, various optimizing transformations are applied to the input graph. We have catego-

rized these transformations into high-level hardware-agnostic and low-level hardware-specific

transformations and implemented them as part of a framework called AFFIX.

5.1 High-Level Optimizing Transformations

These transformations prune and simplify the input graph to achieve a more efficient imple-

mentation. These techniques are hardware-agnostic and do not consider information about
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the specific target FPGAs. To enable these transformations, we have annotated the vision

function nodes with information such as data access patterns and their input/output data

types. Currently, AFFIX includes the following list of high-level transformations:

• Lowering: This step transforms the input graph by replacing the algorithm’s non-

primitive kernels (if any) with primitive kernels. Moreover, it replaces primitive kernels

that have multiple outputs with multiple single-output nodes. Graph lowering makes

the analysis for applying optimizations simpler for AFFIX. Figure 5.1b shows the

transformed LD algorithm after applying the lowering step. For instance, in the case

of LD algorithm, the non-primitive vxColorConvertNode kernel is replaced with three

primitive kernels RGB-to-Y, RGB-to-U, and RGB-to-V.

• Dead Node Elimination: This step eliminates graph nodes that are not connected

to an output node. Figure 5.1c demonstrates applying this step to the lowered LD

algorithm. Since ChannelExtract node, only extracts Y Image, there will be no path

from RGB-to-U and RGB-to-V nodes to the output. Therefore, AFFIX recognizes

them as dead nodes and eliminates them from the graph.

• Separable and Symmetric Filter Implementation: Several vision functions involve con-

volution. If the coefficient matrix is separable, convolution can be implemented using

two simpler convolutions [57]. For instance, kernels such as Gaussian Blur have N*N

matrix convolutions that can be replaced with two convolutions with 1*N and N*1

coefficient matrices. Table 5.1 shows the logic resource savings percentage by using

separable filter implementation of the Gaussian filter compared to the non-separable

baseline version. By increasing the filter size, the amount of saving increases as well.

The reason is that separable filter involves 2 × n Multiply-And-Accumulate (MAC)

operations, while the baseline version with non-separable implementation demands n2

MAC operations.
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Figure 5.1: High level optimization of lane detection algorithm
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Figure 5.2: High level optimization of Automatic contrast algorithm
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Figures 5.1 and 5.2 demonstrate the effect of high-level transformations on two sample algo-

rithm graphs.

5.2 Pipelining using Graph Partitioning

Pipelining the algorithm graph on FPGA is the main technique to increase throughput.

However, realizing all graph nodes on a single FPGA pipeline is not always feasible.

• Not all vision kernels can be implemented efficiently on FPGA. We have identified such

kernels in the current version of the framework. If the input DAG contains one (or

more) of these kernels, AFFIX will map them to the CPU for execution. For instance,

AFFIX already knows HoughLinesP kernel in LD algorithm should be run on CPU

(Figure 5.4). Although it might be possible to implement some of these kernels on

FPGA using specific heuristics, doing that makes AFFIX very complex.

• Not all kernels that are mapped to the FPGA can be part of the same pipeline. While,

graphs that only consist of pixel-wise, stencil, and table lookup kernels can be imple-

mented in a single pipeline, statistical and geometric kernels have data access depen-

dencies that limit the put constraints on pipelining opportunities. In this case, The

pipeline partitioning divides the primitive DAG obtained after high-level optimization

into sub-partitions. A different pipeline implements each partition.

1. Statistical nodes cannot be mapped to the same pipeline with their successors.

The reason is that these kernels have to process the whole input before generating

a valid output(e.g., mean() function). Hence, all of their downstream kernels must

be implemented in different pipelines. In such cases, AFFIX will split the graph

into multiple partitions. Each partition is implemented as a separate pipeline.

2. Geometric nodes cannot be in the same pipeline as their predecessors. The reason
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is that inputs of geometric kernels cannot be streamed directly from the upstream

kernel. This is because geometric kernels must access data in an order that is

specified by a transformation matrix which is most likely different than the input

stream order. Thus, the input stream must be entirely saved in memory first.

Geometric nodes then can load the saved data, and hence they must be the entry

points of a new partition.

Figure 5.3 demonstrates partitioning of sample DAGs with various kernel types. DAG in

the case (a) only consists of pixel-wise, stencil, and table lookup kernels. Thus, the whole of

the DAG can be in the pipeline. Case (b) uses two statistical nodes (nodes h and f). Hence,

their successor nods (nodes e and i) must be implemented as a separate pipeline. Case (c)

uses two geometric transformation nodes (nodes h and f). Therefore, they cannot be in the

same partition as their predecessors. Case (d) uses two CPU nodes. CPU nodes cannot be

part of any FPGA pipeline. Furthermore, their no predecessors and successors can not map

to the same FPGA partitions.

Data communication between two FPGA partitions is done through using FPGA internal and

external memory while FPGA and CPU partitions communicate through host pipes. Given

the mentioned partitioning constraints for a graph, there may be several valid partitioning

schemes. Since we have found the communication to be the major performance bottleneck, we

formulated the partitioning problem as a Mixed Integer Linear Program (MILP) and aimed

to find a partitioning that minimizes data communication across partitions as described by

Eq. 5.1. In this formulation, V is the set of DAG nodes and E(u,v) specifies data transfer

size between two nodes u and v. conflict[u][v] is a table of Boolean values that specifies

whether each pair of vertices in V cannot be mapped to the same partition (True case). The

objective is to minimize equation 5.1 subjects to mapping and partitioning constraints. Pv

in (2) is a variable that represents the partition number (a positive integer) that node v is

mapped to. Yuv is a Boolean variable which its true value indicates if two nodes u and v are

63



a

g

i

b

h c

d

e

f

a

g

i

b

h c

d

e

f

a) Graph with only pixel-
wise stencil, and lookup
nodes

b) Graph with statistical
nodes (h and f)

a

g

i

b

h

c

d

e f

a

g

i

b

h

c

d

e

f

c) Graph with geometric
nodes (h and f)

d) Graph with CPU nodes
(h and f)

FPGA Partition CPU Partition

Figure 5.3: Partitioning of a sample algorithm graph with different vision node types com-
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mapped to different partitions. Constraint (4) sets the value of Yuv to be 1 if Pu! = Pv and

constraint (5) enforces mapping of incompatible nodes to different partitions. To formulate

constraint (4) in canonical MILP form, we used the well-known Big-M method [106]. In this

method, M is an integer that must be larger than |Pu−Pv|. We picked M to be equal to the

number of nodes in the graph.

