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Abstract

Topics in Quantum Gravity and Field Theory

by

Benjamin Lewis Michel

This dissertation addresses a variety of open questions in quantum field theory

and quantum gravity. The work fits broadly into two categories: attempts to study

black holes and brane dynamics in models of quantum gravity, and attempts to

study the entangling surface in quantum field theory.
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Chapter 1

Introduction

This dissertation studies a number of open problems in quantum gravity and

quantum field theory. In quantum gravity the questions largely center around

black holes and brane dynamics while in field theory the main focus is entangle-

ment entropy, with particular attention to the entangling surface. More details

are given in the relevant sections.

1.1 Permissions and Attributions

1. The content of § 2.2 is the result of two collaborations: one with Fang

Chen, Joseph Polchinski and Andrea Puhm; the other with Donald Marolf

and Andrea Puhm. Both have previously appeared in the Journal of High

Energy Physics (JHEP) [57, 319]. They are reproduced here under the terms

of the Creative Commons Attribution Noncommercial License: https://

creativecommons.org/licenses/by-nc/3.0/us/.
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Introduction Chapter 1

2. The content of § 2.3 is the result of a collaboration with Joseph Polchinski,

Vladimir Rosenhaus and S. Josephine Suh, and has previously appeared in

the Journal of High Energy Physics (JHEP) [315]. It is reproduced here un-

der the terms of the Creative Commons Attribution Noncommercial License:

https://creativecommons.org/licenses/by-nc/3.0/us/.

3. The content of § 2.4 is the result of a collaboration with Eric Mintun, Joseph

Polchinski, Andrea Puhm and Philip Saad, and has previously appeared in

the Journal of High Energy Physics (JHEP) [314]. It is reproduced here un-

der the terms of the Creative Commons Attribution Noncommercial License:

https://creativecommons.org/licenses/by-nc/3.0/us/.

4. The content of § 2.5 is the result of a collaboration with Alexandre Belin,

Jan de Boer, Jorrit Kruthoff, Edgar Shaghoulian and Milind Shyani, and has

previously appeared in the Journal of High Energy Physics (JHEP) [316].

It is reproduced here under the terms of the Creative Commons Attribu-

tion Noncommercial License: https://creativecommons.org/licenses/

by-nc/3.0/us/.

5. The content of § 3.2 is the result of a collaboration with Mark Srednicki and

is available as a preprint on arXiv.org [320]. It is reproduced here under

the terms of their non-exclusive distribution license: https://arxiv.org/

licenses/nonexclusive-distrib/1.0/license.html.

6. The content of § 3.3 is the result of a collaboration with William Donnelly

and Aron C. Wall, and has previously appeared in Phys. Rev. D [222]. It

is reproduced here with permission from the publisher, the American Phys-
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Introduction Chapter 1

ical Society: http://publish.aps.org/copyrightFAQ.html#thesis. See

http://forms.aps.org/author/copytrnsfr.pdf for the official copyright

transfer agreement.

7. The content of § 3.4 is available as a preprint on arXiv.org [318]. It is

reproduced here under the terms of their non-exclusive distribution license:

https://arxiv.org/licenses/nonexclusive-distrib/1.0/license.html.

8. The content of § 3.5 is the result of a collaboration with William Donnelly,

Donald Marolf and Jason Wien, and has previously appeared in the Journal

of High Energy Physics (JHEP) [317]. It is reproduced here under the terms

of the Creative Commons Attribution Noncommercial License: https://

creativecommons.org/licenses/by-nc/3.0/us/.
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Chapter 2

Black holes and branes

2.1 Introduction

Black holes are objects of central interest in modern physics for reasons nu-

merous, varied and deep. Beyond their ubiquity in general relativity and their

astrophysical importance (as galactic epicenters [321, 322], sources of detectable

gravitational waves [323] and much more [324, 325]) they geometrize a fascinating

array of non-gravitational phenomena via holography [327] and, further, manifest

the core tension between quantum mechanics and general relativity: the informa-

tion paradox [40]. This paradox has recently been the subject of great controversy

as its study has lead to new fundamental questions about the of nature black

holes – especially, whether their interiors even exist, or if instead spacetime ends

violently in a “firewall” near the event horizon [41]. The firewall is a dramatic de-

parture from the conventional expectations of general relativity, but its existence

is supported by a wide variety of arguments [42, 328]; nonetheless a dynamical
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Black holes and branes Chapter 2

mechanism for its formation is lacking.

Faced with such a conflict between the predictions of quantum mechanics and

general relativity, it is natural to look for resolution in string theory, where the two

are united. Of course, this approach is nothing new: string theorists have been

studying black holes for decades (see [329] for references), prompted by the original

information paradox and mysteries about the origins of black hole entropy [45].

Black holes in string theory correspond to bound states of strings and branes [44],

providing (in principle) a concrete setting for the study of black hole physics in the

full quantum gravity arena. Studies of particularly supersymmetric black holes

have even yielded proposals [5] for the realization of the black hole microstates as

individual spacetimes, dubbed “fuzzballs”, whose aggregate dynamics reproduces

the naive black hole geometry of general relativity [30].

Branes are also of general interest as fundamental objects in string theory:

they are the extended charges coupling to the p-forms of the massless sector and

the objects on which open strings can end [238]; they arise as the duals of ordinary

string configurations, and manifest the web of dualities that unifies the different

string theories [330, 331]. Apart from black holes they describe a surprising variety

of physics: they geometrize field-theoretic phenomena such as confinement [36,

38], the moduli space of vacua in supersymmetric theories [332] and Seiberg-

Witten duality [333], and can be used to construct new field theories even in the

absence of a Lagrangian description [334]; they naturally give rise both to lower-

dimensional subspaces and gauge groups in string compactifications, and their

phenomenological applications are broad.

This section presents several publications that aim to understand the nature

5
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and implications of brane physics in the black hole context and beyond. In the

two papers in § 2.2 my collaborators and I studied the fuzzball proposal, with

particular attention to the nature of the horizon. We found evidence, in a partic-

ularly tractable circumstance, that one very rarely encounters smooth spacetime

at the horizon, despite arguments in the literature to the contrary. In § 2.3 we

studied the fitness of a brane-inspired solvable model of black hole physics known

to capture a key feature of the information paradox: apparent thermalization in

the field theory limit that corresponds to the classical limit on the gravity side. We

found that this simplified model does not, however, display another key feature

of black hole dynamics: classical chaos [95].

In § 2.4 we sought to address the question of metastability in the context of

supersymmetry breaking induced by branes. Such supersymmetry-breaking “an-

tibranes” were crucial in the construction of vacua with a positive cosmological

constant [131], but it has been argued that these vacua, unprotected by supersym-

metry, decay too quickly to be phenomenologically viable (see [336] for references).

The presence of divergent fluxes near the antibranes in the corresponding super-

gravity solutions was taken as an indicator of violent instability. We argued, to

the contrary, that these divergences (and brane actions more generally) should

be understood in the context of effective field theory, and that the divergences

must be resolved by matching onto the corresponding finite string diagram. We

estimate the diagrams that capture the antibrane coupling to the background

and show that the antibranes induce little backreaction at weak coupling, even

at string-scale distances from the antibrane, where the supergravity description

breaks down.

6
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Finally, in § 2.5 we studied the question of when a field theory is holographic.

Any holographic dual to ordinary (super)gravity must have black holes in its dual

description, and general relativity in AdS further dictates a particularly simple

phase structure [335] in which a thermal gas of gravitons collapses to form a black

hole as the temperature rises. On either side of the transition there is universality:

in the free energy in the graviton phase, and in the black hole entropy after the

transition. The same must be true of the dual field theory, leading to strong

constraints, especially when combined with the modular symmetry exchanging the

spatial and temporal circles of the field theory at finite temperature. Following up

on work in which these constraints were explored in CFT2 [156] my collaborators

and I studied higher dimensions, where modular symmetry is not as powerful,

finding stronger constraints that must be satisfied by any holographic dual to

Einstein gravity.

7
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2.2 Journey to the Center of the Fuzzball, and

A Rough End for Smooth Microstate Ge-

ometries

The papers presented in this section study the geometric realization of black

hole microstates according to the fuzzball program. Our work focuses on the

D1-D5 system, the simplest fuzzballs, and broadly aims to address implications

for the nature of the horizon. Starting in § 2.2.1[57], we re-examined arguments

[9] that typical microstates of the D1-D5 black hole are smooth spacetime ge-

ometries. We found that these arguments were in the wrong duality frame: as

one approaches the fuzzball a circle becomes small, triggering a duality cascade

towards the fuzzball core. In the appropriate duality frame, typical states have

structure in place of the horizon that is singular, rather than smooth.

Starting in § 2.2.7 [319] we studied atypical black hole microstates, which have

large angular momenta on the S3. These microstates correspond to spacetimes

that end before any duality transitions can occur and so are typically smooth.

However, it was recently argued by [52] that the corresponding spacetimes are

unstable. This instability takes a particularly simple form: any particle in the

spacetime near the fuzzball core tends to counter-rotate with the geometry, re-

ducing the angular momentum. We showed explicitly that the backreaction of a

particle at the core (in the BPS limit) produces a fuzzball with smaller (hence

more typical) angular momentum and interpreted the instability in terms of typ-

icalization of the microstate geometry, arguing that the instability is shut off in

typical microstates by stringy effects.

8
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2.2.1 Journey to the Center of the Fuzzball: Introduction

The conflict between quantum theory and general relativity exposed by the

black hole information paradox has swung back and forth for nearly four decades,

recently inflamed by the firewall paradox. There have been a variety of previous

proposals that the black hole horizon is not as general relativity describes. In

particular, the fuzzball program argues that the structure of the horizon is neces-

sarily modified by the extended objects of string theory. Indeed, key features of

the firewall argument were first put forward as evidence for fuzzballs [1].

In this paper we focus primarily on the simplest version of fuzzballs, the two-

charge system of D1-D5 branes compactified on a circle. In § 2.2.2 we reexamine

the argument that the naive two-charge geometry is unphysical, and that fuzzball

solutions are the correct description. We begin by noting that as one approaches

the singularity of the naive geometry, the first sign of a breakdown is that the

radius of a circle drops below the string scale. This suggests a T -duality from the

original IIB picture to IIA, and indeed this provides a description valid down to

smaller radii. Eventually the coupling grows large, and an S-duality takes us to

M theory. In this regime the four-torus shrinks toward zero size, and a further

STS duality brings us to a new Type II description, in which the charges are

carried by fundamental strings and momentum. Finally this breaks down due to

the spacetime curvature becoming large, and no further stringy duality can save

us. Rather, the final picture is a weakly coupled CFT.

This onion-like layered structure has already been described in detail by Mar-

tinec and Sahakian [2], building on the classic analysis of non-conformal branes in

Ref. [3]. However, its significance for the fuzzball program does not seem to have

9
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been discussed.

Fuzzball solutions approximate the naive geometry outside some crossover ra-

dius, which depends inversely on the average harmonic excited, m. For different

values of m, the crossover radius may lie within any of the IIB/IIA/M/II′/CFT

regimes, and the parametrically valid description is a fuzzball solution in the given

duality frame. For typical states, the crossover occurs right at the transition be-

tween the final geometric picture, II′, and the free CFT. In particular, this changes

the standard picture of two-charge D1-D5 fuzzballs. The smooth geometries [4]

are not an accurate description for typical states. Rather, the best (though still

marginal) supergravity description is one with explicit stringy sources.

Indeed, it is well-known that typical two-charge fuzzballs lie right at the break-

down of supergravity. In fact, there are three important radii that are known to

coincide: the typical fuzzball radius rf ; the entropy radius rS, where the area in

Planck units just matches the density of states of the system; and the breakdown

radius rb, beyond which supergravity cannot be continued. Historically the D1-

D5 fuzzballs were derived by a duality chain from F1-p solutions. These are the

same as the charges of our II′ description. We trace the relation between these

descriptions, and we emphasize the distinction between two free orbifold CFTs

that arise in the D1-D5 system.

Much of the discussion of two-charge fuzzballs focuses on this final transition

radius, and compares fuzzballs with a black hole solution including α′ corrections.

Our focus is rather on descriptions that are parametrically valid. In search of a

more interesting situation, we consider in § 2.2.3 states with large angular mo-

mentum J , for which the naive geometry is a black ring. This geometry breaks

10
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down due to large curvature as we approach the ring. We find that, as measured

from the ring, the fuzzball and entropy radii again coincide, but the breakdown

radius can be larger or smaller, depending on parameters. Thus we identify a

regime where the fuzzball description is parametrically valid and physically cor-

rect, even though the naive geometry still has small curvature. We suggest that

the breakdown of the naive geometry is instead signaled by the entropy radius,

beyond which the naive geometry would describe more states than holography

allows. In § 2.2.4 we discuss further directions.

2.2.2 The J = 0 system

Naive geometry: small black hole

Consider the background

ds2
IIB =

1√
H1H5

(−dt2 +R2dy2) +
√
H1H5 dx

2
4 +

√
H1

H5

√
V dz2

4 ,

eΦIIB = g

√
H1

H5

,

C2 = g−1
[
H−1

1 dt ∧Rdy +Q5R cos2 θ̃dψ ∧ dϕ
]
, (2.1)

where

H1 = 1 +
gN1

V r2
≡ 1 +

Q1

r2
,

H5 = 1 +
gN5

r2
≡ 1 +

Q5

r2
. (2.2)

We work in units such that α′ = 1. The four flat transverse directions x are non-

compact, and can be coordinatized as dx2
4 = dr2 + r2(dθ̃2 + sin2 θ̃dϕ2 + cos2 θ̃dψ2),

11
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where the tildes are included to conform with standard notation [5]. The T 4

coordinates z have period 2π. We consider the case where the T 4 is replaced by

K3 in Appendix 2.2.5.

For non-compact y, the infrared geometry is AdS3 × S3 × T 4 in Poincaré

coordinates. If we then identify y ∼= y+ 2π, the horizon r = 0 is a fixed point and

becomes a cusp singularity. For the compact theory there are three moduli: the

coupling g, the circle radius R, and the torus volume V . In the attractor limit

where we ignore the 1’s in the harmonic functions, only the modulus g remains.

The torus volume flows to the attractor value V = N1/N5, while R appears only

in the combinations Rr and y/R. For simplicity we fix V to its attractor value,

so that Q1 = Q5 ≡ Q and H1 = H5 ≡ H. We are most interested in the attractor

region, but it is useful to keep the harmonic function H general. The background

is then given by (2.2) with eΦIIB = g and H = 1 +Q/r2 where the 1 drops out in

the attractor.

In order for this D1-D5 description to be the correct duality frame asymptot-

ically, we need the coupling and curvature to be small, and the circle and torus

to be larger than the string scale. Thus,

g < 1 , Q > 1 , R > 1 , N1 > N5 . (2.3)

Discussions of this system often begin with a dual F1-p description. In § 2.2.2 we

will discuss connections with this frame.

12
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Into the black onion

In the fuzzball program, it is argued that for y compact the geometry (2.2)

breaks down even before the singularity, and must be replaced by fuzzball solu-

tions. We wish to ask, is there some signal of this breakdown as we approach the

singularity?

While this work was in progress, we learned that this question had already

been addressed by Martinec and Sasakian [2]. Since this result does not seem to

be widely known, we review their analysis.

Note that the y circle is shrinking, and at a radius r ∼ rIIA = Q1/2/R it reaches

the string scale. In the D1-D5 regime (2.3) this is always inside the crossover to

the near-horizon region, r ∼ rnh = Q1/2.1 This breakdown suggests a T -duality

along the y circle to a IIA solution, and indeed this extends the range of validity

to smaller r. The solution is

ds2
IIA = −H−1dt2 +H(dỹ2/R2 + dx2

4) +
√
V dz2

4 ,

eΦIIA =
g
√
H

R
,

C1 =
R

gH
dt ,

C3 = g−1QR cos2 θ̃dψ ∧ dϕ ∧ dỹ . (2.4)

In the IIA frame, the charges are carried by D0- and D4-branes localized in

the ỹ direction. We are interested in single-particle states, so the branes should

1We will encounter a long list of significant radii as we move along. Figure 2.1 gives an
overview. Because of the scaling in the attractor region noted above, most radii are proportional
to 1/R.

13
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be coincident in the ỹ direction. Unsmearing the sources gives

H =
Q

r2
→ πQ

R

∑

n

1

[r2 + (ỹ − 2πn)2/R2]3/2
∼ πQ

Rρ3
, (2.5)

where the normalization is fixed by the large-r behavior. The crossover to the

unsmeared solution is at r ∼ ru = 1/R. In the last line we have given the form as

we approach the ỹ = 0 image, where ρ2 = r2 + ỹ2/R2.

As we continue toward the singularity, the IIA coupling becomes large, sug-

gesting a lift to M theory. If we work with the smeared metric, this occurs at

r ∼ rM = gQ1/2/R. Thus rM/ru = gQ1/2. In the D1-D5 regime (2.3), g is small

and Q is large, but the product gQ1/2 is not restricted. If gQ1/2 > 1, the transition

to the M theory picture occurs in the smeared regime, at r ∼ rM. If gQ1/2 < 1 it

occurs at in the unsmeared regime, at ρ = ρM = g2/3Q1/3/R.

Either way, we end up with the M theory solution

ds2
M = e−2ΦIIA/3ds2

IIA + e4ΦIIA/3(dx11 + C1)2

=

(
R2

g2H

)1/3 [
−H−1dt2 +H(dỹ2/R2 + dx2

4) +
√
V dz2

4

]

+

(
g2H

R2

)2/3(
dx11 +

R

gH
dt

)2

,

A3 = C3 , (2.6)

(here x11 denotes the M direction, and the units are such that the M theory Planck

scale is 1) which has p11 and wrapped M5 charges.

As we proceed to smaller r, both the transverse S3 and the T 4 may shrink.

The S3 metric is proportional to r2/3 in the smeared regime but constant ρ0 in the

14
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unsmeared regime, the latter property following from the conformal behavior of

the M5 solution. One can check that the S3 radius never falls below the coincident

M5-brane value N
1/3
5 , so this never leads to a breakdown of the solution. For the

T 4, the radii become Planckian when H = R2V 3/2/g2. In the smeared solution

this is at rII′ = gQ1/2/V 3/4R = rM/V
3/4. In the unsmeared solution it is at

ρII′ = g2/3Q1/3/V 1/2R. If rII′ > ru the M theory solution breaks down in the

unsmeared regime at rII′ , otherwise it breaks down at ρII′ .

In order to extend the solution further, we must first reduce to IIA along one

of the T 4 directions. The other three torus radii remain small, so a T -duality

along these is needed next. This leaves the IIB coupling large, so a further S

duality is needed. The net result of this STS transformation is a parametrically

valid type II description

ds2
II′ = V

[
dx11

2 +
2R

gH
dtdx11 +

R2

g

(
dỹ2/R2 + dx2

4

)]
+ dz̃2

3 ,

eΦII′ =
RV 3/4

gH1/2
,

BII′

2 =
R2V

gH
dt ∧ dx11 . (2.7)

In this solution one of the original torus directions has become the M direction,

while x11 has emerged as a new periodic direction. The three z̃-circles remaining

from the original T 4 are now string-sized. We therefore label this solution simply

as II′, since it is midway between the IIA and IIB descriptions. The charges are

F-string winding in the 11-direction and p11.

In this final form, the curvature becomes large at rb = ρb = g/V 1/2R. This

is inside the unsmearing radius ru, so it is ρb that matters. When curvature

15
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becomes large, no further string duality can save us. However, we note that the

II′ description and its breakdown are very similar to those of the supergravity

description of the D1-brane in Ref. [3]. There, the final supergravity description

is in terms of F-strings, and it is argued that dynamics at smaller r (lower energy)

is given by the long string CFT identified in Refs. [6, 7, 8]. We expect the same

to hold here as well, although the additional momentum charge means that we

are looking at excited states in this theory.

This conjecture is in keeping with the general expectation that when the cur-

vature becomes large while the string coupling goes to zero, as it does in the

solution (2.7), one should look for a weakly coupled CFT description. The lead-

ing twist interaction in the CFT is irrelevant [8], so that the coupling continues

to go to zero in this regime.

The full picture is summarized in Figure 2.1. Martinec and Sahakian do not

restrict to the asymptotic D1-D5 regime (2.3) and so cover a wider range of phases

(Ref. [2], Fig. 4). Note also that they use different variables for the axes. For such

non-conformal branes [3], the physics at a given scale or temperature is governed

by the weakly coupled description at the corresponding holographic radius. For

example, at the lowest energies the weakly coupled field theory is the appropriate

description, as it is for Dp-branes with p > 3.
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Q1/2

Q1/2/R

Q1/2/V 
3/4R

1/V 
1/2R

1/R

rnh

rIIA

ru

rM,rM

rII',rII'

r b = r S =
 r f

r

r

g 11/Q

asymptotically flat

IIB  D1-D5

IIA  D0-D4

M  p-M5

II'  p-F1

Free CFT

Figure 2.1: Domains of duality frames, on a log-log plot of radius and coupling.
The dashed line divides smeared geometries (above) from unsmeared (below).

Fuzzball geometries

Fuzz and the onion

A more general class of two-charge geometries is characterized by a curve ~F (v)

in the non-compact R4 [4]:

ds2 =
1√
H1H5

[
−(dt+ A)2 + (Rdy +B)2

]
+
√
H1H5dx

2
4 +

√
H1

H5

√
V dz2

4 ,
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eΦ = g

√
H1

H5

,

C2 = g−1
[
H−1

1 (dt+ A) ∧ (Rdy +B) + ζ
]
, (2.8)

where the harmonic functions are

H5 = 1 +
Q5

L

∫ L

0

dv

|~x− ~F (v)|2
,

H1 = 1 +
Q5

L

∫ L

0

| ~̇F |2dv
|~x− ~F (v)|2

,

Ai =
Q5

L

∫ L

0

Ḟ idv

|~x− ~F (v)|2
, (2.9)

with L = 2πQ5

R
.2 The remaining quantities are defined via dB = ?4dA, dζ =

− ?4 dH5.

To be precise, this solution describes only oscillations in the transverse direc-

tions. The complete solution with oscillations in the torus directions is given in

Refs. [9, 10]. It is slightly more complicated in form, but qualitatively similar,

and the same estimates of radii apply.

At r > |~F | these solutions go over to the naive geometry (2.2), with

Q1 =
Q5

L

∫ L

0

| ~̇F |2dv . (2.10)

Expanding ~F in harmonics,

~F =
∞∑

m=1

~Fme
2πimv/L + c.c. , (2.11)

2The range L is a vestige of the original derivation of these solutions and does not have
particular significance.
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this becomes

2
∞∑

m=1

m2|~Fm|2 =
Q1Q5

R2
(2.12)

or

2 V R2

g2

∞∑

m=1

m2|~Fm|2 = N1N5. (2.13)

This last form is compatible with the quantization condition

|~Fm|2 =
g2nm

2mVR2
=
r2

bnm
2m

⇒
∞∑

m=1

mnm = N1N5 , (2.14)

which can be derived either by duality from the F1-p system [4] or by quantization

of the D1-D5 solution [11]. Note that the breakdown radius rb is the same as the

parameter µ in the literature, meaning that rb maps to the string length in the

F1-p frame.

For a solution with average harmonic m, the sum (2.12) implies that

|~F | ∼
√
Q1Q5

mR
=

√
N1N5

m
rb ≡ rm . (2.15)

As long as rm > rb this should be a valid supergravity solution. This translates

to m <
√
N1N5. Note that r1 > rIIA, so the largest solutions are described in the

original IIB D1-D5 frame. The ratio r1/rnh is of order Q1/2/R. In the asymptotic

regime (2.3) this can be either large or small, but we are usually interested in

scaling up the charges with other parameters held fixed. In this case the m ∼ 1

solutions extend into the flat Minkowski region.

As m decreases, the parametrically valid description of the state moves among

the IIA, M, and II′ frames. Since the y and z directions remain flat in the fuzzball
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solutions, it is straightforward to dualize them in the same way as for the naive

solution, including the unsmearing; we do so in Appendix 2.2.6. For m >
√
N1N5

the states are described by the low energy CFT rather than supergravity. As m→

∞, the fuzzball solution approaches the naive solution, although the quantization

condition puts the limit m ≤ N1N5 on the highest Fourier mode of ~F .

For typical states, m ∼ √N1N5, which defines the fuzzball radius rf = r√N1N5
=

rb. That is, these states live at the boundary of validity between the last su-

pergravity solution and the free CFT. The fact that these fuzzballs live at the

boundary of validity of supergravity is well-known in the F1-p frame [12], and

remains true here. The duality cascade that we have found means that the D1-D5

geometries are never good descriptions of these typical fuzzball states. The best

supergravity description would be the F1-p solutions [13, 14].

Note that for both the fuzzball and naive D1-D5 geometries, the IIB curvature

is always small in terms of the tension of a probe F-string, seemingly in contradic-

tion with what we have found. The point of the duality cascade is that there is a

lighter string-like object: a probe KK monopole (charged on the y-circle, wrapped

on the torus and extended in one transverse direction) which maps to a probe F-

string in the II’ picture. It has a tension τKK ∼ R2
y(r)V (r)/g2(r) = R2V/g2H(r),

which goes to zero as it approaches the singularity and matches the IIB curvature

Q−1 at ρb, signaling a breakdown.

Before we go on, there is one additional radius of interest. The two-charge

system has a known microscopic entropy of order

S ∼
√
N1N5 . (2.16)
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Let us compare this to the Bekenstein-Hawking entropy that we would ascribe to

a spherical shell surrounding the singularity in the naive geometry. In the smeared

regime rR > 1 this would be

8d area

l8p
∼ Ry × VS3 × VT 4 × e−2Φ =

r

rb

√
N1N5 . (2.17)

The area in Planck units is the same in any duality frame; the decomposition (2.17)

corresponds to the IIB picture. In the smeared regime rR < 1 it is

8d area

l8p
∼ VS4 × VT 3 × L11 × e−2Φ =

ρ

ρb

√
N1N5 , (2.18)

where we have used the II′ description. It is now interesting to ask, at what radius

is the holographic value equal to the actual entropy? We see that this is true at

ρ = ρb ≡ ρS. Again this reproduces a result known from the F1-p frame [17, 12],

that the horizon radius corresponding to the microscopic entropy is comparable

to the breakdown radius and the typical fuzzball radius.

It is not clear then whether the fuzzball solutions are any better as a description

than the naive geometry.
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From F1-p to D1-D5 and back again

The D1-D5 fuzzball geometries were originally obtained [4] via U-duality from

F1-p geometries describing a string with left-moving excitations:




F1

p


 S−→




D1

p


TT 4−→




D5

p


 S−→




NS5

p


TyT6−−→




NS5

F1


 S−→




D5

D1


 .

(2.19)

This relates the F1-p and D1-D5 moduli as

gF1-p =

(
V 3/4R

g

)

D1-D5

, RF1-p =
(√

V
)

D1-D5
, V

1/4
F1-p =

(√
V

g

)

D1-D5

. (2.20)

The F1-p solutions describe the physics in a corner of the moduli space where, in

terms of the asymptotic D1-D5 moduli, V 3/4R/g < 1, V > 1, and
√
V /g > 1. In

this regime the D1-D5 description at infinity breaks down.

It is amusing that the descent into the fuzzball core leads us back to the F1-p

duality frame in which the solutions were originally obtained, a sort of “ontogeny

recapitulates phylogeny.” Unlike the horizontal duality chain (2.19), the asymp-

totics are held fixed as we descend. The II′ frame in the deep IR is related to the

asymptotic IIB frame by




D5

D1


Ty−→




D4

D0


S11−→




M5

p


S6−→




D4

p


T789−−→




D1

p


 S−→




F1

p


 ,

(2.21)

which inverts the horizontal chain: STT 4STy6STyS11S6T789S = 1.

Examining the II′ metric, one finds R11
II′ =

√
N1/N5 = Ry

F1-P, while Ry
II′ =
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g−1
√
N1/N5 = V

1/4
F1-P. The long chain from F1-p to D1-D5 and back again just

switches the (y, x6) circles of the original F1-p picture with the (x11, y) circles

of II′: the emergent II′ description of D1-D5 at low energies matches the F1-p

description obtained by moving on the asymptotic moduli space.

Orbifolds and orbifolds

The target space of the free CFT is the orbifold (R4×T 4)N5/SN5 . This should

not be confused with the orbifold (T 4)N1N5/SN1N5 which also appears in the D1-D5

system. The latter is relevant in an entirely different duality frame where N ′5 = 1,

reached by turning on form fields on the T 4. We also note some other differences

between these:

• For (R4×T 4)N5/SN5 we are interested in states with N1 left-moving excita-

tions. For (T 4)N1N5/SN1N5 we are interested in ground states.

• For (R4 × T 4)N5/SN5 we are only interested in the sector with a single

long string, because only this corresponds to a single-particle state. For

(T 4)N1N5/SN1N5 the fractionalized strings are all bound to the D5-branes, so

all winding sectors correspond to single-particle states.

• For (R4 × T 4)N5/SN5 the twist interaction is irrelevant as noted above. For

(T 4)N1N5/SN1N5 it is marginal.

Lessons

Our conclusion is that the typical fuzzball is at the transition between two de-

scriptions, a supergravity description with stringy sources and a weakly coupled
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CFT description. There is yet a third description that has been given for this sys-

tem: the black hole solution with a horizon, which exists when higher derivative

terms are included [15, 16]. This is usually discussed in systems with half as much

supersymmetry, where the T 4 is replaced by K3, but as shown in Appendix 2.2.5

the onion structure is the same in this case.3 This solution allows a precise count-

ing of supersymmetric states, but like the naive and fuzzball geometries it is on

the boundary of its range of validity.

We are primarily interested in regimes where the fuzzball geometries are para-

metrically valid, and we will find one in § 2.2.3, but here we make a few remarks

about the marginal case found above. Ref. [18] argues that two-charge systems fall

into two classes, those whose description is given by smooth horizonless solutions,

and those where it is a black hole from a higher derivative action. The D1-D5

system was argued to be of the first type, but the onion structure shows that, if

this classification is correct, then it is of the second type.

The fuzzball description might seem to retain more information by distin-

guishing individual microstates, but this information may not be meaningful. As

argued in [18], interactions mix the BPS states of interest into a larger space of

non-BPS states, so that the resulting BPS states may bear little resemblance to

their naive form. This phenomenon can be seen for example in the low-energy CFT

frame. There is a twist interaction, which mixes the BPS single-long-string sector

with non-BPS multi-string states (these are somewhat localized in the transverse

directions and so have supersymmetry-breaking p⊥).

However, there is an interesting counterargument. The one-point functions

3We thank Nori Iizuka for discussions of the K3 case and the relation between different
pictures.
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of chiral operators distinguish microstates [19, 20], and these one-point functions

are not renormalized [21].4 It is puzzling to reconcile this with the point of view

above. Note that in a Haar-random state the one-point functions will be of order

e−S/2 [23]. Curiously, the same is true for Schwarzschild black holes. In thermal

systems, variations of the one-point functions from their thermal averages are of

order e−S/2 [24]. However, this implies that the eigenvalues are O(1), and one

can find a basis in which the one-point functions are of this size in any thermal

system.

Indeed, a similar basis has been used to argue for the genericity of firewalls,

namely the basis in which the Hawking occupation numbers are diagonal [25, 26].

These would be analogous to number eigenstates for the ~Fm. So the ‘firewall’

basis in these papers seems to be the Schwarzschild equivalent of the two-charge

fuzzball states. This parallel is somewhat unexpected, since extremal and non-

extremal horizons are in many respects quite different. Clearly it is interesting to

contemplate this further.

2.2.3 The J > 0 system

Naive geometry: small black ring

We now focus on fuzzball states having angular momentum J in the 1-2 plane

of the transverse space. The maximum value Jmax = N1N5 corresponds to the

4In Ref. [22], it has been shown that these same one-point functions imply that the entan-
glement entropy distinguishes microstates.
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classical solution [27, 28]

~Fmax = (a cosωv, a sinωv) , (2.22)

where only the m = 1 harmonic is excited. Here

a = r1 =
√
Q1Q5/R , ω = 2π/L = R/Q5 . (2.23)

For near maximal J , i.e.

ε ≡ Jmax − J
Jmax

� 1 , (2.24)

most of the excitation goes into the first harmonic. Such a solution can be de-

scribed by the profile

~F = ~F (0) + δ ~F ,

~F (0) = (a0 cosωv, a0 sinωv) , (2.25)

with a0 = a
√
J/Jmax. The sum rule (2.13) gives

2 V R2

g2

∞∑

m=1

m2|δ ~Fm|2 = εN1N5 . (2.26)

For typical states, the dominant harmonic is then m ∼ √εN1N5. We have

|δ ~F |/|~F (0)| ∼ √ε/m ∼ 1/
√
N1N5, so the geometry is a fuzzy ring, with thick-

ness much less than its radius.

As in the J = 0 case, we can think of the naive geometry as obtained by taking
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the m→∞ limit, or equivalently by interpolating the geometry outside the fuzz

down to the core of the ring. This gives [12, 30]

H5 ≈ 1 +
Q5

L

∫ L

0

dv

|~x− ~F (0)(v)|2
,

H1 ≈ 1 +
Jmax

J

Q5

L

∫ L

0

| ~̇F (0)|2dv
|~x− ~F (0)(v)|2

,

Ai ≈ Q5

L

∫ L

0

Ḟ (0)idv

|~x− ~F (0)(v)|2
, (2.27)

which is shown in [29, 30] to be a special case of the black ring [31, 32, 33].

Because of the factor of Jmax/J , the cancellation of singular behaviors that

gives rise to a smooth geometry [27, 9] no longer occurs, and there is a singularity

in the core of the ring. Using “ring coordinates” as in [31, 32] the flat metric dx2
4

on R4 is

dx2
4 =

a2
0

(X − Y )2

[
dY 2

Y 2 − 1
+ (Y 2 − 1)dψ2 +

dX2

1−X2
+ (1−X2)dϕ2

]
, (2.28)

and R4 is foliated by surfaces of constant Y with topology S1×S2. The coordinates

X, Y take values in the range −1 ≤ X ≤ 1 and −∞ < Y ≤ −1 and ψ, ϕ are polar

angles in two orthogonal planes in R4 with period 2π. The angle ψ is along the ring

and the ring singularity is located at Y = −∞. In terms of the ring coordinates

we have

H1 = 1 +
Q1

Σ
, H5 = 1 +

Q5

Σ
, where Σ =

2a2
0

X − Y , (2.29)
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and

Aψ =
R

2
(1 + Y ) , Bϕ =

R

2
(1 +X) , ζψϕ =

Q5

2

[
Y − 1− Y 2

X − Y

]
. (2.30)

In the near-ring limit it is useful to switch from the ring coordinates X, Y to

θ, x⊥ :

X ≈ − cos θ , 1 + Y ≈ − a0

x⊥
, (2.31)

where the angle coordinate θ combines with ϕ to form an S2 and x⊥ is the radial

coordinate transverse to the ring. The ring singularity is now located at x⊥ = 0.

The leading behaviors (simplified again to Q1 = Q5 = Q) are

H5 = H1 ≈
R

2cx⊥
, Aψ ≈ −

Qc

2x⊥
, Bϕ ≈

R

2
(1− cos θ) , ζψϕ ≈ −

Q

2
(1− cos θ) ,

(2.32)

where we have introduced c =
√
J/Jmax =

√
1− ε. The naive near-ring metric

becomes

ds2
near ≈

2cx⊥
R

[
−
(
dt− Qc

2x⊥
dψ
)2

+R2

(
dy +

1− cos θ

2
dϕ

)2 ]

+
Rc

2x⊥

[
dx2
⊥ + x2

⊥(dθ2 + sin2 θdϕ2)
]

+
cQ2

2Rx⊥
dψ2 +

√
V dz2

4 .(2.33)

For c = 1 this is smooth at x⊥ = 0, but for c < 1 it becomes singular there. The

near-ring dilaton is simply eΦ = g and the RR potential is given by

C2 ≈ 2cx⊥dt ∧
[
dy +

1− cos θ

2
dϕ

]
+Qc2

[
dy +

(
1 +

1

c2

)
1− cos θ

2
dϕ

]
∧ dψ .

(2.34)
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In the near-ring limit there are four local charges corresponding to D1 and D5

branes wrapped on the y circle and the torus, KK monopoles wrapping the yψ

directions and the torus and momentum charge along the ψ direction.5

No black onion rings

As we proceed toward smaller x⊥, the y-circle again shrinks. However, this

is merely a coordinate effect: the metric in the x⊥-y plane is just R2, with y an

angular coordinate. A T -duality provides a useful description only if the shrinking

circle does not cap off smoothly, as in the J = 0 metric (2.2). Hence there is no

repetition of the layered structure found before: there is no black onion ring.

The first breakdown of the naive geometry (2.33) is due to the divergence of

the curvature, because of the uncanceled 1/x⊥ in gψψ and the squashing of the

Hopf fibration. The curvature invariant is calculated to be

RµνρσR
µνρσ =

22

R2x2
⊥
ε2 . (2.35)

This defines the breakdown radius x⊥b = ε/R.

As for the J = 0 case there are two other radii to compare. From the discussion

below Eq. (2.26) it follows that the fuzzball radius is

x⊥f ∼ r1/
√
N1N5 = g/R

√
V . (2.36)

To obtain the entropy radius, the area in Planck units of a torus surrounding the

5Note that in the near-ring geometry (2.33) the circumference of the ψ-circle seems to go
to zero at large x⊥. However, this occurs outside of the range of validity of (2.33). In the full
solution (2.28) the 1’s in the harmonic functions prevent the ψ-circle from shrinking.
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ring is

8d area

l8p
∼ Lψ × Ly × LS2 × LT 4 × e−2Φ ∼ Q

√
V x⊥R

√
ε/g2 . (2.37)

Equating this to the entropy
√
εN1N5, we obtain x⊥S = x⊥f = g/R

√
V .

The matching of the fuzzball and entropy radii for the ring has been noted

previously [12]. But unlike the J = 0 case considered above, the breakdown radius

differs from these:

x⊥b

x⊥f

=
x⊥b

x⊥S
=
ε
√
V

g
. (2.38)

This ratio can be either large or small.

The interesting case is when x⊥f,S � x⊥b: the fuzzballs appear at a radius

where the curvature is still small.6 Thus they are good supergravity solutions,

and give a parametrically valid description of the states in this regime. It is

interesting to ask whether the naive geometry shows any signs of this premature

breakdown.

For comparison, in the enhançon [35] and the N = 1∗ geometries [36], singu-

larities are resolved by branes expanding out to radii where the naive curvature

is small. In these cases, brane probes give an indication of this: if one tries to

add branes to the singularity, they feel a repulsive potential at radii where the

curvature is still small. This does not seem to be the case for the black ring: one

can consider atypical solutions with larger harmonics, and these can approach the

6The curvature is smaller than the 1/µ2 that might have been expected from the curvature
in the original F1-p frame (µ is defined below Eq. (2.14)). This happens because terms arising
originally from Bµν combine with the metric to produce a smoother Hopf-fibered metric. In
the parameter regime where the F1-p duality frame applies, the curvature becomes stringy and
there is a higher-derivative black hole solution [34].
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ring much more closely. In the Klebanov-Tseytlin geometry [37], resolved in su-

pergravity [38], a flux takes an unphysical negative value at finite radius; nothing

analogous happens here.

The signal of the breakdown of the naive geometry for the black ring seems to

be the entropy radius. If the naive geometry were valid, we could consider a torus

thinner than x⊥S, and the number of quantum states contained within would be

larger than the exponential of the Bekenstein-Hawking entropy for the torus. It

is natural to conjecture that this cannot happen: that if a system has a Hilbert

space of dimension D, then the states must be distinguishable at a radius where

a surrounding surface has area logD, in Planck units.

For x⊥f,S � x⊥b, we have not yet found a good description.

2.2.4 Discussion

Our study of two-charge fuzzballs has led to some surprises.

For J = 0, we find that the appropriate duality frame depends on the size of

the fuzzball state, which is determined by the average harmonic m. For typical

states, the best supergravity description is not in terms of smooth D1-D5 solutions

but rather has stringy sources. We emphasize the importance of three radii: the

radius of the typical fuzzball, the radius where the transverse area is equal to the

microscopic entropy, and the radius where the curvature approaches the string

scale. For the two-charge system, these three radii agree, meaning in particular

that the supergravity description is beginning to break down for typical states.

This triple agreement is well-known in the original F1-p duality frame; it is there-

fore unsurprising to find it here since the II′ frame with F1-p charges is actually
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the correct duality frame for the typical fuzzball.

Fuzzballs with other values of m are parametrically valid in one of the su-

pergravity pictures, or in the free CFT. These descriptions accurately capture

dynamical behavior and excited states, not just BPS properties.

For three-charge black holes the entropy is S3-charge ∼
√
NpN1N5. When Np �

N1, N5, the geometry resembles the two-charge geometry at large radius. It begins

to differ at the entropy radius (2.17, 2.18) that would correspond to S3-charge. This

is

r3-charge(Np) ∼
√
Np rb . (2.39)

We see that the correct description of these solutions can be any of IIB, IIA, M,

or II′, depending on Np.

For J 6= 0, we have found a regime near Jmax where the fuzzball solutions are of

low curvature. It is interesting that the naive solution gives no direct indication of

breakdown at the corresponding radius. The curvature is small, and probe branes

see no breakdown. The key indicator seems to be the entropy radius: if the naive

geometry were the correct description down to smaller radii, there would not be

room for all the microstates. This leads us to conjecture that if some sets of

microstates give rise to a common geometry, then this geometry must break down

when the transverse area is of order the entropy in Planck units.

If we apply this to the Schwarzschild geometry in a naive way, the entropy

radius rS is the Schwarzschild radius rs. If we pass through this radius into the

interior where r < rs, there are then too many microstates unless we begin to

see deviations from the Schwarzschild geometry: this is the fuzzball proposal. Of

course it is a speculation to extend such a principle from the two-charge geometry
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to Schwarzschild, but we have noted other parallels in § 2.2.2.
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2.2.5 Appendix A: Black onions on K3

Taking the D1-D5 system to live on K3 instead of a T 4, we find a heterotic

theory at the core of the onion.7 This is as expected, since the duality chain of

§ 2.2.2 sending type II F1-p to D1-D5 on T 4 maps heterotic F1-p to D1-D5 on K3.

Starting from the naive metric (2.2) with K3 replacing the torus, one is led

along the same duality chain until the K3 becomes small in the M theory descrip-

tion. Past this point, string-string duality suggests that the appropriate picture is

the heterotic theory on T 3. This follows from the same STS series that we used

before, but now the duals go through a IIA orientifold, type I, and then heterotic

SO(32) [39]. The transformations on the metric, B-field, and dilaton are the same

7We thank Nori Iizuka for asking about this case.
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as before, so we obtain

ds2
het = V

[
dx11

2 +
2R

gH
dtdx11 +

R2

g

(
dỹ2/R2 + dx2

4

)]
+ dz̃2

3 ,

eΦhet =
RV 3/4

gH1/2
,

Bhet
2 =

R2V

gH
dt ∧ dx11 . (2.40)

This matches the II′ solution (2.7) exactly; the only difference from the T 4 case

is that we have ended up in a heterotic theory. As before, this description is

parametrically valid until ρb, where the curvature becomes large.

2.2.6 Appendix B: Fuzzy onions

We repeat the analysis of § 2.2.2 for the fuzzball geometries, obtaining descrip-

tions valid for fuzzballs with various values of m.

Starting from the IIB frame with fuzz (2.8),

ds2
IIB = H−1

[
−(dt+ A)2 + (Rdy +B)2

]
+Hdx2

4 +
√
V dz2

4 ,

eΦIIB = g ,

C2 = g−1
[
H−1(dt+ A) ∧ (Rdy +B) + ζ

]
, (2.41)

the IIA fuzzball geometry is

ds2
IIA = −H−1(dt+ A)2 +H

[
dỹ2/R2 + dx2

4

]
+
√
V dz2

4 ,
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eΦIIA = g
√
H/R ,

BIIA
2 = R−1B ∧ dỹ ,

C1 =
R

gH
(dt+ A) ,

C3 = g−1ζ ∧ dỹ . (2.42)

The B-field corresponds to NS5 dipole charge along ~F , T -dual to the KK dipole

in IIB. The branes unsmear for r < ru just as in the naive geometry.

The fuzzy IIA becomes strongly coupled beyond rM/ρM , suggesting an M

theory description:

ds2
M = e−2ΦIIA/3ds2

IIA + e4ΦIIA/3(dx11 + C1)2

=

(
R2

g2H

)1/3 {
−H−1(dt+ A)2 +H

[
dỹ2/R2 + dx2

4

]
+
√
V dz2

4

}

+

(
g2H

R2

)2/3 [
dx11 +

R

gH
(dt+ A)

]2

,

A3 = C3 +BIIA
2 ∧ dx11 , (2.43)

with the NS5 lifting to M5 dipole.