Minimize
∑
v∈V

∑
u∈V

E(u, v)× yuv (5.1)

subject to:

∀v ∈ V : |V | > Pv > 0 (5.2)

∀u, v ∈ V : Yu,v ∈ {0, 1} (5.3)

∀v, u ∈ V : Yuv = 1 if Pu! = Pv else 0 (5.4)

∀v, u ∈ V : Yuv == conflict[u][v] (5.5)

Figure 5.4 shows the partitioning of the graph of the LD algorithm after high-level optimiza-

tions. The algorithm graph is partitioned into three partitions: HoughLinesP function is

implemented in a CPU partition. The rest of the graph is mapped to the FPGA. However,
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Figure 5.4: Partitioning of the lane detection algorithm graph

since WarpPerspecitve is a geometric function, the graph is segmented into one or more

partitions. As another example, Figure 5.5 demonstrates partitioning of Automatic contrast

algorithm. Since this algorithm uses histogram information (has one statistical node), its

graph is partitioned into two pipelines on the FPGA.

5.2.1 Data Streaming Patterns

AFFIX instantiates vision functions and pipes to form pipelines on the FPGA. Since the

data streams through the pipeline, all the vision functions on the pipeline must be able to

process the input in the same order that input data is arriving. Pixel-wise, memory lookup,

and statistical nodes can process images with any arbitrary streaming order (i.e., cases a

Figure 5.6 ). However, stencil vision function nodes use the sliding window implementation

and can only process data streamed in raster order.

The sliding window implementation requires storing multiple rows of the input image around

the current pixel. When processing large input data sets, storing multiple rows of the input

image per every kernel leads to excessive usage of on-chip memory resources. One method
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Figure 5.5: Partitioning of automatic contrast algorithm graph
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to save on on-chip memory resource usage is to partition the input data into sub-images

with smaller width size (i.e., cases b Figure 5.6). This way, the sliding window size can be

shrunk accordingly. However, since pixels at sub-image boundaries are missing, sub-image

processing must overlap with each other to cover the missing pixels, which leads to re-

computation. Hence a balance between area-usage and re-computation must be considered.

While both case b and c can work on stencil kernel and they have equal memory require-

ment, case b requires less re-computation since boundary area is smaller. In algorithms that

include up-sampling and down-sampling nodes, the window size of kernels that operates on

down/upsampled images must be adjusted accordingly. For example, if the input data has

a resolution of W*H, after going through down-sampling with the scale of ”1/2”, it will be

W/2*H/2.

5.3 FPGA-Specific Optimizing Transformations

AFFIX splits the graph that is obtained after applying high-level optimizations into CPU

and FPGA partitions. It uses OpenCL to implement the FPGA partitions. It applies several

low-level optimizations on OpenCL implementation of the vision components through HLS

pragmas. OpenCL compilers usually support pragma directives to guide optimization and

hardware generation such as loop unrolling, kernel optimization, interface generation, and

memory optimization. The primary goals of low-level optimization techniques are to enhance

overall performance(FMAX), achieve ”ideal pipelines” (i.e., pipelines with Initiation Interval

(II) of 1”) for loops with a large number of iterations, and save FPGA resource usages

without significant performance degradation. These optimization methods include deciding

on loop unrolling factors, SIMD-width, local memory configuration (i.e., port numbers ),

pipe depth and width, and sliding window size.

• FPGA Pipes Depth Optimization: To prevent deadlock, and save on FPGA resources,
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Figure 5.6: Different policies to partition and stream the images. Cases b and c assume
sliding window implementation for images with 4 columns. To stream all the cases raster
ordering is used.
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Filter Size 5x5 7x7 9x9 11x11 13x13
Logic Saving (%) 5 16 26 36 44

Table 5.1: Logic saving of separable implementation of 2D filters on Arria10 compared to
non-separable baseline implementation

pipe depth must be optimized. AFFIX calculates optimal pipe depth by matching the

latency of input ports of all nodes in the DAG. Latency is a function of two factors. It

depends on the kernel compute function. The depth of the pipelining for each kernel

depends on the function units. It also depends on the kernel type. Pixel-wise functions

have additional latency of zero, while stencil functions need to fill up the sliding window

first and have variable latency that depends on the window size. AFFIX adjusts the

optimal pipe depth by examining the RTL implementation of the design generated by

the OpenCL compiler. After extracting it, it re-compiles the design with the proper

pipes’ depth set.

• Sliding Window Size Optimization: Stencil kernels use sliding window implementation

to support data streaming. Sliding windows must be large enough to store ”K” rows of

the input image (for a (2k by 2K) convolution). However, a large window size incurs

a performance/area overhead. The input image will be partitioned according to the

calculated window size.

5.4 Automatic Flow

We propose the flow depicted by Figure 5.9 for converting high-level algorithms into hardware-

software implementation.

As depicted in Figure 5.9, it consists of three phases to verify, analyze, and generate FPGA

and CPU implementations. Users must describe the vision algorithm in a DAG format using
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1 #define SIMD_SZ 8
2 #define WIN_SZ 320
3
4 // Partition 1
5 PIPE(p_in , uint , SIMD_SZ , 0)
6 PIPE(p_y , uchar , SIMD_SZ , 0)
7 SRC(p_in)
8 RGBTOY(SIMD_SZ , p_in , p_y)
9 SAVE(p_y)

10
11 // Partition 2
12 PIPE(p_warped , uchar , SIMD_SZ , 0)
13 PIPE(p_conv_row , uchar , SIMD_SZ , 0)
14 PIPE(p_con_col , uchar , SIMD_SZ , 0)
15 PIPE(p_thresh , uchar , SIMD_SZ , 0)
16 float[9] conv_col = {...};
17 float[3] conv_row = {...};
18 WARP_LOAD(p_warped , SIMD_SZ)
19 CONV_ROW(p_warped , p_conv_row , 9, conv_row , ...)
20 CONV_COL(p_conv1 , p_con_col , 3, conv_col , ...)
21 THRESH(p_conv_col , SIMD_SZ , thresh_val , p_thresh)
22 SINK(p_thresh)

Figure 5.7: Simplified OpenCL code for FPGA implementation of the lane detection algo-
rithm example

Hough Sink Threshold Conv Row Conv Col

Host Src RGB2Y Save
Load
Warp

Kernel Host Pipe FPGA Pipe
FPGA Partitions CPU Partition

Figure 5.8: Visualization of the generated system for lane detection algorithm graph
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the AFFIX provided API. Additionally, users can specify the SIMD-size as a parallelism pa-

rameter, which is helpful for design space exploration. It starts with verification of the user

input algorithm followed by lowering the input DAG. The output of this step is a graph that

only consists of primitive vision functions that are easier to analyze and optimize. Then,

AFFIX applies high-level optimizations on the primitive graph resulting in a more efficient

algorithm representation. Next, AFFIX splits the graph into CPU and FPGA partitions

based on node availability and data dependency constraints. AFFIX aims to find the largest

FPGA partitions that can be implemented as a single pipeline on the FPGA. Finally, FPGA-

specific (low-level) optimization techniques will be applied across FPGA partitions to obtain

the final optimized OpenCL code. In cases which there are multiple partitions, partitions

are sorted based on the topological ordering and executed consecutively.1 The third phase

generates both FPGA hardware and CPU software components of the system. FPGA com-

ponents are implemented by specializing in the constructs provided via an OpenCL library.