Once again the torus becomes small past rII′/ρII′ , and performing an STS

transformation as for the naive geometry yields fuzzy II′:

ds2
II′ = V

[
dx11

2 +
2R

gH
(dt+ A)dx11 +

R2

g

(
dỹ2/R2 + dx2

4

)]
+ dz̃2

3 ,

eΦII′ =
RV 3/4

gH1/2
, (2.44)

and BII′
2 whose field strength satisfies H II′

3 = ?d (A3 ∧ dz̃3). The M5 dipole de-
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scends to F1 dipole in the final frame, localized along ~F .
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2.2.7 A Rough End for Smooth Microstate Geometries:

Introduction

The black hole information paradox [40, 1] and more recently the firewall

argument [41, 42] have reignited the search for the correct microscopic description

of black holes. The study of supersymmetric black holes in string theory has been

a useful arena for this study, providing many insights. For example, such black

holes may be described as bound states of strings and branes [43], which can then

be explored using either the low-energy perturbative worldvolume gauge theory

on the branes or supergravity at finite coupling [44]. One of the great triumphs of

this approach is the explicit stringy counting [45] by Strominger and Vafa of the

number of microstates of the D1-D5-P system, which famously agrees precisely

with the Bekenstein-Hawking entropy of the naive black hole solution.

The fuzzball program [5, 46, 47, 48, 49, 50, 51] is an attempt to describe

these microstates at finite coupling. It argues that the extended objects of string

theory modify the structure of the black hole horizon and solves the information

paradox by construction: there is no horizon, only an end to spacetime. Some

of the major goals of the program are to explain the Bekenstein-Hawing entropy,

construct representative microstates and, especially in light of the firewall paradox,

to understand the consequences of the stringy/braney physics at the horizon.

Within this program one may distinguish 3 types of microstates [51]: (i) mi-

crostate geometries, smooth horizonless solutions of supergravity; (ii) microstate

solutions, horizonless solutions of supergravity with singularities corresponding to

D-brane sources or which can be dualized patch-wise into smooth geometries; and

(iii) general fuzzballs, horizonless configurations which may be arbitrarily quan-
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tum and/or strongly curved. Since the horizon is a classical notion, it may well

be that this definition of general fuzzball includes all black hole microstates in

any approach to the information problem. In any case, it remains an open ques-

tion what fraction of black hole microstates fall into each category. In particular,

while in several examples of supersymmetric black holes it has been argued [9, 51]

that many microstates do in fact have a consistent description entirely within

supergravity, it is far from clear that they are typical.

New questions about this program were recently raised by Eperon, Reall and

Santos (ERS) [52]. Focusing on supersymmetric microstate geometries, they iden-

tified a non-linear classical instability due to the growth of excitations at an

“evanescent ergosurface” [53] of infinite redshift. On such a surface, there are

null geodesics with zero energy relative to infinity which are stably trapped in the

potential well near the ergosurface. They find that perturbing the microstate by

adding a massive particle or general wavepacket near the evanescent ergosurface

eventually leads to large backreaction, even if the particle has negligible energy at

infinity. In particular, the coupling of the particle to supergravity fields will allow

it to gradually radiate energy and angular momentum and its trajectory will ap-

proach a geodesic that minimizes the energy. Since the particle is now following an

almost-null trajectory, the local energy and hence backreaction will be very large.

The instability is non-linear in the sense that it involves interactions between the

particle and the radiation field. A corresponding effect arises in perturbative field

theory due to the coupling of modes near the evanescent ergosurface (playing the

role of the massive particle above) to radiative degrees of freedom at infinity. 1

1It has long been known that a class of non-supersymmetric fuzzball solutions [54] exhibits a
linear ergoregion instability [55]. However, such a stability analysis of supersymmetric microstate
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The emission of angular momentum reduces the size of a fuzzball. However,

at least in well-understood cases, typical fuzzballs have structure on microscopic

scales and thus are not described by smooth solutions [57]. The ERS instability

implies that smooth solutions can only describe the system for a short time when

it is coupled to the environment. In a dual CFT description of the near-horizon

region, the instability corresponds to motion among the ground states towards

larger (and more generic) twist numbers [58, 59]. As a result, and as we emphasize

below, such an instability might have been deduced on entropic grounds even

before the identification of a dynamical mechanism by ERS.

The implications of the ERS instability for the fuzzball program depend on its

endpoint. ERS proposed that it could lead to a collapse of the evanescent ergo-

surface and thus drive the initially smooth horizonless microstate geometry to an

almost-supersymmetric black hole with the same brane charges as the microstate

geometry but with different angular momenta. In particular, they suggested that

the endstate of the instability (for supersymmetric D1-D5 microstates with ad-

ditional momentum charge) might be a near-extremal black hole [60] or a black

ring[31]. To support this argument one may note that as the solution shrinks it is

described by the duality cascade of [57], but since the evanescent ergosurface is a

consequence of supersymmetry it persists in every duality frame and so the ERS

instability argument continues to apply.

However, entropic reasoning leads to the expectation that the endpoint is

instead a typical microstate with angular momentum jtypical which maximizes the

geometries had not been performed until the recent work by ERS. Another recent study of
dynamics focuses on the quantum tunneling of branes into microstate geometries [56]; the result
suggests that a collapsing shell of matter might tunnel into a fuzzball configuration before a
horizon can form.
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microstate density of states S(j). In particular, we suggest that the string-scale

structure of a typical microstate leads to corrections that remove the instability

for j ∼ jtypical and prevents the collapse to a black hole. Within the supergravity

approximation the stabilized geometry is indistinguishable from a supergravity

black hole but has structure at the horizon that differentiates the two in the full

string theory. This structure is located at the bottom of the duality cascade

described in [57], and supergravity will not capture the full physics at the fuzzball

core.

To obtain a measure of analytic control over the ERS instability, we take an

adiabatic limit in which the particle is well-described by an Aichelburg-Sexl-like

shockwave on the evanescent ergosurface. We focus on 2-charge microstates, for

which the general microstate geometries are known. Solutions with such shock-

waves preserve the same supersymmetries as the microstate geometries and are

thus independent of time, but a small departure from this limit will lead to slow

evolution. In particular, growth of the instability leads to growth of the shockwave

and thus to motion along this family of solutions. The geometries accounting for

the backreaction of the shock are known explicitly [61] and in fact correspond to

special cases of the more general family of microstate geometries. The CFT states

dual to their near-horizon limits were described in [62]. These facts can be used

to justify the entropic reasoning used above.

Analysis of any potential instability in typical microstates would require a bet-

ter understanding of black hole microstates beyond supergravity. In the absence

of such knowlege, we describe a simple toy model displaying what we believe to

be key features of their stringy physics. In particular, the model includes both
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a low-energy region near the evanescent ergosurface, a parameter that we also

call j controlling the microstate size, and an analog of the internal structure that

would be associated with stringy excitations used to perturb the microstates. We

then study the model as one decreases j in analogy with the adiabatic evolution

described above. At small enough j the low-energy region displays features on

scales smaller than those set by the internal structure of the probe. The probe

can then no longer take full advantage of the low-energy region, raising the ground

state energy and shutting off the instability. Thus we argue that the net effect

of the ERS instability is to drive smooth solutions through the duality cascade of

[57] towards typicality, and the instability is stabilized by stringy corrections just

as supergravity breaks down: a rough end for smooth microstate geometries.

The organization of this paper is as follows. In §2.2.8 we review some of

the salient features of the supergravity and CFT descriptions of the 2-charge

system. We then address the ERS instability in §2.2.9. After reviewing the main

argument of [52], we study Aichelburg-Sexl-like shockwaves described above and

discuss their identification in terms of known microstate geometries. This allows

us to give a concrete description of adiabatic evolution along this family. §2.2.10

then describes and analyzes our toy model illustrating our proposed mechanism

for stabilizing the system once the microstates become typical. We conclude with

a discussion of our results in §2.2.11. Appendix §2.2.12 describes the analogous

physics for a special class of 3-charge microstate solutions.
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2.2.8 2-charge microstates

Our analysis will focus on 2-charge supersymmetric microstate geometries;

discussion of the 3-charge case is relegated to appendix 2.2.12. There is now con-

siderable evidence [4, 12, 5] supporting the identification of particular states |Ψ〉

in the D1-D5 CFT at small string coupling gs and large brane charges Q1, Q5 with

(the near-horizon limit of) a class of horizonless supergravity solutions character-

ized by a profile ~F in the four non-compact transverse spatial dimensions. The

map between these descriptions takes the form

|Ψ〉 =
N∏

k=1

(σss
′

k )Nk |0〉 ←→ ~F (v) =
N∑

k=1

~Fke
ikωv , (2.45)

where the Nk are related to the Fourier amplitudes ~Fk. We will discuss the details

of the CFT and supergravity descriptions, and thus the two sides of (2.45), in

§2.2.8 and §2.2.8.

CFT Review

Let us consider IIB string theory compactified to M1,4 × S1 × T 4, with n1 D1

branes wrapping the S1 and n5 D5 branes wrapping S1 × T 4. At parametrically

large S1 the low-energy dynamics of the bound state of these branes is described

by a (1 + 1) dimensional sigma model whose target space is the moduli space of

n1 instantons in the D5-brane gauge theory [58, 59], a resolution of the orbifold

(T 4)
N
/SN (the symmetric product of N = n1n5 copies of T 4). The CFT has

N = (4, 4) supersymmetry and a moduli space of supersymmetric deformations.

It is conjectured that this moduli space contains the “orbifold point” where the
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target space is just the orbifold (T 4)
N
/SN . This is the symmetric product of a

seed with 4 real bosons Xi (4 torus directions), 4 real left moving fermions ψi, 4

real right-moving fermions ψ′i and central charge c = 6.

The complete theory with target space (T 4)
N
/SN has N copies of the c = 6

CFT with states symmetrized between the N copies. Many details of this theory

are given in [30], here we just review some relevant aspects. Modular invariance

requires that we introduce twisted sectors, created by bosonic and fermionic twist

operators permuting the N copies. These operators are labeled by conjugacy

classes of cycles of SN , which can be decomposed into irreps σk labeled by a

single cycle of length k (the particular elements are irrelevant because of the

symmetrization, which will be implicit). For simplicity, in our discussion below

we place all oscillators ossciated with the T 4 in their ground state. A general such

twisted sector state corresponds to

|{Nk}〉 =
N∏

k=1

(σss
′

k )Nk |0〉 (2.46)

where s, s′ = ± and
N∑

k=1

kNk = N , (2.47)

since each copy must be involved in the permutation. We take the field theory

on the D1-D5 system to be in the Ramond sector [9]. The σk in (2.46) have

(h, h̃) = ( c
24
, c

24
) and so any set of {Nk} satisfying (2.47) is a Ramond ground

state. This fact underlies the argument matching the ground state degeneracy

with the black hole entropy.

In the D1-D5 CFT the R-symmetry is geometrized as the rotational symmetry
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of the non-compact directions SO(4) ≈ SU(2)L × SU(2)R. Maximal R-charge

hence corresponds to maximal angular momentum. The left-moving fermions ψi

carry spin s
2

under SU(2)L while the right-moving fermions ψ′i carry spin s′

2
under

SU(2)R; the R-charge of the state is given by (j, j′) = (j3
L, j

3
R). The σk form

bi-doublets of the SU(2) × SU(2) R-symmetry and in (2.46) and below we take

the (s, s′) = (−,−) component.

We can now explain the main features of the density of states S(j) as a func-

tion of angular momentum. The state |N1〉 = σN1
1 |0〉 with N1 = N and all other

modes zero is the unique completely untwisted state, corresponding to the Ra-

mond ground state with maximal R-charge, and thus to a state of maximal angular

momentum jmax = n1n5. Less finely-tuned states have smaller angular momen-

tum, so S(j) is a decreasing function of j near jmax. Indeed, for j � √n1n5 (and

once the oscillators associated with the internal T 4 are included as well) one finds

[30]

S(j) = 2π
√

2
√
n1n5 − |j| (2.48)

to leading order in N . On the other hand, since the twist operators can contribute

angular momentum with any sign, charge conjugation symmetry implies that the

ensemble of all ground states has vanishing expectation value for the angular

momentum. Fluctuations about the average imply typical states to have non-zero

angular momentum of order
√
N =

√
n1n5, so S(j) is maximized in this regime

and decreases when j is decreased further.

Before proceeding to discuss geometries, we remind the reader that states in

the Ramond sector can be mapped to states in the Neveu-Schwarz sector via a

symmetry of theories with N ≥ 2 in 2 dimensions known as spectral flow. The

44



Black holes and branes Chapter 2

dimensions h and R-charges j of operators change along the flow according to[63]:

hα = h− αj + α2 c

24
, jα = j − α c

12
. (2.49)

In particular, a Ramond ground state with maximal R-charge (h, j) = ( c
24
, c

12
) can

be mapped via (2.49) with α = 1 to the Neveu-Schwarz vacuum (h, j) = (0, 0).

Ramond ground states of non-maximal R-charge map to chiral primaries in the NS

sector. As a result, the completely untwisted state |N1〉 becomes the NS vacuum

dual to global AdS. In particular, on the gravity side spectral flow of the near-

horizon limit for the corresponding solution will give simply AdS3 × S3 in global

coordinates.

Geometries

The two-charge D1-D5 geometries are type IIB compactifications on S1 × T 4

(or K3) characterized by a curve ~F (v) in R4 × T 4. Due to the fact that these

solutions were originally constructed in a duality frame where the charges are

P-F1, the curve ~F (v) is known as the string profile.

We will focus on solutions describing only oscillations in the four non-compact

transverse directions x. The complete solution with oscillations in the T 4 direc-

tions z is given in Refs. [9, 10]. Since the T 4 factor plays no further role in our

discussion of the ERS instability we will usually omit it henceforth. The argu-

ment v = t− y of the string profile is a lightcone coordinate involving the spatial

coordinate y along the S1. The metric, dilaton and RR 2-form for such solutions
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are given by [9]

ds2 =
1√
H1H5

[
−(dt− A)2 + (dy +B)2

]
+
√
H1H5dx

2
4 +

√
H1

H5

√
V dz2

4 ,

eΦ = g

√
H1

H5

,

C2 = g−1
[
H−1

1 (dt− A) ∧ (dy +B) + ζ
]
, (2.50)

where the harmonic functions are

H5 = 1+
Q5

L

∫ L

0

dv

|~x− ~F (v)|2
, H1 = 1+

Q5

L

∫ L

0

| ~̇F |2dv
|~x− ~F (v)|2

, Ai = −Q5

L

∫ L

0

Ḟ idv

|~x− ~F (v)|2
.

(2.51)

The remaining quantities are defined via dB = ?4dA, dζ = − ?4 dH5.2 L = 2πQ5

R
,

and its presence in (2.51) is a vestige of the original derivation of these solutions.

The profile ~F relates the D5 charge Q5 to the D1 charge:

Q1 =
Q5

L

∫ L

0

| ~̇F |2dv . (2.52)

These supergravity charges Q1, Q5 are related to the dimensionless quantized

charges n1, n5 by

Q1 =
gα′3

V
n1 , Q5 = gα′n5 . (2.53)

The y coordinate is identified under y → y+2πR and V is the asymptotic volume

of the T 4 whose coordinates z have period 2π. The four flat transverese directions

x are non-compact and can be coordinatized as dx2
4 = dr̃2 + r̃2(dθ̃2 + sin2 θ̃dϕ̃2 +

cos2 θ̃dψ̃2). The relation between the Cartesian coordinates (x1, x2, x3, x4) and the

2Our functions H5, H1, A correspond, respectively, to H−1,K + 1, A in e.g. [62].
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spherical coordinates (r̃, θ̃, ϕ̃, ψ̃) is given by x1 = r̃ sin θ̃ cos ϕ̃, x2 = r̃ sin θ̃ sin ϕ̃,

x3 = r̃ cos θ̃ cos ψ̃, x4 = r̃ cos θ̃ sin ψ̃.

Supersymmetry fixes the energy to be

E = Q1 +Q5 (2.54)

while the angular momentum depends on ~F through [9]

Jij =
Q5R

L

∫ L

0

(FiḞj − FjḞi)dv . (2.55)

This quantity has dimensions [length]4 and is related to the quantized angular

momentum j by

J12 =
g2

V
j, J34 =

g2

V
j′ (2.56)

in units where α′ = 1. For details relevant to computing energy and angular

momentum in the above 6d geometries, see [64, 65].

It will be useful to estimate the size of a given curve ~F as this determines

the validity of the supergravity description at the string profile [57]. As argued

in [30], the size of the curve is roughly proportional to its angular momentum

J =
√
JijJ ij. The ~F that carries maximal angular momentum Jmax = Q1Q5

extends to a distance
√
Q1Q5/R from the center while strings carrying a fraction

Jmax/m of the maximum angular momentum are smaller by a factor 1/m. As

noted in § 2.2.8, most CFT states have jtypical/jmax ≈ 1/
√
n1n5 and so have size of

order 1 in string units. The supergravity description is valid (i.e. weakly curved)

in the large N = n1n5 limit, so from this perspective both Jtypical and the typical
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size are indistinguishable from zero. Indeed, in the strict supergravity limit one

may compute the density of states in direct analogy with [66, 67, 68, 11] to obtain

(2.48) (which is maximized only at j = 0).

In a different duality frame the solution (2.50) describes a singular string

source along ~F (v) carrying momentum, but in the corner of moduli space where

the asymptotic charges are D1-D5 it has long been argued [9] that the geometry is

completely smooth. This feature is particularly intriguing, as the ensemble of 2-

charge solutions approximates the M = 0 BTZ black hole [30], so one could argue

that the actual black hole microstates were horizon-free geometries that cap off

smoothly at the string profile. However, for typical states it turns out [57] that

maintaining the validity of the supergravity description while descending toward

the fuzzball requires a duality cascade. Furthermore, the cascade terminates in

a frame where the D1-D5 charges have become P-F1 and curvature of the S3

becomes string-scale, so that even this final supergravity description breaks down

near the location of the typical string profile. Typical 2-charge states are thus

not well-described by smooth geometries. However, states with atypically large

angular momenta have string profiles that vary slowly enough for supergravity to

remain valid even at the locus defined by ~F (v), in some cases using only a single

duality frame. Such states are indeed described by smooth geometries.

It is therefore of particular interest that ERS [52] found an instability for the

geometry with maximal angular momentum which is the prime example of such a

solution. Since we will also begin our discussion of shockwaves in §2.2.9 with this

special case, we now pause to describe it in some detail.

48



Black holes and branes Chapter 2

The maximally-rotating microstate

The angular momentum (2.55) obtains its maximum value for the profile func-

tion

~F (v) = (a cos(ωv) , a sin(ωv), 0, 0) , 0 ≤ v ≤ L , (2.57)

where

a =

√
Q1Q5

R
, ω =

2π

L
. (2.58)

The D1 charge (2.52) for this profile is

Q1 = Q5a
2ω2 , (2.59)

and the angular momentum (2.55) in the x1−x2 plane, or equivalently, along the

ϕ̃ direction, takes the value

Jϕ̃ = J12 = Q1Q5 = Jmax . (2.60)

With the profile (2.57) the harmonic functions become (in the notation of [5])3

H5 = 1 +
Q5

r2 + a2 cos2 θ
, H1 = 1 +

Q1

r2 + a2 cos2 θ
, (2.62)

3We use coordinates (r, θ, ϕ̃, ψ̃) in which the flat metric takes the form

dx2
4 = (r2 + a2 cos2 θ)

(
dr2

r2 + a2
+ dθ2

)
+ (r2 + a2) sin2 θdϕ̃2 + r2 cos2 θdψ̃2 , (2.61)

and εrθϕ̃ψ̃ =
√
g = (r2 + a2 cos2 θ)r sin θ cos θ. These coordinates are related to (r̃, θ̃, ϕ̃, ψ̃)

in which the S3 takes its standard form dΩ2
3 = (Q1Q5)1/4(dθ̃2 + sin2 θ̃dϕ̃2 + cos2 θ̃dψ̃2) by

r̃ =
√
r2 + a2 sin2 θ and cos θ̃ = r cos θ√

r2+a2 sin2 θ
.
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Aϕ̃ = −Q5a
2ω

sin2 θ

(r2 + a2 cos2 θ)
, Bψ̃ = −Q5a

2ω
cos2 θ

(r2 + a2 cos2 θ)
. (2.63)

The full solution is given by

ds2
R = −1

h
(dt2 − dy2) + hf

(
dθ2 +

dr2

r2 + a2

)
− 2a

√
Q1Q5

hf

(
cos2 θdydψ̃ + sin2 θdtdϕ̃

)

+h

[(
r2 +

a2Q1Q5 cos2 θ

h2f 2

)
cos2 θdψ̃2 +

(
r2 + a2 − a2Q1Q5 sin2 θ

h2f 2

)
sin2 θdϕ̃2

]
,(2.64)

with

f = r2 + a2 cos2 θ , h =
√
H1H5 =

[(
1 +

Q1

f

)(
1 +

Q5

f

)]1/2

. (2.65)

In the near-horizon limit, r � (Q1Q5)1/4, a � (Q1Q5)1/4 � R, this solution is

dual to a Ramond ground state with maximal R charge. To see this, we remind the

reader that spectral flow maps the Ramond ground state to the Neveu-Schwarz

ground state and that this flow is implemented by the large coordinate transfor-

mation

ψ = ψ̃ − y

R
, ϕ = ϕ̃− t

R
. (2.66)

Applying (2.66) to the above metric yields

ds2
NS =

√
Q1Q5

[
−(r′2 + 1)

dt2

R2
+ r′2

dy2

R2
+

dr′2

r′2 + 1
+ dθ2 + cos2 θdψ2 + sin2 θdϕ2

]
.

(2.67)

This is just global AdS3×S3 and is indeed dual to the NS vacuum state as desired.
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Evanescent ergosurface

The ERS instability relies on a key feature of supersymmetric microstate ge-

ometries dubbed the evanescent ergorsurface in [53]. To describe this surface,

recall [69] that supersymmetry implies the existence of a globally null Killing vec-

tor field which, when there exists a Kaluza-Klein Killing field ∂y, may be written

V = ∂t + ∂y . (2.68)

Here ∂t and ∂y are commuting Killing vector fields. The Killing field ∂y is spacelike

and is associated with the Kaluza-Klein direction of the 6d geometry, while ∂t

becomes timelike and canonically normalized near infinity. As a result, V can

also be related to a non-spacelike Killing vector of the 5d geometry obtained from

dimensional reduction along the y circle. Since V is globally null it is everywhere

tangent to affinely parametrized null geodesics. It will be convenient to refer to

V as the SUSY Killing field below.

The evanescent ergosurface S is then defined by V ·∂y = 0. It is thus located at

f = 0 in the geometry (2.64), where r = 0 and θ = π/2. Hence S is a 2d timelike

submanifold of the 6d geometry. At this locus the Kaluza-Klein circle y pinches off

smoothly, as does ψ. At constant t the topology of S is S1 where the coordinate

around this circle is ϕ. The Killing vector field ∂t is timelike everywhere except

on S where it is null (V is null everywhere and ∂y vanishes on S). There are

zero-energy null geodesics with tangent vector V which are stably trapped on S

and thus stay at constant (r, θ) = (0, π/2); more on this in §2.2.9. This evanescent

ergorsurface will be the location of our Aichelburg-Sexl pp-wave.
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2.2.9 Adiabatic instability of 2-charge microstate geome-

tries

We are now ready to add null particles moving in the ϕ direction of the S3 at

θ = π/2 and at the center of AdS3 (r = 0). This is the location of the evanescent

ergosurface after spectral flow. Our focus will be on studying the backreaction

induced by such particles.

From the CFT perspective, the addition of a particle corresponds to exciting

higher harmonics Nk. Starting with the NS vacuum or, after spectral flow, the

Ramond ground state with maximal R-charge, we will see in §2.2.9 that the insta-

bility found in [52] will take us towards more complex and typical states |{Nk}〉.

Our main focus, however, is on explaining the physical implications of the insta-

bility found in [52] for the gravity solutions (2.50). We therefore begin with a

brief review of this instability.

The ERS instability

The instability identified in [52] is a consequence of a property called stable

trapping, which is exhibited by the microstate geometries near the evanescent

ergosurface S where the SUSY Killing field V is tangent to affinely parameterized

null geodesics with zero energy. These geodesics are at rest relative to infinity, in

contrast to the microstate geometries which have a non-zero angular momentum.

This implies that particles following orbits of V resist the frame-dragging effect

caused by the rotation of the background geometry. In this sense, the zero-energy

null geodesics can be seen as possessing angular momentum opposite to that of

the microstate geometry. These geodesics remain within the bounded region of
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the evanescent ergosurface and are thus trapped. Because they sit at the bottom

of a gravitational potential well they minimize the energy and so the trapping

phenomenon is stable.

Now imagine perturbing the spacetime by adding an uncharged massive par-

ticle near to the evanescent ergosurface. If we neglect backreation, the particle

moves on a geodesic. When coupled to supergravity fields it will gradually radiate

energy and angular momentum and its trajectory will approach a geodesic that

minimizes the energy. Hence the trajectory of the particle will approach one of the

zero-energy trapped null geodesics tangent to V on the evanescent ergosurface.

The particle will have very small energy as measured at infinity but, since the

massive particle is now following an almost null trajectory, the energy measured

by a local observer will be very large. It will thus give rise to strong backreaction.

As argued in [52], this suggests an instability that triggers a large change in the

spacetime geometry.

While the above reasoning used particles, one should obtain the same con-

clusions using a field-theoretic analysis in the WKB limit, and analogous physics

follows from studying quasi-normal modes [52]. In the particle context, the fact

that interactions played an important role (by allowing the massive particle to ra-

diate) means that the instability is a non-linear effect. Note that the instability is

fundamentally a consequence of the existence of stably trapped null geodesics and

that an evanescent ergosurface per se is not required. In particular, one expects

this instability to arise even in supersymmetric microstate geometries that do not

possess a Kaluza-Klein Killing vector field and thus no concept of an evanescent

ergosurface. In this sense, the ERS instability appears to be a rather robust
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feature of supersymmetric microstate geometries.

What could be the endpoint of this instability? Its overall effect is to remove

angular momentum from the microstate geometry via radiation. This will cause

the evanescent ergosurface to shrink. It was suggested in [52] that a natural

endpoint is a non-supersymmetric black hole with the same conserved charges as

the microstate geometry but different angular momenta.

We will now argue for a different conclusion. To do so, we recall [52] that or-

bits of the SUSY Killing field V on the evanescent ergosurface are null geodesics.

We then return to the above discussion of adding a particle and consider the limit

where the particle becomes massless and travels precisely along such a geodesic.

Such particles preserve the supersymmetry of the background geometry, so in this

limit one expects there to be a stationary supergravity solution that incorporates

the full backreaction from the particle even when the local energy and momen-

tum of the null particle are large. This is not to say that the ERS instability

has been completely removed, as even tiny deformations away from this limit

will still trigger its effects. However, continuity implies that the ERS instability

proceeds very slowly when the system is close to this SUSY null particle limit.

Furthermore, we recall that the ERS instability tends only to make the particle

more null and to move it even closer to the above null geodesics while increasing

the locally-measured energy. As a result, close to our SUSY null limit, one may

approximate the evolution induced by the ERS instability as adiabatic evolution

along a one-parameter family of fully-backreacted supersymmetric supergravity

solutions describing null particles on the above SUSY geodesics. The natural

parameter labeling the solutions is just the locally-measured energy of the null
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particle, and dynamical evolution drives this energy to slowly increase.

Our first task is thus to identify the relevant supergravity solutions. As is

well known, the backreaction of a null particle in flat space is described by the

Aichelburg-Sexl solution [70], which preserves the desired supersymmeries [71].

We therefore seek supersymmetric solutions of the D1-D5 system which locally

take the Aichelburg-Sexl form near the null geodesic on which the particle travels.

To simplify the analysis, we will in fact consider a more symmetric situation

describing an ensemble of such particles that preserves both translation invariance

on the internal T 4 and rotational invariance under ∂ϕ: in the language commonly

used to describe such solutions, we smear the particles over these directions. It

will be convenient to begin with the maximally rotating microstate and in fact

to start our discussion in the near-horizon limit which, under the spectral flow

transformation discussed in § 2.2.8 becomes just AdS3 × S3.

Aichelburg-Sexl solutions

We therefore consider the addition to AdS3 × S3 of an Aichelburg-Sexl shock

wave associated with a ring of particles moving at the speed of light around a

circle on the S3 at the center of AdS. As shown in [61, 62], the resulting geometry

is

ds̄2
NS =

√
Q1Q5

[
−(r′2 + 1)

dt2

R2
+ r′2

dy2

R2
+

dr′2

r′2 + 1
+ dθ2 + cos2 θdψ2 + sin2 θdϕ2

]

+
q
√
Q1Q5

r′2 + cos2 θ

[(
(r′2 + 1)

dt

R
+ sin2 θdϕ

)2

−
(
r′2
dy

R
− cos2 θdψ

)2
]
,(2.69)
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where we have corrected some typos in the expressions of [61, 62]. In (2.69), q

parametrizes the locally-measured energy of the null particle; i.e., it describes the

strength of the shock. For q = 0 (2.69) is empty AdS3 × S3 as desired.

The geometry (2.69) has a curvature singularity at the locus of the shockwave.

Near the evanescent ergosurface (r, θ) = (0, π/2), the leading terms in (2.69) yield

ds̄2
NS =

√
Q1Q5

[
−dt

2

R2
+ dr′2 + dθ2 + dϕ2 +

q

f

(
dt

R
+ dϕ

)2
]
, (2.70)

which is precisely an Aichelburg-Sexl shock in otherwise-flat space propagating

along ϕ̃ = ϕ + t
R

. Note that, as for the 2-charge geometry without the shock-

wave (2.64), the y and ψ circles pinch off at f = 0.

It is now straightforward to invert the spectral flow (2.66) and obtain the R

sector solution. We further restore the asymptotically flat region by judiciously

adding back the appropriate constants inside the harmonic functions. Defining

the parameter ξ = 1 − q, this construction suggests that taking the maximally-

rotating geometry (2.64), adding a ring of particles to the evanescent ergosurface

and incorporating their backreaction, one obtains the geometry

ds̄2
R = −1

h̄
(dt2 − dy2) + h̄f̄

(
dθ2 +

dr̄2

r̄2 + ā2

)
− ξ 2a

√
Q1Q5

h̄f̄

(
cos2 θdydψ̃ + sin2 θdtdϕ̃

)
(2.71)

+h̄

[(
r̄2 + ξ

ā2Q1Q5 cos2 θ

h̄2f̄ 2

)
cos2 θdψ̃2 +

(
r̄2 + ā2 − ξ ā

2Q1Q5 sin2 θ

h̄2f̄ 2

)
sin2 θdϕ̃2

]
,

where

h̄ =
√
H̄1H̄5 =

[(
1 +

Q1

f̄

)(
1 +

Q5

f̄

)]1/2

, f̄ = r̄2 + ā2 cos2 θ = ξf . (2.72)
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One can show that (2.71) is generated by the string profile

~̄F (v) = (ā cos(ωv/ξ + ϕ0), ā sin(ωv/ξ + ϕ0), 0, 0) , 0 ≤ v ≤ Lξ

~̄F (v) = (ā cosϕ0, ā sinϕ0, 0, 0) , Lξ ≤ v < L (2.73)

after smearing over ϕ0 [62]. The smearing operation should be understood as

generalizing (2.50) by adding further terms to the harmonic functions sourced by a

set of independent string profiles ~Fi with independent values of ϕ0 and then taking

a limit where the profiles in fact coincide and the ensemble of ϕ0 values forms the

uniform distribution on [0, 2π]. This construction makes it clear that the result

(2.73) is indeed an appropriately supersymmetric solution, once augmented by

the appropriate dilaton and form fields generated by (2.73).4 Readers concerned

about the breakdown of the supergravity description near the shock may think of

(2.73) as an approximation to a smooth profile whose Fourier decomposition has

no excitations higher than the N th harmonic.

Returning to the string profile (2.73), before smearing one sees that the profile

describes a string that winds once around the ϕ-circle on the interval v ∈ [0, Lξ]

and then remains at the same x-location for the remaining v-length (1 − ξ)L.

The last straight segment corresponds to the added particle: just a bump on a

4While the profile function (2.73) is very similar to the profile function that generates the
solutions dual to spectral flows of the conical deficits [72, 27, 30], it has a different range of
integration which destroys the Hopf structure that leads to the conical singularity. With (2.73)
one finds a curvature singularity instead.
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fuzzball. 5 From this profile one obtains the harmonic functions [62]

H̄5 = 1 +
Q5ξ

r̄2 + ā2 cos2 θ
+

Q5(1− ξ)
(x1 − ā cosϕ0)2 + (x2 − ā sinϕ0)2 + x2

3 + x2
4

,(2.74)

H̄1 = 1 +
Q5ā

2ω2/ξ

r̄2 + ā2 cos2 θ
, (2.75)

Āϕ̃ = −Q5ā
2ω

sin2 θ

r̄2 + ā2 cos2 θ
, (2.76)

where the radial coordinate at infinity r̄ is related to r by

r̄ =
√
ξ r , (2.77)

so that εr̄θϕ̃ψ̃ =
√
g = (r̄2 + ā2 cos2)r̄ sin θ cos θ and the flat metric takes the form

dx2
4 = (r̄2 + ā2 cos2 θ)

(
dr̄2

r̄2 + ā2
+ dθ2

)
+(r̄2 + ā2) sin2 θdϕ̃2 + r̄2 cos2 θdψ̃2 . (2.78)

Averaging over ϕ0 gives

H̄5 = 1+
Q5

r̄2 + ā2 cos2 θ
, H̄1 = 1+

Q1

r̄2 + ā2 cos2 θ
, Āϕ̃ = −Q5ā

2ω
sin2 θ

r̄2 + ā2 cos2 θ
,

(2.79)

which leads to the geometry (2.71). Note that the relation (2.52) yields

ā =
√
ξ a . (2.80)

Though it seems innocent enough, this equation is actually key to our analysis.

It implies the backreacted solution to be scaled down by a factor
√
ξ.

5We are grateful to Iosif Bena for emphasizing this viewpoint.
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The shrinking shockwave

We argued above that the ERS instability admits an adiabatic limit described

by the family of solutions (2.71) with increasing strength q of the Aichelburg-

Sexl shock, and thus with decreasing ξ. From (2.55) and the asymptotics of the

metric (2.71) one finds that the angular momentum of any such solution is smaller

than in the maximally rotating case by a factor ξ = 1 − q ≤ 1 while the total

energy is unchanged. We find

Ē = Q1 +Q5 , J̄ϕ̃ = ξQ1Q5 (2.81)

which corresponds to j = ξjmax = ξn1n5. Since (2.71) still possesses an evanescent

ergosurface, the solution will continue to shrink and radiate angular momentum

to infinity so long as the ERS analysis remains valid. Indeed, while a consistent

supergravity description will require a series of duality frames as we decrease j

[57], the existence of a (perhaps singular) evanescent ergosurface is guaranteed in

all frames by the supersymmetry of the solution.

The solution will continue to shrink at least until we can no longer trust the

ERS analysis at ξ ∼ 1/
√
n1n5 = 1/

√
N . In the large N limit this corresponds to

taking ξ → 0, which gives

ā =
√
ξa→ 0 , f̄ = r̄2+ξa2 cos2 θ → r̄2 , h̄ =

[(
1 +

Q1

f̄

)(
1 +

Q5

f̄

)]1/2

→
√
Q1Q5

r̄2
.

(2.82)

In this limit we recover the near-horizon metric of the M = 0 extremal BTZ black
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hole with transverse S3 [73, 74]:

ds̄2
R =

r̄2

√
Q1Q5

(−dt2 + dy2) +
√
Q1Q5

(
dr̄2

r̄2
+ dθ2 + cos2 θdψ̃2 + sin2 θdϕ̃2

)
.

(2.83)

This is consistent with the ERS suggestion that the system evolves to become a

black hole.

One effect not taken into account by ERS is the possibility that the particle

seeding the instability will decay. So long as the decay products continue to

be treated as classical particles, one presumes this to give rise to a set of ERS-

like instabilities all acting in concert. But since we consider a limit where the

instability is adiabatically slow, this system of particles will reach some sort of

equilibrium at each j. Indeed, in the absence of other constraints, a coarse-grained

description of this equilibrium should resemble the microcanonical ensemble of all

appropriately supersymmetric states with the given value of j; after including

backreaction, this is just the microcanonical ensemble of microstate geometries.

The ERS analysis thus suggests that there is a general tendency for asymptot-

ically flat microstate geometries to evolve towards smaller j. This is no surprise

for j ∼ jmax, as the microcanoncal entropy S(j) decreases with increasing j in this

regime according to (2.48). In fact, S(j) behaves this way for all j > jtypical, and so

any interaction should lead to this behavior when the microstate is well-described

by supergravity.

On the other hand, we recall from § 2.2.8 that S(j) is maximized at jtypical of

order
√
n1n5. As a result, so long as our microcanonical ensemble approximation
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remains valid and the entropy in radiation at infinity can be neglected6, unitarity

prohibits any interaction from causing j to decrease below jtypical. This strongly

suggests that – at least for generic microstates – the ERS mechanism shuts down

for j near jtypical. The effect of the ERS instability is thus to drive smooth solutions

towards stringy typicality - a rough end for these supposedly smooth spacetimes.

There is indeed ample room for corrections to the ERS analysis in this regime.

As noted in § 2.2.8, microstate geometries with j ∼ jtypical have string-scale struc-

ture and could well require large corrections to the classical supergravity descrip-

tion used by ERS. While a full analysis is beyond the scope of this work, we

describe a particular stringy effect in § 2.2.10 below that could plausibly provide

such corrections and illustrate the resulting stabilization in a simple toy model.

2.2.10 A model for stabilization at typicality

The ERS analysis considered test particles and fields propagating on mi-

crostate geometries. At large j the geometries are quite smooth, so stringy cor-

rections can be incorporated via an asymptotic expansion in α′. However, due to

the presence of string-scale structure when j ∼ jtypical, an accurate analysis in this

regime requires any probes to be treated as quantum strings. In particular, the

zero-point oscillations of probe strings mean that they will not sit sharply at the

minimum of any background potential. One may thus expect this effect to raise

the energy of the probe above what would be expected by naively extrapolating

results from the smoother geometries at larger j. As a result, this mechanism has

6This is a subtle point. The entropy of radiation at infinity is divergent. We may regulate
the model by placing the system in a finite-sized box. Then near jtypical, in the limit of large
charges n1, n5 with fixed box size, the entropy in the radiation is negligible when compared with
the microstate density of states S(j).
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the potential to deactivate the ERS instability at j ∼ jtypical. While a complete

stringy analysis is beyond the scope of our work, we provide a simple toy model

below exhibiting what we believe to be key features of the physics.

To set the context for our model, let us briefly return to the ERS discussion

of massive particles. As discussed in § 2.4 of ERS, the energy of such particles is

minimized at jparticle = −∞ in the geometry (2.64) with j = jmax. In particular,

the minimum of the energy Emin(jparticle) decreases as jparticle → −∞ and so

the particle tends to roll down this effective-potential hill by radiating into the

asymptotically flat region.

Of course, once jparticle becomes large one must take backreaction into account.

One would then like to compute the minimum energy Ebackreacted, min(j) consistent

with a given total angular momentum j (including jparticle) and the existence of

the particle. Doing so will be complicated away from the adiabatic limit of § 2.2.9,

but one expects the result to give an effective potential Ebackreacted, min(j) whose

qualitative features are similar to the above Emin(jparticle), and in particular which

again decreases as we make j more negative.

A toy model for such an effective potential computation is given by a family of

one-dimensional models in non-relativistic quantum mechanics defined by poten-

tials Vj(x) for which we wish to compute the energy Emodel, min(j) of the ground

state. We consider the Hamiltonian

H =
p2

2m
+ Vj(x) (2.84)

for each value of a parameter that we will also call j. Here there is no explicit
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notion of backreaction, though it has been incorporated implicitly through our

comparison of ground state energies for different values of the external parameter

j.

One would like this potential to model the effective potential for timelike par-

ticles in a microstate geometry, which is minimized at the evanescent ergosurface

and which becomes constant far away. It thus takes the general shape of the

potential in figure 2.2. For simplicity, we model this shape by choosing

Vj(x) =





1
2
mω(j)2x2 − V0(j) |x| < L

V1(j) |x| > L
. (2.85)

L characterizes the scale over which the potential differs from its asymptotic value,

and continuity of the potential requires

1

2
mω2L2 − V0 = V1. (2.86)

To model the ERS instability, all the parameters should depend on j except the

particle mass m. We will often leave this functional dependence implicit.

Near x = 0 the eigenfunctions match the harmonic oscillator, but the effects

of the flat potential in the |x| > L region begin to affect the nth and higher states

when the position fluctuations

〈x2〉 ≈ (2n+ 1)

2mω
(2.87)

become O(L2). In particular, in states with 〈x2〉 � L2 the particle will not be

bound to the harmonic trap. It will be useful to define the dimensionless quantity
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Figure 2.2: The potential in our toy model. The real shape of the effective
potential for timelike particles in a microstate geometry is a smoothed version.

C := mωL2 (2.88)

which essentially counts the number of bound states in the potential Vj(x): states

with excitation number n � C are well-approximated by harmonic oscillator

eigenstates, while those with n ∼ C are still bound but receive significant correc-

tions from the turning point in the potential (2.85). For n � C the particle is

effectively free.

As j decreases, the length scales of structures in our potential should decrease

in analogy with the decreasing size of structures in the microstate geometries.

Thus we take ω to increase, and in order to keep the number of bound states

constant we hold ωL2 fixed (this is the natural scaling in non-relativistic quantum

mechanics). We take V0 to slowly decrease with j in order to make the ground

state energy Emodel, min(j) behave like Emin(jparticle), and in particular to slowly

drive the solution towards smaller j.
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So far we have merely constructed a simple quantum-mechanical toy model of

the original ERS particle analysis. However, we wish to consider effects associated

with the zero-point oscillations of stringy probes of the microstate geometries. In

our model this can be accomodated by letting the test particle have internal

structure. For the present purposes, it will be enough to regard the particle as

a bound state of K partons (say, each of mass m/K) coupled by an additional

internal potential εint that depends only on the relative separations of the partons

and not on j. If one likes, one may take these K particles to be connected by

springs in a ring in order to give a discrete model of a quantum string.

Since the potential Vj largely models gravitational redshift effects in each mi-

crostate background, we will take each parton to experience the same potential

V parton whose parameters ωparton, Lparton, V
parton

0 we fix below in terms of the pa-

rameters of the particle model (2.85). The full Hamiltonian is

H =
K∑

i=1

(
Kp2

i

2m
+ V parton(xi)

)
+ εint. (2.89)

We begin in the regime where the external potential ωparton is small compared to all

scales in the internal potential εint. This models microstates, like the maximally-

rotating solution, whose structures are large compared to the string scale. In this

regime the internal degrees of freedom are effectively in their ground state and

we obtain a “tight binding” limit in which any differences between the xi are

small compared to any scales in the external potential. The result is an effective

description of the parton composite as a single particle of mass m moving in a

1-particle potential KV parton evaluated at the center of mass coordinate x̄. The
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effective physics exactly matches the single-particle model above if we identify

V parton =
Vj
K
. (2.90)

This implies Lparton = L, ωparton = ω and KV parton
0 = V0.

So long as C > 1, there is a ground state bound to the well in which

〈x̄2〉 ≈ 1

2mω
. (2.91)

The harmonic oscillator approximation to V (x̄) implies that the ground state

energy of the composite system is

E0 ≈ Etight binding :=
ω

2
− V0 + ε0, (2.92)

where ε0 is the ground state energy of Hamiltonian describing the intra-parton

couplings.

However, the properties of the model become very different at ω � εint, i.e. as j

decreases towards typicality. Any bound partons are much more strongly coupled

to the external potential than to each other; if the partons remained bound, the

ground state of the composite system would have each parton separately in the

ground state of the potential V parton. However, defining Cparton in analogy with

(2.88) yields

Cparton :=
m

K
ωpartonL

2
parton =

C

K
. (2.93)

This is the quantity that counts states bound to the external potential when

interactions between partons can be ignored. Taking K & C partons, the number
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of such bound states will become less than one in this regime and it will be

inconsistent to continue to treat all partons as bound in the external potential.