Most of the kernel parameters are either inferred from the provided DAG (e.g., input di-

mension, vision operator, matrix coefficients) or determined automatically using high and

low-level optimization techniques (e.g., buffer size). The only parameter that has to be

set by a user is the SIMD width to adjust the required performance. OpenCL compiler is

used to translate the generated OpenCL program into the FPGA bitstream. In addition to

a computational pipeline, the final hardware incorporates a standard PCI interface to the

host, OpenCL controller logic, and an optional FPGA DRAM interface.

5.5 Usage and Software Architecture

We have developed a host program that exploits OpenCL run-time API to allocate data

on FPGA DRAM, pass kernel arguments, and coordinate execution of OpenCL kernels on

FPGA. Software components are compiled separately as plugins (e.g., plugin.so) and are
1More optimized scheduling and execution are left for future work.
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Figure 5.10: AFFIX software architecture and components

loaded at run-time by the host program. They implement an interface that allows the host

program to invoke their vision functions. AFFIX makes use of a fast OpenCL emulator

provided by Intel OpenCL SDK that allows us to emulate the whole algorithm on CPU for

verification purposes. AFFIX also supports compiling OpenCL-based vision kernels with

profiling enabled that measures and reports performance of kernel execution on the FPGA.

5.5.1 User-Defined Kernels

AFFIX supports user-defined kernels. However, users must provide CPU and FPGA imple-

mentation for the new vision functions. Since we have already integrated AFFIX with an

open-source computer vision library (i.e., OpenCV), access to a wide variety of functions for

developing user-defined kernels is available.
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5.6 Evaluation

We have developed several vision algorithms using the AFFIX framework and measured

their performance numbers, including total execution time, average power consumption, and

resource usage of the FPGA components. The characterization of algorithms is demonstrated

in Table 5.2. To develop some of the algorithms such as Census and ColorCopy, we have to

extend the OpenVX vision functions list by implementing new functions.
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Benchmark Domain No Function
Nodes

No Ex-
tension
vision
Functions

No
CPU
nodes

No
Geo
Nodes

No
Stats
Nodes

No
Graph
Parti-
tions

Automatic Contrast Image Processing 6 0 0 0 1 2
Lane Detection Image Processing 6 0 0 1 0 3
Color Copy Color Printing 42 4 1 0 0 3
Census Transform Visual Descriptors 4 1 0 0 0 1
SIFT keypoints Visual Descriptors 116 2 0 0 0 1

Table 5.2: Workload characterization
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Automatic contrast adjusts the contrast of the input color (RGB) image based on the

histogram of pixel intensity values.

Lane detection algorithm finds lane segments in the input color image. It uses perspective

transformation to focus on ”bird-eye-view” of the grayscale image and searches for line

segments using probabilistic Hough transformation.

Color copy prepares and enhances the input color image for color printing. It involves

color conversion between different color spaces such as LAB and CMYK, several image

processing operations, and half-toning algorithm based on error diffusion. Color conversions

are done using large 3-D lookup tables. Tetrahedral interpolation of color spaces involves

floating-point calculations that can be implemented using FPGA DSPs [54]. Error diffusion

algorithm [89] has a non-supported data access pattern and is executed on the CPU. The

rest of the graph is implemented in two partitions (pipeline stages) on the FPGA.

Census transform calculates visual descriptors based on census transform for an input

grayscale image [111].

SIFT Keypoints searches for image’s representative key points in multiple scales of the

Gaussian image pyramid (We set pyramid levels to five) [61]. The candidate keypoints then

can be associated with descriptor vectors, which are useful for pattern recognition but are

excluded in our implementation. This algorithm is implemented in a single pipeline on

the FPGA. The output of this algorithm will be a list of detected keypoints (coordinates,

detection scale).

The CPU used in experiments was an Intel Core i7-4770 processor with 8 logical cores.

Arria10 GX FPGA reference board with 1150K logic units, 1500 DSPs, and 2GB DDR4

attached external memory with Gen3x8 PCIe interface is used as the accelerator. PCIe

communication is full-duplex (i.e., simultaneous read/write). By streaming the data between

the host and the FPGA, communication, and computation on the FPGA overlap.
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We have optimized the input algorithms with our framework and synthesized the output

OpenCL code using Intel OpenCL SDK 19.1 with different values for parallelism (i.e.,

SIMD_width). FPGA board has a PCIe interface of 32 bytes which limits the maxi-

mum parallelism level. Hence maximum SIMD_SIZE is 8 for algorithms that operate on

color images (RGBX) and 32 for those working with grayscale images.

Table 5.3 reports maximum throughput of the optimized CPU version (using eight cores and

vectorized with AVX intrinsics) and heterogeneous implementations of the algorithms pro-

duced via the framework with varying degree of parallelism. Reported numbers include the

time for both communication and computation. As it is shown, throughput scales propor-

tionally with parallelism level until communication bandwidth between CPU/FPGA reaches

maximum PCIe limit. It can be seen that AFFIX implementations can achieve better speed-

up compared to CPU implemenation for larger graphs (e.g., SIFT and ColorCopy).
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Benchmark CPU
(AVX+8
Cores)

FPGA
SIMD=1

FPGA
SIMD=2

FPGA
SIMD=4

FPGA
SIMD=8

FPGA
SIMD=16

FPGA
SIMD=32

Census transform 691 307 592 1148 2073 2764 2764
Automatic contrast 1579 394 737 1508 2552 N/A N/A
Lane detection 721 582 1228 2369 2764 N/A N/A
Color copy 399 737 1037 1442 1746 N/A N/A
SIFT keypoints 37 230 307 592 829 829 N/A

Table 5.3: Throughput comparison of CPU and Arria10 accelerated algorithms with different SIMD width

Benchmark CPU
(AVX+8
Cores)

FPGA
SIMD=1

FPGA
SIMD=2

FPGA
SIMD=4

FPGA
SIMD=8

FPGA
SIMD=16

FPGA
SIMD=32

Census transform 16.1 6.9 13.3 26.4 46 60.8 59.7
Automatic contrast* 30.9 8.6 15.9 32.4 54.2 N/A N/A
Lane detection* 25.1 13 27.2 52.2 58.6 N/A N/A
Color copy 7.7 15.7 22 30 35.4 N/A N/A
SIFT keypoints 1.3 3.1 6.2 11.8 15.8 14.3 N/A

Table 5.4: Throughput per Energy (MegaBytes per Joule) comparison of CPU and Arria10 accelerated algorithms with different
SIMD width
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Figure 5.11 demonstrates FPGA resource utilization and maximum working frequency of

the benchmarks by varying SIMD width. Reported resource usage includes overhead for

OpenCL control and board interface components such as PCIe and external memory(about

9% Logic and 10% Memory). The results indicate that by increasing parallelism, the maxi-

mum frequency does not drop significantly. Furthermore, resource usage is increased linearly

when the amount of parallelism is increased.