Instead, the partons pop out of the external potential well and experience only

the flat potential V parton
1 = V1/K to good approximation when K � 1.7 As a

result, the actual ground state energy in this regime will be

Emodel, min ≈ V1 + εint =
1

2
mω2L2−V0 + εint = Etight binding + (εint− ε0) +

ω

2
(C− 1).

(2.94)

Taking C > 1 so that there is at least initially a bound state, the corrections to the

tight binding energy are positive. They scale with ω at large ω and so counteract

any tendency of Etight binding to slowly decrease due to the j-dependence of V0.

The behavior at smaller K is similar.

Note that the analogue of the ERS effective potential is Etight binding, and that

this generally differs from the actual ground state energy that would arise from

putting all the particles inside the external potential well. The latter knows about

the internal structure of the composite particle, while the ERS potential does not.

Writing Emodel, min in terms of Etight binding clearly displays the extra positive term

that exhibits stabilization.

To summarize, in our toy model decreasing j causes the ground state energy

to decreases for a while as the instability proceeds. However, it then begins to

increase again when the zero-point oscillations of the probe string no longer fit

7At any given time, some of the partons will in fact lie within their potential well. This effect
can be estimated by studying the effective potential K〈V parton〉x̄, where the notation indicates
the expectation value of V parton for some one parton in the approximation that x̄ is held fixed
but that the system is otherwise in its ground state. One finds it to be of order 1/

√
K, so we

neglect it.
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into the external potential well. Analogous behavior for the ERS phenomenon

would mean that the instability stabilizes when the evanescent ergosurface devel-

ops string-scale structure, which occurs as the CFT state approaches typicality.

2.2.11 Discussion

We have argued that an adiabatic limit of the ERS instability of the 2-charge

D1-D5 system is described by motion along a family of microstate geometries

associated with the D1-D5 CFT. In particular, due to the emission of radiation

to infinity, the angular momentum labelling the relevant microstate geometries

should be thought of as a slowly-evolving function of time j(t). When the in-

stability is very weak and this evolution is especially slow, there is time for any

perturbation to induce transitions between microstates and the geometry at any

time t should admit an approximate description as the ensemble of all supersym-

metric geometries with angular momentum j(t), described in [47]. At large j

the ERS instability is consistent with entropic reasoning in the CFT and indeed

could have been anticipated on such grounds. From the field theory point of view,

the instability simply causes evolution from states described by rare collections of

twist operators to those described by more generic such collections.

On the other hand, entropic reasoning suggests that the instability terminates

when j approaches jtypical ∼
√
n1n5. Since this is also the regime where stringy

corrections to [52] naturally become large, we suggested that the system is indeed

stabilized at such j. A plausible scenario is that the zero-point oscillations of any

perturbing string then prohibit it from taking full advantage of the strong redshift

near the evanescent ergosurface as this surface also exhibits string-scale structure.
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A full analysis is beyond our scope, but the toy model of § 2.2.10 illustrates how

this effect might tame the instability.

It is important to emphasize that we have argued for stabilization only in our

adiabatic limit. Since the ERS instability is non-linear, it will evolve quickly under

large perturbations that take the system far away from the supersymmetric moduli

space. It appears difficult to analyze this regime, and one could well imagine the

endpoint in the case being either a horizon-free (but not smooth) solution with

string-scale structure (a.k.a. a rough microstate), or a traditional black hole. As

usual in this field, the question remains open for future investigation.

It would be interesting to consider a similar analysis for the 3-charge system.

While in that setting it is unclear that there is any geometric analogue of typical

microstates, one may in any case choose to study known classes of geometric

solutions. Some initial steps involving the addition of Aichelburg-Sexl shockwaves

to one such family are taken in appendix 2.2.12, but it remains to check that the

conjectured fields do in fact satisfy the supergravity equations of motion, or to

study more typical 3-charge microstates [75].

Even with our presumed stabilization at j ∼ jtypical, the fact that it modifies

the ERS instability only when the supergravity description breaks down means

that much of the physical interpretation of ERS remains intact: the slightest

perturbation will cause microstates with large angular momentum to collapse,

with the likely endpoint being (geometrically) indistinguishable from the M = 0

BTZ black hole. This does not prevent one from preparing the black hole in such

a microstate but, depending on parameters, it could well cause the microstate to

collapse and absorb the observer into its structure before she can sail through any
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smooth region where the spacetime caps off.
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2.2.12 Appendix: Instability of 3-charge microstate ge-

ometries

We now discuss the ERS instability for the special class of 3-charge geometries

constructed in [76, 77, 78, 79] and studied also by ERS [52]. Building on the 2-

charge solution of §2.2.8 (but now with rotation along both angles ϕ and ψ of the

S3 turned on) dual to Ramond ground states, the action of spectral flow (2.49)

with α 6= ±1 yields excited states. In addition to D1 and D5 brane charge,

these solutions have momentum excitations along the common D1-D5 direction.

We review this special class of 3-charge solutions from the CFT and geometry

descriptions and then briefly discuss the ERS instability along the same lines

as § 2.2.9.
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CFT

States in the D1-D5 CFT with momentum excitations along the common y

direction correspond to excited Ramond sector states. Starting with the Neveu-

Schwarz vacuum we can generate excited states in the Ramond sector through

the action of spectral flow (2.49). The 3-charge states of interest are obtained by

acting on the Neveu-Schwarz vacuum in the left-moving sector with

α = 2n+ 1 with n integer , (2.95)

and in the right-moving sector with α = 1 (so that the right movers are in their

Ramond ground state and the CFT is supersymmetric). After spectral flow (2.49)

with (2.95) the states in the symmetric product theory have dimensions (h, h̃) and

charges (j, j′):

h = 1
4
(2n+ 1)2n1n5 , h̃ = 1

4
n1n5 , (2.96)

j = −1
2
(2n+ 1)n1n5 , j′ = −1

2
n1n5 . (2.97)

We get D1-D5-p states carrying momentum charge

np = h− h̃ = n(n+ 1)n1n5 , (2.98)

along the S1 and angular momenta

jψ = −j′ + j = −nn1n5 , jϕ = −j′ − j = (n+ 1)n1n5 , (2.99)
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on the angles of the S3.

Geometry

The special class of 3-charge solutions obtained from the spectral flow (2.108)

of the maximally rotating 2-charge solution (2.64) are given by [77, 79]

ds2
R = −1

h
(dt2 − dy2) +

Qp

hf
(dt− dy)2 + hf

(
dr2

r2 + (γ̃1 + γ̃2)2η
+ dθ2

)

+h

(
r2 + γ̃1(γ̃1 + γ̃2)η − (γ̃2

1 − γ̃2
2)ηQ1Q5 cos2 θ

h2f 2

)
cos2 θdψ̃2

+h

(
r2 + γ̃2(γ̃1 + γ̃2)η +

(γ̃2
1 − γ̃2

2)ηQ1Q5 sin2 θ

h2f 2

)
sin2 θdϕ̃2

+
Qp(γ̃1 + γ̃2)2η2

hf
(cos2 θdψ̃ + sin2 θdϕ̃)2

−2

√
Q1Q5

hf

(
γ̃1 cos2 θdψ̃ + γ̃2 sin2 θdϕ̃

)
(dt− dy)

−2
(γ̃1 + γ̃2)η

√
Q1Q5

hf

(
cos2 θdψ̃ + sin2 θdϕ̃

)
dy , (2.100)

where

η ≡ Q1Q5

Q1Q5 +Q1Qp +Q5Qp

, (2.101)

f = r2 + (γ̃1 + γ̃2)η(γ̃1 sin2 θ + γ̃2 cos2 θ) , (2.102)

γ̃1 = a
jψ
n1n5

= −an , γ̃2 = a
jϕ
n1n5

= a(n+ 1) , (2.103)
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while the functions h,H1, H5 are as in §2.2.8. The dilaton and gauge fields are

eΦ = g

√
H1

H5

, (2.104)

C2 = −
√
Q1Q5 cos2 θ

H1f
(γ̃2dt+ γ̃1dy) ∧ dψ +

√
Q1Q5 cos2 θ

H1f
(γ̃1dt+ γ̃2dy) ∧ dϕ

+
(γ̃1 + γ̃2) ηQp√
Q1Q5H1f

(Q1dt+Q5dy) ∧
(
cos2 θdψ + sin2 θdϕ

)

− Q1

H1f
dt ∧ dy − Q5 cos2 θ

H1f

(
r2 + γ̃2(γ̃1 + γ̃2)η +Q1

)
dψ ∧ dϕ. (2.105)

This solution has n1 units of D1 branes and n5 units of D5 branes wrapping the

S1, np units of momentum along the S1 and jψ, jϕ units of angular momenta

on the S3. The dimensionful quantities in (2.100) are related to these quantized

values by (using (2.98))

Q1 =
gα′3

V
n1 , Q5 = gα′n5 , Qp =

g2α′4

V R2
np = −γ̃1γ̃2 . (2.106)

For n = 0, i.e. in the absence of momentum Qp = 0, we have η = 1 , γ̃1 = 0 , γ̃2 = a

thus recovering (2.64).

The energy and angular momenta are

E = Q1 +Q5 + 2Qp , Jψ̃ = γ̃1R
√
Q1Q5 , Jϕ̃ = γ̃2R

√
Q1Q5 (2.107)

and the coordinate transformation correponding to spectral flow (2.49) with (2.95)
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is given by

ψ = ψ̃ − α̃ a√
Q1Q5

y + (α̃− 1)
a√
Q1Q5

t , ϕ = ϕ̃− α̃ a√
Q1Q5

t+ (α̃− 1)
a√
Q1Q5

y .

(2.108)

For α̃ = 1 this reduces to the coordinate transformation (2.66) for which the

metric in the near-horizon limit r � √Q and a � √Q � R (implying Qp � Q

and η → 1) becomes AdS3 × S3 dual to the NS vacuum. The exicted Ramond

states obtained from spectrally flowing the NS vaccuum with (2.95) are dual to

geometries obtained from AdS3 × S3 via the coordinate transformation (2.108)

with α̃ = n.

Aichelburg-Sexl in excited AdS3 × S3

The same procedure as in §2.2.9 suggests that the addition of massless parti-

cles to the class of 3-charge solutions (2.100) is described by the geometries 8

ds2
R = −1

h̄
(dt2 − dy2) +

Qp

h̄f̄
(dt− dy)2 + h̄f̄

(
dr̄2

r̄2 + (¯̃γ1 + ¯̃γ2)2η
+ dθ2

)

+h̄

(
r̄2 + ¯̃γ1(¯̃γ1 + ¯̃γ2)η − ξ (¯̃γ2

1 − ¯̃γ2
2)ηQ1Q5 cos2 θ

h̄2f̄ 2

)
cos2 θdψ̃2

+h̄

(
r̄2 + ¯̃γ2(¯̃γ1 + ¯̃γ2)η + ξ

(¯̃γ2
1 − ¯̃γ2

2)ηQ1Q5 sin2 θ

h̄2f̄ 2

)
sin2 θdϕ̃2

+
Qp(¯̃γ1 + ¯̃γ2)2η2

h̄f̄
(cos2 θdψ̃ + sin2 θdϕ̃)2 (2.109)

−2ξ

√
Q1Q5

h̄f̄

(
γ̃1 cos2 θdψ̃ + γ̃2 sin2 θdϕ̃

)
(dt− dy)

−2ξ
(γ̃1 + γ̃2)η

√
Q1Q5

h̄f̄

(
cos2 θdψ̃ + sin2 θdϕ̃

)
dy

8The dilaton is as in (2.104), while the RR 2-form picks up an extra piece proportionl to
(1− ξ) relative to (2.104) as in [62].

74



Black holes and branes Chapter 2

where

¯̃γi =
√
ξγ̃i. (2.110)

In particular, in the near-horizon limit this yields an Aichelburg-Sexl shockwave

propagating along both angles of the S3:

ds2
NS = −

(
r2 + a2

) dt2√
Q1Q5

+ r2 dy2

√
Q1Q5

+
√
Q1Q5

dr2

r2 + a2

+
√
Q1Q5

(
dθ2 + cos2 θdψ2 + sin2 θdϕ2

)

+
q
√
Q1Q5

f

{[(
r2 + a2

) dt√
Q1Q5

+ γ̃1 cos2 θdψ + γ̃2 sin2 θdϕ

]2

−
[
r2dy

Q
− γ̃2 cos2 θdψ − γ̃1 sin2 θdϕ

]2 }
.(2.111)

We have not checked that this is a solution other than for the trivial cases q = 0

and q = 1. Assuming that it is, we may then again describe an adibatic limit of the

ERS instability as the growth of q with time. Again, this causes the backreacted

solution to shrink as a function of time, decreasing the angular momentum by a

factor ξ = 1− q while leaving the total energy unchanged:

Ē = Q1 +Q5 + 2Qp , J̄ψ̃ = γ̃1R
√
Q1Q5ξ , J̄ϕ̃ = γ̃2R

√
Q1Q5ξ . (2.112)

As in the 2-charge case, the solution will continue to shrink at least until we can

no longer trust the ERS analysis at ξ ∼ 1/
√
n1n5 = 1/

√
N . In the large N limit

this corresponds to taking ξ → 0. Making this replacement in (2.109) yields the

near-horizon metric of extremal BTZ black hole with a transverse S3:

ds2
R =

r̄2

√
Q1Q5

(−dt2 + dy2) +
Qp√
Q1Q5

(dt− dy)2
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+
√
Q1Q5

(
dr̄2

r̄2
+ dθ2 + cos2 θdψ̃2 + sin2 θdϕ̃2

)
. (2.113)

This is the near-horizon limit of the 5d non-rotating D1-D5-p (Strominger-Vafa)

black hole [80]. Hence this preliminary analysis suggests that, as in the 2-charge

case, the ERS instability proceeds until the 3-charge microstate is geometrically

indistinguishable from the extremal BTZ black hole outside its putative horizon.
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2.3 Four-point function in the IOP matrix model

String theory captures the microscopic physics of black holes via the brane

description, but the corresponding spacetime description of the microstates is not

always obvious; most systems do not seem to have a straightforward geometric

description of the microstates along the lines of the D1-D5 model above. However,

one can still study the field theories that describe the dynamics of these brane

systems at low energies and hope to learn something about the underlying black

hole mechanics. Perhaps the simplest such system consists entirely of branes of

one type – we can consider N D0-branes, by T-duality. While the spacetime

description of the D0-brane black hole is complex, its field theory description is

very simple: maximally supersymmetric matrix quantum mechanics [129, 8, 6].

Much can be learned by studying probes of the D0 black hole, and a particu-

larly simple probe is another D0 brane. The field theory describing the interactions

of the D0 black hole and probe is not solvable but slight modification simplifies the

system significantly [81, 83], in fact leading to exact solubility in the limit where

the number of D0 branes in the black hole becomes large. This enables one to

study features of the black hole in the brane field theory, provided the simplified

models accurately capture those aspects of the black hole physics.

In [81, 83] it was shown that these simplified models capture an important

aspect of black hole physics: apparent thermalization at infinite N , corresponding

to the pure gravity limit, with non-thermal effects becoming visible at subleading

orders. However, another ubiquitous feature of black holes is chaos: the exponen-

tial dependence of gravitational potential as a function of r near the horizon leads

to rapidly growing separations between nearby perturbations of the horizon [95].
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Chaos can be diagnosed by exponential growth in the commutator squared,

〈[O(t),O(0)]2〉 ∼ e2λt (2.114)

or equivalently in the out-of-time-order four-point correlation function. We com-

puted the out-of-time-order four-point function in these models but found that it

is oscillatory rather than exponentially growing at late times. This indicates that

these systems do not in fact model black hole chaos.

2.3.1 Introduction

Matrix models are useful toy models of gauge theories and holography. Strongly

coupled quantum field theories are difficult to understand directly, having a pro-

hibitively large set of Feynman diagrams that must be summed. A good model

should have a sufficiently small and well-organized set of diagrams, allowing for the

computation of the full planar correlation functions. The diagrammatic structure

should, however, be sufficiently nontrivial so as to capture the essential features

of the bulk.

The IP model [81] is a simple large-N system of a harmonic oscillator in the

U(N) adjoint representation plus a harmonic oscillator in the U(N) fundamental

representation, coupled through a trilinear interaction. It has the same graphical

structure as the ’t Hooft model of two-dimensional QCD [82]. The IOP model

[83] is a more tractable variant of the IP model. It possesses the same degrees

of freedom, but the trilinear interaction is replaced by one that is quartic in the

oscillators but quadratic in the U(N) charges. Building on ideas of [84], the IP
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and IOP models were introduced in [81, 83] as toy models of the gauge theory

dual of an AdS black hole. These models capture a key property of black holes:

the long time decay of the two-point function at infinite N , but not at finite N

[85].

In this paper we compute the thermal four-point function in the IOP model in

the planar limit. The motivation for studying the four-point function comes from

recent work in quantum chaos and holography [86, 87, 88, 89, 90, 91, 92, 154, 94,

95, 96, 97, 98, 99, 100, 101, 150]. A signature of quantum chaos in a large-N theory

is the exponential growth in time of the connected out-of-time-order four-point

function [103]. The growth rate is identified as a Lyapunov exponent. A black hole

has a Lyapunov exponent of 2πT [87, 89], which is the maximal possible Lyapunov

exponent [88]. The significance of the out-of-time-order four-point function as a

diagnostic for the viability of a model of holography was recognized in [86].

In Sec. 2.3.2 we review the role of the two-point function as a diagnostic of

thermalization. In Sec. 2.3.2 we review the role of the out-of-time-order four-point

function as a diagnostic of chaos. In Sec. 2.3.2 we briefly mention the Sachdev-

Ye-Kitaev model [104, 87], which was recently recognized to be maximally chaotic

[87]. We point out that the random coupling can, to leading order in 1/N , be

replaced by a quantum variable.

In Sec. 2.3.3 we review the calculation of the planar two-point function in the

IP model. In Sec. 2.3.3 we compute the planar four-point function. This involves

summing ladder diagrams, which can only be done analytically in the limit of

small adjoint mass, to which we restrict ourselves.

In Sec. 2.3.4 we review the planar two-point function in the IOP model. In
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Sec. 2.3.4 we compute the planar four-point function. Diagrammatically, the

IOP model is more involved than the IP model. However, it has the advantage

of allowing analytic computations for any adjoint mass. For both the IP and

IOP models, we work in the limit that the mass of the fundamental is heavy, as

compared to the temperature.

In the regimes considered, we find that the IP and IOP models are not chaotic.

Some speculations on why this is so, and possible modifications of the models, are

mentioned in Sec. 2.3.5.

2.3.2 Thermalization, chaos, and large N

Thermalization

Holography has provided useful insights into both strongly coupled field the-

ories, as well as their gravity duals. A well-studied property of a black hole is its

approach to equilibrium after a perturbation. A two-point function computed in

a black hole background exhibits late time decay of the form [105, 106],

〈ϕ(t)ϕ(0)〉 ∼ e−ct/β , (2.115)

where c is an order-one constant and β is the inverse temperature. The late time

decay of the two-point function has a clear interpretation in the bulk: matter

falls into the black hole, but classically nothing escapes. Computing subleading

corrections in GN to (2.115) does not prevent the late time decay.

As recognized in [85], the late time decay to zero of a two-point function is

inconsistent with the properties of a finite entropy quantum mechanical system.
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Figure 2.3: The basic graphical unit of the Hamiltonian (2.116) studied in [84].

On the field theory side, one thus has the statement that, to all orders in 1/N ,

the two-point function decays to zero at late times, even though this property

does not hold nonperturbatively in 1/N . The two-point function 〈ϕ(t)ϕ(0)〉β can

be regarded as the overlap between the states ϕ(0)|β〉 and ϕ(t)|β〉; its decay is a

probe of thermalization. Therefore, the large N limit acts like a thermodynamic

limit [84].

This late time breakdown of perturbation theory was studied in the context

of matrix quantum mechanics in [84]. Reducing Yang-Mills on a sphere in terms

of spherical harmonics, one obtains a Hamiltonian whose essential features can be

captured by considering just two interacting matrices. For instance, [84] considers

two large N matrices M1,M2 with a Hamiltonian,

H =
2∑

i=1

1

2
Tr(Ṁi

2
+ ω2

iM
2
i ) + λTr(M1M2M1M2) . (2.116)

The relevant diagrams for the decay of the two-point function are the sunset

diagrams shown in Fig. 2.3.

The model (2.116) has the drawback of still being too complicated to allow

the summation of all planar Feynman diagrams. The goal of [81] was to find a
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i ij

Figure 2.4: The basic graphical unit of the IP model (2.117) studied in [81]. It
is like the diagram in Fig. 2.3, but cut in half. A single line is a fundamental,
a double line is an adjoint.

matrix model that is more tractable, while still exhibiting the late time decay of

the planar two-point function. The IP model [81] is given by the Hamiltonian,

HIP = mTr(A†A) +Ma†a+ ga†Xa , (2.117)

where ai is the annihilation operator for a harmonic oscillator in the fundamental

of U(N), while Aij is the annihilation operator for an oscillator in the adjoint, and

Xij = (Aij+A
†
ji)/
√

2m. 1 As we review in Sec. 2.3.3, the planar two-point function

can be found if one takes the mass of the fundamental to be large compared to

the temperature, M � T . For a general mass m for the adjoint, the planar

Schwinger-Dyson equation for the two-point function can be solved numerically,

exhibiting the desired late time exponential decay. In the limit of small mass for

the adjoint, m→ 0, the two-point function can be found analytically, giving late

time power law decay.

A variant of the IP model, the IOP model, was introduced in [83],

HIOP = mTr(A†A) +Ma†a+ ha†ialA
†
ijAjl . (2.118)

1Since the highest term in the Hamiltonian (2.117) is cubic, there is no ground state. This is
cured by adding a stabilizing term, a†a(a†a−1), which vanishes in the relevant sectors a†a = 0, 1
[81].
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This model has the feature that analytic computations are possible for any mass

m. It again exhibits power law decay of the two-point function at long times.

Chaos

Chaos in deterministic systems is understood as aperiodic long-term behavior

that exhibits sensitive dependence on initial conditions. Two points in phase

space, characterized by a separation δx(0), will initially diverge at a rate,

δx(t) = δx(0) eκt, (2.119)

where κ is the Lyapunov exponent.

For a number of reasons [107], there is no straightforward extension of chaos

to quantum systems. In the semiclassical regime, [103] gave an intuitive definition

of chaos. Replacing the variation in (2.119) by a derivative, and noting that this

is given by a Poisson bracket,

∂x(t)

∂x(0)
= {x(t), p(0)} , (2.120)

the generalization to quantum systems consists of replacing the Poisson bracket

by a commutator. The commutator is generally an operator, so seeing exponen-

tial growth requires taking an expectation value. The expectation value of the

commutator in the thermal state will vanish, as a result of phase cancelations. A
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simple way to cure this is to consider the square of the commutator [103], 2

〈[x(t), p(0)]2〉 ∼ ~2e2κt . (2.121)

Alternatively, one can consider the thermal expectation value of the commutator

times the anticommutator; this will scale as ~. Either of these consist of sums of

out-of-time-order four-point functions. The important point is that a chaotic sys-

tem has an out-of-time-order four-point function that exhibits exponential growth.

The exponential growth persists until a time of order −κ−1 log ~, at which point

the commutator saturates at an order one value.

For a large N field theory, 1/N plays the role of ~, and the classical limit

is the infinite N limit. For matrix models, such as the IP and IOP models,

leading order in 1/N corresponds to keeping the planar Feynman diagrams. The

criteria of chaos for evaluating the viability of a model is a powerful one, that

was recognized in [86]. A good model of a strongly coupled gauge theory should

having an exponentially growing out-of-time-order four-point function. Moreover,

if it is to be dual to a black hole, the Lyapunov exponent must match that of a

black hole [87, 89].

2The expectation value in (2.121), and elsewhere, is in the thermal state. The Lyapunov
exponent depends on the temperature: this is the familiar statement from classical chaos that
regions of phase space that do not mix have different Lyapunov exponents. If we were working in
the microcanonical ensemble, then the energy would be conserved. Note also that the definition
of the Lyapunov exponent that is being used is nonstandard, in that it is a local Lyapunov
exponent, rather than involving a time average.
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Thermalization and chaos

There is generally an intimate connection between thermalization and chaos.

In the context of classical systems, there is a precise version of this statement

[108], which we now review.

Letting A and B be regions of phase space, occupying phase space volumes

µ(A) and µ(B), respectively, and letting ϕt denote time evolution, a dynamical

system is said to be mixing if µ [ϕtA ∩B]→ µ(A) · µ(B) as t→∞, for all sets A

and B. In the notation of quantum mechanics, this is the statement that a system

is mixing if the (connected) two-point function of any two operators decays to zero

at late time. A system is defined to be ergodic if for every function f , the time

mean of f(x) is equal to the space mean of f(x). It is shown in [108] that mixing

implies ergodicity, but ergodicity does not necessarily imply mixing.

It is important to note that for a system to be mixing, the two-point function

of all operators must decay. In fact, the IP and IOP models do not satisfy this

criteria, as it is only the two-point functions of the fundamentals that exhibit late

time decay. 3 The adjoints have a two-point function of a free harmonic oscillator;

they have no self-interaction, and the interaction generated via the fundamentals

is 1/N suppressed. Thus, exponential growth of the out-of-time-order four-point

function for the fundamentals is a more refined criteria than the decay of the

two-point function of the fundamentals at long times.
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Figure 2.5: The basic graphical unit of the SYK model (2.122). The solid lines
are fermions χi, the dotted line is the coupling Jjklm.

SYK model

Kitaev has proposed a variant of the Sachdev-Ye model [104] as a model of

holography [87]. The SYK model consists of N � 1 Majorana fermions χi with a

quartic interaction with random coupling Jjklm,

HSY K =
1

4!

N∑

j,k,l,m=1

Jjklm χjχkχlχm , (2.122)

where couplings are drawn from the distribution,

P (Jjklm) ∼ exp(−N3J2
jklm/12J2) , (2.123)

giving a disorder average of,

J2
jklm =

3!J2

N3
, Jjklm = 0 . (2.124)

Remarkably, one can analytically compute the disorder averaged large-N corre-

lation functions in the SYK model at finite temperature and strong coupling,

3In other words, the IP and IOP models not fully thermalizing. If they had been, the absence
of chaos in these models would have been puzzling.
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+

Figure 2.6: The dashed lines indicate Jjklm, while the sold lines are the fermions
χi. Treating Jjklm as a quantum field, the quantum corrections to the two-point
function are suppressed by 1/N3.

βJ � 1. The two-point function exhibits exponential late time decay, see [104,

109, 87, 110]. The out-of-time-order four-point function exhibits exponential

growth [87],

〈χi(t)χj(0)χi(t)χj(0)〉 ∼ 1

N
e2πt/β . (2.125)

For studies of the four-point function, see [87, 101, 111, 112].

An important aspect of the SYK model is the quenched disorder: if the cou-

pling Jjklm where instead a fixed constant, there would be additional Feynman

diagrams that would contribute at leading order in 1/N . Here we simply point out

that the disorder Jjklm can be replaced by a quantum variable, as the quantum

corrections are 1/N3 suppressed.

Recall that the disorder averaged expectation value of an operator O composed

of the fields χi is,

〈O〉 =

∫
DJjklm e−J

2
jklmN

3/12J2

∫
Dχi O e−

∫
dtL

∫
Dχi e−

∫
dtL

. (2.126)

The interpretation of (2.126) is that one first computes the expectation value 〈O〉

with some coupling Jjklm drawn from the distribution (2.123), and then averages

over the Jjklm. If one were to instead treat Jjklm as a static quantum variable,

87



Black holes and branes Chapter 2

then the expectation value of O would be given by,

〈O〉 = Z−1

∫
DJjklm Dχi Oexp

(
−N3J2

jklm/12J2 −
∫
dt L

)
. (2.127)

In terms of Feynman diagrammatics, if Jjklm is a classical Gaussian-random pa-

rameter, then it has a two-point that is exactly 3!J2/N3. If instead Jjklm is

a quantum variable, then its leading two-point function can be chosen to be

3!J2/N3, however this will receive quantum corrections, as shown in Fig. 2.6.

Thus, generally (2.126) and (2.127) are different. However, for the SYK model,

the first quantum correction is suppressed by a factor of 1/N3: the loop diagram

in Fig. 2.6 has two Jjklm propagators, giving a factor of (3!J2/N3)2 . So, at leading

order in 1/N , (2.126) and (2.127) are the same. Equivalently, the effective action

for Jjklm is

e−W [Jjklm] =

∫
Dχi exp

(
−J2

jklmN
3/12J2 −

∫
dt L

)
= e−J

2
jklmN

3/12J2

+ . . . ,

(2.128)

at leading order in 1/N . Note that the structure of the vacuum is different de-

pending on if Jjklm is quenched disorder or a quantum field: the vacuum loop

scales like N , and receives a correction of the same order from interactions with

χi, as there is now a summation over the indices. This, however, is irrelevant for

the purposes of connected correlation functions.

The variable Jjklm is still not yet a standard quantum variable, due to the con-

straint that it be static. There are a few somewhat artificial ways to achieve this.

One could add to the action a term J̇jklmϕ, where ϕ is some Lagrange multiplier

field. A better option is to regard Jjklm as the momenta of harmonic oscillators
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for which the frequency is taken to zero. Consider a harmonic oscillator with the

standard Lagrangian, (mẋ2 − mω2x2)/2. The Euclidean two-point function for

the momentum is 〈p(t)p(0)〉 = mωe−ωt/2. Now take the limit of ω → 0, so as

to remove the time dependance. Letting mω = 12J2N−3, the momenta have the

same two-point function as (2.124).

2.3.3 IP model

The IP model [81] is a quantum mechanical system, with a harmonic oscillator

in the adjoint of U(N) and a harmonic oscillator in the fundamental of U(N),

coupled through a trilinear interaction. The Hamiltonian for the IP model is

given by (2.117). The two-point function is found by summing rainbow diagrams

(see Fig. 2.7) and is reviewed in Sec. 2.3.3. The four-point function is given by a

sum of ladder diagrams (see Fig. 2.8), which we evaluate in Sec. 2.3.3.

Two-point function

The bare zero temperature propagator for the fundamental is defined as,

G0(t)δij ≡ 〈Tai(t)a†j(0)〉eiMt . (2.129)

Trivially, one has that,

G0(t) = θ(t), G0(ω) =
i

ω + iε
. (2.130)

It will be assumed that fundamental has a large mass, M � T , where T is the

temperature. In this case, the bare finite temperature two-point function is the
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=

+

Figure 2.7: The Schwinger-Dyson equation for the propagator G(ω) in the
IP model, in the planar limit. Arrows point from creation operators toward
annihilation operators. A single line denotes the free propagator G0(ω), a line
with a shaded box is the dressed propagator G(ω), and a double line is the
adjoint propagator K(ω). Iterating generates a sequence of nested rainbow
diagrams.

same as the bare zero temperature two-point function.

The adjoints have no self-interaction, and the backreaction from interactions

with the fundamental is suppressed by 1/N . Thus, the propagator for the adjoint

is that of a free oscillator in a thermal bath,

K(ω) =
i

1− y

(
1

ω2 −m2 + iε
− y

ω2 −m2 − iε

)
, (2.131)

where we have defined y = e−m/T . It will be useful for later to note that in the

limit that the adjoints become massless, m→ 0 (y → 1), their two-point function

becomes,

K(ω) =
2π

1− yδ(ω
2 −m2) . (2.132)

The planar two-point function for the fundamental is found by summing rain-

bow diagrams. The Schwinger-Dyson equation for the two-point function is given

by (see Fig. 2.7):

G(ω) = G0(ω) + λG0(ω)G(ω)

∫
dω′

2π
G(ω′)K(ω − ω′) , (2.133)
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where the ’t Hooft coupling is λ = g2N . In general, such an integral equation is

difficult. However, the assumption that M � T implies that G(t) = 0 for t < 0.

As a result, G(ω) has no poles in the upper half plane, allowing us to close the

integration contour in (2.133) in the upper half plane ω′ plane. Picking up the

residues at ω′ = ω ± m, the Schwinger-Dyson equation turns into a difference

equation,

G(ω) =
i

ω + iε

(
1− λ

1− y
G(ω)

2m
(G(ω −m) + yG(ω +m))

)
. (2.134)

This can be solved numerically [81], however to proceed analytically we take the

limit of small adjoint mass and small ’t Hooft coupling,

m→ 0, ν2 =
2λ

m(1− y)
= const. (2.135)

In this limit one finds [81],

G(ω) =
2i

ω +
√
ω2 − 2ν2

. (2.136)

Here the ω should really be an ω+ iε; we will generally suppress the iε, remember-

ing that all the poles are in the lower half complex plane. The Fourier transform

of the two-point function is a Bessel function,

G(t) =

∫
dω

2π
G(ω)e−iωt =

√
2

νt
J1(
√

2νt) θ(t) . (2.137)

We will later encounter integrals of a similar form, so we show (2.137) in some
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detail. For positive times, the ω contour in (2.137) wraps around the branch cut

stretching from −
√

2ν < ω <
√

2ν. 4 Using (2.136) and moving the square root

to the numerator, we rewrite (2.137) as,

G(t) =
i

ν2

∫
dω

2π

(
ω −
√
ω2 − 2ν2

)
e−iωt . (2.138)

The integral of the first term vanishes, while the second is twice a line integral,

G(t) =
1

ν2
(1− eiπ)

∫ √2ν

−
√

2ν

dω

2π

√
2ν2 − ω2 e−iωt , (2.139)

which gives (2.137). Now let us redo the calculation for the Fourier transform

(2.137) slightly differently. Taking G(ω) in the form (2.136) and changing variable

to,

x = ω +
√
ω2 − 2ν2, ω =

x2 + 2ν2

2x
, (2.140)

gives,

G(t) =

∫
dx

2π

i

x

(
1− 2ν2

x2

)
e
− i

2

(
x+ 2ν2

x

)
t
. (2.141)

The ω contour in (2.137) that hugs the branch cut maps into an x contour that is

a circle of radius
√

2ν and centered around the essential singularity at the origin.

4Our ω integral was from −∞ < ω < ∞. For positive time, we close the contour in the
lower half plane. The branch cut is slightly below the real axis, and so is inside the contour.
We can shrink the contour so that it hugs the branch cut. For negative times, the ω integral
is closed in the upper half plane, and so gives zero. Also, our choice of location for the branch
cut corresponds, for instance, to writing

√
ω2 − 2ν2 = ωexp

(
1
2 log(1− 2ν2/ω2)

)
and taking the

principal branch for the logarithm.
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Using the integral representation of the Bessel function,

Jn(t) =
i

2π

∫
dx x−n−1e

1
2
t(x−x−1) , (2.142)

where the contour circles clockwise around the origin, we have,

G(t) =
(
J0(
√

2νt) + J2(
√

2νt)
)
θ(t) , (2.143)

which is equal to (2.137). At late time, νt� 1, the propagator decays as G(t) ∼

t−3/2.

Four-point function

We now turn to the connected four-point function. In the planar limit, it

consists of a sum of ladder diagrams, as shown in Fig. 2.8. The ingoing momenta

are ω1, ω2, while the outgoing momenta are ω3, ω4. 5 As in the case of the two-point

function, to proceed analytically we must work in the limit specified in (2.135).

In this limit, the propagator for the adjoint is given by (2.132).

Consider the ladder diagram that consists of a single rung. It is given by,

(−ig)2

∫
dp

2π
G(ω1)G(ω1 − p)G(ω2)G(ω2 + p)K(p) . (2.144)

Now inserting

δ(p2 −m2) =
1

2m
[δ(p−m) + δ(p+m)] (2.145)

5The ingoing momenta are drawn in Fig. 2.8 as coming from the upper left and lower right
in order for the diagram to look planar.
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G4    =
i

i

j

j

t1

t4

t3

t2

+

i

i

j

j

t1

t4

t3

t2

+  ...

Figure 2.8: The planar four-point function G4 (2.147) in the IP model. Ladders
with n = 1 and n = 2 rungs are shown.

into (2.144), evaluating the integral, and then taking the m → 0 limit, yields for

(2.144),

(−ig)2

m(1− y)
G(ω1)2G(ω2)2 . (2.146)

We now sum all the ladder diagrams. As a result of the limit (2.135), all the

pieces appearing in the Feynman diagrams are on-shell. DefiningG4(ω1, ω2, ω3, ω4) =

δ(ω1−ω3)δ(ω2−ω4)G4(ω1, ω2), and letting n denote the number of rungs, we have

NG4(ω1, ω2) =
∞∑

n=1

( −λ
m(1− y)

)n
(G(ω1)G(ω2))n+1 =

−ν2

2
G(ω1)2G(ω2)2

1 + ν2

2
G(ω1)G(ω2)

,

(2.147)

where ν was defined in (2.135).
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The Fourier transform of (2.147) gives the position space four-point function,

NG4(t31, t42) = −ν
2

2

∫
dω1

2π

dω2

2π

G(ω1)G(ω2)
ν2

2
+G(ω1)−1G(ω2)−1

e−iω1t31 e−iω2t42 , (2.148)

where we have defined t31 ≡ t3 − t1, t42 ≡ t4 − t2. In addition, G(ω) really

denotes G(ω + iε); we suppress the iε, remembering that, if we are using G in a

time-ordered correlator, all the poles are in the lower-half complex plane.

Free propagator

The propagator entering the four-point function (2.148) is given by (2.136).

As a warmup, it is useful to study (2.148) with the free propagator (2.130), rather

than the dressed one. In this case we have,

NḠ4(t31, t42) = ν2

∫
dω1

2π

dω2

2π

1

ω1ω2

1

ν2 − 2ω1ω2

e−iω1t31 e−iω2t42 . (2.149)

Performing the ω2 integral, and closing the contour in the lower half plane, we

pick up poles at ω2 = 0 and ω2 = ν2/2ω1,

NḠ4(t31, t42) = −θ(t42)θ(t31) + θ(t42)

∫
dω1

2πi

1

ω1

e
−i
(
ω1t31+ ν2

2ω1
t42

)
. (2.150)

Using the integral representation of the Bessel function (2.142), we get,

NḠ4(t31, t42) =
(
J0(
√

2t31t42ν)− 1
)
θ(t31)θ(t42) . (2.151)
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Eq. 2.151 is the time-ordered four-point function, as evidenced by the theta func-

tions. We can obtain the out-of-time-order four-point function by dropping the

theta functions. In particular, setting t31 = −t42 = t gives,

NC(t) = I0(
√

2νt)− 1 . (2.152)

In the limit νt� 1,

C(t)→ 1

23/4
√
πνtN

e
√

2νt . (2.153)

By summing only a subset of the Feynman diagrams: the ladder diagrams

with undressed propagators, we have found exponential growth in the out-of-

time-order four-point function. While intriguing, using the free propagator is

certainly not legitimate, as it violates unitarity; classically it would be equivalent

to violating Liouville’s theorem. However, before evaluating (2.148) with the

dressed propagator, it will be instructive to study (2.149) a bit further.

Returning to (2.150), and taking the limit of large t31, t42, we approximate the

integral via the method of steepest descent (see Appendix 2.3.6). This involves

deforming the contour of integration in order for it to pass through the saddle

point, at an angle so as to maintain constant phase. The saddle point of the

exponent,

f(ω1) = ω1t31 +
ν2

2ω1

t42 , (2.154)

occurs at ω̃1 = ±ν
√
t42/2t31. As we continue from a time-ordered four-point

function, to an out-of-time-order four-point function, t42 → −t42, the saddle moves

off of the real axis and onto the imaginary axis. At t31 = −t42 = t, the saddle is

at ω̃1 = ±iν/
√

2. The leading exponent in the integral in (2.150) can therefore be
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approximated by,

e−itf(ω̃1) = e
√

2νt , (2.155)

reproducing (2.153).

Let us also reproduce (2.151) by returning to (2.147) and computing the

Fourier transform of each term before taking the sum. From (2.147) and (2.130)

we have,

Ḡ4(ω1, ω2) = −
∞∑

n=1

(
ν2

2

)n
1

(ω1ω2)n+1
. (2.156)

The Fourier transform gives,

Ḡ4(t31, t42) =
∞∑

n=1

(
ν2

2

)n
(−t31t42)n

(n!)2
θ(t31)θ(t42) =

(
J0(
√

2t31t42ν)− 1
)
θ(t31)θ(t42) ,

(2.157)

where we have made use of the series definition of the Bessel function.

The expression (2.157) is easy to see directly in time-space. Since the free

two-point function for the fundamental is simply θ(t) (2.130), a ladder diagram

with n rungs will have n + 1 propagators for the fundamentals on each of the

two sides. For one such side we have a product of theta functions, with the time

insertions of the rungs integrated over. For the top side,

∫ t3

t1

dtan . . .

∫ ta3

t1

dta2

∫ ta2

t1

dta1 =
1

n!
tn31 , (2.158)

and similarly a factor of tn42/n! from the bottom side. Accounting for the coupling

at each vertex, −ig, as well as the sum over indices, and the factor of m−1(1−y)−1

coming from the adjoint propagator, we recover the sum in (2.157).

If we wish to form an out-of-time-order four-point function, for instance with

97



Black holes and branes Chapter 2

t42 < 0, then on the bottom edge of the ladder diagrams, time runs backwards:

we must use a two-point function that is θ(−t) rather than θ(t). In addition,

since time is running backwards on the bottom edge, the interactions come with

a factor of ig, instead of −ig. This results in the elimination of the minus sign in

the sum in (2.157), and correspondingly gives exponential growth.

Dressed propagator

We now return to the frequency-space four-point function (2.147), and eval-

uate the Fourier transform (2.148), this time using the full dressed propagator.

Inserting the propagator G(ω) (2.136) into (2.148) gives,

NG4(t31, t42) = −G(t31)G(t42)

+ 4

∫
dω1

2π

dω2

2π

1

2ν2 − (ω1 +
√
ω2

1 − 2ν2)(ω2 +
√
ω2

2 − 2ν2)
e−iω1t31 e−iω2t42 ,

(2.159)

where we have split off a G(ω1)G(ω2) from (2.147), giving the first term in (2.159).

Changing integration variables to xi = ωi +
√
ω2
i − 2ν2 gives,

NG4(t31, t42) = −G(t31)G(t42)

+

∫
dx1

2π

dx2

2π

(
1− 2ν2

x2
1

)(
1− 2ν2

x2
2

)
1

2ν2 − x1x2

e
− i

2

(
x1+ 2ν2

x1

)
t31 e

− i
2

(
x2+ 2ν2

x2

)
t42 .

(2.160)

Our goal is to see if (2.160) exhibits exponential growth; if this does occur,

it will be in the out-of-time-order regime, such as t31 = −t42 = t. We consider
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the late time limit, 6 and approximate (2.160) via the saddle point method (Ap-

pendix 2.3.6): we seek to deform the contours of integration of x1, x2 such that

they pass through a saddle, at an angle such that the phase is constant. If we

are away from the poles of the integrand, the saddle point occurs at xi = ±
√

2ν,

which clearly only gives oscillatory behavior. Now consider the regions at the

poles of the integrand, at x1x2 = 2ν2. This a peculiar region, as

ω =
x

2
+
ν2

x
(2.161)

is invariant under x → 2ν2/x. Inserting this x2 = 2ν2/x1 into the exponent in

(2.160) , the exponent becomes,

exp

(
− i

2

(
x1 +

2ν2

x1

)
(t31 + t42)

)
, (2.162)

which does not give rise to the exponential growth indicative of chaos. Moreover,

for t31 = −t42, it simply vanishes.

2.3.4 IOP model

We now turn to the IOP model [83]. Like the IP model, this is a quantum

mechanical system, with a harmonic oscillator in the adjoint of U(N) and a har-

monic oscillator in the fundamental of U(N). However, the interaction is now

quartic in the oscillators (2.117), and quadratic in the U(N) charges. The latter

property makes the IOP model more analytically tractable than the IP model,

6Since we are working in the planar limit, late time is still before the scrambling time, which
scales as logN .
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Figure 2.9: Planar Feynman graphs for the fundamental propagator G(ω)
(2.166) in the IOP model. The shaded rectangles mark the full planar prop-
agators. Arrows point from creation operators toward annihilation operators.
The graphs for n = 0, 1, 2 are shown.

although diagrammatically it is more involved. As in the IP model, we consider

the limit in which the fundamental is heavy, M � T . However, we can now obtain

analytic results at any mass m for the adjoint. We review the two-point function

in Sec. 2.3.4, and compute the four-point function in Sec. 2.3.4.

Two-point function

The bare propagator for the fundamental is the same as in the IP model

(2.130). The propagator for the adjoint is that of free harmonic oscillator in a

thermal bath, defined by L(t)δilδjk = 〈TAij(t)A†kl(0)〉, and giving,

L(ω) =
i

1− y

[
1

ω −m+ iε
− y

ω −m− iε

]
. (2.163)
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The Schwinger-Dyson equation for the planar two-point function for the funda-

mental is (see Fig. 2.9),

G(ω) = G0(ω) +G0(ω)G(ω)
∞∑

n=0

Sn(ω) , (2.164)

Sn(ω) = (−ihN)n+1

∫
dn+1~ω

(2π)n+1
L(−ω1)

n∏

l=1

[G(ω − ωl+1 − ω1)L(ωl+1)] .(2.165)

As G only has poles in the lower-half plane, we can close the ωi integrals in the

lower-half plane and pick up residues only from L. This leads to an algebraic

equation for G, with the solution [83],

G(ω) =
2i

λ+ ω +
√

(ω − ω+)(ω − ω−)
, ω± = λ

1 + y ± 2
√
y

1− y , (2.166)

where the ’t Hooft coupling is λ = hN . The propagator has a branch cut from

ω− to ω+, leading to late-time power law decay, t−3/2.

Four-point function

We now turn to the four-point function in the planar limit. The connected four-

point function is found by summing ladder-like diagrams, shown in Fig. 2.12, where

each “rung” of the ladder is found by summing an infinite number of diagrams, like

the ones shown in Fig. 2.10. We warm up by computing the four-point function

in the limit of small adjoint mass m, before doing the calculation for arbitrary m.
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Figure 2.10: Planar diagrams contributing to a “rung” Γ in the IOP model.
Diagrams with n,m = 0, 1, 2 are shown.

Small adjoint mass

We start with the limit m→ 0. In particular,

m→ 0, κ ≡ λ

1− y , (2.167)

where κ is held constant. In this limit, the two-point functions for the adjoint

(2.163) and the fundamental (2.166) become,

L(ω) =
1

1− y2πδ(ω −m) , (2.168)

G(ω) =
2i

ω +
√
ω(ω − 4κ)

. (2.169)
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To compute the four-point function, we first sum the diagrams shown in Fig. 2.10,

to get

Γ(ω1, ω2, ω3, ω4) =
(2π)2

N
Γ(ω1, ω2)δ(ω13)δ(ω24) , (2.170)

where ωij ≡ ωi − ωj and,

Γ(ω1, ω2) =
∞∑

n,m=0

G(ω1)nG(ω2)m(−iκ)n+m+2 =
−κ2

(1 + iκG(ω1))(1 + iκG(ω2))
,

(2.171)

where the index n/m labels the number of intermediate fundamental propagators

on the top/bottom edge. As in the IP model, as a result of the m → 0, all

intermediate propagators are on-shell. The four-point function is given by the

ladder-like sum of the Γ (see Fig. 2.12),

NG4(ω1, ω2) =
∞∑

k=1

Γ(ω1, ω2)k(G(ω1)G(ω2))k+1

=
G(ω1)G(ω2)

1− Γ(ω1, ω2)G(ω1)G(ω2)
−G(ω1)G(ω2) . (2.172)

Inserting (2.171) into (2.172) gives the frequency-space four-point function

G4(ω1, ω2, ω3, ω4) = (2π)2δ(ω13)δ(ω24)G4(ω1, ω2) where,

NG4(ω1, ω2) =
−κ2G(ω1)2G(ω2)2

1 + iκ(G(ω1) +G(ω2))
. (2.173)

Like in the IP model, we find exponential growth in the out-of-time-order four-

point function if we only sum the diagrams containing the free propagator: (2.173)

with (2.130) and t31 = −t42 = t gives a four-point function ∼ N−1exp(2κt) for

large t.
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Now consider (2.173) with (2.169). The position-space four-point function is

thus,

NG4(t31, t42)=

∫
dω1

2π

dω2

2π

−κ2G(ω1)G(ω2)

G(ω1)−1G(ω2)−1 + iκ(G(ω1)−1 +G(ω2)−1)
e−iω1t31e−iω2t42 .

(2.174)

Changing integration variables to xi = ωi +
√
ω(ω − 4κ), (2.174) becomes

NG4(t31, t42) =

∫
dx1

2π

dx2

2π

(x1 − 4κ)

(x1 − 2κ)2

(x2 − 4κ)

(x2 − 2κ)2

−4κ2

x1x2 − 2κ(x1 + x2)

× e
−i x2

1
2(x1−2κ)

t31e
−i x2

2
2(x2−2κ)

t42 . (2.175)

We approximate the integral by taking the limit of large time separations, and

looking for saddle points which could give rise to exponential growth. Picking up

the pole at x1x2 = 2κ(x1 + x2), the exponent becomes,

exp

(
−i x2

1

2(x1 − 2κ)
(t31 + t42)

)
. (2.176)

Like in the IP model, there is no exponential growth.

Arbitrary adjoint mass

We now compute the four-point function, with the adjoints taking arbitrary

mass m. The Feynman diagrams contributing to “rung” Γ are shown in Fig. 2.10.

A term in this sum, having n fundamental propagators on the upper edge and m

104



Black holes and branes Chapter 2

 ω1

ω4

ω3

ω2

r1 r2

ω1 - p1 ω1 - p2

ω2 - q1

i

i

j

j

Figure 2.11: One of the diagrams entering Γ in Fig. 2.10, given by n = 2,m = 1
in (2.177).

on the lower, is given by,

(−iλ)n+m+2

∫
dn~p

(2π)n
dm~q

(2π)m
dr1

2π
L(r1)L(r2)

n∏

i=1

G(ω1−pi)L(r1+pi)
m∏

j=1

G(ω2−qj)L(r2+qj) ,

(2.177)

where the ingoing frequencies are ω1, ω2, the outgoing frequencies are ω3, ω4, and

we have defined r2 = r1 + ω1 − ω3, and suppressed an overall factor of N−1. In

Fig. 2.11 the n = 2,m = 1 diagram from Fig. 2.10 is shown in more detail. Since

G(ω1 − pi) has poles in the upper half pi plane, we close the contour in the lower

half plane. Similarly for the qi integral. This gives for (2.177),

(−iλ)n+m+2

(1− y)n+m

∫
dr1

2π
L(r1)L(r2) G(ω1 + r1 −m)nG(ω2 + r2 −m)m . (2.178)

Evaluating the integral over r1 by closing the contour in the upper half-plane,

(2.178) becomes, 7

7The adjoint propagator L is given by (2.163). We denote the epsilon for L(r1) by ε1, and for
L(r2) by ε2. Without loss of generality, we choose ε2 > ε1. One can equally well choose ε2 < ε1;
this can be seen by rewriting (ω1−ω3− i(ε2− ε1))−1 = (ω1−ω3 + i(ε2− ε1))−1 + 2πiδ(ω1−ω3),
and noting that δ(ω1 − ω3)(G(ω3)nG(ω2)m −G(ω1)nG(ω4)m) = 0.
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iy(−iλ)n+m+2

(1− y)n+m+2

[
G(ω1)nG(ω4)m

(
1

ω1 − ω3 + iε1 + iε2
− y

ω1 − ω3 + iε1 − iε2

)

+ G(ω3)nG(ω2)m
(

1

ω3 − ω1 + iε2 + iε1
− y

ω3 − ω1 − iε1 + iε2

)]
. (2.179)

To sum over all the diagrams contributing to Γ (see Fig. 2.10), we must sum

(2.179) over n,m from 0 to infinity. This gives Γ = yΓ̃ where,

−iΓ̃(1, 2, 3, 4) =
z(1, 4)

ω1 − ω3 + iε
− y z(1, 4) + (1− y) z(2, 3)

ω1 − ω3 − iε
, (2.180)

where we have defined,

z(j, l) =
−κ2

(1 + iκG(ωj))(1 + iκG(ωl))
, (2.181)

and have simplified notation to denote ωj by j, and recall that κ ≡ λ/(1 − y).

One can also rewrite Γ̃ in (2.180) as,

yΓ̃ = y2 z(1, 4) 2πδ(ω1 − ω3) + y(1− y)

[
i z(1, 4)

ω1 − ω3 + iε
− i z(2, 3)

ω1 − ω3 − iε

]
, (2.182)

which, recalling that ω1 + ω2 = ω3 + ω4, is manifestly symmetric under ω1 ↔

ω2, ω3 ↔ ω4.

Attaching external propagators to (2.180) gives the first term in the sum for

the four-point function shown in Fig. 2.12. The second term requires gluing two

of the Γ̃ together,

(Γ̃× Γ̃)(1, 2, 3, 4) ≡
∫
dωa
2π

G(a)G(ā) Γ̃(1, ā, a, 4) Γ̃(a, 2, 3, ā) , (2.183)
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+ +  ...

G4   =
ω1

ω4

ω3

ω2

ω1

ω4 ω2

ω3
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j

j

j
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Figure 2.12: The planar four-point function consists of ladders formed by gluing
together the diagrams shown in Fig. 2.10.

where ωā = ωa + ω4 − ω1. Performing the integral in (2.183) by closing the ωa

contour in the upper-half plane gives,

Γ̃× Γ̃ = G(2)G(3) z(2, 3) Γ̃ +
i(1− y)

ω1 − ω3 + iε
G(1)G(4) z(1, 4)

(
z(1, 4)− z(2, 3)

)
,

(2.184)

where both the Γ̃ × Γ̃ on the left, and the Γ̃ on the right, are functions of the

external ωi.

Let us simplify notation and let (Γ̃)2 denote Γ̃ × Γ̃, defined by (2.183). We

define (Γ̃)n, arising from gluing n of the Γ̃ together, in an analogous fashion,

(Γ̃)n(1, 2, 3, 4) ≡
∫
dωa
2π

G(a)G(ā) (Γ̃)n−1(1, ā, a, 4) Γ̃(a, 2, 3, ā) . (2.185)

We compute (Γ̃)n iteratively, by gluing together (Γ̃)n−1 and Γ̃. The result is,

(Γ̃)n = G(2)G(3) z(2, 3)(Γ̃)n−1+
i(1− y)

ω1 − ω3 + iε

(
G(1)G(4)z(1, 4)

)n−1(
z(1, 4)−z(2, 3)

)
,

(2.186)
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where we have for convenience expressed (Γ̃)n in terms of (Γ̃)n−1. Next, we sum

all the (Γ̃)n. Denoting the sum by S,

S =
∞∑

n=1

(Γ)n , (2.187)

where recall that Γ = yΓ̃, and separating off the n = 1 term and using (2.186) for

the rest, we get,

S
(

1−yG(3)G(2)z(2, 3)
)

= Γ+
i

ω1 − ω3 + iε

y2(1− y)G(1)G(4)z(1, 4)
(
z(1, 4)− z(2, 3)

)

1− yG(1)G(4)z(1, 4)
.

(2.188)

The four-point function is given by S, with external propagators attached.

Thus, the connected four-point function for the IOP model in the planar limit

is,

NG4(1, 2, 3, 4) =

A(1, 2, 3, 4) 2πδ(ω1+ω2−ω3−ω4)

(
yz(1, 4)2πδ(ω1 − ω3) + y(1− y)

iB(1, 2, 3, 4)

ω1 − ω3 + iε

)
,

(2.189)

where

A(1, 2, 3, 4) =
G(1)G(2)G(3)G(4)

1− yG(2)G(3)z(2, 3)
, (2.190)

B(1, 2, 3, 4) =
z(1, 4)− z(2, 3)

1− yG(1)G(4)z(1, 4)
, (2.191)

where j denotes the frequency ωj, the propagator G(i) for the fundamental is given
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by (2.166), the constant y is the Boltzmann factor y = e−m/T where m is the mass

of the adjoint and T is the temperature, and z(j, l) was defined in (2.181) and is

a function of G(j), G(l), and κ = λ/(1− y), where λ is the ’t Hooft coupling. In

the limit of small adjoint mass m (y → 1), the first term in (2.189) survives and

reproduces the earlier result (2.173). The out-of-time-order four-point function

does not exhibit exponential growth with time, for reasons similar to those seen

in the small adjoint mass limit (2.175, 2.176); see Appendix 2.3.7.

2.3.5 Discussion

The absence of exponential growth in the out-of-time-order four-point function

implies that the IOP model is not chaotic. In fact, there is a heuristic way to

understand the absence of chaos in the IOP model. The interacting part of the

Hamiltonian (2.118) can be written as,

Hint = −h qliQil, qli = −a†ial, Qil = A†ikAkl . (2.192)

As a result of the absence of self-interactions for the adjoints, combined with the

assumption of large fundamental mass M � T , the number of fundamentals is

time-independent and,

ai(t) = e−ihQiltal(0) . (2.193)

Since Q is a hermitian matrix, it has real eigenvalues, and so the norm of the ai

operators does not grow.

If we relax the assumption that M � T , the above argument is no longer

applicable, though this may not be sufficient to make the model chaotic. Heuris-
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tically, chaos is associated with rapid growth. As we evolve a fundamental, it is

emitting and absorbing adjoints. Since the adjoints have no self-interaction, and

conversion of an adjoint into two fundamentals is suppressed by 1/N , the only

way for the adjoints to continue evolving in between emissions and absorptions is

if they interact with fundamentals in the thermal bath.

It may be useful to modify the IOP model, so as to have several flavors of

fundamentals. Also, the interaction (2.192) can written in terms of the quadratic

Casimirs, −hq ·Q = 1
2
hTr(q2 +Q2− (q+Q)2), allowing a computation of the two-

point function at finite N through a sum over Young tableaux [83]. One could

study the four-point function in this way as well.
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2.3.6 Appendix A: Steepest descent

In this appendix, we review some aspects of evaluating integrals by the method

of steepest descent, see e.g. [113]. Consider an integral of the form,

∫
dz g(z) e−itf(z) , t� 1 , (2.194)

where the integral is evaluated along some contour. For now, let g(z), f(z) be

smooth functions; we will discuss later how to relax this assumption. Since t� 1,

the integrand generically undergoes rapid oscillations which cancel out. The idea

will be to deform the contour of integration so as to follow a path for which the

phase remains constant. As long as we do not cross any singularities, we are free

deform the contour. Splitting f(z) into a real and imaginary part,

f(z) = u(z) + iv(z) , (2.195)

we need to deform the contour to follow a path of constant u(z). The most

relevant region of the integrand is one in which the real part is maximized. Letting

z = a+ ib,

∂v

∂a
=
∂v

∂b
= 0 . (2.196)

As a result of the Cauchy-Riemann equations, this amounts to finding the saddle

points, f ′(z) = 0. Therefore, the prescription for approximating (2.194) is to

focus on the vicinity of the dominant saddle point, and choose a direction for the

contour that moves away from the saddle point so as to maintain constant phase

u(z).
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As an example, consider the integral representation of the Bessel function,

K0(t) =
1

2

∫ ∞

−∞
dx

e−itx√
1 + x2

(2.197)

This has a branch cut, x ∈ (−i∞,−i)∪(i, i∞). We perform a change of variables,

x = sinhu, thereby bringing (2.197) into the form (2.194),

1

2

∫ ∞

−∞
duexp(−it sinhu) . (2.198)

Extermizing f(u) = sinhu, the saddle points are at u = ±πi/2. The line of con-

stant phase passing through the saddle points is one that runs along the imaginary

axis. We deform the contour so that it runs along −∞ < u < −iπ/2. Moving

downward from u0 = −iπ/2 is a direction of steepest descent. In the vicinity of

the saddle,

f(u) = f(u0) +
f ′′(u0)

2
(u− u0)2 + . . . . (2.199)

Defining a new variable z as u = u0 − iz, (2.198) becomes,

∫ ∞

0

dzexp

(
−t− tz

2

2

)
=

√
π

2t
e−t , (2.200)

which is the correct large t expansion of K0(t).

We have so far discussed approximating (2.194) by the behavior near the saddle

point. There are several contexts in which other regions may be relevant. If the

contour has endpoints, then one must analyze the behavior near the endpoints.

Additionally, if g(z) has singularities, then one must analyze the integrand near

those regions as well. In particular, it may happen that there is no way to deform
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the contour into the relevant steepest descent contour, without passing through

singularities. If the singularity of g(z) is a simple pole, then we may simply deform

through it, picking up the contribution of the pole. If, instead, g(z) has a branch

cut or an essential singularity, we must analyze the integrand in the vicinity of

these regions.

For instance, consider again approximating (2.197), but without changing vari-

ables. In this case, g(x) = (1 + x2)−1/2 and f(x) = x. The exponential has no

saddle points, so we focus on the regions where g(x) is large: near x = ±i. We

integrate along a direction running parallel to the imaginary axis, as we still need

to maintain constant phase for the exponent. Letting x = −i− ρi, with ρ� 1 so

that
√

1 + x2 ≈ √2ρ, (2.197) is approximated by,

e−t√
2

∫ ∞

0

dρ
e−ρt√
ρ
, (2.201)

where we have extended the range of integration to infinite ρ, as its contribution

is negligible. Evaluating (2.201) gives (2.200).

2.3.7 Appendix B: Four-point integral

The four-point function for the IOP model is,

G4(t1, t2, t3, t4) =

∫
dω1

2π

dω2

2π

dω3

2π
G4(ω1, ω2, ω3, ω4) e−iω1t41−iω2t42−iω3t34 , (2.202)

where ω4 = ω1 + ω2 − ω3 and G4(ω1, ω2, ω3, ω4) is given by (2.189).

Our eventual interest is the out-of-time-order four-point with time separations

t41 = 0, t34 = −t42 = t and large t. At large t, the exponent in (2.202) undergoes
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rapid oscillations as ω2, ω3 are varied. Since the exponent clearly has no saddle

point, the only regions which could lead the four-point function to grow expo-

nentially are those in which G4(ω1, ω2, ω3, ω4) is singular. We thus hold ω1 fixed,

and scan over ω2, ω3, looking for regions in which the frequency-space four-point

function is divergent. The relation between ω2 and ω3 where this occurs then

determines the form of the exponent in (2.202), which can then be written just

as a function of ω2. This function may have saddles, which will either lead to an

oscillatory exponent or a growing one.

There are two terms in G4(ω1, ω2, ω3, ω4) given by (2.189). Consider the first

of these,

y
z(1, 4)G(1)G(2)G(3)G(4)

1− yG(2)G(3)z(2, 3)
2πδ(ω1 − ω3) , (2.203)

where, as before, G(j) denotes G(ωj). It is convenient to rewrite (2.203) as

yG(2)G(3)
1

z(2, 3)−1G(2)−1G(3)−1 − y2πδ(ω1 − ω3) , (2.204)

where from (2.181) we have that,

z(j, l)−1G(j)−1G(l)−1 = − 1

κ2
(G(j)−1 + iκ)(G(l)−1 + iκ) . (2.205)

It is convenient to rewrite the propagator (2.166) as,

G(j) =
2i

xj
, xj = κ(1− y) + ωj +

√
ω2
j − 2(1 + y)κωj + κ2(1− y)2 . (2.206)
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Inverting the relation between ωj and xj,

ωj =
xj
2

(
1 +

2κy

xj − 2κ

)
. (2.207)

Notice that (2.207) has a symmetry; ωj is invariant under,

xj − 2κ→ 4κ2y

xj − 2κ
. (2.208)

This is analogous to the invariance seen in the IP model, see (2.161), as well as

in the IOP model earlier, for y = 1. Now, the term (2.204) is singular when the

denominator vanishes. Substituting (2.205, 2.206), this occurs at −x2x3 +2κ(x2 +

x3)− 4κ2(1− y) = 0, which is,

x3 = 2κ

(
1 +

2κy

x2 − 2κ

)
. (2.209)

As a result of the invariance (2.208), this implies ω2 = ω3. This is the same as

what was seen for the IOP model at y = 1, see (2.176). Thus, the exponent in

(2.202), as a function of ω2, is oscillatory, and the same holds at the location of

its saddle.

Now consider the second term in G4(ω1, ω2, ω3, ω4), which is,

y(1− y)
G(1)G(2)G(3)G(4)

1− yG(2)G(3)z(2, 3)

z(1, 4)− z(2, 3)

1− yG(1)G(4)z(1, 4)

i

ω1 − ω3 + iε
. (2.210)
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It is convenient to rewrite (2.210) as,

y(1− y)
z(2, 3)−1 − z(1, 4)−1

(z(2, 3)−1G(2)−1G(3)−1 − y)(z(1, 4)−1G(1)−1G(4)−1 − y)

i

ω1 − ω3 + iε
.

(2.211)

We regard (2.211) as a function of ω2, ω3, where recall that ω4 = ω1 + ω2 − ω3.

The nontrivial singularities in (2.211) arise from (z(2, 3)−1G(2)−1G(3)−1−y) = 0,

which as shown in (2.209) implies ω2 = ω3, or from (z(1, 4)−1G(1)−1G(4)−1−y) =

0, which again gives ω2 = ω3. Thus, there is no regime of exponential growth for

the four-point function.
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2.4 Remarks on brane and antibrane dynamics

Brane systems in string theory are of great interest since they correspond to

black holes, but their uses are far more general. Restricting just to their applica-

tions in phenomenology, stacks of branes naturally give rise to gauge groups [337]

and allow for the construction of compactifications that could include the Stan-

dard Model [338, 339, 340], while providing the architecture of a lower-dimensional

world inside a higher-dimensional compactification in brane world scenarios [341].

They are crucial in string constructions of inflating universes [342] with a positive

cosmological constant [131] and can mediate transitions between different vacua

with different cosmological constants [343], which can be used (at least schemati-

cally [344, 345]) to dynamically explain the small value that we observe.

Any phenomenologically viable string construction of our universe must at

minimum exhibit its gross properties: four large spacetime dimensions, the ab-

sence of supersymmetry at low scales, and a positive cosmological constant, to

name a few. While the first two are relatively well-understood [346, 347, 348],

explicit models with a positive cosmological constant are difficult to construct.

The essential issue is the absence of supersymmetry at any scale: the temperature

inherent to expanding space breaks supersymmetry completely.

The lack of supersymmetry raises the specter of instability, since there is al-

ways the possibility of decay to a supersymmetric vacuum. While some degree of

metastability is acceptable – over timescales comparable to the age of our universe,

for example – more violent instability will predict a rapid decay to supersymmetry,

conflicting with observation and ruining the model. One approach is to begin with

a stable supersymmetric model and then break supersymmetry slightly; an exam-
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ple is the KKLT construction [131], where a stable compactification is modified

by the addition of branes with an orientation opposite to the background (“an-

tibranes”) that break supersymmetry and raise the cosmological constant above

zero.

The stability of these antibrane models has been the subject of debate since

their debut, centered over the past decade largely around the question of diver-

gent fluxes. A number of works (see [336] for references) have pointed out that

solutions to Einstein’s equations in the background with antibranes have p-form

electromagnetic fluxes that diverge near the antibrane. It was argued that these

divergent fluxes could spur brane-flux annihilation, or push the antibranes into

another part of the geometry where their effects would not be visible. However,

below we argued that these divergences are merely artifacts of studying the broken

supergravity theory outside of its regime of validity and that brane actions should

be treated as in effective field theory, with the introduction of counterterms and

matching onto a full string theory calculation necessary for the correct determi-

nation of the antibrane potential. We estimate the relevant diagrams and show

that they are small at weak coupling, thus the addition of a few antibranes does

not destabilize the KKLT construction.

2.4.1 Introduction

Brane actions are important for understanding many aspects of string physics.

However, their precise interpretation is somewhat ambiguous. A brane is a source

for the bulk fields, which are singular at the brane itself. If these fields are then

inserted into the brane action, the result is divergent. Many applications use a
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probe approximation, in which the self-fields of a brane are not included in the

brane’s action. This is like a formal limit in which the number of branes goes to

zero.

A more general approach is to interpret the brane action in the context of

effective field theory. Here, all effects are included, and divergences are treated

via the usual framework of EFT [114]. For brane actions, this has been developed

in Ref. [115], which shows that renormalization is the appropriate tool even for

classical divergences such as those described above.1 This can even lead to renor-

malization group flows of the type usually associated with quantum loops. In this

paper we develop this point of view further, and show that it is useful in resolving

some vexing issues in the literature.

In §2 we present a simple model that illustrates how the framework of Ref. [114]

applies to branes. We discuss the matching onto the UV theory in various cases. In

§3 we apply the EFT point of view to anti-D-branes in a flux background, focusing

primarily on the case of a single antibrane.2 We recover the phenomenon [118,

119] that in a flux background both branes and antibranes are screened by a

background charge of the opposite sign. Divergences of the screening cloud near

the brane are resolved by matching onto string theory at short distance and are

not sources of instability. We show that possible nonperturbative annihilation

of the antibrane and polarization cloud, while consistent with conservation of

brane charge, is inconsistent with the H3 Bianchi identity. Further, the apparent

impossibility of black branes with antibrane charge [120, 121, 122] is avoided by

1Related earlier work includes Refs. [116].
2For a review of the extensive literature on the supergravity descriptions of antibranes in flux

backgrounds and a complete list of references see [136].
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proper account of a Bohm-Aharonov phase. The only allowed antibrane instability

is the NS5-brane instanton of Ref. [123].

2.4.2 Effective brane actions

We illustrate the principle of effective brane actions with a simple model that

captures the classical divergence problem noted above, and which gives a nice

illustration of the general framework of Ref. [114]. In this model, the only bulk

field is a free massless scalar ϕ in d spacetime dimensions. For now the brane is

fixed on a p+1 dimensional subspace xp+1 = . . . = xd−1 = 0, and it interacts with

the bulk field via a general function of ϕ and its derivatives,

S = −1

2

∫
ddx ∂Mϕ∂

Mϕ+

∫
dp+1x‖ Lbrane(ϕ, ∂) . (2.212)

We will use M,N for all d dimensions, µ, ν for directions tangent to the brane, and

m,n for directions orthogonal to the brane. For given d and p there will be only

a finite number of renormalizable interactions, but in the spirit of effective field

theory we keep all interactions, with nonrenormalizable interactions suppressed

by the appropriate power of a large mass scale Λ. We are imagining that the brane

is described in a UV complete theory such as string theory, in which these general

interactions will be generated. If we are interested in amplitudes to some specified

accuracy in 1/Λ, then only a finite number of interactions contribute [114].

This point of view also requires that we keep general interactions in the bulk,

but for simplicity we have omitted these. The form (2.212) is stable under renor-

malization. To make things even simpler, we restrict the brane action to terms
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quadratic in ϕ, but with arbitrary derivatives. Again, this form is stable under

renormalization.

To begin, we consider the simple interaction 1
2
gϕ2. To first order, Fig. 1a, the

amplitude for k1 → k2 scattering in the presence of the brane is

T (1) = g(2π)p+1δp+1(k1‖ − k2‖) ≡ gδ‖ . (2.213)

Only momenta parallel to the brane are conserved, and we abbreviate the ubiq-

uitous δ-function as indicated.

Figure 2.13: First, second, and third order terms in the amplitude for ϕ to
scatter from the brane.

At second order, Fig. 1b, the amplitude is

T (2) = g2δ‖

∫
drk⊥
(2π)r

1

k2
‖ + k2

⊥
. (2.214)

Here r = d − p − 1 is the number of transverse dimensions. We see that this

integral diverges for r ≥ 2. To analyze this, we cut the integral off at k⊥ = Λ,
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giving

∫ Λ drk⊥
(2π)r

1

k2
‖ + k2

⊥
= (−1)nπCrk

r−2
‖ + 2Cr

∞∑

q=0

(−1)q
k2q
‖ Λr−2−2q

r − 2− q , r = 2n+ 1 ,

= (−1)nCrk
r−2
‖ ln

k2
‖

Λ2
+ 2Cr

∞∑

q=0
q 6=n−1

(−1)q
k2q
‖ Λr−2−2q

r − 2− 2q
, r = 2n .(2.215)

Here Cr = Vr−1/2(2π)r and Vr−1 is the volume of the unit Sr−1. To analyze the

divergences, let us note that the dimension of the interaction
∫
dp+1xϕ2 is

∆ = d− p− 3 = r − 2 . (2.216)

We include the volume element in the dimension, so negative ∆ is relevant, van-

ishing ∆ is marginal, and positive ∆ is irrelevant (nonrenormalizable).

For codimension r = 1, the integral converges. Dropping for now terms sup-

pressed by powers of Λ (we will return to them later), we have

T (2) =
g2

2k‖
δ‖ . (2.217)

This dominates the leading term (2.213) in the IR, as it should because the inter-

action is relevant. Further graphs form a geometric series, beginning with Fig. 1c,

giving in all

T =
2gk‖

2k‖ − g
δ‖ . (2.218)

The interaction is attractive for positive g, consistent with the formation of a

bound state.
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For codimension r = 2, there is a log divergence,

T (2) = − g
2

4π
δ‖ ln

k2
‖

Λ2
. (2.219)

Again we can sum the geometric series,

T =
1

1
g

+ 1
4π

ln
k2
‖

Λ2

δ‖ . (2.220)

The appearance of a logarithm is not surprising because for r = 2 the interaction

is marginal. These logarithms and their RG interpretation were discussed in

Ref. [115]. In conventional renormalization theory, we would take Λ→∞ holding

fixed g(µ)−1 = g−1 + 1
4π

lnµ2/Λ2. In effective field theory, Λ is a fixed UV scale.

The divergence means that the effective field theory calculation is sensitive to

UV physics, but only through local terms. We need to adjust g at this order, to

account for the difference between our simple UV cutoff and the cutoff given by

the true UV physics. We will discuss the matching onto the UV theory below.

The logarithm means that the effective coupling g(µ) runs at scales below Λ. For

positive g (attractive) there is again a pole in the IR, indicating a bound state.

For negative g there is a Landau pole in the UV, but this is not a concern because

this is only an effective theory.

For r = 3 the story is similar but the divergence is linear. The interaction

is nonrenormalizable, so generically one would need more counterterms at higher

loops, but in this simple model the higher loop graphs are just powers of the one

loop graph and additional divergences do not appear.
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For r = 4 we have

T (2) = g2C4

(
Λ2 + k2

‖ ln
k2
‖

Λ2

)
δ‖ . (2.221)

Now there are quadratic and logarithmic divergences, so the result depends on two

parameters from the UV theory. The quadratic divergence requires adjustment

of the original g to match onto the short distance theory. The log divergence

requires a new interaction, (∂‖ϕ)2. To make the power counting clearer we define

a dimensionless coupling κ00 = gΛr−2, so that for r = 4,

T (1) =
κ00

Λ2
δ‖ ,

T (2) = κ2
00C4

(
1

Λ2
+
k2
‖

Λ4
ln
k2
‖

Λ2

)
δ‖ . (2.222)

Because the interaction is irrelevant, ∆ = 2, even its leading effect is proportional

to a negative power of Λ. The second order k‖-independent term is of the same

order in Λ. The k2
‖ interaction comes with Λ−4, as appropriate for a ∆ = 4

interaction. Its effect is suppressed relative to the ∆ = 2 term, but in the spirit of

effective field theory we may be interested in 1/Λ corrections. Note that the first

nonanalyticity in k2
‖ comes in at order Λ−4.

Note that all we are doing is solving the classical field equation

∂2
‖ϕ+ ∂2

⊥ϕ = −gδr(x⊥)ϕ , (2.223)

but that this brings in the full machinery of EFT. Note also that with i∂t replaced

by ∂2
‖ this is the same as the Schrodinger equation with a δ-function potential [124]
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(this has also been noted by the authors of Ref. [115]). The bound states that

we have found for r = 1, 2 are well-known as bound states in the Schrodinger

problem. The case r = 2 is often used as a simple model of renormalization. Our

discussion makes this connection more precise, and shows further that in general

codimension this system also provides a simple model of EFT. (The cases r = 2, 3

are discussed in Ref. [125].)

In our toy example, where we have artificially restricted to interactions linear

in ϕ2, the most general brane action would be

Sbrane =
1

2

∫
dp+1x‖

∞∑

l,j=0

∑

m

κlj
Λ2l+2j+r−2

T jm(∂⊥)∂µ1 . . . ∂µlϕT
jm(∂⊥)∂µ1 . . . ∂µlϕ .

(2.224)

Here T jm is a traceless polynomial of degree j, and m runs over these polynomials.

In writing this we have used field redefinition to remove terms containing ∂2
⊥, and

have integrated by parts with respect to ∂‖ but not ∂⊥. To study amplitudes to

accuracy Λ−s, one would retain all terms with ∆ ≤ s.

We have omitted the brane’s motion for simplicity, but this is readily included.

A simple model, in which we do not try to keep the full d-dimensional Lorentz

invariance, adds in a transverse collective coordinate Xm(x‖), beginning with the

action

S = −1

2

∫
ddx ∂Mϕ∂

Mϕ+

∫
dp+1x‖

(
−τ

2
∂µX

m∂µXm +
g

2
ϕ2(x‖, X⊥(x‖))

)

= −1

2

∫
ddx ∂Mϕ∂

Mϕ

+

∫
dp+1x‖

(
−τ

2
∂µX

m∂µXm +
g

2

[
ϕ(x‖, 0) +Xm∂mϕ(x‖, 0) + . . .

]2)
.

(2.225)
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This now describes brane motion, and processes where scattering of scalars from

the brane is accompanied by excitation of oscillations of the brane. Locality and

translation invariance imply that undifferentiated Xm’s appear only as arguments

of ϕ. The same principles of renormalization apply. These principles apply further

for brane and bulk actions with general fields, including all interactions allowed

by symmetry.

Note that in T (2) the brane is interacting with its own induced field, so this

goes beyond the probe approximation. We have seen that this contribution is

important for the leading IR physics for r = 1, 2. For larger r, it gives the leading

nonanalytic behavior. However, in many situations only the leading behavior

in 1/Λ is of interest. In particular, for branes of high codimension, the probe

approximation T (1) will be sufficient for most purposes. The point of this exercise

is just to illustrate that brane actions can be sensibly interpreted in the framework

of effective field theory.

Given a UV theory (we will consider some examples below), the couplings such

as κlj are determined by calculating some process in both the UV theory and the

effective theory with a given cutoff, and requiring that they agree.3 After this

is done, the effective theory can then be used for any other process. Note that

different cutoffs will give different values for the Λ-dependent terms in integrals

such as (2.215). This is compensated by different values for the couplings in the

effective theory. It does not matter what cutoff we use as long as we are consistent,

so in practice one often makes the simplest choice, dimensional regularization with

3The idea of matching is discussed in many reviews of effective field theory, e.g. [126].
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minimal subtraction, for which

∫
drk⊥
(2π)r

1

k2
‖ + k2

⊥
= (−1)nπCrk

r−2
‖ , r = 2n+ 1 ,

= (−1)nCrk
r−2
‖ ln

k2
‖

µ2
, r = 2n . (2.226)

The absence of power law divergences does not mean that the corresponding

couplings are not generated: we still need to compensate for the difference between

the dimensional regulator and the true UV physics.

Once the effective action is determined, it can be applied to other situations

such as a brane in a background field ϕ (we use a bar to denote the background).

For example, the perturbation of the background by the brane is obtained from

the same graphs as the S-matrix, in which one external state is replaced by ϕ and

the other by a propagator, so the induced field is

ϕind(k) =
1

k2

∫
ddk′

(2π)d
T (k, k′)ϕ(k′) . (2.227)

(Using T here is a slight abuse of notation, because k′ has been taken off-shell). For

illustration, using the probe approximation T (1) with the general action (2.224)

gives in position space

ϕind(x) =

∫
dp+1x′‖

∑

l,j,m

κlj
Λ2l+2j+r−2

T jm(∂′⊥)∂′µ1
. . . ∂′µlϕ(x′)×

T jm(∂⊥)∂µ1 . . . ∂µl
1

(d− 2)Vd−1[(x‖ − x′‖)2 + x2
⊥](d−2)/2

.(2.228)

This diverges at the brane, and the divergence grows with j and l. However, the
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result applies only at momenta small compared to Λ and so at distances large

compared to Λ−1. Similarly, to study the motion of the brane in a background

field, one can use the probe action or, if greater accuracy is needed, add in the

higher corrections — essentially T again, but with both external states replaced

by ϕ (we will see an example of this in Fig. 2b).

For a D-brane, the UV theory is string theory. The amplitude T (1) is the

effective description of the disk with two closed string vertex operators. By cal-

culating this disk amplitude, and requiring that the effective field theory give the

same answer, one determines the brane couplings with any number of derivatives

(the equivalent to the κjl) to leading order in gs.
4 The amplitude T (2) is the ef-

fective description of the annulus with two closed string vertex operators, and so

one would need to match this amplitude to determine the effective action to order

g2
s .

Another situation would be a solitonic brane, such as a magnetic monopole,

vortex, or domain wall in a spontaneously broken QFT. The UV theory would

be the unbroken QFT and the effective theory would describe the brane collective

coordinates plus any light fields. Again one matches a UV calculation to one in

the effective description. In the UV calculation, the key input is the requirement

that the fields of the soliton be nonsingular.

One might try to apply the second method to the D-brane, using its supergrav-

ity description together with a condition such as [128] on allowable singularities.

However, the scale of the supergravity solution for a single D-brane is smaller

than the string length by a power of gs, so this is not a good description. (It is

4A partial list of papers on the disk effective action is given in Ref. [127].
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a valid description if enough D-branes coincide, a point we will return to below.)

If the supergravity approach did give an answer, it would likely not agree with

the correct string theory result, because string theory knows about the scale α′

and supergravity does not. Similarly, if the supergravity approach fails to give an

answer due to singularities deemed bad, this has no physical significance. It is the

matching onto string perturbation theory that is the correct criterion for a good

singularity in the fields external to a D-brane.5

For sufficiently supersymmetric amplitudes, the supergravity calculation will

agree with the string calculation, because of the absence of α′ corrections. This

does not mean that supergravity is an accurate description of a single D-brane.

The magic of supersymmetry sometimes leads to complacency about the validity of

effective descriptions. For example, it has sometimes led to weak/strong dualities

being misunderstood as weak/weak dualities.

2.4.3 Antibranes in fluxes

Application of EFT

De Sitter vacua of string theory may be numerous but they are not simple.

(Meta)stability requires the balance of several forms of energy density [130]. The

KKLT construction [131] begins with a supersymmetric anti-de Sitter vacuum and

excites it by adding one or more antibranes (branes having opposite supersymme-

try to the background). The nature of this supersymmetry breaking has recently

been understood in Ref. [132]. A body of work beginning with Refs. [133, 134]

5For M-branes there is no perturbative description of the UV theory, but Matrix theory [129]
provides a construction of the S-matrix to which the effective theory should be matched.
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has argued that the dynamics of anti-D-branes is complicated and potentially

unstable.

In the KKLT model [131], a single antibrane can be sufficient to uplift an AdS

vacuum to a dS vacuum, and this is the case that we focus on here. The scale

of the geometry is large compared to the string length, so EFT should be valid.

In the effective description the only low energy brane degrees of freedom are the

gauge fields in the Poincaré directions and the collective coordinate for the brane

motion. The only thing the antibrane can do to lower its energy is to move to the

position of lowest potential, the bottom of the Klebanov-Strassler (KS) throat.6

To illustrate the use of EFT, consider a potentially problematic issue, the

backreaction on H3. A low-order contribution is shown in Fig. 2a. A bulk po-

Figure 2.14: a) Lowest order backreaction on H3. The heavy line is the anti-D3
brane, and the × denotes a background field. b) Corresponding contribution
to the brane potential.

tential has scaling dimension 4. Its engineering dimension is 0 since we include

an α′−4 in its kinetic term, but this is not what matters for degree of divergence;

6Of course, if there are massless or light moduli in the vacuum without an anti-branes, adding
the antibrane could destabilize them. See for example Ref. [135]. This would be seen in the
effective field theory.
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henceforth ‘dimension’ refers to scaling unless otherwise specified. The interac-

tion α′−2
∫
d4xC4 has dimension ∆ = 4 − 4 = 0. The Chern-Simons interaction

α′−4
∫
d10xC4∧F3∧H3 has dimension ∆ = 4+5+5−10 = 4. The total dimension

of all interactions in Fig. 2a is then 4, and it follows that

H3 ∝
g2

sα
′2F 3

x4
⊥

, (2.229)

where a bar again denotes the background field. The x−4
⊥ is from the scaling

dimension, and the α′2 has been inserted by engineering dimensional analysis. We

work in the string metric, so the g2
s is from the H3 propagator.7 There is also a

contribution

H3 ∝
gsα

′2H3

x4
⊥

, (2.230)

from a similar graph with gµν in place of F5 and H3 in place of F 3. Even at the

limit of EFT, x⊥ ∼ α′1/2, this is a small perturbation on the background at weak

coupling.

The integral of the energy density g−2
s H2

3 diverges quadratically at the brane.

The corresponding graph is Fig. 2b. The total ∆ of the interactions is 8, and

the leading brane counterterm
∫
d4xF 2

3 has dimension 6, so the divergence again

comes out quadratic. The counterterm is of order

g2
sα
′−1

∫
d4x
√−g4F

2
3 . (2.231)

7The metric and B2 have a g2
s in the propagator; while the RR forms do not depend on gs.

The bulk gravitational interaction contains a g−2
s , while the Chern-Simons terms do not depend

on gs. The coupling of the metric to the brane is proportional to g−1
s , while the coupling of the

RR form to the brane does not depend on gs.
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The factors of α′ from the vertices and propagators cancel, leaving an α′−1 from

the cutoff; the net result is fixed anyway by the (engineering) dimensions. Again,

the numerical coefficient would come from matching to the string annulus graph.

In a similar way we get a counterterm

α′−1

∫
d4x
√−g4H

2
3 . (2.232)

The counterterms (2.231, 2.232) are each one order in gs higher than terms that

are expected in the tree level brane action,

gsα
′−1

∫
d4x
√−g4F

2
3 , g−1

s α′−1

∫
d4x
√−g4H

2
3 , (2.233)

as expected for the annulus in comparison to the disk.

Expanding around a minimum of the potential, one gets a mass correction of

order

α′−1
(
g2

s (∂F 3)2 + (∂H3)2
)
X2 (2.234)

from the annulus corrections (2.231, 2.232). Note that this is a dimensional esti-

mate; the signs and tensor structures are not specified. In particular, the potential

will vanish along Goldstone directions such at the S3 of the Klebanov-Strassler

throat. For comparison, the leading order potential is α′−2g−1
s

∫
d4x
√−g4. We

can estimate the second derivative of this from Einstein’s equation, giving a mass

term of order

α′−2
(
gsF

2
3 + g−1

s H2
3

)
X2 . (2.235)

The mass correction (2.234) is suppressed by gs and also by α′/L2, where L is the
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characteristic scale of the geometry. The effect of the higher derivative tree-level

terms (2.233) is suppressed by α′/L2 but not by gs.

In summary, self-consistent use of effective field theory shows no large cor-

rections that would signal a breakdown. Again, the antibrane’s only degree of

freedom is its position. Energetically this is limited to a bounded space, the

neighborhood of the bottom of the Klebanov-Strassler throat, and so there must

be a minimum, where all perturbations have nonnegative mass-squared.

More on antibrane dynamics

When an antibrane and brane are close together, there is an open string

tachyon between them that leads to their annihilation. However, when the brane

dissolves into flux, its world-volume gauge field is in a confining phase, and strings

cannot terminate in flux, at least perturbatively. There are no degrees of freedom

within the EFT that would describe such an annihilation. But the EFT does

describe the dynamics of the fluxes, and a closer look at these is warranted.

The antibrane can decay via an NS5-brane instanton [123], which mediates

the process

D3 +M units of H3 ∧ F3 → M − 1 D3′s . (2.236)

This is a nonperturbative effect. The backreaction in effective field theory does

not significantly affect the instanton action: the amplitude of Fig. 1c, for example,

is further reduced by the dissolving of the D3 in the NS5. In particular, the flux-

clumping Ansatz of Refs. [119, 121, 136] does not seem to apply.

In the NS5 process [123], the initial configuration is a stack of anti-D3-branes

polarized into an NS5-brane that subtends an angle ψ = ψi. The decay process
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involves ψ tunneling through a potential barrier to a lower-energy final state. For

a single antibrane, the initial ψi would be so small that the description breaks

down: the initial polarization is negligible. However, the decay process for a

single antibrane still requires an NS5-brane instanton in order to source the H3

Bianchi identity, so ψ must pass through large values where the polarization pic-

ture applies, and the dominant contribution to the tunneling action comes from

this region. So the KPV result still applies for the single antibrane.

In Ref. [120, 121], it is shown that there is no black antibrane solution with

D6 charge immersed in a background of the opposite sign.8 This suggests that

finite temperature eliminates the barrier to brane-flux annihilation so that it is

rapid, rather than proceeding via tunneling. However, even if this is true, it does

not provide any evidence for rapid decay at zero temperature. It is quite possible

for a process to be nonperturbatively slow at low temperature and rapid at high

temperature. Electroweak baryon number violation is an important example.