Table 5.5 shows the power consumption of the CPU and FPGA implementations with dif-

ferent SIMD size. We have used LIKWID [99] tool to measure the energy/power of both the

host processor and host memory. FPGA power usage is extracted using post-fit analysis.

Dynamic power accuracy is further improved via RTL simulation of the designs. Power num-

bers are reported by table 5.5. Baseline FPGA configuration (PCIe loopback, and OpenCL

run-time) consumes 18 Watts adds to the reported numbers. We measured that the host

processor consumes 25W for PCIe I/O and reading input frames from file to memory.
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Figure 5.11: Arria 10 resource utilization and maximum working frequency of algorithms
with different SIMD width
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Benchmark CPU
(AVX+8
Cores)

FPGA
SIMD=1

FPGA
SIMD=2

FPGA
SIMD=4

FPGA
SIMD=8

FPGA
SIMD=16

FPGA
SIMD=32

Census Transform 42 18.3 18.5 18.8 19 19.4 20.2
Automatic Contrast* 50 20.1 20.3 20.4 21 N/A N/A
Lane Detection* 28 18.8 19 19.3 21.1 N/A N/A
Color Copy 51 20.6 20.9 21.9 23.1 N/A N/A
SIFT keypoints 35 22 23.6 24.5 27.2 33.1 N/A

Table 5.5: Design power consumption (Watts) of CPU and Arria10 accelerated algorithms with different SIMD width
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5.7 Availability

This chapter proposed a general-purpose, configurable, and easy-to-use framework called

AFFIX to accelerate OpenVX computer vision algorithms on heterogeneous CPU-FPGA

platforms. AFFIX source code is available on GitHub2 under the BSD license. We believe it

will be a helpful asset for vision researchers and developers to quickly develop, test, verify,

and accelerate their proposed algorithms.

2https://github.com/sajjadt/affix
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Chapter 6

Conclusions and Future Directions

Computer vision is complex and compute-intensive. Building systems with high performance

and energy efficiency requires expertise not only on computer vision but also in software

design and hardware optimization. Computer vision systems designers often rely on open-

source software stacks such as OpenCV or Caffee frameworks to build systems. Such software

stacks are developed by experts and contain numerous software and hardware optimizations.

This dissertation focus is on two compute platforms for building computer vision systems

that were not easily accessible to algorithm designers and developers: the Web and FPGA-

based accelerators. Existing solutions such as OpenCV either do not map to them or maps

very poorly.

The Web is the world’s most ubiquitous computing platform which hosts a plethora of

visual content. Due to historical reasons such as insufficient compute performance and lack

of API support for acquiring and manipulating images, computer vision is not mainstream

on the Web. This dissertation shows that in light of recent web developments such as

vastly improved JavaScript performance and the addition of APIs such as WebRTC, efficient

computer vision processing can be realized on web clients. It provides a comprehensive
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computer vision library for the Web by porting the OpenCV library to JavaScript and

referring to it as OpenCV.js. OpenCV.js provides an expansive set of functions with an

optimized implementation that offers a near-native level of performance. Performance can

further improve through JavaScript-based SIMD and thread-based parallelism. We believe

this will result in an immersive and perceptual web with transformational effects, including in

online shopping, education, and entertainment, among others. With improved performance

and excellent portability and security, JavaScript has been subject to widespread usage in

several other domains such as server-side programming [98], desktop, and embedded systems.

This makes the provided library applicable to a wider range of applications.

Field Programmable Gate Arrays (FPGA)s are a promising solution to mitigate the com-

putational cost of vision algorithms through hardware pipelining and parallelism. However,

an efficient FPGA implementation of computer vision algorithms requires hardware design

expertise and a considerable amount of engineering person-hours. This dissertation explored

the advantages of a domain-specific representation of computer vision and image processing

based on OpenVX spec in FPGA design. Since such representation lacks implementation

details, different implementation configurations that satisfy various design constraints, such

as performance and power budget, can be explored. Towards this goal, this dissertation

suggests a framework called AFFIX for automatic optimizing and implementation of vision

algorithms on different FPGA architectures. AFFIX hides low-level hardware optimization

and implementation details from computer vision algorithm designers and enables them to

quickly develop and evaluate various FPGA implementations of vision algorithms without

sacrificing performance.

The research presented in this dissertation can be extended in several aspects.

• We show promising performance improvements from parallel execution of OpenCV

functions based on ”asm.js” version of the library. However, asm.js is being phased
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out in favor of WASM. OpenCV.js is currently under active development to support

SIMD and multithreaded processing in the context of WebAssembly. We have skipped

GPU based parallelism in the current version of OpenCV.js. However, we think the

upcoming WebGPU standard can be used to take advantage of GPUs for OpenCV

computing tasks.

• AFFIX acceleration framework can be improved in several ways:

– Deep Neural Network (DNN) Integration: DNNs have significantly improved im-

age classification and recognition over classical methods. The proposed framework

can be extended with DNN inference functionality to implement algorithm graphs

that are a mix of DNN layers and vision nodes.

– More sophisticated scheduling policies: In the current version of the framework,

CPU functions are executed sequentially. By processing images in tiles, not only

more cache-friendly implementation is achieved, it is possible to run multiple

functions that even might have data dependencies in parallel.

86



Bibliography

[1] Amd openvx open-source on github. https://github.com/
GPUOpen-ProfessionalCompute-Libraries/amdovx-core. Accessed: 2018-09-
01.

[2] Computer vision technology permeates our daily lives. https://www.iotforall.com/
computer-vision-applications-in-daily-life/. Accessed: 2018-09-01.

[3] Cuda accelerated computer vision library. https://developer.nvidia.com/
embedded/visionworks. Accessed: 2018-09-01.

[4] Ecmascript 2018 language specification: https://tc39.github.io/ecma262/, 2017.
Accessed: 2018-15-4.

[5] Gmail, past, present, and future. https://www.usenix.org/conference/
webapps-10/gmail-past-present-and-future. Accessed:2019-06-16.

[6] Simd.js specification: http://tc39.github.io/ecmascript_simd/. Accessed: 2018-
15-4.