In an earlier version of this work we suggested a more rapid, but still nonper-

turbative, decay. In fact, this does not exist.9 The remainder of this subsection

deals with this. We will focus on the anti-D6 case, which has been worked out in

greatest detail [137, 121]. The key field equations are

d(∗10e
−2ϕH3) = −F0∗10F2 , (2.237)

8At zero temperature, if the antibrane δ-function in Fig. 3b is smoothed, the density has a
volcano shape with a maximum at the rim. Such a maximum at positive polarization density
is forbidden [137] by Eqs. (2.237-2.239), but this is at the string length and so outside the
validity of effective field theory; there is no problem with the distribution in Fig. 3b in string
perturbation theory. A similar argument is used in the black case, but only outside the horizon
where it is valid if the Schwarzschild radius is greater than the string length.

9We thank Eva Silverstein and Juan Maldacena for pointing out our error.
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dF2 = F0H3 + δD6 , (2.238)

dF0 = 0 (2.239)

dH3 = δNS5 . (2.240)

We have translated to string frame for consistency with our earlier discussion.

For completeness every equation should include potential brane sources, but the

F1 sources in (2.237) and the D8 sources in (2.239) will play no role; thus the

zero form F0 is constant. The δD6 is summed with sign over brane and antibrane

sources, and if the space transverse to the D6-branes is compact, it should also

include negative contributions from O6 planes.

Expanding around this background we have in particular

dδF2 = F0δH3 + δδD6 . (2.241)

The brane induces a δF2 via Eq. (2.238), and Eq. (2.237) then leads to a δH3.

On the RHS of Eq. (2.241) this provides a perturbation to the background D6

density due to polarization of the flux background. Eqs. (2.237, 2.238) together

imply a mass-squared term of order e2ϕF 2
0 ≡ µ2 for the perturbations; essentially

F2 Higges H3. The perturbations thus fall exponentially away from the brane.

Integrating Eq. (2.241) over the transverse space, the LHS must then vanish, and

therefore the RHS does as well: the polarization of the background screens that

of the D6 or anti-D6 completely [118, 119], Fig. 3.

The total background charge contained within the volume of the screening
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Figure 2.15: D6 densities in a flux background. In all cases the excess or deficit
in the screening cloud offsets that due to the brane source. a) D6-brane in a
flux background. b) Anti-D6-brane in a flux background. c) Fluctuation of the
anti-D6-brane’s screening cloud down to a size of order the string length.

cloud is of order

H3F 0/µ
3 ∼ eϕF 2

0/µ
3 ∼ 1/e2ϕF 0 . (2.242)

This is large if the flux is dilute and/or the coupling is weak, so we can treat

the screening due to a single D6 as a perturbation. The screening cloud diverges

as we approach the brane, and due to the nonlinearities of the field equation

the expansion of the field near the origin will contain all negative powers of the

distance. However, as in the toy model example, this is not a problem: the brane

effective action gives a precise prescription for matching the fields external to

the brane onto the UV physics at the string length. Further, we have seen from
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Eqs. (2.229, 3.210) that even very close to the brane the screening charge density

is small, so cannot drive any open string model tachyon.

This discussion suggests that the antibrane can annihilate with its polarization

cloud, D3+1 units of H3∧F3 → energy. This was suggested in Refs. [119, 136] as

a means of enhancing the NS5 decay; we have argued above that any such effect

is slight. The process considered in the earlier version of the present work was

a local annihilation, D3 + 1 unit of H3 ∧ F3 → energy. We will see that this is

forbidden by the H3 Bianchi identity.10

One might have thought that something interesting could happen nonper-

turbatively. Consider a fluctuation of the supergravity fields like that shown in

Fig. 3c, where the screening charge concentrates into a very small volume. Is

it possible for the brane and the flux to mutually annihilate? This would con-

serve D6 charge, but we must also consider the H3 Bianchi identity, which we can

think of as a conservation law for the current (∗H)7. The unit D6 charge of the

polarization cloud implies
∫

cloud
H3 = 1/F0, or

H3 ∼ δD6/F0 (2.243)

before the annihilation. After the annihilation the cloud is gone, so there is a

source

dH3 ∼ δ(t)δD6/F0 . (2.244)

This is geometrically consistent with an NS5-brane instanton, but that would

10In the earlier version, the brane-flux annihilation was linked to the breaking of the heterotic
string [138]. That process is consistent with the heterotic string Bianchi and quantization
conditions, as shown explicitly there by a K theory construction.
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give dH3 ∼ δ(t)δD6. The parametric dependence on F0, which is an arbitrary

integer in the natural units that we are using here, allows us to distinguish the

known NS5-brane instanton process from the new brane-flux annihilation process

suggested in version one. We see that the latter is forbidden.

It is interesting to compare the zero-temperature and high-temperature behav-

iors. In the absence of NS5-brane sources H3 = dB2. Integrating the F2 Bianchi

identity (2.238) on an S2 just outside the black brane horizon, we get

∂

∂t

∫

S2

(F2 − F0B2) = 0 . (2.245)

We omit the source term because we will consider a process during which no

branes cross the S2. The conserved quantity (2.245) was termed a Page charge in

Ref. [139]. As noted there, it is localized, quantized, conserved, but not invariant

under large gauge transformations. In particular it jumps by F0 under
∫
B2 →

1 +
∫
B2. Thus it is a ZF0 charge, whose conservation excludes the brane-flux

annihilation for a single antibrane.

Imagine starting with an antibrane at zero temperature. In the integral (2.245),

the flux from the antibrane contributes −1. As the black hole forms, the argu-

ment of [120, 121] implies that it must absorb the polarization cloud in order that
∫
S2 F2 becomes positive. However,

∫
S2(F2 − F0B2) remains negative and keeps

track of the antibrane number. If we cool the system back to zero temperature,

the antibrane must reappear. The integral of B2 over the horizon is a sort of hair

that can be measured in a stringy Bohm-Aharonov experiment [140]. Again, their

might be a process in which an NS5-brane instanton changes the Page charge by
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F0 units, but it cannot change by a single unit. Finite temperature would be

expected to reduce the barrier for the NS5-brane instanton, and might eliminate

it entirely at high enough temperature.11

More globally, imagine an S3 whose equator S2 surrounds the black 6-brane,

and which is elongated in time to incorporate the black brane formation and

disappearance. Let the S3 surround NNS5 NS5 instantons. Then

∫

S3

H3 = NNS5 ,

0 =

∫

S3

dF2 = F0NNS5 + ∆ND6 . (2.246)

Thus the net D6 charge can only change in multiples of F0. The integer quanti-

zation of
∫
S3 H3 follows from the Dirac quantization condition [141], independent

of the dynamics internal to the S3.

These considerations extend to other antibranes.12 For the KKLT anti-D3,

consider an S3
a × S3

b , where S3
a is parallel to the bottom of the KS throat and S3

b

surrounds the antibrane in the directions transverse to S3
a, and in time. Then

0 =

∫

S3
a×S3

b

dF5 =

∫

S3
a×S3

b

(F3 ∧H3 + δD3) = MNNS5 + ∆ND3 . (2.247)

Here ND3 includes any D3 charge arising from flux on wrapped 7-branes. The M

is the number of units of F3 flux on S3
a. It plays the same role as F0 above, distin-

guishing the known NS5 process [123] in which ∆ND3 = −M from a potentially

new brane-flux annihilation process with ∆ND3 = −1. The latter is forbidden.

11We thank Don Marolf for discussions of this point.
12Gavin Hartnett has given a complementary argument for localized D3’s, that there is no

positivity condition on the black brane flux in this case [142] .
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Thus the metastability estimates in the original work [131] appear to be correct.13

Multiple antibranes

For p coincident D-branes, the effective field theory on the brane becomes non-

Abelian (the notation p is standard here, not to be confused with the dimension p

of the branes). When gsp� 1, the brane theory is strongly coupled but the super-

gravity description is good. For (anti-)D3-branes, the geometry near the branes

is described by an AdS5 × S5 throat at the bottom of the KS throat [336]. When

the background is slowly varying on the scale of the brane radius (gsp)
1/4α′1/2

(meaning that p is parametrically smaller than M in the KKLT context), one can

again use an effective brane description of the system as seen from the outside. In

the UV, this is matched onto the supergravity description of the throat. Modes

in the throat behave as zλ± . Most modes correspond to irrelevant interactions,

where λ− = −∆ is negative and λ+ = ∆ + 4 is positive (for consistency we con-

tinue to use the somewhat nonstandard convention that ∆ includes −4 from the

integration). The λ− mode goes to zero at the bottom of the throat while the λ+

mode diverges, and we get a good boundary condition by requiring that the latter

vanish. Integrating through the transition between the throat and the exterior to

determine the exterior fields, and matching to an effective field theory calculation

analogous to (2.228), determines the parameters in the effective action.

However, for modes corresponding to relevant interactions, both λ+ and λ−

are positive and both modes grow down the AdS5 throat. In this case one must

13The very recent work [143] has argued that the NS5 decay might be hastened by by passing
through a new set of low energy configurations. The proposed configurations violate the Bianchi
identity for the NS5 world-volume gauge field, and so are forbidden.
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understand the nonlinearities there. The ∆ = −1 modes corresponding to fermion

bilinears involve the 3-form fluxes. For these the singularity is resolved by brane

polarization [36], giving a good UV description. The ∆ = −2 modes corresponding

to scalar bilinears involve the five-form flux and scalar deformation of the S5.

Resolution of the resulting singularities requires the branes to move out onto the

Coulomb branch [145], and because there is no L = 0, ∆ = −2, scalar bilinear

the potential is always negative in some directions and the (anti-)D3 branes are

expelled by the AdS throat. In either case, once the actual physics in the throat

is understood, one can determine the effective field theory.

When both the ∆ = −1 and ∆ = −2 perturbations are present, there is a

competition between these two effects. When the anti-D3-branes and their AdS

throat are at the bottom of a KS throat, this is the case. This has recently been

studied in Ref. [336]. They concluded that if a parameter Im(µ) is nonzero, then

it is energetically favored for the branes to be expelled from the AdS throat. They

are expelled in an oblique direction (the so-called ‘giant tachyon’ of [336]), so they

are not precisely at the bottom of the KS throat, but energetically they cannot

wander too far from the bottom. The screening effect implies that antibranes

attract at longer distances [118], so their precise arrangement may be intricate,

but in any case our earlier discussion of the single antibrane now applies. If the

parameter Im(µ) vanishes (as may be required by symmetry), then the branes

do polarize as in Ref. [123] if p is not too large. Again, this will be subject to

nonperturbative decay via the NS5 instanton [123].
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2.4.4 Conclusions

We have argued that effective field theory allows the use of brane actions

beyond the probe approximation, including the treatment of both classical and

quantum divergences. In all applications of brane systems, this provides a more

general and physical interpretation of the results. In applying this to the antibrane

in flux, this validates the assumptions of Ref. [131]: the supersymmetry-breaking

antibranes can be described by effective field theory, and are metastable if their

number p is not too large. It also follows that large classes of non-extremal fuzzball

solutions (geometries or stringy solutions) using antibranes should exist [146].
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2.5 Universality of sparse d > 2 conformal field

theory at large N

In this section we study a slightly more general question: the implications

of gravitational physics for a dual conformal field theory. Such holographically

dual pairs are typically realized by a brane construction, but many questions

of interest (such as thermodynamics) can be studied without reference to the

underlying microscopy. The implications of a gravitational holographic dual are

strong: the CFT must have a very particular phase structure [335], and if the

gravitational theory furthermore looks like Einstein gravity there must be a sense

of bulk locality encoded in the field theory correlators [162, 349].

This section focuses on the coarser question of the reproduction of the grav-

itational phase structure on the conformal field theory side, originally studied in

1+1D by [156]. In that setting, AdS gravity implies that the partition function

below the transition is dominated by the vacuum contribution, leading an explicit

bound on the density of light states of the dual conformal field theory (the heavy

states are controlled by modular invariance). Gravity further implies that the

vacuum contribution is universal, in the sense that the vacuum energy density is

unmodified by finite-size corrections, but since this quantity is fixed in CFT2 by

conformal invariance the bound on the light states is all that is needed for CFT2

to reproduce the phase structure implied by gravity.

We studied the implications of the gravitational phase structure in higher di-

mensions. The gravitational phase structure is not known in a general background,

but as in 1+1D the analysis simplifies in the presence of additional symmetry. If
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one considers a higher-dimensional CFT on a spatial torus there is the following

structure [187]: when the length β of the thermal circle is smaller than the smallest

sidelength Lmin of the spatial torus, the dominant gravitational saddle is a black

brane, while when β > Lmin the dominant saddle is an AdS-soliton geometry with

the soliton wrapping the smallest spatial cycle.

On the field theory side, the cycles of the torus permute with the time circle

(and amongst themselves) much as in 1+1D, leading in conformal theories to

relations between partition functions at different temperatures [175, 176] that

allow the derivation of a set of necessary and sufficient constraints on the CFT

data. These constraints are stronger than in 1+1D since the vacuum energy

is not fixed by conformal invariance: in higher dimensions one must demand

vacuum dominance in the quantization along every cycle except the smallest,

which then implies the universal gravitational result that the free energy of the

theory is uncorrected relative to its asymptotic limit on a torus of infinite size.

One can equivalently obtain universality by simply demanding that the free energy

is uncorrected and that the density of light states satisfies a similar bound, but if

one does not restrict the free energy in this way, the bound on the density of states

must be imposed on the entire spectrum. We further showed that these constraints

on the density of states are mildly sub-saturated by free orbifold theories, much

like in CFT2 where such theories saturate the universality constraint exactly.

2.5.1 Introduction

The strongest form of the AdS/CFT correspondence states that every con-

formal field theory (CFTd) is dual to a theory of quantum gravity living in a
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higher-dimensional anti-de Sitter space (AdSd+1). For a generic CFT, the dual

theory of quantum gravity at low energies will look nothing like semi-classical

Einstein gravity. One of the most interesting questions in the context of hologra-

phy is then to understand which CFTs – when interpreted as theories of quantum

gravity in AdS – have a semi-classical Einstein gravity limit.

The most straightforward constraint emerging from the AdS/CFT dictionary

for a semi-classical bulk is that the CFT should have a large number of degrees

of freedom, usually parameterized by N . Large N in the field theory implies a

semi-classical bulk since its inverse scales as a positive power of the Planck length

in AdS units: N−1 ∼ (`P/`AdS)# for # > 0. This is the bulk expansion parameter

controlling AdS-scale quantum gravitational effects.14

Besides large N , a semi-classical theory of gravity in anti-de Sitter space has

many universal features that must be encoded in any putative dual CFT. To ex-

plore the emergence of gravity from field-theoretic degrees of freedom, it is natural

to try to reproduce these universal features by implementing some additional as-

sumptions on a generic large-N CFT. There has been tremendous progress in this

direction for the case of three-dimensional gravity [147, 148, 149, 150, 151, 152,

153, 154, 155, 156, 358, 158, 159, 160], throughout which large central charge and

a sparse low-energy spectrum play a prominent role. These powerful methods

for the most part rely on the fact that all stress tensor interactions in the CFT

are captured by the Virasoro block of the identity, which is assumed to domi-

14To have a theory that looks like Einstein gravity at low energies, we also need an expansion
parameter that can suppress higher-spin fields. The ’t Hooft coupling in gauge theory usually
plays the role of this expansion parameter. Interestingly, like in the D1-D5 duality, certain
features of Einstein gravity can be reproduced without explicitly invoking this assumption. We
will not explicitly implement any constraints on our field theories with the purpose of decoupling
higher-spin fields.
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nate. The success of this particular approach is related to the topological nature

of gravity in three dimensions, which precludes obvious generalizations to higher

dimensions. Nevertheless, it is a compelling problem to reproduce features of

higher-dimensional AdS gravity purely from the CFT. A small sample of work in

this direction includes [161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 349, 172].

In this paper, we will focus on a technical tool that has received little exposure

in higher dimensions: modular invariance. For 2d CFTs, modular invariance can

be used to precisely determine how sparse the spectrum should be to reproduce the

thermal phase structure of 3d gravity [156] (see [173] for a similar consideration

in supersymmetric theories). For theories obeying this sparseness constraint, the

Cardy formula [174] – which is usually only valid asymptotically as ∆/c → ∞ –

has an extended regime of validity down to energies ∆ ∼ c. This precisely matches

the bulk phase structure since the black holes begin dominating the ensemble at

∆ ∼ c.

The relevance of modular invariance in higher-dimensional holographic CFTs

has been much less explored. In [175, 176], it was shown that modular invariance of

the torus partition function implies the existence of an asymptotic formula that

correctly reproduces the Bekenstein-Hawking entropy of the dual black brane.

This formula is the higher-dimensional generalization of the Cardy formula and

only holds in the limit of large energy for generic CFTs. Holographic CFTs, on

the other hand, must have an extended range of validity of this formula as implied

by the bulk phase structure. The goal of this paper is to further exploit modular

invariance and place constraints on CFTs such that they have this extended range

of validity. We also want to match the precise phase structure of gravity, which
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is much richer than in two dimensions and exhibits both quantum and thermal

phase transitions. One of the key challenges that we will face is that the functional

form of the vacuum energy in higher dimensions is not uniquely fixed by conformal

invariance, although we will discover several nontrivial constraints due to modular

invariance.

We can summarize our results as follows. A general CFT on Td will have an

extended Cardy formula and a universal phase structure if and only if the partition

function is dominated by the vacuum contribution when quantizing along any cycle

but the shortest one. Proving this will require using the modular constraints on

the vacuum energy alluded to above. From here, we will consider large-N theories

and exhibit distinct sets of necessary and sufficient sparseness conditions on the

spectrum to achieve this vacuum domination.

In analyzing calculable theories that satisfy these necessary and sufficient con-

ditions, and which therefore have a universal free energy, we are led to the con-

struction of symmetric orbifold theories in higher dimensions. Symmetric orbifolds

have been analyzed in great depth in two dimensions [177, 178, 179, 180, 181, 182,

183], and play an explicit role in the D1-D5 duality [184, 58, 59]. Still, they have

not explicitly appeared in holographic dualities in higher dimensions nor, to the

best of our knowledge, have they been constructed. For their construction, we use

a similar procedure as in two dimensions to build a modular invariant partition

function. This includes both untwisted and twisted sectors. For large-N sym-

metric product orbifolds, the density of states of the untwisted sector is shown

to be slightly sub-Hagedorn, whereas for the twisted sector it is precisely Hage-

dorn. Saturation of the necessary and sufficient conditions for universality is then
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guaranteed by assuming that the subextensive parts of the vacuum energy van-

ish. This assumption constrains the choice of seed theory we can pick. This

is somewhat of a loss of generality compared to two dimensions but can be ex-

pected by the increasing richness of CFTs in higher dimensions. Provided we pick

the seed accordingly, the symmetric orbifolds reproduce the phase structure of

higher-dimensional AdS gravity: they have an extended regime of validity of the

Cardy formula and a Hagedorn transition at precisely the same temperature as

the Hawking-Page transition in the bulk.

The paper is organized as follows. We start in section 2.5.2 with a general dis-

cussion of CFTs on d-dimensional tori and modular invariance. In section 2.5.3

we summarize the phase structure of toroidally compactified gravity in anti-de

Sitter spacetime. These two sections set the stage for the meat of the paper.

Section 2.5.4 is dedicated to a detailed discussion of the necessary and sufficient

conditions that are required to have a universal free energy. The implementation

of these conditions is then explored in section 2.5.5. We discuss the construction

of orbifold theories on d-dimensional tori and show that symmetric product orb-

ifolds have a universal free energy. We conclude with a discussion and outlook in

section 2.5.6. The appendices contain additional material, including extensions

to the case with angular momentum and calculations translating the results from

the canonical partition function to the microcanonical density of states.
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2.5.2 Generalities of CFTd

We now introduce some of the basic technology of modular invariance that we

will use to derive our general CFT results. For more details see [175, 176]. In this

paper we will study conformal field theories defined on a Euclidean d-torus Td.

We fix the metric on this torus to be

ds2 = dx2
0 + dx2

1 + · · ·+ dx2
d−1 (2.248)

with identifications

(x0, x1, .., xd−1) ∼ (x0, x1, .., xd−1) +
d−1∑

i=0

niUi . (2.249)

where Ui are vectors defining the torus Td and the ni are integers. These vectors

can be conveniently organized in a matrix as

U = (U0 · · · Ud−1)T =




L0 θ01 · · · θ0,(d−2) θ0,(d−1)

0 L1 · · · θ1,(d−2) θ1,(d−1)

...
...

. . .
...

...

0 0 · · · Ld−2 θ(d−2),(d−1)

0 0 · · · 0 Ld−1




(2.250)

and define a d-dimensional lattice of identifications. This matrix contains the

lengths of the cycles along its diagonal and the θij capture all possible twists of

the torus Td. Modular invariance of the torus partition function for conformal

field theories is a powerful constraint on the theory. The invariance can be stated
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as the action of large conformal transformations on the lattice spanned by the set

{Ui}. These large conformal transformations form the group SL(d,Z) and act

on the matrix U in (2.250) by left multiplication. SL(d,Z) is generated by two

elements [185]

S =




0 1 0 . . . 0 0

0 0 1 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 0 1

(−1)d+1 0 0 . . . 0 0




, T =




1 1 0 . . . 0 0

0 1 0 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 1 0

0 0 0 . . . 0 1




. (2.251)

They can be shown to generate any pairwise swap and a twist along any direction.

For even d, we quotient by the center of the group {−1, 1} to obtain PSL(d,Z),

but for simplicity we will universally refer to the group as SL(d,Z). Using scale

invariance to unit-normalize one of the cycle lengths shows that we have (d −

1)(d+ 2)/2 real moduli captured by the matrix U .

In spacetime dimension greater than two, modular transformations generically

change the spatial background of the theory (i.e. change the Hilbert space),

making it difficult to relate the low-lying states to the high-lying states on a

fixed background. However, as discussed in [175] there exist two choices of torus

which allow for a high-temperature/low-temperature duality to be considered.

The first is the background S1
β × S1

L × Td−2
L∞

, where L∞ � β, L, β2/L. In this

case by appealing to extensivity in the large directions we have the approximate

invariance

logZ(β) ≈ (L/β)d−2 logZ(L2/β) . (2.252)
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This can be transformed into an exact high-temperature/low-temperature duality

by passing to a density defined by dividing logZ(β) by the volume of the large

torus as it decompactifies, but we will not pursue that here.

To produce an exact invariance on a compact manifold, we can also consider

a special torus given by S1
β × S1

L × S1
L2/β × · · · × S1

Ld−1/βd−2 , for which

Z(β) = Z(Ld/βd−1) . (2.253)

This invariance is obtained by an SL(d,Z) transformation and a scale transfor-

mation. It will play an important role in our CFT analysis.

To deal with the case of a general torus where there is no high-temperature/low-

temperature duality, we will find it useful to define some notation. For a d-

dimensional torus of side lengths L0, L1, . . . , Ld−1, where β = L0, we will denote

the partition function quantized in an arbitrary channel as:

Z[Md] = Z(Li)Mi
=
∑

e−LiEMi . (2.254)

Z[Md] denotes the Euclidean path-integral representation of our partition func-

tion, which treats space and time democratically. The next form of the partition

function picks direction i as time and gives a Hilbert space interpretation of the

path integral. Since the spatial manifold will change depending on which direc-

tion is chosen as time, we use the notation Mi to explicitly denote the spatial

manifold. It is defined as Md = Mi × S1
Li

. Brackets will always imply a Eu-

clidean path-integral representation while parentheses will imply a Hilbert-space

representation.
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Review of higher-dimensional Cardy formulas

Now we will provide a derivation of the higher-dimensional Cardy formula on

an arbitrary spatial manifold S1
β ×X. We will only need the result for a spatial

torus, but we will keep the discussion general. The fact that modular transforma-

tions generically change the Hilbert space of the torus partition function will not

provide an obstruction, although we will see in the resulting formulas that our

high-temperature partition function and asymptotic density of states refer to the

vacuum energy on a different spatial background in general.

We assume our theory to be local, modular invariant, and to have a spec-

trum of real energies on the torus that is bounded below by an energy that is

discretely gapped from the rest of the spectrum. At asymptotically high temper-

ature β/V
1/(d−1)
X → 0, we can use extensivity of the free energy to replace our

spatial manifold X with a torus Td−1 of cycle lengths L1 ≤ L2 ≤ · · · ≤ Ld−1 and

no twists, with VX = L1 · · ·Ld−1 ≡ VM0 . We therefore have

Z[S1
β ×X] = Z(β)X ≈ Z(β)M0 =

∑
e−βEM0 ≈ ec̃VM0

/βd−1

(2.255)

at asymptotically small β for some thermal coefficient c̃ > 0. This thermal coeffi-

cient is not a priori related to any anomalies except in two dimensions. Considering

a quantization along Ld−1 gives us

Z(Ld−1)Md−1
=
∑

e−Ld−1EMd−1 = e−Ld−1Evac,Md−1

∑
e−Ld−1(E−Evac)Md−1 .

(2.256)

For d = 2 in a scale-invariant theory, β becoming asymptotically small is equiva-
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lent to Ld−1 becoming asymptotically large, since only the ratio Ld−1/β is mean-

ingful. However, for d > 2 we have the additional directions Li which may prevent

us from interpreting the quantization in the Ld−1 channel as a low-temperature

partition function which projects to the vacuum. To deal with this, consider the

limit Ld−1 →∞ where we indeed project efficiently to the vacuum:

lim
Ld−1→∞

logZ(Ld−1)Md−1

Ld−1

= −Evac,Md−1
. (2.257)

Using Z(β)M0 = Z(Ld−1)Md−1
gives us Evac,Md−1

= −c̃VMd−1
/βd. We are therefore

able to extract the scaling of the vacuum energy as Evac,Md−1
∝ −VMd−1

/βd as

β → 0. The proportionality coefficient, which we define as εvac, is εvac = c̃.

Furthermore, notice that Evac,Md−1
is clearly independent of Ld−1, so this result

is general even though we took the limit Ld−1 → ∞ to obtain it. In the general

case of arbitrary Ld−1 we can therefore write for β → 0

Z(Ld−1)Md−1
= ec̃VM0

/βd−1
∑

e−Ld−1(E−Evac)Md−1 . (2.258)

Again equating with Z(β)M0 , we see that the excited states must contribute at

subleading order, since the vacuum contribution is sufficient to obtain Z(Ld−1)Md−1
=

Z(β)M0 at leading order in small β. The concern over the directions Li and poor

projection to the vacuum alluded to earlier is therefore not a problem at leading

order. We are finally left with

S(β) = (1− β∂β) logZ(β)X ≈ dVXεvac/β
d−1 (2.259)
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for the high-temperature entropy of a modular-invariant CFT on an arbitrary

spatial background X.

Now we consider the implications for the density of states:

ρ(Es) =
1

2πi

∫ α+i∞

α−i∞
dβ Z(β)Xe

βEs (2.260)

=
1

2πi

∫ α+i∞

α−i∞
dβ
(
e−εvacVX/β

d−1
∑

e−βE
)
eεvacVX/β

d−1+βEs , (2.261)

for some α > 0. Performing a saddle-point on the part of the integrand outside

of the parentheses and evaluating the integrand on this saddle βs ∝ E
−1/d
s gives

us the higher-dimensional Cardy formula:

log ρ(Es) =
d

(d− 1)
d−1
d

(εvacVX)
1
dE

d−1
d

s . (2.262)

The saddle point implies βs → 0 as Es →∞. To ensure that this saddle point is

valid, we need to check that the part of the integrand in the parentheses, which

we call Z̃X(β), does not give a big contribution on the saddle:

Z̃X(βs) = e−εvacVX/β
d−1
s

∑
e−βsE . (2.263)

From high-temperature (βs → 0) extensivity (2.255), we know that we can write

this as

Z̃X(βs) ≈ e−εvacVX/β
d−1
s ec̃VX/β

d−1
s = 1 , (2.264)

where we used c̃ = εvac (and one notices c̃ is independent of spatial background

by replacing the high-temperature partition function on the given manifold with
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the high-temperature partition function on a torus of spatial lengths L1, . . . Ld−1

with VM0 = VX). Our saddle-point approximation is therefore justified, and we

have the higher-dimensional Cardy formula as advertised.

In particular, considering the spatial background to be X = Sd−1 gives the

asymptotic density of local operators by the state-operator correspondence. In

the rest of this paper we will only be interested in the CFT on Td.

Review of vacuum energies in CFT

Normalization of vacuum energy

In a generic field theory, one is always free to shift the Hamiltonian by an

arbitrary constant. This therefore shifts what we call the vacuum energy. Indeed,

the well-known Casimir effect demonstrates that derivatives with respect to spatial

directions dEvac/dLi are the physical observables, leaving an ambiguity in the

normalization of Evac. Additional structure, such as supersymmetry or modular

invariance, disallows such an ambiguity. Even in a purely scale-invariant theory

one can fix the normalization of the vacuum energy. Scale invariance requires that

energies, and in particular the ground state energy, scale as inverse lengths under a

rescaling of the spatial manifold: Evac(λL1, λL2, . . .) = λ−1Evac(L1, L2, . . .). This

fixes the shift ambiguity in Evac.

Subextensive corrections to the vacuum energy

The higher-dimensional Cardy formulas involves the vacuum energy density

on S1 × Rd−2, which by its relation to the extensive free energy density in a

different channel is negative and has a fixed functional form. If we compactify
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more directions and make them comparable to the size of the original S1, then

we will in general get corrections to the asymptotic formula. For two-dimensional

CFT there is only one spatial cycle so no such corrections can enter. To capture the

essence of what happens, let us consider a three-dimensional CFT on S1
β×S1

L1
×S1

L2

with L1 < L2. The low-temperature partition function will project to the vacuum

state on S1
L1
× S1

L2
, which can be parameterized as

Evac,L1×L2 = −εvacL2

L2
1

(1 + f(L1/L2)) . (2.265)

Let us define y = L1/L2. The function f(y) is capturing all of the corrections

beyond the asymptotic formula, so we have f(0) = 0 and f(y → ∞) = −1 + y3.

In general, f(y) is a nontrivial function of y. Later in the text we will derive some

positivity and monotonicity constraints on f(y) by using modular invariance, but

for now let us exhibit its functional form for the free boson theory, shown in figure

2.16.

In higher dimensions, there are more independent ratios that can be varied,

and in general the corrections beyond the asymptotic formula are given by some

nontrivial function of d − 2 dimensionless ratios yi = L1/Li which for simplicity

we will often write as f(y) with y = (y2, y3, . . . , yd−1).

We will also find it useful to consider the parameterization of the vacuum

energy in arbitrary dimension as

Evac = −εvacVd−1

Ldmin

(
1 + f̃(y)

)
. (2.266)

which always has the smallest cycle in the denominator. The key difference be-
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Figure 2.16: The functional form of f(L1/L2) in the vacuum energy (defined
in (2.265)) of a free boson in 2 + 1 dimensions on a two-torus T2 with sides L1

and L2. As can be seen in the plot, f(L1/L2) is positive and monotonically
increasing.

tween f̃(y) and f(y) is that it is possible for f̃(y) to be identically zero for all

values of its arguments, whereas this is not the case for f(y) as discussed in three

dimensions above. We will find, for example, that gravity implies a vacuum energy

structure with f̃(y) = 0 up to 1/N corrections. We will often just write f̃(y) = 0,

by which we mean the equality up to 1/N corrections.

2.5.3 Phase structure of toroidally compactified AdS grav-

ity

In this section we will recap what is known about the phase structure of gravity

in AdS with a toroidally compactified boundary. This phase structure is easy to

deduce for pure gravity without spontaneous breaking of translation invariance,

which is the case we will restrict ourselves to. The most remarkable feature of
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this phase structure is the absence of any nontrivial finite-size corrections to the

vacuum energy and free energy, up to sharp phase transitions as circles become

comparably sized. In other words, the function f̃(y) defined in the previous

section vanishes for all values of its arguments. As usual there will be nonzero

contributions suppressed by 1/N . Note that weakly coupled theories, including

e.g. N = 4 super Yang-Mills, do not realize this sort of structure [186]. We will

not consider the possibility that the singular solutions used in [186] are relevant

for the phase structure. An argument against them is as follows. Assume that

such a singular solution provides the vacuum energy of the theory under multiple

compactifications. By the higher-dimensional Cardy formula, there must therefore

exist a black brane with higher entropy than AdS-Schwarzschild. Any such black

brane should be modular S-related to the singular solution. But that means the

“black brane” will be horizonless and singular, and if e.g. α′ effects resolve the

singularity and pop out a horizon, then the entropy should be proportional to

some power of α′. But the ground state energy is a boundary term and is not

proportional to α′. This is inconsistent, by the Cardy formula which relates the

two.

We consider our theory at inverse temperature β on a spatial torus of side

lengths Li. The Euclidean solutions with the correct periodicity conditions are

the toroidally compactified Poincaré patch, black brane, and d− 1 AdS solitons

ds2
pp = r2dx2

0 +
dr2

r2
+ r2dϕidϕ

i , (2.267)

ds2
bb = r2

(
1− (rh/r)

d
)
dx2

0 +
dr2

r2 (1− (rh/r)d)
+ r2dϕidϕ

i , (2.268)
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ds2
sol,k = r2dx2

0 +
dr2

r2 (1− (r0,k/r)d)
+ r2

(
1− (r0,k/r)

d
)
dϕ2

k + r2dϕjdϕ
j , (2.269)

all of which have the identification x0 ∼ x0 + β. There are d − 1 AdS solitons

since there are d − 1 circles that are allowed to pinch off in the interior. This

means that we are picking supersymmetry-breaking boundary conditions around

all cycles, which is motivated by maintaining S-invariance of our thermal partition

function.

The parameter rh (r0,k) is fixed by demanding the x0 (ϕk) circle caps off

smoothly:

rh =
4π

dβ
, r0,k =

4π

dLk
. (2.270)

Considering the ensemble at finite temperature and zero angular velocity, we need

to compare the free energy of these solutions:

Fbb = −r
d
hVd−1

16πG
, Fsol,k = −

rd0,kVd−1

16πG
, Fpp = 0 . (2.271)

The Poincaré patch solution never dominates so we will not consider it in what

follows. We will also assume that the AdS soliton of minimal energy gives the

vacuum energy of the theory under a toroidal compactification [187].

Thermal phase structure

We will first consider the thermal phase structure, which can be illustrated

by fixing a spatial torus and varying the inverse temperature β. The AdS soliton

with the cycle of smallest length Lmin pinching off has minimal free energy and

dominates all the other ones. We will denote this as the k = min soliton. Thus,
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the two relevant solutions are this k = min soliton and the black brane. These two

exhibit a thermal phase transition at β = Lmin with the black brane dominating

the ensemble at high temperature β < Lmin. The energy at the phase transition

is

E
∣∣
rh= 4π

dLmin

= −∂β logZ = −(d− 1)Evac , (2.272)

where Esol,k=min = Fsol,k=min = Evac is the vacuum energy of the theory.

Quantum phase structure

A very important new feature in the phase structure of higher-dimensional

toroidally compactified AdS spacetime is the existence of quantum phase transi-

tions. These are phase transitions that can occur at zero temperature and are

therefore driven by quantum fluctuations and not thermal fluctuations. They oc-

cur as we vary the spatial cycle sizes and reach a point where two spatial cycle

sizes coincide and are minimal with respect to the rest. Let us call these cycle

lengths L1 and L2 and pass from L1 < L2 to L1 > L2. In this case the vacuum

energy exhibits a sharp transition from the k = 1 soliton to the k = 2 soliton.

This is precisely the behavior that fixes f̃(y) = 0, as alluded to earlier. To exhibit

a phase transition in the free energy instead of the vacuum energy, we need to

restrict ourselves to the low-temperature phase β > Lmin where the black brane

does not dominate.
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2.5.4 Necessary and sufficient conditions for universality

In this section we would like to highlight a few difficulties in generalizing a

discussion from two dimensions to higher dimensions. Let us first consider a

two-dimensional CFT with cycle lengths β and L. For such a theory, vacuum

domination of the torus partition function in channel L, for arbitrary cycle size

L > β, is necessary and sufficient for universality of the partition function for all

β. To see this, we write vacuum domination in the L channel as

Z(β)L = Z(L)β =
∑

Eβ

exp (−LEβ) ≈ exp (−LEvac,β) = exp

(
πcL

6β

)
. (2.273)

Due to the fact that the vacuum energy for two-dimensional CFT is uniquely fixed

by conformal invariance, we get a universal answer for the partition function. In

the β channel, this form is that of an extensive free energy, and gives the Cardy

formula in the canonical ensemble S(β) = πcL/(3β).

In higher dimensions, vacuum domination of the torus partition function in

one channel seems neither necessary nor sufficient for extensive Cardy growth in

a different channel. This is because the vacuum energy on a generic torus is not

uniquely fixed by conformal invariance. But it turns out we can use SL(d,Z)

invariance to show that a slightly modified version of the statement is valid. In

particular, we will show that vacuum domination in all channels except that of the

smallest cycle is necessary and sufficient for universality of the partition function

for all β. Before we begin, we will prove some useful properties of the function

f(y) which characterizes the subextensive corrections to the vacuum energy and

will play a starring role in our general CFT and symmetric orbifold analyses.

161



Black holes and branes Chapter 2

Sections 2.5.4 and 2.5.4 will contain results about generic modular-invariant CFTs.

Sections 2.5.4 and 2.5.4 will then specify to large-N theories.

Modular constraints on vacuum energy

We now utilize the connection between the vacuum energy and the excited

states implied by modular invariance, as first pointed out in appendix A of [175].

We will find that, somewhat surprisingly, modular invariance constrains all subex-

tensive corrections to the vacuum energy to have a fixed sign and monotonic

behavior.

Consider a spatial torus with side lengths L1 ≤ · · · ≤ Ld−1 and take the

quantization along β at low temperature, which efficiently projects to the vacuum:

lim
β→∞

logZ(β)M0

β
= −Evac,M0 =

εvacVM0

Ld1
(1 + f(y)) . (2.274)

We also consider the d− 2 quantizations L2, . . . , Ld−1, which give

lim
β→∞

logZ(Li)Mi

β
=
εvacVM0

Ld1
(1 + f(y \ yi, 0)) + lim

β→∞

1

β
log

(∑

E

e−Li(E−Evac)Mi

)
,

(2.275)

where y\yi is the vector y without the yi-th element. The reason for the different

arguments of f is that in the Li quantization, instead of the ratio L1/Li we have

L1/β = 0 as β → ∞. The second term on the right-hand-side does not vanish

since the logarithm of the shifted partition function becomes linear in β at large

β due to extensivity.

We want to analyze the monotonicity properties of f(y) with respect to its

d − 2 arguments. To analyze any given ratio yi, we can equate the quantization
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along β with the quantization along Li. This gives

εvacVM0

Ld1
(f(y)− f(y \ yi, 0)) = lim

β→∞

1

β
log

(∑

E

exp (−Li(E − Evac)Mi
)

)
.

(2.276)

By unitarity, the right-hand-side is manifestly non-negative, so we conclude

f(y)− f(y \ yi, 0) ≥ 0 . (2.277)

Furthermore, the right-hand-side of (2.276) is a monotonically decreasing function

of Li. This means we can differentiate the left-hand-side with respect to Li and

obtain

f(y)− f(y \ yi, 0) +Li∂Lif(y) ≤ 0 =⇒ ∂Lif(y) ≤ 0 =⇒ ∂yif(y) ≥ 0 , (2.278)

where the first implication follows from the previous positivity property. The

second implication follows from the fact that increasing Li is the same as keeping

all ratios yj fixed except for the ratio yi = L1/Li, which is decreased. In particular,

this means that the function increases under any possible variation. Furthermore,

since f(0) = 0 this means that f(y) ≥ 0. These facts will be used heavily in what

follows.

Modular invariance can also be used to constrain the behavior of the vacuum

energy under spatial twists. By re-interpreting the spatial twist as an angular

potential in a different channel, we can see that the vacuum energy cannot increase

due to a spatial twist. The proof goes as follows. Consider the following partition

function in the low-temperature limit with twist θkj between two spatial directions
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k and j:

lim
β→∞

logZ(β; θkj)M0

β
= −Evac(L1, ..., Ld−1; θkj) . (2.279)

Since the spatial directions are twisted, we may quantize along direction k, in

which case the twist becomes an angular potential:

lim
β→∞

logZ(Lk; θkj)Mk

β
= lim

β→∞

1

β
log

(∑

E

exp (−LkEMk
+ iPjθkj)

)
. (2.280)

The introduction of θkj only adds phases to the partition function in this channel,

which decreases its real part. The vacuum energy is always manifestly real, so

when equating the two quantizations it will be the case that the partition function

with angular potential will evaluate to a real number. This means that the vacuum

energy, which is negative, will be strictly greater or equal to its value without

twists. This will be used in section 2.5.5.

Necessary and sufficient conditions

With the properties of the vacuum energy in hand, we are now ready to show

that vacuum domination in all but the smallest channel is necessary and sufficient

to have a universal free energy.

First we show sufficiency. We consider an ordering β < L1 ≤ · · · ≤ Ld−1.

Vacuum domination in the channels Li means

Z(Li)Mi
= exp (−LiEvac,Mi

) . (2.281)

As we saw in the previous section, the vacuum energy is not uniquely fixed for
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higher-dimensional CFTs. However, equating the d − 2 quantizations lets us

extract the vacuum energy:

Z(L1)M1 = Z(L2)M2 = · · · = Z(Ld−1)Md−1
(2.282)

=⇒ −L1Evac,M1 = −L2Evac,M2 = · · · = −Ld−1Evac,Md−1
. (2.283)

Since Evac,Mi
is independent of Li, we conclude that Evac,Mi

is linear in the cycle

lengths Lj 6=i. The β dependence is then fixed by dimensional analysis, and the

coefficient is fixed by matching onto the asymptotic case of small β:

Evac,Mi
= −εvacVMi

/βd. (2.284)

Thus, we see that vacuum domination in all but the smallest channel determines

the functional form of the vacuum energy. We can now use Z(β)M0 = Z(Li)Mi

to get

Z(β)M0 = exp
(
εvacLiVMi

/βd
)

= exp
(
εvacVM0/β

d−1
)
. (2.285)

This is just the Cardy formula. In a regular CFT it holds only asymptotically in

small β, but here we have shown that vacuum domination in the spatial channels

Li is sufficient to make it valid for all temperatures β < Li. For β > L1 we

again have a universal expression for Z(β)M0 , which by assumption is given by

the contribution of the vacuum only.

Showing that vacuum domination in all but the smallest cycle is necessary

for universality requires the properties of f(y) proven in the previous subsection.
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Consider the quantization along an arbitrary channel of cycle size Li

Z(Li)Mi
=
∑

e−LiEMi = e−LiEvac,Mi

∑
e−Li(E−E0)Mi . (2.286)

In two spacetime dimensions, it is the vacuum contribution in this channel that

gives Cardy behavior in the β channel and therefore universality. The excited

states contribute as positive numbers, and would ruin the Cardy behavior. There-

fore it is necessary that they not contribute, i.e. necessary that we are vacuum

dominated in this channel. In higher dimensions, one may worry that the excited

state contributions cancel against the non-universal pieces of the vacuum energy,

precluding the necessity of vacuum domination. However, by the positivity of

f(y) this can never happen. Thus, to get the correct Cardy behavior in the β

channel it is necessary that the excited states do not contribute. This is true for

arbitrary channel i. We conclude that it is necessary to be vacuum dominated in

all but the smallest cycle.

It is interesting that for a universal free energy it is necessary and sufficient

to have vacuum domination in all but the smallest channel. One could have

suspected that explicit assumptions about the subextensive corrections to the

vacuum energy would have to enter, but they do not.

We can state an equivalent set of necessary and sufficient conditions. To obtain

a universal free energy for all β on an arbitrary rectangular torus, it is necessary

and sufficient to have vacuum domination in the largest spatial cycle, with the

vacuum energy taking the universal form with no subleading corrections. In fact,

by using the non-negativity and monotonicity of the subextensive corrections,
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we can state the necessary and sufficient condition as vacuum domination in the

largest spatial cycle, with the vacuum energy on a square torus of side length L

equal to εvac/L.

In the rest of this section we will restrict attention to large-N theories.