[7] Web design and applications. https://www.w3.org/standards/webdesign/. Ac-
cessed: 2019-01-09.

[8] Web workers: https://www.w3.org/TR/workers/, 2015. Accessed: 2018-21-2.

[9] Webxr. https://immersive-web.github.io/webxr/. Accessed: 2018-09-01.

[10] Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide. Intel, 2019.

[11] Intel FPGA SDK for OpenCL Pro Edition: Programming Guide. Intel, 2019.

[12] W. Ahn, J. Choi, T. Shull, M. J. Garzarán, and J. Torrellas. Improving javascript
performance by deconstructing the type system. In Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI
’14, pages 496–507, New York, NY, USA, 2014. ACM.

[13] E. Barsom, M. Graafland, and M. Schijven. Systematic review on the effective-
ness of augmented reality applications in medical training. Surgical endoscopy,
30(10):4174–4183, 2016.

87

https://github.com/GPUOpen-ProfessionalCompute-Libraries/amdovx-core
https://github.com/GPUOpen-ProfessionalCompute-Libraries/amdovx-core
https://www.iotforall.com/computer-vision-applications-in-daily-life/
https://www.iotforall.com/computer-vision-applications-in-daily-life/
https://developer.nvidia.com/embedded/visionworks
https://developer.nvidia.com/embedded/visionworks
https://tc39.github.io/ecma262/
https://www.usenix.org/conference/webapps-10/gmail-past-present-and-future
https://www.usenix.org/conference/webapps-10/gmail-past-present-and-future
http://tc39.github.io/ecmascript_simd/
https://www.w3.org/standards/webdesign/
https://www.w3.org/TR/workers/
https://immersive-web.github.io/webxr/


[14] R. Baxter, S. Booth, M. Bull, G. Cawood, J. Perry, M. Parsons, A. Simpson,
A. Trew, A. McCormick, G. Smart, et al. Maxwell-a 64 fpga supercomputer. In Sec-
ond NASA/ESA Conference on Adaptive Hardware and Systems (AHS 2007), pages
287–294. IEEE, 2007.

[15] J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel. Optimizing matrix multiply using
phipac: a portable, high-performance, ansi c coding methodology. In International
Conference on Supercomputing, volume 27. Vienna, Austria, 1997.

[16] G. Bradski and A. Kaehler. Learning OpenCV: Computer vision with the OpenCV
library. ” O’Reilly Media, Inc.”, 2008.

[17] D. R. Butenhof. Programming with POSIX threads. Addison-Wesley Professional,
1997.

[18] M. Bynens. Celebrating 10 years of v8: https://v8.dev/blog/10-years, 2018. Ac-
cessed: 2019-15-4.

[19] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson, S. Brown,
and T. Czajkowski. Legup: high-level synthesis for fpga-based processor/accelerator
systems. In Proceedings of the 19th ACM/SIGDA international symposium on Field
programmable gate arrays, pages 33–36. ACM, 2011.

[20] J. Canny. A computational approach to edge detection. In Readings in Computer
Vision, pages 184–203. Elsevier, 1987.

[21] M. Casas-Sanchez. Accelerated shape detection in images: https://wicg.github.
io/shape-detection-api/, 2018. Accessed: 2018-15-4.

[22] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael, A. Caulfield, T. Massengill,
M. Liu, D. Lo, S. Alkalay, M. Haselman, et al. Serving dnns in real time at datacenter
scale with project brainwave. IEEE Micro, 38(2):8–20, 2018.

[23] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke,
S. Roth, and B. Schiele. The cityscapes dataset for semantic urban scene understand-
ing. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 3213–3223, June 2016.

[24] T. S. Czajkowski, U. Aydonat, D. Denisenko, J. Freeman, M. Kinsner, D. Neto,
J. Wong, P. Yiannacouras, and D. P. Singh. From opencl to high-performance hardware
on fpgas. In 22nd international conference on field programmable logic and applications
(FPL), pages 531–534. IEEE, 2012.

[25] L. Dagum and R. Menon. Openmp: An industry-standard api for shared-memory
programming. Computing in Science & Engineering, (1):46–55, 1998.

[26] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In
Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society
Conference on, volume 1, pages 886–893. IEEE, 2005.

88

https://v8.dev/blog/10-years
https://wicg.github.io/shape-detection-api/
https://wicg.github.io/shape-detection-api/


[27] C. De Schryver. FPGA Based Accelerators for Financial Applications. Springer, 2015.

[28] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[29] A. Donovan, R. Muth, B. Chen, and D. Sehr. Pnacl: Portable native client executables.
Google White Paper, 2010.

[30] P. Du, R. Weber, P. Luszczek, S. Tomov, G. Peterson, and J. Dongarra. From cuda to
opencl: Towards a performance-portable solution for multi-platform gpu programming.
Parallel Computing, 38(8):391–407, 2012.

[31] G. A. Elliott, K. Yang, and J. H. Anderson. Supporting real-time computer vision
workloads using openvx on multicore+ gpu platforms. In 2015 IEEE Real-Time Sys-
tems Symposium, pages 273–284. IEEE, 2015.

[32] A. Ess, T. Mueller, H. Grabner, and L. J. Van Gool. Segmentation-based urban traffic
scene understanding. In BMVC, volume 1, page 2. Citeseer, 2009.

[33] A. Esteva, A. Robicquet, B. Ramsundar, V. Kuleshov, M. DePristo, K. Chou, C. Cui,
G. Corrado, S. Thrun, and J. Dean. A guide to deep learning in healthcare. Nature
medicine, 25(1):24, 2019.

[34] H. Fang, S. Ong, and A. Nee. A novel augmented reality-based interface for robot path
planning. International Journal on Interactive Design and Manufacturing (IJIDeM),
8(1):33–42, 2014.

[35] C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun. Cnp: An fpga-based processor
for convolutional networks. In 2009 International Conference on Field Programmable
Logic and Applications, pages 32–37. IEEE, 2009.

[36] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R. Haghighat, B. Ka-
plan, G. Hoare, B. Zbarsky, J. Orendorff, J. Ruderman, E. W. Smith, R. Reitmaier,
M. Bebenita, M. Chang, and M. Franz. Trace-based just-in-time type specialization
for dynamic languages. In Proceedings of the 30th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’09, pages 465–478, New
York, NY, USA, 2009. ACM.

[37] F. Grull, M. Kirchgessner, R. Kaufmann, M. Hausmann, and U. Kebschull. Accelerat-
ing image analysis for localization microscopy with fpgas. In Field Programmable Logic
and Applications (FPL), 2011 International Conference on, pages 1–5. IEEE, 2011.

[38] Y. Guan, H. Liang, N. Xu, W. Wang, S. Shi, X. Chen, G. Sun, W. Zhang, and J. Cong.
Fp-dnn: An automated framework for mapping deep neural networks onto fpgas with
rtl-hls hybrid templates. In 2017 IEEE 25th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), pages 152–159. IEEE, 2017.

89



[39] Z. Guo, B. Buyukkurt, and W. Najjar. Input data reuse in compiling window opera-
tions onto reconfigurable hardware. ACM SIGPLAN Notices, 39(7):249–256, 2004.

[40] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau. Spark: A high-level synthesis framework
for applying parallelizing compiler transformations. In 16th International Conference
on VLSI Design, 2003. Proceedings., pages 461–466. IEEE, 2003.

[41] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman, D. Gohman, L. Wagner,
A. Zakai, and J. Bastien. Bringing the web up to speed with webassembly. In Proceed-
ings of the 38th ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 185–200. ACM, 2017.

[42] B. Hackett and S.-y. Guo. Fast and precise hybrid type inference for javascript. In
Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’12, pages 239–250, New York, NY, USA, 2012. ACM.

[43] M. Hidaka, Y. Kikura, Y. Ushiku, and T. Harada. Webdnn: Fastest dnn execution
framework on web browser. In Proceedings of the 2017 ACM on Multimedia Conference,
MM ’17, pages 1213–1216, New York, NY, USA, 2017. ACM.

[44] K. Hill, S. Craciun, A. George, and H. Lam. Comparative analysis of opencl vs. hdl with
image-processing kernels on stratix-v fpga. In 2015 IEEE 26th International Conference
on Application-specific Systems, Architectures and Processors (ASAP), pages 189–193.
IEEE, 2015.

[45] A. B. Hillel, R. Lerner, D. Levi, and G. Raz. Recent progress in road and lane detection:
a survey. Machine vision and applications, 25(3):727–745, 2014.

[46] D. Honegger, H. Oleynikova, and M. Pollefeys. Real-time and low latency embedded
computer vision hardware based on a combination of fpga and mobile cpu. In Intelligent
Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on, pages
4930–4935. IEEE, 2014.

[47] V. Jain and E. Learned-Miller. Fddb: A benchmark for face detection in unconstrained
settings. 2010.

[48] P. Jensen, I. Jibaja, N. Hu, D. Gohman, and J. Mc-Cutchan. Simd in javascript
via c++ and emscripten. In Workshop on Programming Models for SIMD/Vector
Processing, 2015.

[49] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. In
Proceedings of the 22Nd ACM International Conference on Multimedia, MM ’14, pages
675–678, New York, NY, USA, 2014. ACM.

[50] I. Jibaja, P. Jensen, N. Hu, M. R. Haghighat, J. McCutchan, D. Gohman, S. M. Black-
burn, and K. S. McKinley. Vector parallelism in javascript: Language and compiler
support for simd. In Parallel Architecture and Compilation (PACT), 2015 International
Conference on, pages 407–418. IEEE, 2015.

90



[51] S. Jin, J. Cho, X. Dai Pham, K. M. Lee, S.-K. Park, M. Kim, and J. W. Jeon. Fpga
design and implementation of a real-time stereo vision system. IEEE transactions on
circuits and systems for video technology, 20(1):15–26, 2009.

[52] A. B. Johnston and D. C. Burnett. WebRTC: APIs and RTCWEB protocols of the
HTML5 real-time web. Digital Codex LLC, 2012.

[53] R. Kamasaka, Y. Shibata, and K. Oguri. An fpga-oriented graph cut algorithm for
accelerating stereo vision. In 2018 International Conference on ReConFigurable Com-
puting and FPGAs (ReConFig), pages 1–6. IEEE, 2018.

[54] J. M. Kasson, W. Plouffe, and S. I. Nin. Tetrahedral interpolation technique for color
space conversion. In Device-Independent Color Imaging and Imaging Systems Inte-
gration, volume 1909, pages 127–139. International Society for Optics and Photonics,
1993.

[55] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. Commun. ACM, 60(6):84–90, May 2017.

[56] A. Labour, M. Papakipos, S. Okasaka, and J. Timanus. Safe browser plugins using
native code modules, Jan. 8 2013. US Patent 8,352,967.

[57] C. Lanczos. Linear differential operators, volume 18. SIAM, 1997.

[58] R. Lienhart and J. Maydt. An extended set of haar-like features for rapid object
detection. In Image Processing. 2002. Proceedings. 2002 International Conference on,
volume 1, pages I–I. IEEE, 2002.

[59] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie. Feature
pyramid networks for object detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2117–2125, 2017.

[60] R. Liu, J. Yang, Y. Chen, and W. Zhao. eslam: An energy-efficient accelerator for real-
time orb-slam on fpga platform. In Proceedings of the 56th Annual Design Automation
Conference 2019, DAC ’19, pages 193:1–193:6, New York, NY, USA, 2019. ACM.

[61] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International
journal of computer vision, 60(2):91–110, 2004.

[62] E. Lundgren, T. Rocha, Z. Rocha, P. Carvalho, and M. Bello. tracking.js: A modern
approach for computer vision on the web: https://trackingjs.com, 2016. Accessed:
2018-15-4.

[63] W. J. MacLean. An evaluation of the suitability of fpgas for embedded vision systems.
In null, page 131. IEEE, 2005.

[64] J. Matas, C. Galambos, and J. Kittler. Robust detection of lines using the pro-
gressive probabilistic hough transform. Computer Vision and Image Understanding,
78(1):119–137, 2000.

91

https://trackingjs.com


[65] E. Matsas and G.-C. Vosniakos. Design of a virtual reality training system for human–
robot collaboration in manufacturing tasks. International Journal on Interactive De-
sign and Manufacturing (IJIDeM), 11(2):139–153, 2017.

[66] R. T. Mullapudi, V. Vasista, and U. Bondhugula. Polymage: Automatic optimiza-
tion for image processing pipelines. In ACM SIGARCH Computer Architecture News,
volume 43, pages 429–443. ACM, 2015.

[67] E. Nikahd, P. Behnam, and R. Sameni. High-speed hardware implementation of fixed
and runtime variable window length 1-d median filters. IEEE Transactions on Circuits
and Systems II: Express Briefs, 63(5):478–482, 2016.

[68] R. Nikhil. Bluespec system verilog: efficient, correct rtl from high level specifications.
In Proceedings. Second ACM and IEEE International Conference on Formal Methods
and Models for Co-Design, 2004. MEMOCODE’04., pages 69–70. IEEE, 2004.

[69] D. O’Loughlin, A. Coffey, F. Callaly, D. Lyons, and F. Morgan. Xilinx vivado high
level synthesis: Case studies. 2014.