Sparseness constraints without assuming f̃(y) = 0

It is difficult to make progress in the case where we make no explicit as-

sumptions about the functional form of the vacuum energy. To achieve vacuum

domination in all but the smallest channel of a large-N theory, we can bound the

entire spectrum on an arbitrary spatial torus of side lengths L1 ≤ L2 ≤ · · · ≤ Ld−1

as

ρ(∆M0) . exp (L1∆M0) , ∆M0 ≡ (E − Evac)M0 . (2.287)

This is a necessary and sufficient condition, although it is possible that it is implied

by a more minimal set of necessary and sufficient conditions. To see how this

condition arises, one writes the partition function as

Z(β)M0 = exp (−βEvac)
∑

exp (−β∆M0) ρ(∆M0) (2.288)

and bounds the density of states as (2.287) for the entire spectrum. At large N ,

with a vacuum contribution that scales exponentially in N , this suppresses all

excited state contributions as soon as β > L1. This means all cycles except the

smallest will be vacuum-dominated, as required. We give another method of proof

for vacuum domination in appendix 2.5.7 which restricts the sparseness bound to

only the light states, but requires an additional assumption on the field theory.
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We can also show that it is necessary and sufficient to solve the problem

on a spatial square torus, i.e. that the free energy is universal for all β on a

spatial square torus of side length L. The necessary direction is obvious. To show

sufficiency, consider the quantization along L:

Z(L)Md−1
= exp

(
−LEvac,Md−1

)∑

∆

exp
(
−L∆Md−1

)
(2.289)

= Z(β)M0 ≈ exp
(
εvacL

d−1/βd−1
)
. (2.290)

where the final expression is by assumption of universality. The only way to satisfy

this equality is for the contribution of the excited states and the subextensive

corrections to the vacuum energy in the L channel to vanish. In particular we are

vacuum dominated in the L channel. Taking arbitrary Ld−1 > L keeps us vacuum

dominated since it is at even lower temperature:

Z(Ld−1)Md−1
≈ exp

(
εvacLd−1L

d−2/βd−1
)
. (2.291)

In the β channel this gives us the ordinary Cardy formula with no subextensive

corrections, and in another L channel we have

Z(L)Md−2
= exp

(
−LEvac,Md−2

)∑

∆

exp
(
−L∆Md−2

)
(2.292)

= Z(Ld−1)Md−1
≈ exp

(
εvacLd−1L

d−2/βd−1
)
. (2.293)

Again, this means that we are vacuum dominated in the L channel. Now we can

consider arbitrary Ld−2 satisfying L < Ld−2 < Ld−1, for which we will remain
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vacuum dominated:

Z(Ld−2)Md−2
≈ exp

(
εvacLd−1Ld−2L

d−3/βd−1
)
. (2.294)

By equating this expression with the partition function in the Ld−1 channel, we see

that we are still vacuum dominated in that channel. By continuing this procedure

we are able to generalize to an arbitrary torus β < L1 < · · · < Ld−1, and we

obtain

logZ(β) =





εvacVM0/β
d−1, β < L1

εvacVM1/L
d−1
1 , β > L1

. (2.295)

Altogether, we have that the free energy is universal at all temperatures on an

arbitrary spatial torus. So solving the problem on a spatial square torus is both

necessary and sufficient to solving the general problem, thanks to properties of

the positivity of f(y).

Sparseness constraints assuming f̃(y) = 0

In this section we will show that assuming f̃(y) = 0 (up to 1/N corrections)

allows us to exhibit a constraint on the light spectrum that naturally generalizes

the two-dimensional case. This is not too surprising, as f̃(y) = 0 is automati-

cally true in two dimensions, although some more work will be required in higher

dimensions.

We start by considering the special torus with ordering β < L < L2/β < · · · <

Ld−1/βd−2. As discussed in the introduction, this special torus has an exact low-

temperature/high-temperature duality Z(β)M0 = Z(Ld/βd−1)M0 . This will allow
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us to uplift the arguments of [156] to our case. In the upcoming manipulations,

we will not keep explicitly the specification of the spatial manifoldM0, since this

duality allows us to keep our spatial manifold fixed once and for all.

By following the steps in [156], one can show that the partition function is

dominated by the light states up to a theory-independent error. We will denote

light states as those with energy E < ε for some arbitrary ε. We have

logZlight(L
d/βd−1) ≤ logZ(β) ≤ logZlight(L

d/βd−1)− log
(

1− eε(β−Ld/βd−1)
)
.

(2.296)

This error grows arbitrarily large as β → L or ε→ 0. For β > L we can derive a

similar upper and lower bound.

For a family of CFTs labeled by N , we assume that the vacuum energy also

scales with N . This will be true in all examples we consider. When taking N

large, we can scale ε → 0, in which case the partition function is squeezed by its

bounds and given just by the light states up to O(1) corrections. In the context

of assuming f̃(y) = 0, we then obtain universality

logZ(β) =





logZlight(L
d/βd−1) = − Ld

βd−1Evac β < L

logZlight(β) = −βEvac β > L
, (2.297)

if and only if the density of light states is bounded as

ρ(∆) . exp

(
Ld

βd−1
∆

)
, ∆ ≤ −Evac , (2.298)

where ∆ = E − Evac. Notice that if we did not assume a universal form for
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the vacuum energy with f̃(y) = 0, the free energy would still be very theory-

dependent.

To generalize the argument above to an arbitrary d-torus, the idea will be to

push the special torus very close to the square torus. From here, we can use the

fact that whenever a partition function is dominated by the vacuum contribution

at some inverse temperature β, then it will also be dominated by that contribution

for larger β. Channel by channel, we will see that we will be able to generalize

to an arbitrary torus. Assuming a universal form of the vacuum energy will be

crucial for this argument.

It will be convenient to consider starting with a quantization along the Ld−1/βd−2

channel, because it is the largest cycle when β < L. We will now restore the ex-

plicit spatial manifold dependence since we will be considering quantizations along

different channels. We have

Z(Ld−1/βd−2)Md−1
= Z(Ld/βd−1)M0 = Z(β)M0 . (2.299)

By using (2.297) we can write this as

Z(Ld−1/βd−2)Md−1
= exp

(
− Ld

βd−1
Evac,M0

)
= exp

(
−L

d−1

βd−2
Evac,Md−1

)
. (2.300)

This means that we are vacuum-dominated in the Ld−1/βd−2 channel.

Let us now take a larger cycle Ld−1 > Ld−1/βd−2, for which we will remain

vacuum-dominated:

Z(Ld−1)Md−1
= exp

(
−Ld−1Evac,Md−1

)
. (2.301)
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Quantizing now along the the second largest cycle Ld−2/βd−3 < Ld−1 gives us

Z(Ld−2/βd−3) = exp
(
−Ld−2/βd−3Evac,Md−2

)∑

∆

exp
(
−Ld−2∆Md−2

/βd−3
)
.

(2.302)

But by our assumption f̃(y) = 0, we have

Ld−1Evac,Md−1
= Ld−2Evac,Md−2

/βd−3 , (2.303)

which means that Z(Ld−2/βd−3) is given by its vacuum contribution only. One

can now consider Ld−2 > Ld−2/βd−3, for which we will remain vacuum-dominated

in the Ld−2 channel. By comparing to the Ld−1 channel, we can verify that we

remain vacuum-dominated there as well. We can now move to the Ld−3/βd−4

channel and continue this procedure up to and including the L channel. In a final

step, we can compare to the β channel and see that it indeed has universal Cardy

behavior:

logZ(β) =
εvacVM0

βd
. (2.304)

There is no need now to consider smaller β since we have already considered

general variations of the other d − 1 cycles. Since the partition function is a

function of d − 1 independent dimensionless ratios, we have already captured all

possible variations.

The generality of the torus that results from this procedure is restricted by

the special torus with which we began. But notice that the special torus can

be arbitrarily close to a d-dimensional square torus, which means this procedure

results in a universal free energy on an arbitrary torus. From this argument it
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is clear that the only assumption made on the spectrum is the bound in (2.298).

In fact, it is enough to impose this constraint for the square torus, since our

procedure begins from that case (or arbitrarily close to it) and generalizes to an

arbitrary torus. The sparseness constraint is therefore

ρ(∆) . exp (L∆L×L×···×L) (2.305)

and is imposed only on the states with energies E = ∆ + Evac < 0.

2.5.5 Symmetric Product Orbifolds in d > 2

In this section we construct orbifold conformal field theories in higher dimen-

sions using a procedure analogous to the one in two dimensions. We will see that

these theories contain both twisted and untwisted sector states and will give an

estimate for the density of states within these sectors. Finally, we will show that

under the assumption that f̃(y) = 0, the free energy has a universal behavior at

large N which agrees with Einstein gravity.

A review of permutation orbifolds in two dimensions

In two dimensions, symmetric product orbifolds (or the more general permu-

tation orbifolds) provide a vast landscape of two-dimensional CFTs with large

central charge that have a potentially sparse spectrum and are thus of interest in

the context of holography [188, 189, 190, 191]. The goal of this section will be to

extend these constructions to higher dimensions. We start by a review of permu-

tation orbifolds in two dimensions which will set most of the notation that we will
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then carry over to higher dimensions. Permutation orbifolds are defined by the

choice of two parameters: a “seed” CFT C and a permutation group GN ⊂ SN .

A permutation orbifold CN is then defined to be

CN ≡
C⊗N
GN

. (2.306)

The procedure by which we take this quotient is called an orbifold. It projects

out all states of the product theory that are not invariant under the action of the

group. The Hilbert space thus gets restricted to

H⊗N −→ H⊗N
GN

, (2.307)

where H is the Hilbert space of C. This projection onto invariant states is crucial

as it gets rid of most of the low-lying states and hence provides some hope of

obtaining a sparse spectrum. When computing the torus partition function, this

projection onto invariant states is implemented by a sum over all possible inser-

tions of group elements in the Euclidean time direction. This is summarized by

the following formula

Zuntw =
1

|GN |
∑

g∈GN

g (2.308)

where the box represents the torus with the vertical direction being Euclidean

time.

However, (2.308) is obviously not modular invariant as it singles out the time
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direction. Modular invariance is restored in the following way

Ztot =
1

|GN |
∑

g,h∈GN |gh=hg

g

h

. (2.309)

The requirement that the two group elements must commute comes from demand-

ing that the fields have well-defined boundary conditions [192]. The insertion of

elements h in the spatial direction are interpreted as twisted sectors, where the

boundary conditions of the fields are twisted by group elements. There is one

twisted sector per conjugacy class of the group, which in the case of GN = SN

gives one twisted sector per Young diagram. In [188, 189, 190], the space of

permutation orbifolds was explored and a criterion was given for these theories

to have a well-defined large N limit (and thus a potential holographic dual). It

was found that many properties of the spectrum depends solely on the group GN

and not on the choice of the seed theory. Groups that give a good large-N limit

are called oligomorphic permutation groups [193, 194, 195]. Although a complete

proof is still missing, it is believed permutation orbifolds by oligomorphic groups

all have at least a Hagedorn density of light states, but the growth may be even

faster [188, 190]. For the symmetric group, it was shown in [183, 156] that the

growth is exactly Hagedorn with the precise coefficient saturating the bound on

the density of light states produced in [156].

Symmetric product orbifolds thus reproduce the phase structure of 3d gravity.

Note that they are still far from local theories of gravity such as supergravity on

AdS3 × S3, as their low-lying spectrum is Hagedorn and so they look more like
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classical string theories. The D1-D5 CFT has a moduli space that is proposed

to contain a point, known as the orbifold point, where the theory becomes a

free symmetric product orbifold theory. According to this proposal, the orbifold

point is connected to the point where the supergravity description is valid by an

exactly marginal deformation. It is only the strongly coupled theory that is dual

to supergravity, and from this point of view it is surprising that the free theory

realizes the phase structure of gravity.

Symmetric product orbifolds in higher dimensions

In two dimensions, we saw that symmetric product orbifolds are examples of

theories with a sparse enough spectrum to satisfy the bound from [156] and thus

have a universal phase structure at large N . We would now like to construct

weakly coupled examples of theories satisfying our new criteria in higher dimen-

sions. In dimensions greater than two, it is in general much harder to construct

large-N CFTs. One may of course take tensor products but these will never have

a sparse enough spectrum. In fact, the spectrum below some fixed energy level

will not even converge as N →∞. Imposing some form of Gauss’ law to project

out many of the low-lying states is usually done by introducing some coupling to

a gauge field, which makes preserving conformal invariance highly non-trivial. A

natural way to achieve this same projection is through the construction of orb-

ifold conformal field theories familiar from two dimensions. To the best of our

knowledge, there is no construction of orbifold conformal field theories in higher

dimensions, which as explained in the previous subsection is perhaps the most nat-

ural way of obtaining theories that are conformal, have a large number of degrees
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of freedom, but also a sparse low-lying spectrum.

We will now describe the construction of symmetric product orbifolds in d

dimensions.15 We will construct the partition function, i.e. the Hilbert space and

the spectrum of the Hamiltonian on Td−1. We comment on other properties of

the theory such as correlation functions in the discussion section.

The starting point is again to consider a seed CFTd C and to define the orbifold

theory CN as

CN ≡
C⊗N
SN

(2.310)

The orbifolding procedure goes as follows. We start by projecting onto invariant

states by inserting all elements of the group in the time direction. This gives

Zuntw =
1

N !

∑

g∈SN

g . (2.311)

The box of the 2d case has now been lifted to a d-dimensional hypercube which

again describes the torus. We will represent it by a 3d cube and leave the other di-

mensions implicit. Again, the mere projection is obviously not modular invariant.

By applying elements of SL(d,Z) (for instance the S element given in (2.251)),

we quickly see that group elements must also be inserted in the space directions.

Having well-defined boundary conditions for the fields constrains the d group el-

ements to be commuting. The partition function of the orbifold theory is then

15Here we will assume that the group is SN but the generalization to other permutation groups
follows trivially from our construction.
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defined as

Zorb =
1

N !

∑

g0,...,gd−1∈SN
gigj=gjgi∀i,j

g0

g1
gd−1

. (2.312)

Twisted sector states will correspond to any states with non-trivial insertions in

any of the space directions. The different twisted sectors are no longer labeled just

by conjugacy classes, but by sets of d− 1 commuting elements, up to overall con-

jugation. This orbifolding procedure describes a well-defined SL(d,Z)-invariant

partition function.

Spectrum of the theory

The untwisted sector states

We now turn our attention to the spectrum of these orbifold theories. Other

properties will depend strongly on the choice of seed. We start by considering

the untwisted sector states. These are given by states of the product theory,

up to symmetrization. From the point of view of the partition function, their

contribution consists of all elements in the sum (2.312) where g1 = ... = gd−1 = 1.

Consider the contribution of a K-tuple to the density of states. A K-tuple is a

state whereK of theN CFTs are excited, while the otherN−K are in the vacuum.

The contributions of all possible K-tuples of distinct states are encapsulated by

the following expression:

ρ(∆) =

∫
dK

∫
d∆1....d∆K

1

K!
ρ0(∆1)....ρ0(∆K)δ(∆−

K∑

j=1

∆j) , (2.313)

178



Black holes and branes Chapter 2

where ∆ = E −NEvac, ∆i = Ei − Evac and ρ0 is the density of states of the seed

theory.16 It can be shown that the contribution of K-tuples with subsets of iden-

tical states do not give a larger contribution than the one considered here, so it is

sufficient to focus on this case. The combinatorial prefactor 1/K! was introduced

to remove the equivalent permutations of the K states. One way to understand its

inclusion is to consider how the orbifold projection is done. A given K-tuple in the

product theory is made SN invariant by summing over all of its possible permuta-

tions. For example, the 3-tuples {a, b, c}, {a, c, b}, {b, a, c}, {b, c, a}, {c, a, b}, {c, b, a}

of the pre-orbifolded theory lead to the same orbifolded 3-tuple and thus should

only be counted once. The triple integral giving ρ(∆), when left to its own devices

without combinatorial prefactor, would count all six configurations.

Along with the states being distinct, let us first assume that each of the indi-

vidual degeneracies can be approximated by the Cardy formula of the seed theory.

The Cardy formula in higher dimensions was given in (2.262) and reads

log ρ(E) =
d

(d− 1)
d−1
d

(εvacVd−1)
1
dE

d−1
d . (2.314)

Now let us proceed as in [188] to find the density of states. Performing the integrals

over energies Ei by a saddle-point approximation where the large parameter is the

total energy E, we find saddle-point values Ei = E/K for all i. To assure that

the state in each copy is distinct, we need the degeneracy to pick from to be much

larger than K. Thus the validity of this assumption and the validity of the Cardy

16Here we use the notation that ∆ is a shifted energy that satisfies ∆ ≥ 0, but we wish to
emphasize that it is not in any way related to the scaling dimension of a local operator.
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formula in each seed theory require, respectively,

exp

[
d

(d− 1)
d−1
d

(εvacVd−1)
1
d (∆/K + Evac)

d−1
d

]
� K, ∆/K � |Evac| . (2.315)

We will check whether these conditions are satisfied at the end. Note that the sec-

ond constraint implies that we can drop Evac in the Cardy formula when expressed

in terms of ∆. We thus have

ρ(∆) ∼
∫
dKexp

[
daK

1
d∆

d−1
d −K logK +K

]
(2.316)

with

a ≡ 1

(d− 1)
d−1
d

(εvacVd−1)
1
d . (2.317)

We can now do a second saddle-point approximation to evaluate the integral over

K. The large parameter is again given by the total shifted energy ∆. The saddle

point equation is

a∆
d−1
d K

1−d
d

s − logKs = 0 , (2.318)

which gives

Ks ∼
a

d
d−1 ∆

(
log
[
a

d
d−1 ∆

]) d
d−1

(2.319)

at large ∆. Plugging this back in the density of states we find

ρ(E) ∼ exp


(d− 1)

a
d
d−1 ∆

(
log
[
a

d
d−1 ∆

]) 1
d−1


 , (2.320)

where we have used large ∆ to drop subleading pieces which either have a larger
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power of the logarithm in the denominator or are terms proportional to log log ∆.

We find a growth of states that is slightly sub-Hagedorn and the growth increases

with the dimension of the field theory. Inserting Ks in our necessary assumptions

shows that they can be satisfied for large enough ∆. In particular, the second

condition becomes

a
d
d−1 ∆� exp

[
a |Evac|

d−1
d

]
(2.321)

which is then sufficient to satisfy the first condition. Here Evac is the vacuum

energy of the seed theory and does not scale with N . Notice also that Ks grows

with ∆ and must not violate the bound Ks ≤ N . This implies a bound on our

energies from the saddle:

a
d
d−1 ∆ . N [log(N)]

d
d−1 . (2.322)

So altogether our density of states formula is reliable in the range

exp
[
a |Evac|

d−1
d

]
� a

d
d−1 ∆ . N [log(N)]

d
d−1 . (2.323)

In particular we can consider energies that scale with N . However, as we will

shortly see, the density of states quickly becomes dominated by the twisted sectors.

Note that this growth of states is also a lower bound for any permutation orbifold

as orbifolding by a subgroup of SN always projects out fewer states.
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The twisted sector states

We will now give a lower bound on the density of states coming from the twisted

sectors. If the intuition from two dimensions carries over, it will be the twisted

sectors that give the dominant contribution to the density of states. Indeed, this

is the result we will find. We start by a more general discussion of twisted sector

states and their contribution to the partition function.

A twisted sector is given by d − 1 commuting elements g1, ..., gd−1 of SN , up

to overall conjugation. There is also a projection onto SN -invariant states by

summing over elements in the time direction but at this point we only focus on

the identity contribution in that direction. We define T to be the original d-torus

used to compute the partition function. We leave the dependence on the vectors

U0, ..., Ud−1 implicit. Let us consider the action of the subgroup Gg1,...,gd−1
of SN

(defined to be the group generated by g1, ..., gd−1) on the N copies of the CFT. The

action of this group will be to glue certain copies of the CFT together. Concretely,

let Φk denote a field on T of the k-th CFT, then in the twisted sector defined by

Gg1,...gd−1
this field has boundary conditions

Φk(x0, x1, ..., xj + Lj, ..., xd−1) = Φgj(k)(x0, x1, ..., xj, ..., xd−1) . (2.324)

Tracking the orbit of the k-th copy under Gg1,...gd−1
allows us to define a single field

Φ̃ with modified boundary conditions. In particular it will have larger periods. A

field Φ̃i can be defined for each orbit of the group Gg1,...gd−1
and we will denote
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the set of these orbits by

{Oi} , i = 1, ...imax , (2.325)

where imax depends on the precise choice of g1, ..., gd−1. As the different orbits

do not talk to each other, the path integral will split into a product of imax

independent path integrals, one over each field Φ̃i. The new boundary conditions

of the fields in a given Oi under the action of Gg1,...,gd−1
enable us to rewrite that

particular contribution to the path integral as a torus partition function, but now

with T replaced by a new torus T̃i. The original identifications coming from

(2.250) were

(x0, x1, .., xd−1) ∼ (x0, x1, .., xd−1) +
d−1∑

i=0

niUi . (2.326)

for any integers ni. Once the elements g1, ..., gd−1 are inserted the identifications

are changed and they are encoded in a new torus. As these boundary conditions

follow from the orbits, the identifications from the new torus are given by the

elements in Gg1,...,gd−1
that leave the orbit invariant, i.e.

gm1
1 ...g

md−1

d−1 Oi = Oi . (2.327)

This means that the identifications become

(x0, x1, .., xd−1) ∼ (x0, x1, .., xd−1) +
d−1∑

i=0

miUi . (2.328)

with the mi such that (2.327) is satisfied. Alternatively, one can define new vectors
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in the following way

Ũ1 = mmin
1 U1 +m1,2U2 + ...+m1,d−1Ud−1 ,

...

Ũd−2 = mmin
d−2Ud−2 +md−2,d−1Ud−1 , (2.329)

Ũd−1 = mmin
d−1Ud−1 ,

where mmin
d−1 is the smallest integer md−1 such that g

md−1

d−1 Oi = Oi, (md−2,d−1,m
min
d−2)

are the pair with smallest non-zero md−2 such that g
md−2,d−1

d−1 g
mmin
d−2

d−2 Oi = Oi and

the (mmin
1 , ...,m1,d−1) are the set of integers with minimal non-zero m1 such that

(2.327) is satisfied. These vectors define a new torus T̃i with volume

Vol(T̃i) =

(∏

j

mmin
j

)
Vol(T) ≡ |Oi|Vol(T) . (2.330)

Since the gi commute, |Oi| is just the number of elements in the orbit Oi.

A twisted sector will thus give a set of new tori T̃i whose different volumes

depend on the orbits of the action of Gg1,...,gd−1
. For each orbit of that action, we

will get a separate torus and schematically, this will give a contribution to the

partition function of the form

Ztot ∼
∏

i

Z(T̃i) , (2.331)

where the product over i is a product over the orbits. This is a generalization of
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Bantay’s formula [179] to higher dimensions. For every orbit Oi we have

Vol(T̃i) = |Oi|Vol(T) , (2.332)

where |Oi| is the length of the orbit. We will now calculate the contribution to

the partition function from a single non-trivial orbit of length L = Md−1 giving

a torus with equal rescaling M in all spatial directions. For simplicity, we also

consider a case with mi,j = 0 ∀i 6= j. The torus T̃i corresponding to this orbit is

then

(Ũ0, ..., Ũd−1) = (U0,MU1, ...,MUd−1) . (2.333)

We can always find elements g1, ..., gd−1 that produce the desired torus with equal

scaling of the spatial cycles. To produce the new torus given in (2.333), we use

for example the following elements:

g1 = (1 ... M) (M + 1 ... 2M) ... (Md−1 −M + 1 ... Md−1)(Md−1 + 1) ... (N)

g2 = (1 M + 1 ... M(M − 1) + 1) ...

(Md−1 −M(M − 1) Md−1 −M(M − 2) ... Md−1)(Md−1 + 1) ... (N)

... (2.334)

gd−1 = (1 Md−2 + 1 ... Md−2(M − 1) + 1)...(Md−2 2Md−2 ... Md−1)

(Md−1 + 1) ... (N)

for L = Md−1. For example in d = 3 and for L = 9, we get

g1 = (1 2 3)(4 5 6)(7 8 9)(10)...(N) ,
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g2 = (1 4 7)(2 5 8)(3 6 9)(10)...(N) . (2.335)

One can quickly check that all these elements commute and that they define an

orbit of length L as well as N − L singlets. One can also check that mmin
1 = ... =

mmin
d−1 = M . We will call Zsq this particular contribution to the partition function,

and it reads

Zsq = Z(U0, U1, ..., Ud−1)N−LZ(U0,MU1, ...,MUd−1)

= Z(U0, U1, ..., Ud−1)N−LZ(U0/L
1
d−1 , U1, ..., Ud−1) , (2.336)

where we uniformly rescaled the torus and used L = Md−1. From this, we can

infer the behaviour of the density of states:

Zsq =
∑

E

ρsq(E)e−βE = e−βEvac(N−L) (1 + . . . )
∑

E

ρ0(E)e−βE/L
1
d−1

. (2.337)

We can ignore the excited states encapsulated in “. . . ” as they will only increase

ρsq(E), which will increase our final answer. In this section, we are only after a

lower bound for the density of states so we can ignore such terms. Shifting E to

L
1
d−1 (E − Evac(N − L)) gives us

ρsq(E) = ρ0(L
1
d−1 (E − Evac(N − L))) . (2.338)

This will be the key formula to derive the final result.

In the full partition function we sum over all L ≤ N and for large L, we are in

a regime where we may use the Cardy formula of the seed theory given in (2.262).
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To find the twisted sector that gives the maximal contribution at energy E, we

evaluate the sum over L using a saddle point approximation. The resulting saddle

point equation for L is solved by

Ls =
(EvacN − E)

dEvac

, (2.339)

which will be a good approximation provided Ls � 1. We now plug this back in

(2.338) and use the Cardy formula (2.262) to obtain

ρ(E) ∼ exp

[
a

(d− 1)
d−1
d

|Evac|1/d
(E −NEvac)

]
. (2.340)

Note that this is a Hagedorn growth as in two dimensions but the coefficient of

the Hagedorn growth depends on the vacuum energy of the seed theory. This is

somewhat a loss of universality compared to two dimensions and it will be very

important in what follows to understand precisely the properties of the vacuum

energy of the orbifold theory. This will be the task of the next subsection. The

regime in which this expression is reliable is for 1 � Ls ≤ N which in terms of

energies is

1� E −NEvac

|Evac|
≤ dN . (2.341)

Finally, it is important to emphasize that this is merely a lower bound on the

density of states17. We have only given the contribution from one type of twisted

sectors and other sectors might dominate. We have also not taken into account

17In fact, the method used in this section only gives an estimate for the lower bound. We have
only inserted one element - the identity - in the time direction and have not taken into account
the projection to SN invariant states. Following the method we will use in section 2.5.5 one can
show that this estimate is actually precise.
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the projection onto SN invariant states by inserting commuting elements of the

group in the time direction. In two dimensions, one can show that the estimate

coming from this particular twisted sector (called long strings in 2d) actually gives

the dominant contribution. We will discuss this further when analyzing the free

energy but we first turn our attention to the vacuum energy.

Vacuum energy of the orbifold theory

We want to understand precisely the properties of the vacuum energy of the

orbifold theory. In two dimensions, it is clear that the central charge gets multi-

plied by N when going from the seed theory to the product (or orbifold) theory.

Since the vacuum energy is fixed by the central charge, it also gets multiplied

by N . Naively, one would expect a similar behavior in higher dimensions. The

all-vacuum contribution in the untwisted sector indeed has energy NEvac, but it

may be possible that other twisted sectors give even more negative contributions.

We will now address this possibility and show that it is impossible, so that the

vacuum energy of the orbifold theory is in fact given as

Eorbi
vac = NEvac . (2.342)

To prove this, first recall that it is not necessary to consider twisted sectors in-

ducing twists between any of the dimensions because they always increase the

vacuum energy, as explained in section 2.5.4. The only thing we need to check

is that rescalings of the torus do not give a contribution that is more negative

than (2.342). A twisted sector in principle gives a product of partition functions
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if there is more than one orbit, but it will suffice to consider the case of a single

orbit. This is because if there are different orbits, the vacuum energy is simply

the sum of the vacuum energy for each orbit. In the case of a single orbit, the

partition function looks like

Z =
∑

E

e−βE . (2.343)

For a generic torus there can be angular potentials, but we have suppressed them

since they will not influence the vacuum energy. Note that these values E are not

directly the energy on the new spatial torus as there may have been a rescaling

of the time direction. The vacuum energy of the orbifold theory Eorbi
vac is simply

the smallest such value of E. Now consider a twisted sector giving an arbitrary

rescaling Ui →MiUi such that

d−1∏

i=0

Mi = N . (2.344)

This is needed as the scaling of the full torus must be equal to N if there is only

one orbit. On such a torus, the vacuum contribution will be of the form

Eorbi
vac (Mi) = −M0

εvacVd−1

∏
i>0Mi

Md
1L

d
1

(1 + f(y1))

= − N

Md
1

εvacVd−1

Ld1
(1 + f(y1)) , (2.345)

where we used (2.344) and

y1 =

(
M1L1

M2L2

, . . . ,
M1L1

Md−1Ld−1

)
. (2.346)
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From (2.345) and using the monotonicity property of f(y) under the increase of

any of its arguments, it is clear that this expression is maximized for all Mi = 1

except for M1. At first glance, it is not clear if increasing M1 increases or decreases

the energy as it appears both in the denominator and in f(y) which change in

opposite directions. However, one can alternatively write the vacuum energy as

Evac(Mi) = − N

Md
2

εvacVd−1

Ld2
(1 + f(y2)) , (2.347)

with

y2 =

(
M2L2

M1L1

, . . . ,
M2L2

Md−1Ld−1

)
. (2.348)

In this form, it is clear that M1 > 1 would only give a less negative value to the

free energy. We have thus showed that to get the minimal contribution, we need

M0 = N, Mi = 1 ∀ i , (2.349)

which then gives precisely the vacuum energy (2.342).

Although this might appear as good news for the orbifold theory to be a

“nice” theory, it is very bad news for any chance of universality at large N . We

have shown in the previous section that having f̃(y) = 0 is a necessary condition

for a universal free energy and an extended regime of the Cardy formula. Here,

we see that the orbifold theory has f̃(y) = 0 only if the seed theory does. The

choice of seed becomes crucial to reproduce the phase structure of gravity. In fact,

this result is not so surprising. In two dimensions, we could consider ourselves

lucky that the SN orbifold theory, which is a free theory, reproduces the phase
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structure of Einstein gravity. It is only the strong coupling deformation of the

orbifold theory that is dual to Einstein gravity so there is no a priori reason why

one should have expected the orbifold theory to reproduce the phase structure of

gravity. In higher dimensions, it appears that for a general seed, some form of

coupling between the N CFTs must be introduced to force f̃(y) to vanish. One

might consider deforming the orbifold theory by some operator to achieve this

effect. In particular, the existence of any exactly marginal deformations might

allow reducing the Hagedorn density of light states to something compatible with

Einstein gravity, as is proposed to occur in the D1-D5 duality. This could be

directly connected to the vanishing of f̃(y).

In the following subsection, we will show that choosing a seed theory with

f̃(y) = 0 both gives a theory that saturates the sparseness bound and reproduces

the phase structure of gravity.

Universality for f̃(y) = 0 and free energy at large N

If f̃(y) = 0, we have Evac = −εvacVd−1/L
d
1 where L1 is the length of the

smallest cycle. Inserting this expression in (2.340), we obtain

ρ(E) ∼ exp (L1(E −NEvac)) (2.350)

for the growth coming from the specific twisted sector we previously considered.

Note that the coefficient of the Hagedorn growth precisely saturates the bound

on the light states given in (2.305) if we put the theory on the square torus. At

the upper end of the range of validity of (2.340) where E = −(d − 1)NEvac, we
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precisely recover the Cardy growth at the same energy. This indicates that the

spectrum transitions sharply from Hagedorn to Cardy exactly where expected.

However, we have only given a lower bound for the density of states as we only

computed the contribution coming from a particular twisted sector. We will now

show that for f̃(y) = 0 it is also an upper bound. We will do so by computing the

free energy and see that it precisely reproduces the universal behavior discussed

in section 2.5.4. This implies that the density of low-lying states is bounded above

by (2.350), which becomes both a lower and upper bound. This means that no

other twisted sector can give a bigger contribution and the density of states is

well-approximated by (2.350).

To compute the free energy at large N , we will follow a similar procedure as

that in two dimensions [183]. The starting point is a combinatorics formula first

introduced by Bantay [180]. Let G be a finitely generated group and Z a function

on the finite index subgroups of G that takes values in a commutative ring and is

constant on conjugacy classes of subgroups. We have the following identity

∞∑

N=0

pN

N !

∑

ϕ:G→SN

∏

ξ∈O(ϕ)

Z(Gξ) = exp

(∑

H<G

p[G:H] Z(H)

[G : H]

)
, (2.351)

where ϕ is an homomorphism from G to SN and H are subgroups of G with

finite index given by [G : H]. In our case, Z will be the partition function and

G = π1(Td) = Zd. This group is abelian and the sum over homomorphisms ϕ

is equivalent to the sum over commuting elements introduced earlier. The image

of ϕ acts on N letters (momentarily this will be the N copies of the CFT) by

the usual SN action and its orbit is denoted by O(ϕ). The subgroup Gξ consists
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of those elements of g such that ϕ(g) leaves ξ invariant. In fact, the left hand

side is simply the generating function for the partition functions of the symmetric

product orbifolds. It corresponds to

Z =
∑

N

pNZN , (2.352)

where ZN is the partition function of C⊗N/SN and thus the action of ϕ can be

thought of as permuting the copies in C⊗N . Just like in two dimensions, it is

often more convenient to work with this generating function and to later find the

coefficient of the term pN to extract ZN .

Bantay’s formula equates the generating function to an exponential of a sum

over new partition functions. This sum over partition functions really corresponds

to a sum over new tori, and for a given index, the volume of the new tori will be

the original volume times the index. Just as for SL(2,Z), there is a very natural

way to include all tori of a given index by using Hecke operators. Consider a torus

to be described by the matrix U given in (2.250), which is upper triangular. Now

consider the following set of matrices

ΩL =








a0 a01 · · · a0,(d−2) a0,(d−1)

0 a1 · · · a1,(d−2) a1,(d−1)

...
...

. . .
...

...

0 0 · · · ad−2 a(d−2),(d−1)

0 0 · · · 0 ad−1




∣∣∣∣∣
∏

i

ai = L, 0 ≤ aj,i < ai ∀ i, j





(2.353)

with L fixed. These matrices are elements of GL(d,Z) and act on the lattice
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vectors Ui defining the torus according to Ũ = HU with H an element of ΩL.

These new tori will have a volume L times larger than the original torus U .

Consequently, the new lattice defined by the new torus is a sublattice H of Zd

and the index [G : H] of H in G = Zd is L. The purpose of these matrices is to

parameterize the finite index subgroups of G so that we can write

∑

H<G

p[G:H] Z(H)

[G : H]
=
∑

L>0

pL

L

∑

A∈ΩL

Z(AU) . (2.354)

Fortunately, the right hand side can be rewritten in terms of Hecke operators for

SL(d,Z),

TLZ(U) ≡
∑

A∈ΩL

Z(AU) , (2.355)

which encapsulate the sum over different tori mentioned earlier. Note that the

Hecke transform of Z is also an SL(d,Z) modular invariant. Bantay’s formula

then becomes

Z(U) = exp

(∑

L>0

pL

L
TLZ(U)

)
. (2.356)

Because TLZ(U) is a function invariant under SL(d,Z) [196], and it has a corre-

sponding extensive free energy, its asymptotic growth is also given by the higher-

dimensional Cardy formula. To see this directly, notice that TLZ(U) is a sum over

partition functions of different tori. Each of these obeys the higher-dimensional

Cardy formula, although the explicit dependence on the volume of the torus in

our higher-dimensional Cardy formula may seem confusing. Note however that at

asymptotically large energies we have E ∝ V
−1/(d−1)
d−1 , so the volume of the torus

cancels out and the formula can be written in terms of a dimensionless energy.

194



Black holes and branes Chapter 2

Thus, there is no confusion as to “which volume” enters into the Cardy formula for

TLZ(U). In fact, the situation is even better. The gap between the first excited

state and the vacuum grows with L indicating that at large L, the Cardy formula

will become a good estimate for the Hecke transformed partition function.

We are now ready to estimate the free energy. Let us take a rectangular d-torus

with sides β, L1, ..., Ld−1, i.e

U =




β 0 · · · 0 0

0 L1 · · · 0 0

...
...

. . .
...

...

0 0 · · · Ld−2 0

0 0 · · · 0 Ld−1




, (2.357)

and let us assume L1 is the smallest spatial cycle. Writing p̃ = peβEvac ,

Z = exp

(∑

L>0

p̃L

L
+
∑

L>0

p̃L

L

∑

E>0

ρ̃TL(E)e−βE

)

=

(
∞∑

K=0

p̃K

)
exp

(∑

L>0

p̃L

L

∑

E>0

ρ̃TL(E)e−βE

)
, (2.358)

where we have defined ρ̃TL(E) such that

eLβEvacTLZ(U) = 1 +
∑

E>0

ρ̃TL(E)e−βE (2.359)
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Using the Cardy formula, the sum over energies in (2.358) becomes

∑

E>0

e

(
daL

1
d (E+EvacL)

d−1
d

)
e−βE ∼ exp

(
L|Evac|

(
Ld1
βd−1

− β
))

, (2.360)

where we assumed L1 to be the smallest cycle and used (2.317) as well as

Evac =
−εvacVd−1

Ld1
. (2.361)

The saddle point value for E is

Es = |Evac|L
(

1 +
(d− 1)Ld1

βd

)
, (2.362)

which will be large for large L. This justifies the use of the Cardy formula. The

terms with low E will of course not be in the Cardy regime but these will only

give a subleading contribution. Overall, the error on the each term in the sum

over L will be of order e−uL/β
d−1

for some positive order one number u that is

theory dependent. Plugging (2.360) into (2.358) we get

Z =

(
∞∑

K=0

p̃K

)
exp

(∑

L>0

1

L

(
p̃exp

(
|Evac|

(
Ld1
βd−1

− β
)))L)

=

(
∞∑

K=0

p̃K

)
exp

(
− log

(
1− p̃e|Evac|β(Ld1/β

d−1)
))

=

(
∞∑

K=0

p̃K

)
1

1− p̃e|Evac|β(Ld1/β
d−1)

. (2.363)

We can now extract the free energy. Note that because the vacuum energy is

negative and proportional to N , the partition function diverges as N →∞ so we
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need to consider the shifted partition function and shifted free energy

Z̃ ≡ eEvacβZ ,

F̃ ≡ − log Z̃

β
. . (2.364)

The shifted partition function will then simply be the term p̃N in (2.363), which

is given by

Z̃N =
exp

(
(N + 1)|Evac|β

(
Ld1
βd
− 1
))
− 1

exp
(
|Evac|β

(
Ld1
βd
− 1
))
− 1

. (2.365)

The free energy as N →∞ for β < L1 is thus

F̃N(U) = −N |Evac|
(
Ld1
βd
− 1

)
. (2.366)

For β > L1, we get

F̃N(U) =
1

β
log

(
1− exp

(
|Evac|β

(
Ld1
βd
− 1

)))
+ Fcor(β) , (2.367)

where the Fcor(β) corresponds to another O(1) contribution coming from sub-

leading corrections to the saddle point as well as the low energy contributions.

The free energy thus has a phase transition at β = L1 and goes from being O(1)

to O(N). This precisely matches the phase structure of the bulk gravitational

theory.

Modular invariance is not manifest in the shifted free energy above. In order
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to recover it, we consider the quantity

F (U) = lim
N→∞

1

N
FN(U) , (2.368)

where FN(U) is the unshifted free energy and F (U) = F (β, L1, ..., Ld−1). Using

the results obtained above,

F (U) =





− εvacVd−1

βd
β < L1

− εvacVd−1

Ld1
β > L1

, (2.369)

where L1 is the smallest cycle. The free energy is a modular covariant quantity

which transforms under the S transform of SL(d,Z) as

F (β, L1, ..., Ld−1) =
L1

β
F (L1, ..., Ld−1, β). (2.370)

Upon checking this transformation rule for (2.369), we see that in both regimes

the free energy transforms as expected.

2.5.6 Discussion

In this paper we have studied conformal field theories in dimensions d > 2

compactified on tori. The main goal was to explore the implications of the as-

sumed invariance under the SL(d,Z) modular group and see what additional

constraints on the spectrum would reproduce the phase diagram of gravity in

anti-de Sitter space. We have uncovered both similarities and differences with

the two-dimensional case. We have presumably only scratched the surface of this
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interesting subject and many issues and open questions remain, some of which we

list below.

Modular invariance

The modular group SL(d,Z) consists of the large diffeomorphisms (i.e. not

continuously connected to the identity element) which map a d-dimensional torus

to itself. In two dimensions, there are well-known systems, such as the chiral

fermion, whose partition function is not modular invariant. However, such the-

ories have gravitational anomalies and can therefore a priori not be consistently

defined on arbitrary manifolds. Moreover, when such theories appear in nature, as

in the edge modes in the quantum Hall effect, the relevant anomalies are canceled

due to an anomaly inflow mechanism which crucially relies on the existence of a

higher-dimensional system to which the theory is coupled (for a higher-dimensional

version of this statement see e.g. [197]). We are not aware of a local and uni-

tary conformal field theory which is free of local gravitational anomalies and not

modular invariant. But modular invariance is weaker than the absence of local

gravitational anomalies. There are many modular invariant CFTs with cL−cR 6= 0

which have gravitational anomalies, while modular invariance only implies that

cL − cR must be an integer multiple of 24. It would be interesting to explore the

generalizations of these statements to higher dimensions.

Another approach to using modular invariance to learn about conformal field

theories on tori is to consider bounds coming from the fixed points of SL(d,Z).

This would be a generalization of the “modular bootstrap” [198, 199, 200, 201,

202, 203, 204, 205] to higher dimensions. This is valid for general conformal field
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theories, and taking a large-N limit may give insight into holographic theories.

State-operator correspondence

The usual arguments for the state-operator correspondence in conformal field

theory rely on radial quantization and apply to the theory on the spatial sphere

Sd−1 times time. The local operators obtained in this way can be inserted on other

manifolds as well but the one-to-one correspondence with states in the Hilbert

space no longer applies. The main problem in applying radial quantization to

the torus is that, as opposed to spheres, one can not smoothly shrink a torus of

dimension larger than one to a point. Stated more precisely, the metric ds2 =

dr2 + r2dΩ2 is not smooth at r = 0 unless Ω is the round unit sphere.

One cannot even apply the standard radial quantization argument to the

conformal field theory on S1 × Rd−2 times time. At r = 0, the metric ds2 =

dr2 + r2dϕ2 + r2dxidxi looks like a singular Rd−2-dimensional plane, suggesting

that some sort of surface operators might be relevant. That such operators are

generically needed can for example be seen using the orbifold theories we studied

in this paper. Orbifold theories can be thought of as theories with a discrete gauge

symmetry, and in case the theory lives on S1 × Rd−2 we should include twisted

sectors which involve twisted boundary conditions when going around the S1.

These twisted boundary conditions can be detected by a Wilson line operator for

the discrete gauge field around the S1. To create a non-trivial expectation value

for the Wilson line operator, we need an operator which creates non-contractible

loops, and for this we need an operator localized along a (d− 2)-dimensional sur-

face. One can think of such operators as a higher-dimensional generalization of
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the ’t Hooft line operators. A local operator in d > 2 is unable to generate a

non-trivial vev for the discrete Wilson line operator and can therefore not create

twisted sector states. Surface operators of dimension d − 2 which create twisted

boundary conditions also feature prominently in the replica trick computations of

entanglement entropy in dimensions d > 2; they are the generalized twist fields

associated to the boundary of the entangling area.

If (d− 2)-dimensional surface operators are the right operators for the theory

on S1 × Rd−2, it is plausible they are also relevant for CFT’s on tori. One can

for example consider the surface operators dual to periodic field configurations

on Rd−2, but it is not clear the resulting surface operator will have the right

periodicity as well. Alternatively, one can study the Euclidean theory on an

annulus times Td−2, with the annulus having inner radius R1 and outer radius

R2. The Euclidean path integral in principle provides a map from states on the

torus S1
R1
× Td−2 to S1

R2
× Td−2, and by taking the limit R1 → 0 one can imagine

obtaining singular boundary conditions for a surface operator localized along a

(d− 2)-torus.

Clearly, more work is required to understand whether the above construction

provides a useful version of the state-operator correspondence for field theories on

tori, and if it does, what a useful basis for the space of surface operators could

possibly be. There seems to be a significant overcounting, as one can construct a

surface operator for any choice of state on the torus and for any choice of one-cycle

on the torus. Currently, we do not even have a compelling compact Euclidean

path integral representation of the ground state of the theory on the torus.