[70] H. Omidian and G. G. Lemieux. Exploring automated space/time tradeoffs for openvx
compute graphs. In Field Programmable Technology (ICFPT), 2017 International
Conference on, pages 152–159. IEEE, 2017.

[71] H. Omidian and G. G. Lemieux. Janus: A compilation system for balancing parallelism
and performance in openvx. In Journal of Physics: Conference Series, volume 1004,
page 012011. IOP Publishing, 2018.

[72] S. Park, G. Tarasuk-levin, C. Min, U. Chingunde, and A. Chandwani. Augmented
reality aided navigation, June 6 2017. US Patent 9,672,648.

[73] O. M. Parkhi, A. Vedaldi, A. Zisserman, et al. Deep face recognition. In bmvc,
volume 1, page 6, 2015.

[74] J. Peng, Y. Liu, C. Lyu, Y. Li, W. Zhou, and K. Fan. Fpga-based parallel hardware
architecture for sift algorithm. In 2016 IEEE International Conference on Real-time
Computing and Robotics (RCAR), pages 277–282. IEEE, 2016.

[75] C. Pheatt. Intel® threading building blocks. Journal of Computing Sciences in Col-
leges, 23(4):298–298, 2008.

[76] G. Pour. Understanding software component technologies: Javabeans and activex. In
Proceedings Technology of Object-Oriented Languages and Systems. TOOLS 29 (Cat.
No.PR00275), pages 398–398, June 1999.

[77] J. Pu, S. Bell, X. Yang, J. Setter, S. Richardson, J. Ragan-Kelley, and M. Horowitz.
Programming heterogeneous systems from an image processing dsl. ACM Trans. Ar-
chit. Code Optim., 14(3):26:1–26:25, Aug. 2017.

92



[78] J. Pu, S. Bell, X. Yang, J. Setter, S. Richardson, J. Ragan-Kelley, and M. Horowitz.
Programming heterogeneous systems from an image processing dsl. ACM Trans. Ar-
chit. Code Optim., 14(3):26:1–26:25, Aug. 2017.

[79] K. Pulli, A. Baksheev, K. Kornyakov, and V. Eruhimov. Real-time computer vision
with opencv. Communications of the ACM, 55(6):61–69, 2012.

[80] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Amarasinghe.
Halide: a language and compiler for optimizing parallelism, locality, and recomputation
in image processing pipelines. ACM SIGPLAN Notices, 48(6):519–530, 2013.

[81] E. Rainey, J. Villarreal, G. Dedeoglu, K. Pulli, T. Lepley, and F. Brill. Addressing
system-level optimization with openvx graphs. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops, pages 644–649, 2014.

[82] P. S. Rawat, C. Hong, M. Ravishankar, V. Grover, L.-N. Pouchet, A. Rountev, and
P. Sadayappan. Resource conscious reuse-driven tiling for gpus. In Proceedings of the
2016 International Conference on Parallel Architectures and Compilation, PACT ’16,
pages 99–111, New York, NY, USA, 2016. ACM.

[83] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified,
real-time object detection. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 779–788, 2016.

[84] S. Rezaei, C.-A. Hernandez-Calderon, S. Mirzamohammadi, E. Bozorgzadeh, A. Vei-
denbaum, A. Nicolau, and M. J. Prather. Data-rate-aware fpga-based acceleration
framework for streaming applications. In 2016 International Conference on ReCon-
Figurable Computing and FPGAs (ReConFig), pages 1–6. IEEE, 2016.

[85] S. Rezaei, K. Kim, and E. Bozorgzadeh. Scalable multi-queue data transfer scheme
for fpga-based multi-accelerators. In 2018 IEEE 36th International Conference on
Computer Design (ICCD), pages 374–380. IEEE, 2018.

[86] H. N. Santos, P. Alves, I. Costa, and F. M. Quintao Pereira. Just-in-time value spe-
cialization. In Proceedings of the 2013 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), CGO ’13, pages 1–11, Washington, DC, USA,
2013. IEEE Computer Society.

[87] C. Schuldt, I. Laptev, and B. Caputo. Recognizing human actions: a local svm ap-
proach. In Proceedings of the 17th International Conference on Pattern Recognition,
2004. ICPR 2004., volume 3, pages 32–36. IEEE, 2004.

[88] K. Seto, H. Nejatollahi, J. An, S. Kang, and N. Dutt. Small memory footprint neural
network accelerators. In 20th International Symposium on Quality Electronic Design
(ISQED), pages 253–258, March 2019.

[89] R. Steinberg and L. Floyd. An adaptive algorithm for spatial greyscale. Proc. Soc.
Inf. Disp., 17:75–77, 1976.

93



[90] J. E. Stone, D. Gohara, and G. Shi. Opencl: A parallel programming standard for
heterogeneous computing systems. Computing in science & engineering, 12(3):66,
2010.

[91] G. Tagliavini, G. Haugou, A. Marongiu, and L. Benini. Adrenaline: An openvx envi-
ronment to optimize embedded vision applications on many-core accelerators. In 2015
IEEE 9th International Symposium on Embedded Multicore/Many-core Systems-on-
Chip, pages 289–296. IEEE, 2015.

[92] G. Tagliavini, G. Haugou, A. Marongiu, and L. Benini. Optimizing memory bandwidth
exploitation for openvx applications on embedded many-core accelerators. Journal of
Real-Time Image Processing, 15(1):73–92, 2018.

[93] S. Taheri. Bringing the power of simd.js to gl-matrix: https://hacks.mozilla.org/
2015/12/bringing-the-power-of-simd-js-to-gl-matrix/, 2015. Accessed: 2018-
15-4.

[94] S. Taheri, P. Behnam, E. Bozorgzadeh, A. Veidenbaum, and A. Nicolau. Affix:
Automatic acceleration framework for fpga implementation of openvx vision algo-
rithms. In Proceedings of the 2019 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, FPGA ’19, pages 252–261, New York, NY, USA, 2019.
ACM.

[95] S. Taheri, L. A. Beni, A. V. Veidenbaum, A. Nicolau, R. Cammarota, J. Qiu, Q. Lu,
and M. R. Haghighat. Webrtcbench: a benchmark for performance assessment of
webrtc implementations. In 2015 13th IEEE Symposium on Embedded Systems For
Real-time Multimedia (ESTIMedia), pages 1–7. IEEE, 2015.

[96] S. Taheri, J. Heo, P. Behnam, J. Chen, A. Veidenbaum, and A. Nicolau. Acceleration
framework for fpga implementation of openvx graph pipelines. In 2018 IEEE 26th
Annual International Symposium on Field-Programmable Custom Computing Machines
(FCCM), pages 227–227. IEEE, 2018.