It might also be interesting to explore the state-operator correspondence from
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an AdS/CFT point of view. One would then need to glue Euclidean caps to the

Lorentzian solutions discussed in section 2.5.3. Since the Lorentzian solutions

require a choice of one-cycle which is smoothly being contracted in the interior,

a similar choice will be needed for the Euclidean caps, leading apparently once

more to the same overcounting as we observed above. It would still be interesting

to construct the explicit form of the geometry where a Euclidean cap without the

insertion of surface operators is smoothly glued to the Lorentzian AdS solutions.

If such solutions could be found, its boundary geometry would provide a Euclidean

path integral description of the ground state of the corresponding CFT, at least

in the large N and strong coupling approximation.

Defining the orbifold theory

In section 2.5.5, we defined a prescription to compute the partition function

of the orbifold theory. This prescription describes both the Hilbert space and the

spectrum of the Hamiltonian on the torus. In two dimensions, the orbifolding

prescription also fully describes the procedure to compute arbitrary correlation

functions of (un)twisted sector local operators, at least in principle. In higher

dimensions, because of the lack of a precise state-operator correspondence, it is

not clear wether we have really fully specified a theory. For that, we need to

determine the full set of correlation functions and hence know the set of operators

in the theory. It is clear that all untwisted sector correlation functions make

sense in the orbifold theory so all local correlation functions are well-defined and

calculable. Furthermore, the theory possesses a stress tensor as the stress tensor is

always in the untwisted sector. Nevertheless, the questions touching the twisted
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sector states and/or line operators is much more obscure and it would be very

interesting to understand the extent to which the orbifolding prescription fully

determines these.

One way orbifold theories in higher dimensions can potentially appear (and

therefore inherit a natural definition) are as discrete gauge theories that arise in

the infrared limit of a gauge theory with spontaneously broken continuous gauge

symmetry (e.g. SU(N)→ SN). This would also explain how to couple the theory

to other manifolds, an issue we turn to in the next section.

Orbifold theories on other manifolds

The orbifold theories we studied are most easily defined on tori. However,

if we have fully defined a theory we should be able to put it on any manifold.

Viewing them as theories with a discrete gauge group also provides a prescrip-

tion for the sum over twisted sectors when computing the path integral for other

manifolds. The sum over twisted sectors is the same as the sum over the space of

flat connections modulo an overall conjugation, and for a manifold M this space

is Hom(π1(M), G)/G. But even for flat space, where no sum over twisted sec-

tors needs to be taken, there are still signs of the discrete gauge symmetry. In

particular, one can consider surface operators which create twisted sector states

even on the plane, and their correlation functions contain interesting new infor-

mation. Such operators naturally arise in the context of Renyi entropy calculation

in higher dimensions [206, 207].
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Outlook

We have only begun to explore the properties of modular-invariant field theo-

ries on tori and their role in AdS/CFT. The interesting relations between the form

of the ground state energy, universal free energy at high-temperature, sparseness

conditions on the spectrum and vacuum dominance in the partition function beg

for a deeper understanding. Is there a more precise relation between the low- and

high-energy spectrum that can be rigorously established? Can subleading correc-

tions be systematically analyzed? How much of the rich structure in d = 2 and

the mathematics of SL(2,Z) can be carried over to d > 2? Does all this shed any

new light on which theories can have weakly coupled gravitational duals?
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2.5.7 Appendix A: Alternate proof without assuming f̃(y) =

0

In this section we will try to generalize the proof in section 2.5.4 to the case

where we make no assumptions on the form of the vacuum energy. To illustrate the

point, we will work in three spacetime dimensions and make the spatial manifold

explicit. We will again be using a proof like that of [156], but this time we will

take N →∞ from the start.18

Consider a rectangular three-torus with side lengths β, L1, and L2 with β <

L1 < L2. We have the relations

Z(β)L1×L2 − Z(L1)β×L2 = Z(β)L1×L2 − Z(L2)β×L1 = 0 =⇒ (2.371)
(∑

L

e−βEL1×L2 −
∑

L

e−L1Eβ×L2

)
+

(∑

H

e−βEL1×L2 −
∑

H

e−L1Eβ×L2

)
= 0 ,

(2.372)
(∑

L

e−βEL1×L2 −
∑

L

e−L2Eβ×L1

)
+

(∑

H

e−βEL1×L2 −
∑

H

e−L2Eβ×L1

)
= 0 .

(2.373)

Notice that light states L and heavy states H are playing triple duty, since the

spatial background changes in the different quantizations. In any given quantiza-

tion, the states L refer to negative energy states that scale with a positive power

of N while H refers to positive energy states that scale with a positive power of

N . We eliminate the consideration of states with O(1) energies by bounding their

density of states so that their contribution is O(1) and therefore subleading.

18Thanks to Tom Hartman for discussions about this simpler form of proof.
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We now assume that for β < L1 and β < L2, we have

∑

L

e−L1Eβ×L2 �
∑

L

e−βEL1×L2 ,
∑

H

e−L1Eβ×L2 �
∑

H

e−βEL1×L2 , (2.374)

∑

L

e−L2Eβ×L1 �
∑

L

e−βEL1×L2 ,
∑

H

e−L2Eβ×L1 �
∑

H

e−βEL1×L2 . (2.375)

These inequalities can be proven to be true in two spacetime dimensions and for

the special torus in a general number of dimensions. In fact, it is what makes a

proof like that of [156] work.

Using these inequalities, we can approximate the above equalities as

∑

L

e−L1Eβ×L2 ≈
∑

H

e−βEL1×L2 ,
∑

L

e−L2Eβ×L1 ≈
∑

H

e−βEL1×L2 . (2.376)

Then we can use ZH(L1)β×L2 � ZH(β)L1×L2 ≈ ZL(L1)β×L2 and ZH(L2)β×L1 �

ZH(β)L1×L2 ≈ ZL(L2)β×L1 to approximate the partition function in the L1 and

L2 channels as

Z(L1)β×L2 = ZL(L1)β×L2 + ZH(L1)β×L2 ≈ ZL(L1)β×L2 , (2.377)

Z(L2)β×L1 = ZL(L2)β×L1 + ZH(L2)β×L1 ≈ ZL(L2)β×L1 . (2.378)

We see that under the assumptions (2.374) and (2.375), the partition function is

vacuum dominated in the L1 and L2 channels if and only if

ρ(EL1×L2 < 0) . eL1(E−Evac)L1×L2 . (2.379)

As explained in section 2.5.4 this is necessary and sufficient for a universal free
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energy at all temperatures on an arbitrary spatial torus.

In general dimension, the sufficient conditions for a universal free energy are

the d− 1 inequalities that generalize (2.375) and a sparse light spectrum:

ρ(∆) . exp (Lmin∆) , (2.380)

where Lmin is the minimum cycle size of the spatial torus.

2.5.8 Appendix B: Microcanonical density of states

The results derived in the main text are phrased in terms of the canonical

partition function Z(β). In general such results do not immediately translate into

statements about the microcanonical density of states. However, as discussed

carefully for two dimensions in [156], the limit N →∞ is a good thermodynamic

limit which allows us to conclude ρ(〈E〉) ≈ eS(〈E〉) for 〈E〉 = −∂β logZ(β). Large

N suppresses the fluctuations in 〈E〉 and unambiguously defines an energy E ≡

〈E〉. The arguments of [156] carry over straightforwardly and imply that the

Cardy density of states has an extended range of validity that holds down to

E = −(d − 1)Evac, which is the energy corresponding to β = L1. Instead of

repeating those arguments we will give an alternative way of understanding the

thermodynamic limit which gives additional intuition. In the next sections we will

evaluate the inverse Laplace transform connecting the canonical partition function

to the microcanonical density of states in several examples. The existence of a

stable saddle point is the statement of an equivalence between the two ensembles.

In section 2.5.8 we will consider the case of two-dimensional CFT and use the
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fact that the partition function is dominated by the light states [156]. In section

2.5.8 we will assume f̃(y) = 0, in which case the special torus allows us to get

away with only bounding the density of light states, just as in two dimensions and

as we saw in the main text. Finally, in section 2.5.8 we will consider an extension

to angular momentum. Here, to extend the regime of validity we will have to

bound the density of states for the entire spectrum, again as we saw in the main

text.

d = 2

We will begin by considering the case of two-dimensional conformal field theo-

ries, treated in [156]. Here we will directly evaluate the inverse Laplace transform

connecting the canonical partition function to the density of states.

We begin with the expression for the degeneracy

ρ(hs, h̄s) =

∫ iα+∞

iα−∞
dτ

∫ −iα+∞

−iα−∞
dτ̄ I(τ, τ̄) Z̃(−1/τ,−1/τ̄) , (2.381)

for α > 0, where

I(τ, τ̄) ≡ e−2πiτ(hs−c/24)e2πiτ̄(h̄s−c̄/24) × e−2πi/τ(−c/24)e2πi/τ̄(−c̄/24) . (2.382)

Evaluating the integral using the saddle point approximation for large hs and h̄s

requires solving the saddle equations I(1,0)(τ, τ̄) = I(0,1)(τ, τ̄) = 0, which gives the

dominant saddle

τs = τ s1 + iτ s2 = +i

√
c

24hs − c
, (2.383)
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τ̄s = τ s1 − iτ s2 = −i
√

c̄

24h̄s − c̄
. (2.384)

Evaluating the integrand on this saddle gives the entropy

S = log ρ(hs, h̄s) = 2π

(√
c

6

(
hs −

c

24

)
+

√
c̄

6

(
h̄s −

c̄

24

))
. (2.385)

To ensure the saddle point approximation is justified, we have to check that Z̃

does not make big contributions on the saddle:

Z̃(−1/τs,−1/τ̄s) =
∑

h,h̄

ρ(h, h̄) exp


 −2πh√

c
24hs−c

− 2πh̄√
c̄

24h̄s−c̄


 . (2.386)

As hs →∞ and h̄s →∞ with c finite, all terms except for the vacuum contribution

are infinitely exponentially suppressed, justifying our saddle point approximation.

This is the ordinary Cardy formula.

Now let us consider the limit c→∞ with hs = mc. For simplicity we set c = c̄

and τ1 = 0. So we have the canonical partition function at inverse temperature

β = τ2/(2π). We will have the same saddle as before but need to check again that

Z̃ does not give a big contribution on the saddle. If we take m→∞, then again

all terms except the vacuum contribution are infinitely exponentially suppressed

and our saddle is justified. But now we want to see how small we can make m.

We will use the fact that Z(β) is dominated by the light states as long as β > 2π.

This means that Z̃(β) is also dominated by the light states. We can therefore

write

Z̃(4π2/βs) ≈
∑

∆≤c/12+ε

ρ(∆)exp

(
2π∆√

c
12∆s−c

)
(2.387)
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for ∆ = h+ h̄. We need all terms on the right-hand-side to contribute exponential

suppressions, except for the identity operator which will contribute +1. To push

the validity of the saddle down to ∆s = c/6, which is the result expected from

gravity, we need to bound the degeneracy as

ρ(∆ ≤ c/12 + ε) . exp (2π∆) = exp (2π(E + c/12)) . (2.388)

This is the same bound on the light states as in [156].

d > 2

In this case, we consider the high-temperature/low-temperature duality on the

special torus, for which Z(β) = Z(Ld/βd−1). We have

ρ(Es) =
1

2πi

∫ α+i∞

α−i∞
dβ Z(β) eβEs (2.389)

for α > 0. Performing a modular transformation and multiplying and dividing by

a common factor gives (omitting the integration limits and 1/2πi)

ρ(Es) =

∫
dβ
(
e−εvacVd−1/β

d−1

Z(Ld/βd−1)
)
eεvacVd−1/β

d−1+βEs . (2.390)

We will hold off on defining Vd−1 for the moment, which will actually be defined

to be independent of β. At large N with Es scaling as a positive power of N the

saddle point (ignoring the term in parentheses) occurs at

βs =

(
(d− 1)εvacVd−1

Es

) 1
d

, (2.391)
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which gives an on-shell entropy of

ρ(Es) = exp

(
d

(d− 1)
d−1
d

(εvacVd−1)
1
dE

d−1
d

s

)
(2.392)

To make sure the saddle is controlled, we again want the term in parentheses to

contribute as 1 + e−(... ) on the saddle. To show this, we will use the fact from

the main text that for Z(Ld/βd−1) is dominated by the contribution of the light

states for L > β. This lets us write the term in parentheses on the saddle as

∑

E<ε

exp

(
−(LdE + εvacVd−1)

(
Es

(d− 1)εvacVd−1

) d−1
d

)
. (2.393)

We now want to define Vd−1 = VM0 = L · · ·Ld−1/βd−2
s as the volume of the special

torus. Since βs depends on Vd−1, this is an equation that can easily be solved for

Vd−1 in terms of only εvac and Es, but all we need to know is that it gives the

volume of the special torus on the saddle. Now using our assumption that the

subextensive corrections to the vacuum energy vanish, we see that the vacuum

state contributes as +1. To approach the square torus as in the main text we

want to push Es down to −(d − 1)Evac, which will require bounding the density

of light states as

ρ(E) . exp(L(E − Evac)), E ≤ −(d− 1)Evac , (2.394)

where the energies are taken to be on a square torus. This is the same bound as

we saw in the main text. At this point we can perform a similar bootstrapping

procedure to obtain this density of states on an arbitrary spatial torus and at
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arbitrarily higher energies.

Cardy extension with angular momentum on T2 × Rd−2

We will show in this section that similar manipulations can be performed

once angular momentum is included. In particular, assuming sparseness on the

low-lying spectrum, we can extend the generalized Cardy formula with angular

momentum to include the entire range

J2 < (E − Evac)(E + (d− 1)Evac) . (2.395)

Note that this has the correct limits. For d = 2 we recover ELER > c2/576, and

for J = 0, d > 2 we get E > −(d− 1)Evac.

Before we perform our CFT analysis, we should analyze the phase structure of

gravity with the appropriate boundary conditions. We are introducing a chemical

potential for angular momentum, which corresponds to adding a twist in the

periodicity of Euclidean time. The solutions are the same as in the main text,

but with angular velocity added. The Poincaré patch and soliton geometries can

be written as before except with the new identification t ∼ t + iβ + θ, while the

black brane is written as

ds2 =
(
(rh/r)

duµuν + r2ηµν
)
dxµdxν +

dr2

r2 (1− (rh/r)d)
, (2.396)

uµ =

( −1√
1− a2

,
a√

1− a2
,~0

)
. (2.397)
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The free energies of the solutions are given by

Fbb = −r
d
hLL

d−2
∞

16πG
, Fsol = −r

d
0LL

d−2
∞

16πG
, Fpp = 0 , (2.398)

with

rh =
4π

d

√
1

β2 + θ2
, r0 =

4π

dL
. (2.399)

The energy and the angular momentum of the black brane are given by the usual

thermodynamic relations in terms of a Euclidean partition function Z(β, θ) =

Σ e−βH+iθJ = Σ e−β(H+aJ):

E = − ∂

∂β

∣∣∣∣
θ

logZ =
rdhLL

d−2
∞

16πG

d− 1 + a2

1− a2
, (2.400)

J = −i ∂
∂θ

∣∣∣∣
β

logZ =
rdhLL

d−2
∞

16πG

da

(1− a2)
. (2.401)

From the expressions for the free energies, we see that the soliton dominates the

ensemble for r0 > rh. At the phase transition rh = 4π
dL

, the energy and angular

momentum are related by

J2 = (E − Evac)(E + (d− 1)Evac) . (2.402)

We now turn to our CFT analysis. The canonical partition function at finite

temperature and angular velocity is defined as

Z(τ, τ̄) = Tr
(
e2πiτERe−2πiτ̄EL

)
,

ER + EL = E , ER − EL = J ,
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where τ = reiϕ is the modular parameter whose imaginary part acts as the in-

verse temperature, and the real part acts as the chemical potential for angular

momentum. We have only turned on a single angular momentum generator. The

microcanonical density of states is given by the usual inverse Laplace transform

(up to subleading Jacobian factors which we ignore):

ρ(Es, Js) =

∫
drdϕ Z(r, ϕ) exp

[
−πireiϕ(Es + Js) + πire−iϕ(Es − Js)

]
. (2.403)

For simplicity, we will work in the special case of T2 × Td−2
∞ and consider the

angular momentum to be along the spatial cycle of the T2. On this background,

modular invariance gives

log Z(r, ϕ) ≈ r2−dlog Z(−r−1,−ϕ) . (2.404)

As before we define a shifted partition function as

Z̃(r, ϕ) ≡ Tr exp
[
πireiϕ(Es + Js − Evac)− πire−iϕ(Es − Js − Evac)

]
. (2.405)

Using the above we write the density of states as

ρ(Es, Js) =

∫
dr dϕ Z̃

(
−1

r
,−ϕ

)r2−d

exp

[−πiEvac

rd−1eiϕ
+

πiEvac

rd−1e−iϕ

]

× exp
[
−πireiϕ(Es + Js) + πire−iϕ(Es − Js)

]
.

(2.406)

At large N , we can approximate the above integral by its saddle-point value, which
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gives

ρ(Es, Js) = exp

[
π
√
d

(
2

(d− 1)d−1

) 1
d (√

d2E2
s − 4(d− 1)J2

s − (d− 2)Es

) d−2
2d

×
(√

d2E2
s − 4(d− 1)J2

s + dEs

)1/2

(−Evac)
1
d

]
.

(2.407)

This is the higher-dimensional Cardy formula with angular momentum. To ensure

that our saddle is controlled and this formula is valid, we need to check that the

neglected piece Z̃ is not large on the saddle. By definition

Z̃

(
− 1

rs
,−ϕs

)
=

∫

light

dEdJ ρ(E, J) exp

[
−πi
rs

(
e−iϕs (∆ + J)− eiϕs (∆− J)

)]

+

∫

heavy

dEdJ ρCardy(E, J) exp

[
−πi
rs

(
e−iϕs (∆ + J)− eiϕs (∆− J)

)]
,

(2.408)

where we have used ∆ = E − Evac. We would like to find and maximize the

range in the spectrum where the heavy states lie. The first line stands for the

contribution of light states and is O(1) as long as the density of light states obeys

a Hagedorn bound. The second line is small if

log ρCardy −
πi

rs

(
e−iϕs (∆ + J)− eiϕs (∆− J)

)
< 0 . (2.409)

Let us denote the left hand side of this expression by T (Es, Js, E, J). The depen-

dence of T on Es and Js comes through rs and ϕs. Using the values of the saddle

and the Cardy formula gives a messy expression for T (Es, Js, E, J).
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We would like to find the region in the E, J plane where T (Es, Js, E, J) < 0.

Note that since T (Es, Js, E, J) is also a function of Es and Js, this region will

depend on the values of Es and Js. This means we need to find the values of Es

and Js for which the region in the E, J plane is maximized. To guarantee that T

is less than zero in a given region in the E, J plane, it will be sufficient to show

that the maximum value of T with respect to E and J is smaller than zero in

that region. Saturating this bound will give us the extended range of validity of

the Cardy formula. In other words, maximization of T with respect to E and J

will give us E and J in terms of Es and Js. Then demanding the maximum of T

to be smaller than zero will give a constraint on how small we can make Es and

Js.

Let’s see this in the simpler case of d = 2 and J = 0:

T (∆,∆s) = 2π

√
c

3

(
∆− c

12

)
− 2π∆√

c
12∆s−c

. (2.410)

Extremizing with respect to ∆ gives

∆? =
c∆s

12∆s − c
, Tmax =

π

3
(c− 6∆s)

√
c

12∆s − c
. (2.411)

Imposing Tmax ≤ 0 gives

∆s ≥ c/6 . (2.412)

Hence, we find that using this method we can safely extend the validity of the

Cardy formula to the range ∆s ≥ c/6. For energies smaller than that Z̃ stops

being O(1) and the saddle point analysis is not valid. Note that in this method
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the contribution of light states (∆ < c/6) was made O(1) by imposing a Hagedorn

bound ρ(∆ < c/6) . exp(2π∆). Here we have not used the result from [156] that

the partition function at large N is dominated by the states with ∆ . c/12, which

would allow us to only place a Hagedorn bound on those states.

Proceeding similarly for arbitrary d and nonzero J , we find Cardy behavior

for the range

(d− 1)EEvac − dE2
vac + E2 > J2 , (2.413)

which is identical to the bulk result (2.402).
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Entanglement

3.1 Introduction

In recent years there has been a surge of activity surrounding entanglement

as a key quantity of interest in quantum systems. It has an astonishing array of

applications: it can be used to diagnose a wide variety of new phases of matter

[355, 356]; it is a resource for quantum computation [354, 350, 351], and enables

quantum error correction [352, 353, 354]; its growth reflects the dispersion of

information [357, 358]; it is intimately linked to the connectedness of spacetime

[359], and its dynamics can even be used to derive Einstein’s equations [360, 361].

However a number of much more basic issues related to entanglement have not

been completely addressed. One such question is its very definition: a rigorous

computation of entanglement entropy (without resort to the replica trick) requires

a choice of boundary conditions at the edge of the chosen entangling region, but

on the other hand, imposing boundary conditions on such an imaginary surface
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is clearly unphysical. In § 3.2 we studied how different choices of boundary con-

ditions at the entangling surface affect the vacuum entanglement entropy in the

simple setting of a free boson in 1+1D, elucidating boundary condition-dependent

finite-size corrections that are missed in the naive calculation.

Another open question is the definition of entanglement between spatial re-

gions in a theory with nonlocal degrees of freedom, such a gauge theory, or gravity.

This issue is further confounded by the existence of symmetries that do not respect

the local organization of degrees of freedom. A canonical example is electromag-

netic duality, where the dual potential is determined from the original one by the

nonlocal inversion of a differential operator. This suggests that the entanglement

entropy might be different in the two duality frames. In § 3.3 we showed that this

is indeed the case, quantifying the difference in entanglement between an abelian

p-form theory and its electromagnetic dual. This discrepancy agrees with the elec-

tromagnetic anomaly of a p−1-form ghost theory living on the entangling surface,

lending credence to the conjecture (known to be true in 1-form gauge theories)

that correct calculation of entanglement requires treatment of an edge mode the-

ory on the entangling surface. These results also resolved several discrepancies in

the literature on electromagnetic duality.

One might wonder whether the proper treatment of edge modes or boundary

conditions is relevant for the calculation of more traditional field theory quantities,

such as correlation functions. In § 3.4 I studied correlation functions in Rindler

quantization, where the Minkowski vacuum corresponds to a state with thermal

entanglement between the two halves of space. A rigorous definition of the Rindler

states requires the imposition of boundary conditions where the two halves meet,
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but I found that the Rindler description reproduces Minkowski correlation func-

tions without attention to this issue, even for trans-horizon correlators, in scalar

and abelian gauge theories.

Finally, in § 3.5 we studied edge modes in the context of holographic codes:

tensor network representations of holography that capture the quantum-error-

correcting nature of bulk reconstruction. Most examples of holography involve

bulk gauge fields, however, which cannot be described by a local bulk model. We

extended the construction of holographic codes to include gauge degrees of freedom

and studied how gauge degrees of freedom straddling the entangling surface are

encoded on the corresponding boundary region. We found that the flux degrees

of freedom on the entangling surface can be encoded in both the boundary region

and its complement, but that the conjugate degrees of freedom are then encoded

in neither side. We further suggest that this models the Ryu-Takayanagi proposal,

in which the flux of the bulk graviton field – the area operator – is encoded in

both of two complementary boundary regions.
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3.2 Entanglement Entropy and Boundary Con-

ditions in 1+1 Dimensions

This section aims to address the question of how to define entanglement en-

tropy. When one attempts to calculate the entanglement entropy

SA = −TrA ρA log ρA (3.1)

of a reduced density matrix

ρA = TrA ρ, (3.2)

the traces over HA and HĀ are both taken on Hilbert spaces defined on regions

with boundaries. These Hilbert spaces are only well-defined once boundary con-

ditions have been specified at ∂A and ∂Ā. However, this technical need to impose

boundary conditions is at odds with the physics of the problem: the entangling

surface is entirely fiducial, and the imposition of any condition on the fields on

such a surface is unphysical.

We do not attempt to prescriptively resolve this tension, instead focusing

on the simpler problem of characterizing how the choice of boundary conditions

affects the entanglement calculation. Working in the highly simplified setting of

a free boson in 1+1D, with A an interval of length `, we find new contributions

to the entanglement entropy from the choice of boundary conditions, independent

of `, which can in turn be identified with the boundary entropy of the associated

state in boundary conformal field theory. We showed that these contributions can

be derived either from the canonical trace or from the heat kernel calculation of
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the oscillator partition function.

3.2.1 Introduction

Entanglement entropy in quantum field theory is now a well studied sub-

ject with a number of different applications [208, 209, 210]. In the case of con-

formal field theories, conformal symmetry provides powerful analytical tools for

the computation of entanglement entropy (and, more generally, Renyi entropies)

[211, 212, 213, 214], particularly in two spacetime dimensions [215]. The abstract

nature of the these methodologies, however, can make the underlying physics

obscure. In this paper, we do some basic computations with more pedestrian

methods, in an attempt to elucidate some of the underlying issues.

In general, we consider a quantum field theory in d-dimensional Minkowski

space R1,d−1 with a unique ground state |0〉. We choose a finite contiguous spatial

region A, and construct a density matrix ρ by tracing out the fields that live in

the complementary region A,

ρ = TrA|0〉〈0|. (3.3)

The Renyi entropy with index β is then defined as

Sβ =
1

1− β log Tr ρβ, (3.4)
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and the entanglement entropy is

SEE = −Tr ρ log ρ = lim
β→1

Sβ. (3.5)

Even in the simplest case of scalar fields, this procedure is ambiguous in the con-

tinuum, because in general specifying “the fields in region A” requires boundary

conditions at the surface of A. In the case of gauge fields, much more analysis

is needed [216, 217], since there is in general no gauge-invariant prescription for

assigning the gauge potentials to regions [218]. For scalar fields in more than two

spacetime dimensions, the issue of boundary conditions has been raised in the

context of the influence of the conformal coupling of the scalar fields to the back-

ground spacetime curvature [219]. In two spacetime dimensions, the conformal

coupling vanishes and so does not affect the calculation, but the question of ap-

propriate boundary conditions remains [220, 221]. If the conformal field theory in

question arises as the continuum limit of an underlying lattice theory, or we have

other information about the ultraviolet regulator, it can be possible to deduce the

appropriate boundary condition.

Our goal here is to explore the role of boundary conditions at the surface A in

a simple example of a continuum conformal field theory in 1+1 dimensions, the

c = 1 compact-boson. We will find that zero modes play the key role, as they do

in gauge theories [217, 222, 223, 224]. Other related work includes [225, 226, 227,

228, 229, 230].
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3.2.2 Review of results from conformal field theory

The density matrix ρ of Eq. (3.3) is a hermitian operator with nonnegative

eigenvalues that obeys

Tr ρ = 1. (3.6)

Therefore we can write it in the form

ρ = exp(−K), (3.7)

where K is a hermitian operator known as the modular hamiltonian [231]. In

the special case that the quantum field theory is a conformal field theory, and

the spatial region A is a (d−1)-dimensional ball of radius R, conformal symmetry

can be used to show that, up to a possible boundary term that will be discussed

further below, K is the generator of a conformal transformation that preserves

the boundary of the ball; this leads to [211, 213]

K =

∫

A

dd−1x f(x)T 00(x) + c, (3.8)

where T µν is the conformal traceless stress-energy tensor, obtained by varying

the background metric, and including contributions from a coupling ξRϕ2 to the

background curvature R, with ξ = d−2
4(d−1)

; the function f(x) is

f(x) =
π

R
(R2 − |x|2), (3.9)

and c is a constant that is fixed by the requirement Tr ρ = 1.
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The simplest case to consider is a single real compact scalar field ϕ,

ϕ(x) ∼ ϕ(x) + V, (3.10)

where V is the circumference of the target-space circle for ϕ. The conformal

energy density is

T 00 = 1
2
π2 + 1

2
(∂xϕ)2 + ξ∇2ϕ2, (3.11)

where π is canonically conjugate to ϕ,

[ϕ(x, t), π(x′, t)] = iδ(x− x′). (3.12)

There has been extensive discussion of whether an extra boundary term is also

needed; see [219] and references therein. This issue arises from the coupling to the

background curvature, and is absent in d = 2, where ξ = 0. We therefore specialize

to this case, since the issues we wish to explore arise even in this simplest situation.

Having specialized to d = 2 and ξ = 0, we can make a change of the spatial

coordinate,

dy =
dx

f(x)
, (3.13)

y =
1

π
tanh−1(x/R). (3.14)

The range x ∈ (−R,R) corresponds to y ∈ (−∞,∞). We then have

∂yϕ(y) = f(x)∂xϕ(x). (3.15)
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If we now define a rescaled conjugate momentum

π̃(y) = f(x)π(x), (3.16)

then we have

[ϕ(y), π̃(y′)] = iδ(y − y′) (3.17)

and

K =

∫ +∞

−∞
dy
[

1
2
π̃2 + 1

2
(∂yϕ)2

]
+ c. (3.18)

Thus the modular hamiltonian corresponds to the hamiltonian of a free-field the-

ory on an infinite line.

The entanglement entropy computed from Eqs. (3.5,3.7,3.18) is infinite. To

regulate it, we give the y coordinate a finite range, y ∈ (−L/2, L/2), with L� 1.

This corresponds to a cutoff on the x coordinate at |x| = R− ε with ε� R, and

L =
1

π
log

(
2R

ε

)
+O(ε). (3.19)

Thus the ε → 0 limit corresponds to L → ∞. It will also be convenient to shift

the origin of the y coordinate, so that y ∈ (0, L). We now have

K =

∫ L

0

dy
[

1
2
π̃2 + 1

2
(∂yϕ)2

]
+ c, (3.20)

which is the hamiltonian of a free-field theory on a finite interval of length L. To

fully specify K, we will need to choose boundary conditions at the ends of the

interval.
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We begin by writing general mode expansions for ϕ, ∂yϕ, and π̃ = ∂tϕ,

ϕ(y, t) = ϕ0 + ϕ1y + π0t+ π1yt+
∞∑

k=1

χk(y)
[
ake
−iωkt + a†ke

iωkt
]
, (3.21)

∂yϕ(y, t) = ϕ1 + π1t+
∞∑

k=1

χ′k(y)
[
ake
−iωnt + a†ke

iωkt
]
, (3.22)

π̃(y, t) = π0 + π1y − i
∞∑

k=1

ωnχk(y)
[
ake
−iωnt − a†keiωkt

]
, (3.23)

where

[ak, a
†
k′ ] = δkk′ , (3.24)

and the mode function χk(y) satisfies χ′′k + ω2
kχk = 0. We have assumed that the

boundary conditions will render the allowed frequencies discrete and the mode

functions real.

Since π̃(y) = f(x)π(x) and ∂yϕ(y) = f(x)∂xϕ(x), and since f(x) vanishes

at the boundary |x| = R, a natural choice of boundary condition is to require

both π̃(y) and ∂yϕ(y) to vanish at the regularized boundary points y = 0 and

y = L. However, requiring both is incompatible with the commutation relation,

Eq. (3.12). So we must make choice. We discuss three possible choices in the next

three sections.

3.2.3 Spatial Neumann boundary conditions

We first consider what we will call spatial Neumann boundary conditions,

∂yϕ(y, t)
∣∣
y=0

= 0, ∂yϕ(y, t)
∣∣
y=L

= 0. (3.25)
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From Eq. (3.22), we see that spatial Neumann boundary conditions require χ′k(0) =

χ′k(L) = 0, which fixes χk(y) ∼ cos(ωky) and

ωk = πk/L. (3.26)

The correctly normalized mode functions are then

χk(y) =
1√
πk

cos(πky/L). (3.27)

We also have the zero-mode conditions

ϕ1 = 0, π1 = 0. (3.28)

The remaining zero modes are then given by

ϕ0 =

∫ L

0

dy ϕ(y, t), π0 =

∫ L

0

dy π̃(y, t), (3.29)

and from the commutation relation, Eq. (3.12), we find

[ϕ0, π0] =
i

L
. (3.30)

Since ϕ is compact, we have from Eq. (3.10) that ϕ0 ∼ ϕ0 + V , and hence π0 is

quantized,

π0 =
2π

LV
m, m = 0,±1, . . . . (3.31)
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The modular hamiltonian is now

K =
2π2

LV 2
m2 +

∞∑

k=1

ωka
†
kak + c. (3.32)

We can now compute

Tr e−βK = e−βcZoscZ0,SN, (3.33)

where the oscillator partition function is

Zosc =
∞∏

k=1

∞∑

n=0

e−βωkn (3.34)

=
∞∏

k=1

1

1− e−βωk (3.35)

=
[
eπβ/24L η(iβ/2L)

]−1
, (3.36)

where η(τ) is the Dedekind eta function. For large L (more specifically, L� β),

we have

logZosc =
πL

6β
− 1

2
log

(
2L

β

)
+O(β/L). (3.37)

If we ignore the zero mode completely, and compute the Renyi entropy from

Tr ρβ = e−βcZosc with c adjusted to make Tr ρ = 1, we find

Sosc
β =

(1 + β)

6β
πL− 1

2
log 2L+

log β

2(1− β)
. (3.38)

Recalling that πL = log(2R/ε), we see that the first term is the usual result.

However there is an additional logL ∼ log logR/ε term, which is anomalous and

not expected to appear in the final answer. The possibility of such a term was
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noted in [217]. This result for the entanglement entropy was first found by [232],

where the subleading term was not retained.

This anomalous term is canceled when we include the contribution of the

zero modes. The zero-mode partition function with spatial Neumann boundary

conditions is

Z0,SN =
+∞∑

m=−∞

e−2π2βm2/V 2L (3.39)

= ϑ(2πiβ/LV 2). (3.40)

where ϑ(τ) is a Jacobi theta function (with the other argument z = 0). For large

L, we have

logZ0,SN =
1

2
log

(
2L

β

)
+

1

2
log

(
V 2

4π

)
+O(e−LV

2/2πβ). (3.41)

Adding this to Eq. (3.37), we have

logZosc + logZ0,SN =
π

6β
L+

1

2
log

(
V 2

4π

)
+O(β/L). (3.42)

The anomalous logL has now been canceled. The resulting Renyi entropy is

Sβ =
π(1 + β)L

6β
+

1

2
log

(
V 2

4π

)
+O(β/L). (3.43)

This is the usual result. The constant term, independent of both L and β but

depending on V , can be understood as a contribution from the Affleck-Ludwig

boundary entropy [233] with these boundary conditions [221, 220] (see [234] for a
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review).

3.2.4 Temporal Neumann boundary conditions

We next consider what we will call temporal Neumann boundary conditions,

π̃(0, t) = 0, π̃(L, t) = 0. (3.44)

Again, these are motivated by π̃(y) = f(x)π(x), and the vanishing of f(x) at the

ends of the interval in the original x coordinate. From Eq. (3.22), we see these

boundary conditions require χk(0) = χk(L) = 0, which fixes χk(y) ∼ sin(ωky) and

Eq. (3.26). The correctly normalized mode functions are then

χk(y) =
1√
πk

sin(πky/L). (3.45)

We also have the zero-mode conditions

π0 = 0, π1 = 0. (3.46)

The remaining zero modes are then ϕ0 and ϕ1, with ϕ0 ∼ ϕ0 + V ; ϕ1 has an

infinite range. The modular hamiltonian is now

K =
L

2
ϕ2

1 +
∞∑

k=1

ωka
†
kak + c. (3.47)
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The oscillator contribution is therefore the same as it is for spatial Neumann

boundary conditions, Eq. (3.36). The zero-mode contribution is now

Z0,TN = L

∫ V

0

dϕ0

∫ +∞

−∞
dϕ1 e

−βLϕ2
1/2 (3.48)

The prefactor of L in Eq. (3.48) arises from the measure for a trace of a functional

of ϕ(x),
∏

x

dϕ(x) = Ldϕ0 dϕ1

∞∏

n=1

cn, (3.49)

where cn is the coefficient of χn(x) in the mode expansion of ϕ(x). The factor of

L comes from the jacobian for this change of integration variables; its necessity

can be seen from dimensional analysis. Evaluating the integral in Eq. (3.48), we

have

Z0,TN = V

(
2πL

β

)1/2

. (3.50)

This yields

logZ0,TN =
1

2
log

(
2L

β

)
+

1

2
log

(
V 2

4π

)
+O(e−LV

2/2πβ). (3.51)

For large L, this is the same as logZ0,SN, Eq. (3.41), up to exponentially small cor-

rections, and therefore the result for the Renyi entropy is also the same, Eq. (3.43).
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3.2.5 Dirichlet boundary conditions

Although not motivated by the vanishing of f(x) at the endpoints, in this

section we consider Dirichlet boundary conditions

ϕ(0, t) = 0, ϕ(L, t) = 0 mod V. (3.52)

From Eq. (3.22), we see these conditions require χk(0) = χk(L) = 0, which results

in Eqs. (3.26) and (3.45), the same as for temporal Neumann boundary conditions.

The zero-mode conditions are now

ϕ0 = 0, π0 = 0, π1 = 0. (3.53)

The remaining zero mode is then

ϕ1 =
wV

L
, w = 0,±1, . . . (3.54)

The modular hamiltonian is now

K =
V 2

2L
w2 +

∞∑

k=1

ωka
†
kak + c. (3.55)

The oscillator contribution is therefore the same as it is for spatial or temporal

Neumann boundary conditions, Eq. (3.36). The zero-mode contribution is now

Z0,D =
+∞∑

w=−∞

e−βV
2m2/2L (3.56)

= ϑ(iβV 2/2πL). (3.57)
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For large L, we have

logZ0,D =
1

2
log

(
2L

β

)
− 1

2
log

(
V 2

π

)
+O(e−2πL/βV 2

). (3.58)

Combining Eqs. (3.37) and (3.58) for large L, we have

logZosc + logZ0,D =
πL

6β
− 1

2
log

(
V 2

π

)
+O(β/L). (3.59)

The anomalous logL has now again been canceled. The resulting Renyi entropy

is

Sβ =
(1 + β)

6β
πL− 1

2
log

(
V 2

π

)
+O(β/L). (3.60)

The constant term is different than it is in the case of spatial or temporal Neumann

boundary conditions, and again can be understood as a contribution from the

Affleck-Ludwig boundary entropy [233].

3.2.6 Duality

Comparing Eq. (3.43) for the Renyi entropy with Neumann boundary condi-

tions (spatial or temporal) with Eq. (3.60) for the Renyi entropy with Dirichlet

boundary conditions, we see that they are related by

V ↔ 2π

V
. (3.61)

For the case of spatial Neumann boundary conditions, this follows from the same

relation for the zero-mode partition functions, Eqs. (3.40) and (3.57). This is
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related to the T -duality transformation for the compact boson on a spatial circle

with circumference 2L with periodic boundary conditions. In this case, the mode

expansion is

ϕ(y, t) = ϕ0 + ϕ1y + π0t+
1√
2π

∞∑

k=1

1

k

[
ake
−iωk(y−t) + ãke

iωk(y+t) + h.c.
]
, (3.62)

with

ϕ1 =
V

2L
w, π0 =

π

LV
m, (3.63)

where again w and m are integers representing winding and momentum modes,

and now there are two types of oscillators (left moving and right moving modes)

with ωk = πk/L; matching Eq. (3.26) is the reason for having the circle be twice

as long as the interval. The hamiltonian is

H =
π2

LV 2
m2 +

V 2

4L
w2 +

∞∑

k=1

ωk
(
a†kak + ã†kãk

)
+ c. (3.64)

With a judicious choice of c, and introducing the modular parameter

τ = iβ/2L, (3.65)

the complete partition function is

Zcircle(τ, V ) =
ϑ(2πτ/V 2)ϑ(τV 2/2π)

η(τ)2
(3.66)
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which is manifestly invariant under Eq. (3.61). We also have the relation [235]

Zcircle(τ, V ) = ZSN(τ,
√

2V )ZD(τ, V/
√

2) (3.67)

for particular choices of c in Eqs. (3.32) and (3.55). Since Zcircle(τ, V ) can be

written as a euclidean path integral over the field on a 2-torus with cycle lengths

β and 2L, we also have invariance under β ↔ 2L or equivalently τ ↔ −1/τ , which

follows from

η(−1/τ) = (−iτ)1/2η(τ), (3.68)

ϑ(−1/τ) = (−iτ)1/2ϑ(τ). (3.69)

The boundary conditions on the interval of length L break this symmetry, but as

a remnant of it we have the relations

ZSN(−1/τ, V ) =
√
V 2/4π ZD(τ, V/2), (3.70)

ZD(−1/τ, V ) =
√
π/V 2 ZSN(τ, 2V ). (3.71)

3.2.7 Comparison with heat kernel methods

In this section we evaluate the entanglement entropy using heat-kernel methods

to facilitate comparison with the computation of Casini and Huerta [212]. For a

review of these techniques, see [236].
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The key formula is

logZosc =
1

2
lim
s→1

∫ ∞

0

dt

ts
K(t), (3.72)

where K(t) = Tr′ e−t∆ and ∆ is minus the Laplacian on the target manifold (in

our case, an interval I of length L with one of our sets of boundary conditons)

times a circle S1 of circumference β, and the prime on the trace indicates that we

omit the zero modes on I. Thus we have ∆ = −∂2
τ − ∂2

y , where τ is periodic with

period β. Since this is a product space, the trace factorizes,

K(t) = KS1(t)KI(t) (3.73)

where KS1(t) is the regulated form (defined shortly) of the unregulated heat kernel

K̃S1(t) on a circle of circumference β,

K̃S1(t) =
∞∑

n=−∞

et(2πin/β)2

(3.74)

= ϑ(4πit/β2) (3.75)

=
√
β2/4πt ϑ(iβ2/4πt) (3.76)

=
β√
4πt

∞∑

n=−∞

e−n
2β2/4t. (3.77)

The regulated heat kernel is obtained by dropping the n = 0 term, or equivalently,

subtracting the β →∞ limit:

KS1(t) =
2β√
4πt

∞∑

n=1

e−n
2β2/4t. (3.78)
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We can check that this regulated heat kernel on the circle gives the correct answer

for the partition function by noting that, for a partition function with the general

form of Eq. (3.35),

Z =
∞∏

k=1

1

1− e−βωk , (3.79)

we have

− log(1− e−βωk) =
1

2
lim
s→1

∫ ∞

0

dt

ts
KS1(t)e−tω

2
k . (3.80)

Summing over k then gives logZ on the left, and we identify

KI(t) =
∞∑

k=1

e−tω
2
k (3.81)

on the right.

For all our choices of boundary conditions, we have ωk = πk/L, and hence

KI(t) =
∑

k>0

e−π
2k2t/L2

(3.82)

=
1

2

[
ϑ(iπt/L2)− 1

]
(3.83)

=
1

2

[√
L2/πt ϑ(iL2/πt)− 1

]
(3.84)

=
1

2

[√
L2/πt

(
2
∑

m>0
e−m

2L2/t + 1
)]
− 1 (3.85)

=
L√
4πt

[
1 + 2

∑

m>0

e−m
2L2/t −

√
πt

L

]
. (3.86)

Plugging back into Eq. (3.72), we find

logZosc =
βL

4π
lim
s→1

∫ ∞

0

dt

ts+1

∑

n>0

e−n
2β2/4t

[
1 + 2

∑

m>0

e−m
2L2/t −

√
πt

L

]
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= I1 + I2 + I3. (3.87)

In the analysis of [212], only I1 is kept; the second and third terms are subleading

in L, and are dropped. However, I2 and I3 must also be included in order to

reproduce the canonical oscillator partition function, Eq. (3.36), and supplemented

by the appropriate zero-mode contribution to obtain the entropy. We compute

the integrals in Appendix 3.2.9, with the result

I1 =
πL

6β
,

I2 = −πL
6β
− πβ

24L
− log η(iβ/2L) +

1

4
lim
s→1

(
1

s− 1
+ γE − 2 log β

)
,

I3 = −1

4
lim
s→1

(
1

s− 1
+ γE − 2 log β

)
(3.88)

where γE is the Euler-Mascheroni constant. Thus the heat kernel gives

logZosc = I1 + I2 + I3 = − πβ

24L
− log η(iβ/2L) (3.89)

in exact agreement with Eq. (3.36).

3.2.8 Discussion

We have undertaken a detailed analysis of the computation of the entanglement

entropy (and the Renyi entropies) of an interval for the compact-boson c = 1

conformal field theory in 1+1 dimensions, paying particular attention to the role

of boundary conditions at the endpoints and the contributions of zero modes,

and using operator methods rather than euclidean path integral manipulations.
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The possibility of temporal Neumann boundary conditions, and the distinction of

them from Dirichlet boundary conditions, does not seem to have been previously

considered. Our results emphasize the necessity of paying careful attention to

these issues.
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3.2.9 Appendix: Integrals from §3.2.7

In this appendix we evaluate the integrals in (3.87).