[97] S. Taheri, A. Vedienbaum, A. Nicolau, N. Hu, and M. R. Haghighat. Opencv.js:
Computer vision processing for the open web platform. In Proceedings of the 9th ACM
Multimedia Systems Conference, MMSys ’18, pages 478–483, New York, NY, USA,
2018. ACM.

[98] S. Tilkov and S. Vinoski. Node. js: Using javascript to build high-performance network
programs. IEEE Internet Computing, 14(6):80–83, 2010.

[99] J. Treibig, G. Hager, and G. Wellein. Likwid: A lightweight performance-oriented
tool suite for x86 multicore environments. In 2010 39th International Conference on
Parallel Processing Workshops, pages 207–216. IEEE, 2010.

[100] M. A. Turk and A. P. Pentland. Face recognition using eigenfaces. In Proceedings.
1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
pages 586–591. IEEE, 1991.

94

https://hacks.mozilla.org/2015/12/bringing-the-power-of-simd-js-to-gl-matrix/
https://hacks.mozilla.org/2015/12/bringing-the-power-of-simd-js-to-gl-matrix/


[101] S. Van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner,
N. Yager, E. Gouillart, and T. Yu. scikit-image: image processing in python. PeerJ,
2:e453, 2014.

[102] J. Villarreal, A. Park, W. Najjar, and R. Halstead. Designing modular hardware
accelerators in c with roccc 2.0. In 2010 18th IEEE annual international symposium
on field-programmable custom computing machines, pages 127–134. IEEE, 2010.

[103] J. Vourvoulakis, J. Kalomiros, and J. Lygouras. Fpga-based architecture of a real-time
sift matcher and ransac algorithm for robotic vision applications. Multimedia Tools
and Applications, 77(8):9393–9415, 2018.

[104] W. Wang, J. Yan, N. Xu, Y. Wang, and F.-H. Hsu. Real-time high-quality stereo vision
system in fpga. IEEE Transactions on Circuits and Systems for Video Technology,
25(10):1696–1708, 2015.

[105] J. Weberruss, L. Kleeman, D. Boland, and T. Drummond. Fpga acceleration of multi-
level orb feature extraction for computer vision. In 2017 27th International Conference
on Field Programmable Logic and Applications (FPL), pages 1–8, Sep. 2017.

[106] W. L. Winston, M. Venkataramanan, and J. B. Goldberg. Introduction to mathematical
programming, volume 1. Thomson/Brooks/Cole Duxbury; Pacific Grove, CA, 2003.

[107] F. Winterstein, S. Bayliss, and G. A. Constantinides. High-level synthesis of dynamic
data structures: A case study using vivado hls. In Field-Programmable Technology
(FPT), 2013 International Conference on, pages 362–365. IEEE, 2013.

[108] K. Yang, G. A. Elliott, and J. H. Anderson. Analysis for supporting real-time computer
vision workloads using openvx on multicore+ gpu platforms. In Proceedings of the 23rd
International Conference on Real Time and Networks Systems, pages 77–86. ACM,
2015.

[109] M. Yang, T. Amert, K. Yang, N. Otterness, J. H. Anderson, F. D. Smith, and S. Wang.
Making openvx really” real time”. In 2018 IEEE Real-Time Systems Symposium
(RTSS), pages 80–93. IEEE, 2018.

[110] Y. U. Yim and S.-Y. Oh. Three-feature based automatic lane detection algorithm
(tfalda) for autonomous driving. IEEE Transactions on Intelligent Transportation
Systems, 4(4):219–225, 2003.

[111] R. Zabih and J. Woodfill. Non-parametric local transforms for computing visual cor-
respondence. In Proceedings of the Third European Conference on Computer Vision
(Vol. II), ECCV ’94, pages 151–158, Berlin, Heidelberg, 1994. Springer-Verlag.

[112] A. Zakai. Emscripten: An llvm-to-javascript compiler. In Proceedings of the ACM
International Conference Companion on Object Oriented Programming Systems Lan-
guages and Applications Companion, OOPSLA ’11, pages 301–312, New York, NY,
USA, 2011. ACM.

95



[113] E. Zatepyakin. Jsfeat-javascript computer vision library: https://github.com/
inspirit/jsfeat. Accessed: 2018-15-4.

[114] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong. Optimizing fpga-based
accelerator design for deep convolutional neural networks. In Proceedings of the 2015
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pages
161–170. ACM, 2015.

[115] X. Zhang, J. Wang, C. Zhu, Y. Lin, J. Xiong, W.-m. Hwu, and D. Chen. Dnnbuilder:
an automated tool for building high-performance dnn hardware accelerators for fpgas.
In Proceedings of the International Conference on Computer-Aided Design, page 56.
ACM, 2018.

[116] R. Zhao, W. Song, W. Zhang, T. Xing, J.-H. Lin, M. Srivastava, R. Gupta,
and Z. Zhang. Accelerating binarized convolutional neural networks with software-
programmable fpgas. In Proceedings of the 2017 ACM/SIGDA International Sympo-
sium on Field-Programmable Gate Arrays, pages 15–24. ACM, 2017.

[117] S. Zhou, R. Kannan, V. K. Prasanna, G. Seetharaman, and Q. Wu. Hitgraph: High-
throughput graph processing framework on fpga. IEEE Transactions on Parallel and
Distributed Systems, pages 1–1, 2019.

[118] Z. Zivkovic and F. Van Der Heijden. Efficient adaptive density estimation per image
pixel for the task of background subtraction. Pattern recognition letters, 27(7):773–780,
2006.

96

https://github.com/inspirit/jsfeat
https://github.com/inspirit/jsfeat

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE Dissertation
	Introduction
	Challenges of Portable and Efficient Computer Vision
	Thesis Contributions
	Regarding Software Quality


	OpenCV.js: Computer Vision Processing for the Open Web platform
	Introduction
	Compiling to The Web
	Portable Low-level Formats for Web Compilation

	Generating OpenCV.js
	Using OpenCV.js
	Performance Evaluation
	Availability

	Parallel Processing in OpenCV.js
	Parallel Processing using ECMAScript SIMD
	Thread-level Parallelism Using Web Workers

	A Library for FPGA Implementation of Vision Algorithms
	Introduction to OpenVX
	Examples

	A Computer Vision Library for FPGAs
	FPGA Technology and High-level Syntheis
	Library Design and Implementaion
	Programming Interface


	A Framework for FPGA Acceleration of Computer Vision Algorithms
	High-Level Optimizing Transformations
	Pipelining using Graph Partitioning
	Data Streaming Patterns

	FPGA-Specific Optimizing Transformations
	Automatic Flow
	Usage and Software Architecture
	User-Defined Kernels

	Evaluation
	Availability

	Conclusions and Future Directions
	Bibliography