I1 =
βL

4π
lim
s→1

∑

n>0

∫ ∞

0

dt

ts+1
e−n

2β2/4t

=
βL

4π
lim
s→1

4sβ−2sΓ(s)ζ(2s)

=
πL

6β
. (3.90)

Note that we could have set s = 1 at the start for I1, but the same is not true for

I2 and I3. We have

I3 = − β

4
√
π

lim
s→1

∫ ∞

0

dt

ts+1/2

∑

n>0

e−n
2β2/4t

= − β

4
√
π

lim
s→1

(β/2)1−2sΓ(s− 1/2)ζ(2s− 1)
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= −1

4
lim
s→1

(
1

s− 1
+ γE − 2 log β

)
. (3.91)

Finally, we evaluate I2:

I2 =
βL

2π
lim
s→1

∫ ∞

0

dt

ts+1

∑

m,n>0

e−n
2β2/4t−m2L2/t

=
βL

2π
lim
s→1

Γ(s)L−2s
∑

m,n>0

1

[(nβ/2L)2 +m2]s
. (3.92)

The double sum can be expressed in terms of an Eisenstein series

E(τ, s) =
∑

(m,n)6=(0,0)

(Im τ)s

|nτ +m|2s (3.93)

with τ = iβ/2L. We have

∑

m,n>0

1

[(nβ/2L)2 +m2]s
=

1

4
(β/2L)−sE(iβ/2L, s)− 1

2
(β/2L)−2s

∑

n>0

1

n2s
− 1

2

∑

m>0

1

m2s

=
1

4
(β/2L)−sE(iβ/2L, s)− 1

2
(β/2L)−2sζ(2s)− 1

2
ζ(2s).

(3.94)

Here the sum over the positive quadrant of Z2 was rewritten as the sum over

(m,n) 6= (0, 0), minus the (m, 0) and (0, n) lines, all divided by 4. We now have

I2 =
βL

8π
lim
s→1

Γ(s)
[
(βL/2)−sE(iβ/2L, s)− 2(β/2)−2sζ(2s)− 2L−2sζ(2s)

]
. (3.95)

The limits of the last two terms are simple to evaluate, and yield −πL/6β and

−πβ/24L, respectively. To evaluate the first term, we need the Kronecker limit
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formula for Eisenstein series near s = 1,

E(τ, s) =
π

s− 1
+ 2π

[
γE − log 2− log

(√
Im τ |η(τ)|2

)]
+O(s− 1). (3.96)

With this we find

I2 = − log η(iβ/2L) +
1

4
lim
s→1

(
1

s− 1
+ γE − 2 log β

)
− πL

6β
− πβ

24L
. (3.97)
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3.3 Electromagnetic duality and entanglement

anomalies

Electromagnetic duality exchanges electric and magnetic fields via

F ↔ ?F. (3.98)

It is a symmetry of pure abelian gauge theories, as noted by Maxwell, and also

generalizes to some theories with matter [362, 363]. However, under this symmetry

the gauge potential A (with dA = F ) is exchanged for the dual potential Ã (with

dÃ = ?F ). From (3.98) it follows that

Ã = d−1 ? dA (3.99)

and so the relation between the two potentials is nonlocal. This raises the question

of how quantities that probe of the localization of degrees of freedom – such as

entanglement entropy – behave under duality.

In the following work we studied this question in the context of abelian p-

form electromagnetism, which describes the dynamics of fluxes sourced by charges

extended in p − 1 spatial dimensions. Building on [257, 217], which carefully

analyzed the partition function in 1-form electromagnetism, we generalized to the

partition function of the p-form theory and then considered the question of duality.

We found that erroneous neglect of certain ingredients in the partition function

calculation – instantons and zeromodes – had led to conflicting results [243, 244]

in the literature on duality. We showed that the inclusion of these ingredients
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resolves the discrepancy, with the result that the duality symmetry is anomalous

when the spacetime dimension is even but exact when the spacetime dimension is

odd.

We used these results to compute the change in entanglement entropy under a

duality transformation, relating the change in the partition function to a change in

entanglement entropy via the replica trick. We found that in odd dimensions there

is no change in entanglement entropy under duality, while in even dimensions the

change in entanglement entropy agrees with the duality anomaly of a p− 1-form

ghost theory confined to the entangling surface. It has previously been suggested

that such “edge mode” theories naturally arise in computations of entanglement,

and that their effects resolve a discrepancy between the gauge theory entropy and

the conformal anomaly of the theory [217, 275, 364]. Our work lends credence

to this claim in the more general context of p-form theories, as the entanglement

anomaly we discovered would arise naturally from the presence of an edge mode

theory in the replica partition function.

3.3.1 Introduction

Electromagnetic duality is a symmetry of many gauge theories, but the dual

degrees of freedom are not local in the original variables. Thus one might expect

probes of the localization of correlations – such as entanglement entropy – to

depend on the duality frame.

One particularly tractable example is the electromagnetic duality of Maxwell

theory, where the the field strength Fµν is interchanged with its Hodge dual
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(?F )µν = 1
2
εµνρσF

ρσ.1 Depending on the context, this is also called Poincaré

or S-duality, and generalizes to Maxwell theories with p-form potentials in D

spacetime dimensions.2 The dual p̃ = D − p − 2-form potentials satisfy dA = F

and dÃ = ?F and so determining one in terms of the other requires the nonlocal

inversion of a differential operator.

For many purposes the dual theories are identical, e.g. the space of classical

solutions is the same. But on the quantum level there are conflicting opinions

[239, 240, 241, 242, 243, 244, 245] about the extent to which the dual theories

may be regarded as equivalent, and even whether the trace anomaly agrees when

p 6= p̃. Quantum equivalence requires the dual partition functions Z and Z̃ to be

exactly equal, which is not always the case. For example the partition function of

Maxwell theory in D = 4 transforms under electromagnetic duality as a modular

form [244], which characterizes the anomaly in the duality symmetry.

The results [243, 244] are in conflict. In [243] Schwarz and Tyupkin compute

the ratio of partition functions of dual p-form theories by computing a ratio of

functional determinants, which come from Gaussian integrals over the non-zero

modes of the Laplacian. This calculation yields a vanishing anomaly in even

dimensions, but Witten later computed a nontrivial anomaly in ordinary 1-form

Maxwell theory in four dimensions [244], which was confirmed by subsequent

calculations [246, 237]. To our knowledge this conflict has not been resolved in

the literature. However, our interest in the duality properties of entropy led to a

more thorough calculation of the duality anomaly of p-form gauge theories, which

1Note that we assume oriented manifolds throughout, since Hodge and Poincaré duality hold
only in that case. Both of these dualities can be generalized to the non-orientable case [237],
but we leave such a generalization to future work.

2These p-forms appear in string theory as the gauge fields coupled to D-branes [238].
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enables us to reconcile these results. We find that previously-neglected zero modes

and instantons contribute factors that 1) give rise to the even-dimensional anomaly

and 2) trivialize the duality in odd dimensions. This proves, for example, quantum

equivalence of the scalar and photon in D = 3, and reproduces the known anomaly

in D = 4. Our method extends to arbitrary D and p.3

In general, we find the following for the duality anomaly of an abelian p-form

gauge theory on M :

log
Zp

Z̃p̃
=





(−1)p+1 χ(M) log
√

q
q̃

D even

0 D odd,
(3.100)

where Zp is the partition function of the gauge theory and Z̃p̃ the partition function

of its electromagnetic dual. q and q̃ = 2π/q are the couplings of the dual theories,

which enter into the path integral of a U(1) gauge field via the flux quantization

condition. The argument of the log is in units of a mass scale µ that must be

introduced to define the quantum theory. The scale µ does not enter into the

classical theory, the classical duality, or the quantum correlation functions, but it

does enter into the anomalous quantum duality, where its role is to fix the units.

The vanishing of the odd-dimensional anomaly follows from a theorem of

Cheeger [248] that equates the ratio of analytic torsion [249] (a product of func-

tional determinants related to the partition function of Chern-Simons theory) and

Reidemeister torsion [250] (a combinatorial quantity invented in the 1930s to dis-

tinguish lens spaces) with a ratio of the sizes of torsion subgroups. Although this

3We do not consider the case of massive p-form theories, for which the duality relation is
instead p̃ = D − p− 1, but [247] argues that there is no duality anomaly in this case.
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combination of quantities from entirely different branches of mathematics may

seem obscure, each quantity appears naturally in the ratio of partition functions.

This physical application of the Cheeger-Müller theorem may be of interest apart

from our study of the duality properties of entanglement entropy.

The even-dimensional duality anomaly is purely topological, and may also be

absorbed into a local counterterm. In computations involving renormalization,

often one already needs the leeway to shift the action by a local counterterm, and

the duality anomaly may simply be absorbed. But it other contexts knowing the

exact form of the anomaly is important.4

Our calculation of entanglement entropy relies on the replica trick [208, 215],

which expresses the entropy in terms of a partition function. Thus one might

expect that entanglement inherits some of the duality structure. In detail, we

calculate the entanglement entropy SA = −Tr ρA log ρA of a region A by first

computing Tr ρnA, analytically continuing to non-integer n, then using the identity

SA = limn→1(1− n∂n) log Tr ρnA to obtain the entropy. Specializing to the vacuum

and constructing powers of the vacuum reduced density matrix as euclidean path

integrals, one finds Tr ρnA = Z(M
(n)
A ), the partition function of the theory on

the “replica manifold” M
(n)
A of index n. Calculation of the entropy is reduced

to the calculation of a replica partition function, and if one identifies the replica

index with an inverse temperature the entanglement entropy is its thermodynamic

entropy at n = 1.

However, eq. (3.100) implies that Z(M
(n)
A ) can transform anomalously under

4Examples include: (i) nonrenormalization theorems, where a finite shift in a quantity might
violate the theorem, or (ii) p-form fields that arise from Kaluza-Klein reduction, where it is
important to preserve the local covariance of the higher dimensional theory [217].
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electromagnetic duality, and so vacuum entanglement may also depend on the

duality frame. We call this phenomenon an “entanglement anomaly”. 5 It is

given by

∆SA = (1− n∂n) log
Z(M

(n)
A )

Z̃(M
(n)
A )

(3.101)

evaluated at n = 1. The ratio can be computed using (3.100). For a p-form theory

at coupling q, the change in entanglement entropy A is

∆SA =





(−1)p−1 χ(∂A) log
√

q
q̃

D even

0 D odd,
(3.102)

where χ(∂A) is the Euler characteristic of the entangling surface. This ratio is

the duality anomaly of a (p−1)-form edge mode theory on the entangling surface.

Since the partition function of an abelian gauge theory on a replica manifold

contains replica index-independent pieces that correspond to edge modes living

on the entangling surface [257, 217], the entanglement anomaly arises naturally

from this effect. This is discussed in § 3.3.4. We also consider theories with a

θ-term, see § 3.3.4.

While the constant term in the even-D entanglement entropy changes under

rescalings of the cutoff [208], we show in § 3.3.4 that the constant term in the

even-dimensional entanglement anomaly is actually unchanged under simultane-

ous transformation of the two theories. This is consistent with recent results in

the condensed matter literature [258, 259] and we give a general derivation.

5Previously entanglement has been shown to transform anomalously under other symmetries,
e.g. under a Lorentz boost in theories with chiral anomalies [251, 252, 253, 254, 255, 256]. In
this work we find an analogous effect when the duality symmetry is anomalous.
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Now we outline the body of the paper. In § 3.3.2 we describe our calculation

of the partition function of p-form gauge theory on an arbitrary manifold and

outline our calculation of the ratio of electromagnetic dual partition functions

Zp/Z̃p̃. We explain how to reconcile the conflicting results of [243, 244] and why

the anomaly vanishes in odd D. In § 3.3.3, we explain why the stress tensor is the

same for the dual theories in even D (including the trace), in agreement with the

arguments of [242]. Finally, in § 3.3.4 we use the partition function to compute

the entanglement anomaly. We show that thermal entropy is duality-invariant and

address the question of universality under a change of regulator, and conclude by

interpreting the entanglement anomaly physically as the duality anomaly of an

edge mode theory living on the entangling surface.

Details of the duality calculations are left to appendices 3.3.6 and 3.3.7. In

appendix 3.3.8 we work out a simple example that illustrates the importance

of zero modes: Maxwell theory in one spacetime dimension, which has no states

besides the vacuum. The oscillator partition function fails to reproduce the trivial

canonical sum over states, unless accompanied by the zero mode contribution.

Recent related work includes [229], where the author considers the interplay

between entanglement and duality in discrete spin systems; [260], which discusses

the conformal p-form theories; [261], which develops the extended Hilbert space

in the magnetic representation. [262] carried out some explicit calculations of p-

form partition functions on the sphere and confirms the existence of the anomaly in

even but not odd dimensions. [223] made use of duality to relate the entanglement

entropy of a Maxwell theory to a compact scalar in 2 + 1 dimensions; our results

justify their use of this duality, since we show that it is exact in odd dimensions.
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3.3.2 Partition functions and duality

In this section we calculate the partition function of p-form Maxwell theory

and the ratio between the partition function and its electromagnetic dual.

The partition function of p-form gauge theory

Consider p-form electrodynamics on a compact manifold M , with gauge po-

tential A and field strength F = dA. The Euclidean action is6

I =
1

2q2

∫

M

(?F ) ∧ F =
1

2(p+ 1)!q2

∫

M

√
gF µν···Fµν···. (3.103)

When p = 1 this reduces to the familiar Maxwell action 1
4q2

∫ √
gFµνF

µν . The

constant q is the coupling constant, the fundamental unit of charge.

We will compute the partition function by generalizing the approach developed

in Ref. [263] to p-form theories. The partition function on M is given by the

Euclidean path integral

Z =
∑

bundles

∫
D[A/G] e−I[A/G]. (3.104)

The path integral is over all equivalence classes of connections, which we denote

A/G. This includes a sum over all gauge bundles (allowing for field strengths F

that cannot be globally expressed as F = dA) and over connections with vanishing

curvature F = 0 (zero modes).

We first decompose the field strength F into a piece that comes from a globally-

6This defines our convention for the Hodge dual ?.
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defined p-form potential and a piece that does not:

F = F + dA. (3.105)

where A is the p-form potential and F is the part of F that cannot be written

as dA. The Bianchi identity implies dF = 0, so F is an element of the (p + 1)st

cohomology group of M . The Dirac quantization condition further restricts F to

be an element of the integer cohomology,

F ∈ 2πHp+1(M,Z). (3.106)

The decomposition (3.105) only fixes F up to the addition of an exact form. We

can fix this remaining freedom by choosing F to be harmonic, ∆p+1F = 0. This

choice makes the decomposition (3.105) orthogonal, and as a result the action I

splits as a sum over F and an integral over A:

I =
1

2q2

∫

M

[(?F ) ∧F + (?dA) ∧ dA] . (3.107)

The sum over instantons therefore decouples from the remainder of the partition

function; we will return to it after first considering the functional integral over the

potential A.

To carry out the integration over the p-form potential A, we write the mode

expansion

A = Azero +
∑

n

αnAn, (3.108)

where An are the nonzero modes of the p-form Laplacian, ∆pAn = λnAn, which
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are chosen to be orthonormal. Azero is the zero mode satisfying ∆pAzero = 0. We

will first deal with the nonzero modes, then treat Azero separately.

We must introduce Faddeev-Popov ghosts that cancel out the unphysical polar-

izations in order to carry out the gauge-invariant path integral (3.103).7 In p-form

gauge theory, these ghosts are (p − 1)-forms with fermionic statistics. However,

these (p − 1)-forms have their own (p − 2)-form gauge symmetry: some of the

gauge transformations are redundant, and the ghosts subtract too many degrees

of freedom. It is then necessary to add in further positive degrees of freedom

via ghosts-for-ghosts [264, 265, 243]. One must continue in this way, introducing

k-form fields for all k = 0, . . . , p with alternatingly bosonic and fermionic statis-

tics. The number of ghosts increases as the form degree decreases, so we have one

p-form gauge field, two (p− 1)-form ghosts, three (p− 2)-form ghosts-for-ghosts,

etc.

Having introduced the ghosts, the action for the field A is non-degenerate,

I = 1
2q2 〈A,∆pA〉, so we can carry out the path integral as usual. The space of

p-forms comes with a natural measure induced by the inner product on p-forms.

Because the modes An are orthonormal, this measure can be expressed in terms

of the coefficients αn of the mode expansion as

DA =
∏

n

µ dαn√
2πq

. (3.109)

The reason for our choice of overall multiplicative constant 1/
√

2πq will become

7One does not usually consider ghosts in abelian theories, since they decouple from the
physical polarizations and hence do not contribute to correlation functions. However, the ghosts
still contribute to the partition function and therefore to the entropy.
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clear in the course of the calculation. We also had to introduce a parameter µ, with

dimensions of mass, since the measure must be dimensionless. Most quantities

are independent of µ but it is part of the definition of the theory; it will set the

units in the duality.

The path integral over nonzero modes of A is a Gaussian integral, and hence

reduces to a functional determinant

∫
DAe−

1
2q2
〈A,∆pA〉 =

∏

n

∫
µ dαn√

2πq
e
− 1

2q2
λnα2

n =
∏

n

(
λn
µ2

)−1/2

= det

(
∆p

µ2

)−1/2

.

(3.110)

Carrying out the analogous integrals for the various ghost fields then leads to a

string of determinants:

Zosc = det(∆̃p)
−1/2 det(∆̃p−1)+1 · · · det(∆̃0)(−1)p+1 p+1

2

=

p∏

k=0

det(∆̃k)
(−1)p+1−k(p+1−k)/2. (3.111)

where ∆̃k = ∆k/µ
2. The exponent reflects the proliferation of ghosts, and the

sign reflects their alternatingly fermionic and bosonic character.

Next, there is the integral over flat connections Azero. Let Hp(M) denote

the space of harmonic p-forms, a real vector space of dimension bp (the pth Betti

number). For flat connections the action vanishes, so the path integral for these

modes simply computes the volume of the space of flat connections in the mea-

sure (3.109). This volume is finite because we identify p-form potentials under

large gauge transformations, which are elements of the integer cohomology group

Hp(M,Z). As a discrete abelian group, it splits into a free part (given by bp copies
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of Z) and a torsion part (a finite abelian group):

Hp(M,Z) = FreeHp(M,Z)⊕ TorHp(M,Z) = Zbp ⊕ T p. (3.112)

First we deal with the free part. The subspace FreeHp(M,Z) is simply the space

of harmonic p-forms whose integrals around all noncontractible p-dimensional sur-

faces are integers. As a group it is equal to bp copies of the additive group of the

integers: FreeHp(M,Z) = Zbp . Thus two p-form potentials A and A′ are equiv-

alent if the integral of A− A′ over any p-dimensional surface is a multiple of 2π.

This is just a generalization of the Aharonov-Bohm phase to higher-form gauge

theories.

We define for each k a topological basis {wi}bki=1 of FreeHk(M,Z). The space

of flat connections can then be parametrized as

Azero =

bp∑

i=1

βiwi, (3.113)

where βi = [0, 2π). Written in the topological basis, the inner product on p-forms

Γp has components

[Γp]ij =

∫

M

(?wi) ∧ wj. (3.114)

Integrating over the space of flat connections modulo large gauge transformations

with the measure (3.109) then gives a factor of

det

(
2πµ2

q2
Γp

)1/2

(3.115)

There is a similar term that appears for the (p−1) form gauge transformations. In
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dividing by the volume of the gauge group, we must also divide by zero modes of

the gauge transformations, which are flat (p− 1)-forms. These gauge symmetries

have their own gauge redundancy given by (p−2)-forms, we must multiply by the

volume of the space of flat (p − 2) forms. Continuing in this way we obtain the

complete zero mode contribution

Zzero = det

(
2πµ2

q2
Γp

)1/2

det

(
2πµ4

q2
Γp−1

)−1/2

· · · det

(
2πµ2(p+1)

q2
Γ0

)(−1)p/2

.

(3.116)

Note that for a manifold with a single connected component of volume V , Γ0 is

the 1 × 1 matrix V . This generalizes the volume correction that appears in the

path integral for Maxwell theory in refs. [263, 237] and is essential for unitarity.

The torsion part T k := TorHk(M,Z) of the cohomology groups is perhaps less

familiar, but will play an important role in the duality in the most general case.

When we integrate over the space of flat p-forms we must divide by the large gauge

transformations. Taking the quotient by the discrete subgroup T p simply amounts

to dividing the partition function by the number of elements |T p|. To account for

torsion-valued p−1-form large gauge transformations we must multiply by |T p−1|

and so on, resulting in the contribution

Ztors = |T p|−1|T p−1| · · · |T 0|(−1)p+1

(3.117)

to the partition function.

Finally we return to the instanton contribution, i.e. gauge connections that

cannot be expressed as F = dA. The Bianchi identity identifies them as elements
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of the cohomology group

F ∈ 2πHp+1(M,Z). (3.118)

Again, we can split the cohomology group into its free and torsion parts:

Hp+1(M,Z) = FreeHp+1(M,Z)⊕ TorHp+1(M,Z) = Zbp+1 ⊕ T p+1. (3.119)

Elements of FreeHp+1(M,Z) are equivalence classes of (p+ 1)-forms, from which

we choose F to be the unique harmonic representative. Elements of the torsion

subgroup are associated with vanishing field strengths, and hence these instantons

simply lead to an overall factor of |Tp+1|. (These correspond to flat connections

that have nontrivial holonomy around certain noncontractible p-surfaces, and yet

do not come from harmonic p-forms.) Thus the full sum over instantons is given

by

Zinst = |T p+1|
∑

F∈Zbp+1

e−I[F ]. (3.120)

Summarizing, we find that the partition function of p-form gauge theory is

Zp =

p∏

k=0




det
(

2πµ2(p−k+1)

q2 Γk

)1/2

|T k| det(∆̃k)(p−k+1)/2




(−1)p−k

|T p+1|
∑

F∈Zbp+1

e−I[F ]. (3.121)

Except for an anomaly in even dimensions, the factors of µ cancel between nu-

merator and denominator. This anomaly fixes the units in (3.100) but otherwise

plays no role. We will not keep the factors of µ explicit in the remainder of this

section, deferring the details to the end of appendix 3.3.6.

Next we compute the change in the effective action under electromagnetic
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duality.

Electromagnetic duality

With the expression (3.121) it is a straightforward exercise to compute the

relation between the dual partition functions. We will use zeta function regu-

larization. The partition function of the electromagnetic dual is (3.103) with

p→ p̃ = D − p− 2 and q → q̃ = 2π/q, which is equivalent to the replacement

F̃ =

(
q̃

q

)
? F. (3.122)

Poincaré duality and Poisson summation are the only tools needed to compute

the ratio Zp/Z̃p̃, a task we defer to appendix 3.3.6.

First we isolate the oscillator contribution to the ratio. The ratio of oscillator

partition functions is

Zosc

Z̃osc

=

[
D∏

k=0

(det ∆k)
k(−1)k+1/2

](−1)p+1

. (3.123)

This expression is related to a quantity known as the Ray-Singer analytic torsion

[266, 249],

τRS =
D∏

k=0

(det ∆k)
k(−1)k+1/2 . (3.124)

It plays a role in abelian Chern-Simons theory as the magnitude squared of the

partition function [246] but was originally defined as an analytic analog to a

combinatorial invariant called Reidemeister torsion, which we will encounter soon.

When D is even, τRS = 1 by Poincaré duality and so the ratio of oscillator
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partition functions is

log
Zosc

Z̃osc

=





0 D = 2n

(−1)p+1 log τRS D = 2n+ 1.
(3.125)

This is the result obtained by Schwarz and Tyupkin [243], who considered only

the oscillator modes. Note in particular that the contribution to the anomaly

vanishes in even D.

The rest of Zp/Z̃p̃ comes from the zero modes and instantons. Making the

simplifying assumption that the torsion subgroups of Hk(M,Z) are trivial, they

contribute

ZzeroZinst

Z̃zeroZ̃inst

=

[(
2π

q2

)χ D∏

k=0

det (Γk)
(−1)k

](−1)p/2

(3.126)

which follows from Poincaré duality and the relation χ =
∑

(−1)kbk between the

Euler characteristic and the Betti numbers. This ratio is related to the Reide-

meister torsion:

τReid =
D∏

k=0

det Γ
(−1)k/2
k . (3.127)

This flavor of torsion was invented in 1935 to classify lens spaces [250], which have

the same homotopy groups but are not homeomorphic. It is actually the oldest

non-homotopy invariant [267], and is defined in terms of chain complexes on M .

Ray and Singer defined their torsion (3.124) as an analytic analog in the early

1970s. Cheeger and Müller independently proved a few years later that the two

are actually equal (up to the torsion subgroups T k to be discussed), culminating
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in the Cheeger-Müller theorem [268, 248, 269]

τRS = τReid. (3.128)

This equation is the key to the triviality of the odd-dimensional anomaly. Thus

ZzeroZinst

Z̃zeroZ̃inst

=





(−1)p+1 χ(M) log
√

q
q̃

D = 2n

(−1)p log τReid D = 2n+ 1,
(3.129)

and the duality anomaly of a p-form theory on a D-manifold M is

log
Zp

Z̃p̃
=





(−1)p+1 χ(M) log
√

q
q̃

D = 2n

(−1)p+1 log τRS

τReid
= 0, D = 2n+ 1.

(3.130)

In odd D the zero mode and instantons cancel the oscillator contribution to the

ratio and so the duality is exact. Our even-dimensional result agrees with Wit-

ten’s computation [244] of the duality anomaly of D = 4 Maxwell theory; in

appendix 3.3.7 we reproduce the θ-dependence and discuss a phase. Only the

zero modes and instantons contribute to the anomaly, which is why Schwarz and

Tyupkin found an exact duality. It is somewhat ironic that the zero modes and

instantons trivialize the odd-dimensional duality instead.

The quantity q
q̃

in (3.130) has mass dimension 2(p + 1) − D and so must be

accompanied by a dimensionful factor; this is furnished by the parameter µ that

we had to introduce in order to make the measure (3.109) dimensionless. We

will see in appendix 3.3.6 that an anomaly in rescaling µ out of the functional
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determinants multiplies (3.130) by an extra term

(−1)pχ(M) log µp+1−D/2, (3.131)

after application of the McKean-Singer formula [270]. This precisely fixes the

units.

Last we consider the contribution from any torsion subgroups T k ⊂ Hk(M,Z).

In the presence of nontrivial T k, Cheeger [248] found that the relation (3.128) is

modified to

τRS

τReid

=
D∏

k=0

|T k|(−1)k+1

(3.132)

and so to maintain duality invariance we must show that their effect on the ratio

of partition functions is to divide by this factor. In appendix 3.3.6 we show that

their contribution to the ratio of partition functions is

Zp,tors

Z̃p̃,tors

=

[
D∏

k=0

|T k|(−1)k+1

](−1)p

(3.133)

which is trivial in even dimensions and cancels the non-torsion contribution in odd

dimensions. In fact, the vanishing of the odd-dimensional anomaly is equivalent

to Cheeger’s refinement of the Cheeger-Müller theorem.

We find it rather surprising to find any application to physics in this somewhat

obscure relation between quantities from different branches of mathematics.
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3.3.3 Trace of the stress tensor

Since the effective action in even dimensions is not invariant under a duality

transformation, it is natural to wonder whether the duality shifts the value of any

other observables. One natural choice of observable is the stress tensor, obtained

by varying the effective action with respect to the metric:

Tab = −2
δ

δgab
logZ (3.134)

In our regulator scheme, it is easy to see that Tab will not be affected by a

duality transformation: the duality anomaly is simply a finite number times a

topological invariant χ, which is independent of the metric. Therefore, Tab is the

same in both theories.

Nevertheless, there has been a considerable amount of confusion about this

topic in the literature, due to an apparent discrepancy in the trace anomaly be-

tween the dual theories. In order to clarify this issue, we first remind the reader

that we needed three dimensionful parameters in order to define the quantum

partition function (3.104) (apart from any geometric parameters of M):

µ: the dimensional measure factor appearing in each mode of the path integral;

Λ: an additional parameter present in some regularization schemes (such as an

ultraviolet momentum cutoff or lattice scale);

q: the fundamental charge, which is dimensionful when D 6= 2p+ 2.

The first two quantities, Λ and µ, do not appear in the classical theory but are

needed to make the quantum theory well-defined.
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Note that some regularization schemes, such as the zeta-function regularization

we have been using, introduce only a single dimensionful scale and are effectively

identifying Λ = µ. In this case even a single mode in the partition function gives

rise to a logarithmic divergence as Λ → ∞. While consistent, this can lead to

confusing outcomes like apparent UV divergences in theories with no local degrees

of freedom, such as D = 2 Maxwell theory [271]. In such a scheme, our duality

anomaly will appear to take the form of a logarithmic divergence proportional to

χ, although it really comes from the zero mode integrals.

This point is important because the trace anomaly is frequently calculated

using the log divergences of the theory. However, it is necessary to consider the

dependence on the logs of all three kinds of dimensionful parameters to get the

correct result. Thus, suppose we have a compact manifold M(R) with “radius”

R, where M(R) is given by acting on M(1) with a uniform scaling factor Ω = R.

Then the dependence of the effective action on logR is given by

∂

∂ logR
logZp = −

∫

M

T. (3.135)

Dimensional analysis now says that this term can be calculated if you know how

logZ scales when you simultaneously adjust the mass scales of Λ, µ, and q:

∂

∂ logR
logZp =

[
∂

∂ log Λ
+

∂

∂ log µ
+

(
p+ 1− D

2

)
∂

∂ log q

]
logZp (3.136)

The simplest case is that of a conformal p-form field in D = 2p+2 dimensions,

where the theory is dual to another p-form of the same rank. In this case, q is

dimensionless. Since the theory is conformal, T = 0 classically, q is dimensionless,
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and any nonzero value of T must come from quantum anomalies. After setting µ =

Λ, balancing of logarithms (i.e. demanding that their arguments be dimensionless)

requires that any dependence on log Λ must match with the dependence of logZ on

a local conformal rescaling g′ab = Ω2gab of the metric. Hence the trace T = Tabg
ab

may be calculated from the log divergences of the theory. However, p = p̃, so the

log divergences of the two theories are identical, and the duality anomaly (3.130)

is merely a finite function of q. Note that T is determined locally in this conformal

case.

Things are more subtle when D 6= 2p+2. In this case, the action (3.103) is not

conformal, even classically. Thus, in general T may depend in a complicated and

nonlocal way on the state of the fields. The classical theory is almost invariant

under the global scale-invariance (Ω = constant) generated by (3.135), but even

this symmetry is partially broken by flux quantization effects that depend on q.

Now we discuss electromagnetic duality. In even dimensions, (3.130) and

(3.131) tell us that the duality anomaly coming from zero modes is proportional

to

∆ logZ ∝ log

(
q

µp+1−D/2

)
(3.137)

This logarithm is already balanced, and hence it does not produce any logR

dependence. Therefore, the integrated trace is unaffected by the duality, consistent

with our claim above.

This conclusion is essentially the same as that of [242], who argued that the

total trace of the stress tensor is duality invariant, even though the amount at-

tributable to varying log Λ8 depends on the duality frame. However, they regu-

8which they confusingly refer to as the “trace anomaly”
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lated their zero modes by inserting a small mass, while we consider a U(1) gauge

field whose IR divergences are regulated by finite-q effects.

In the next section we will consider the effects of the duality anomaly on the

entanglement entropy S. Unlike Tab, S is sensitive to topological terms, and thus

we will find a nonzero shift under duality.

3.3.4 Entanglement anomalies

We now derive the entanglement anomaly, i.e. the difference in entanglement

entropies between the p-form theory and its dual. We use the replica trick, which

enables us to compute the difference of entropies using the results of § 3.3.2 in

conjunction with the definition of the entanglement anomaly (3.101). The pro-

cedure is straightforward: we substitute the replica manifold M = M
(n)
A into

(3.130), then determine the n-dependence in order to compute the entanglement

anomaly (3.102). As described in the previous section the anomaly vanishes in

odd spacetime dimension.

The anomaly

The change in vacuum entanglement of a region A under duality (3.101) de-

pends on the ratio of replica partition functions, i.e. the duality anomaly (3.130)

of the theory on the replica manifold M
(n)
A . This is determined by the Euler char-

acteristic of M
(n)
A , which follows immediately from its cut-and-paste construction:

M
(n)
A consists of n copies of M \ A, glued together along n copies of A \ ∂A, all

glued to a single copy of the entangling surface ∂A. Since each piece is disjoint
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their Euler characters just add:

χ(M
(n)
A ) = nχ(M \ A) + nχ(A \ ∂A) + χ(∂A)

= nχ(M \ ∂A) + (1− n)χ(∂A). (3.138)

Using

log
Z(M

(n)
A )

Z̃(M
(n)
A )

= (−1)p+1 χ
(
M

(n)
A

)
log

√
q

q̃
(3.139)

together with the thermodynamic expression for the anomaly (3.101), we find that

the change in the entanglement entropy of a region A in p-form Maxwell theory

under electromagnetic duality is

∆SA = (−1)p+1 χ(∂A) log

√
q

q̃
. (3.140)

Here q̃ = 2π/q is the coupling of the dual gauge theory. We will argue that the

entanglement anomaly arises physically from the global anomaly of a p− 1-form

edge mode theory living on the entangling surface; see § 3.3.4.

Now we discuss the universality of our results. A constant term in the entan-

glement entropy in even dimensions can usually be absorbed into a shift of the

cutoff, and so our results may appear to depend on the choice of renormalization

scheme. For simplicity consider the entanglement entropy of a ball-shaped region

in D = 4 flat vacuum, whose general form is [208]

S = c1R
2Λ2 + c2 log(RΛ) + c3 (3.141)

where R is the radius of the sphere, Λ is the cutoff, and ci are various constants.

265



Entanglement Chapter 3

In the absence of duality only c2 is universal, as changes in c1,3 can be absorbed

into shifts of the cutoff. The entanglement entropy of the same region in the dual

theory is

S̃ = c̃1R
2Λ̃2 + c̃2 log(RΛ̃) + c̃3. (3.142)

Universality of the coefficient of the log guarantees c2 = c̃2.

In these calculations of entanglement, Λ is a physical inverse distance to the

entangling surface and should be matched between the two theories in order to

compare like quantities. If we rescale Λ→ Λ′ = αΛ in the original theory, c3 picks

up a shift proportionate to c2. In the dual theory we must do the same rescaling

and so c̃3 picks up a shift, but universality of the log coefficient guarantees that

it matches the shift in c3. Thus, the entanglement anomaly ∆c3 = c3 − c̃3 is

independent of Λ.9

More generally, we expect that ∆c3 does not depend on the choice of (rea-

sonable) regulator scheme for the theory. Recall that the entanglement anomaly

arises purely from the zero modes and instantons of the theory, since (in even

dimensions, where the anomaly can exist) the nonzero modes of the dual theories

are in correspondence. Therefore, so long as (a) we use the same regulator for

modes of the same wavelength on both sides of the duality, and (b) the regulator

only affects UV divergent quantities, not zero modes or instantons, it follows that

∆c3 is a universal quantity.

9We are grateful to Mark Srednicki for pointing out the preceding argument.
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With a θ term

We can also calculate the entanglement anomaly in the presence of a topo-

logical term in the action. For concreteness consider the theory with p = 1 and

D = 4, with action

I =
2π2

q2

(
1

8π2

∫

M

FµνF
µν

)
+
iθ

2

(
1

8π2

∫

M

1

2
εµνρσF

µνF ρσ

)
. (3.143)

We derive the duality relation in appendix 3.3.7. Here we just quote the result:

Z̃ = Z

(−1

τ

)
= eiπσ/4τ̄ (χ+σ)/4τ (χ−σ)/4Z(τ). (3.144)

where τ = θ
2π

+ 2πi
q2 and σ = b+

2 − b−2 is the topological (as opposed to metric)

signature of the manifold. The partition function transforms as a modular form

up to a phase.

Before we can apply this result to the entanglement anomaly, we need to

determine the signature of the replica manifold. The contribution of the phase in

(3.144) to the entanglement anomaly is

∆Sphase =

(
−iπ

4

)
(1− n∂n)σ(M

(n)
A )|n=1 (3.145)

If this quantity is nonzero the phase would contribute an imaginary piece to the

entanglement anomaly. Since entropy is a real quantity, this is only consistent

if σ(M
(n)
A ) is linear in n so that it does not contribute to the anomaly. It was

shown in [272] that this is indeed the case, at least for D = 4: the signature is

well-defined for manifolds with conical defects, and is linear in the replica number
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n. We conjecture that this will also be the case for general D. While we do not

have a complete proof, we note that the non-additivity of the signature is given

by a result of [273], and appears to vanish by symmetry considerations.

Assuming that the signature contribution vanishes, we can now substitute

χ(M
(n)
A ) and σ(M

(n)
A ) into (3.101) to find the generalization of (3.140):

∆SA = −1

4
log

[(
θ

2π

)2

+

(
2π

q2

)2
]
χ(∂A). (3.146)

This analysis extends to the case where D is a multiple of 4 and p+ 1 = D/2. A

case not covered by this analysis is D = 2 Maxwell theory with a θ
∫
F term; in

appendix 3.3.7 we show that the entanglement anomaly is independent of such a

θ term.

Invariance of the thermal entropy

The results of the previous sections imply that thermal entropy does not change

under electromagnetic duality. This is reassuring, since the total number of de-

grees of freedom should be duality invariant.

We compute thermal entropies using ordinary thermodynamics. The first law

of thermodynamics Stherm = β〈E〉 + logZtherm relates thermal entropy to the

thermal partition function Ztherm = Tr e−βH . When the theory lives on a spatial

manifold Σ, the thermal partition function is equal to the path integral on M (β) =

Σ× S1
β. We rewrite the first law as

Stherm(β) = (1− β∂β) logZ(M (β)) (3.147)
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and specialize again to the case of p-form theories. Under electromagnetic duality,

the change in thermal entropy is

∆Stherm(β) = (1− β∂β) log
Zp(M

(β))

Z̃p̃(M (β))
. (3.148)

We can compute the right hand side using (3.130) with M = M (β). This gives

log
Ztherm

Z̃therm

=





(−1)p+1 χ(M (β)) log
√

q
q̃

D = 2n

0 D = 2n+ 1.
(3.149)

The Euler character of a product manifold A×B satisfies χ(A×B) = χ(A) ·χ(B),

so the Euler character of M (β) = Σ × S1
β vanishes and hence ∆Stherm(β) = 0 in

even dimensions.

Thus for any p and D

Stherm = S̃therm. (3.150)

Edge modes

In theories with gauge symmetry there is a question of how to define the entan-

glement entropy. For example, [216] proposed a number of inequivalent definitions

in terms of the algebra of observables inside the entangling surface. Here we have

adopted the definition of entanglement entropy via the replica trick. The replica

trick requires no additional input, such as a choice of algebra, and so must single

out a particular definition. In Refs. [257, 217] it was shown that the replica trick

coincides with the “extended Hilbert space” definition of entanglement entropy for

1-form gauge fields. In the case of abelian gauge fields, this coincides with what
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Ref. [216] calls the “electric” definition of entanglement entropy and in condensed

matter is sometimes called the “rough edge” [259].

Analysis of these replica partition functions Z(M
(n)
A ) [217] yields a decompo-

sition into a bulk and an edge piece:

Z(M
(n)
A ) = ZbulkZedge (3.151)

where Zbulk describes degrees of freedom on M \ ∂A and Zedge describes degrees

of freedom on the entangling surface ∂A.

The edge mode partition function is

Zedge =

∫
DE⊥e−Icl(E⊥); (3.152)

the sum is over configurations of the normal electric field at the entangling surface

and the exponent is the action of a classical solution with corresponding boundary

configuration — the action is itself a boundary term. The reduced density matrix

thus splits into superselection sectors labelled by E⊥: ρ = ⊕p(E⊥)ρE⊥ . This gives

rise to a Shannon term −∑ p(E⊥) log p(E⊥) in the entanglement entropy [274].

In this case the entropy of the edge modes is given by the log of the partition

function of a ghost scalar confined to the entangling surface:

Sedge = − logZp=0(∂A). (3.153)

This suggests that the generalization of the edge mode entropy for a p-form theory

is the partition function of a ghost (p − 1)-form theory on the codimension-2
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entangling surface.

Note that when the p-form theory in D dimensions is conformal, the (p− 1)-

form theory in D−2 dimensions is also conformal. In this case there is a universal

logarithmic divergence in the entanglement entropy of a sphere related to the

conformal anomaly of the theory [275, 213]. For example, the sphere entropy of

Maxwell theory in D = 4, contains a contribution from a ghost scalar in D = 2

which is necessary in order to obtain agreement with the conformal anomaly

[257, 276, 217].

The results of the present paper provide further evidence for this edge mode

theory. The anomaly in the entropy (3.140) is precisely the duality anomaly of a

ghost (p − 1)-form confined to the entangling surface. Thus the universal differ-

ences in the electric versus magnetic prescriptions for the entanglement entropy

appears to be captured in the electromagnetic duality anomaly of the edge mode

theory. It would be interesting to either confirm or refute this conjecture, for

example by calculating the edge mode contribution to the logarithmic divergence

of the sphere entanglement entropy in conformal p-form theories. In doing so one

ought to pay close attention to the zero modes of the edge system [257, 217, 260].

3.3.5 Discussion

Duality is a rich subject and we have only explored simple, abelian examples.

It would be interesting to extend our results to other dualities. In most cases

this will not be easy: generically one cannot compute the partition function,

and even when one can, the replica manifold may break symmetries (such as

supersymmetry) that enabled the computation in the first place. However, any
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tractable calculations of entanglement in dual theories would be amenable to an

anomaly analysis akin to ours.

It would also be interesting to understand the lattice analogue of the phe-

nomenon we have described. There is an ambiguity in how to cut up the lattice

in calculations of entanglement: one can put the cut in the middle of a plaquette,

or on a vertex, or on an edge. When such a theory enjoys an electromagnetic

duality, its dual lives on the dual lattice and so inherits a different prescription

for the entropy. In self-dual theories the entanglement anomaly should record this

dependence on the choice of prescription.
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3.3.6 Appendix A: Electromagnetic duality

In this appendix we derive (3.130). For simplicity we first consider the case

where the torsion subgroups of the cohomologies Hk(M,Z) are trivial, also defer-

ring discussion of the dimensionful factors µ appearing in the measure (3.109) to
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the end.

As described in § 3.3.2, the partition function of p-form Maxwell theory on a

manifold M decomposes as

Zp = ZoscZzeroZinst (3.154)

where Zosc, Zzero and Zinst can be found in (3.111), (3.116) and (3.120). In the

dual p̃ form theory, the oscillator determinants Z̃osc and zero mode factors Z̃zero

are simply obtained from (3.111) and (3.116) by replacing p with p̃ = D − p− 2.

Relating the instanton partition functions is slightly more involved. The trick

is to do a Poisson summation and make use of Poincaré duality. The instanton

partition function of the original theory is

Zinst =
∑

F∈Hp+1(M,Z)

e−Icl(F ) =
∑

~m∈Zbp+1

e−
1
2( 2π

q )
2
~m·Γp+1·~m

= det

(
2πΓp+1

q2

)−1/2

·
∑

~n∈Zbp̃+1

e−
1
2( 2π

q̃ )
2
~n·Γp̃+1·~n

= det

(
2πΓp+1

q2

)−1/2

·
∑

?F∈H p̃+1(M,Z)

e−Ĩcl(?F )

= det

(
2πΓp+1

q2

)−1/2

· Z̃inst. (3.155)

In the second line we used

q̃ =
2π

q
(3.156)

and Poincaré duality, which implies Γk = Γ−1
D−k.

10

10More precisely, duality implies only that Γk = Γ−1
D−k up to a matrix that is invertible over

the integers (and therefore has unit determinant). We can set this matrix to the identity by a
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Now we compute the ratio of partition functions, i.e. the duality anomaly.

Using (3.111), (3.116) and (3.155),

ZoscZzeroZinst

Z̃oscZ̃zeroZ̃inst

=

∏p
k=0

[
det(∆k)

(−1)p+1−k(p+1−k)/2 · det
(

2π
q2 Γp−k

)(−1)k/2
]

det
(

2π
q2 Γp+1

)−1/2

∏p̃
k=0

[
det(∆k)(−1)p̃+1−k(p̃+1−k)/2 · det

(
2π
q̃2 Γp̃−k

)(−1)k/2
] .

(3.157)

First we compute the ratio of oscillator determinants, which was first calculated

by [243]. It is convenient to decompose ∆k = δkdk + dk−1δk−1
11; the spectra of

δkdk and dkδk agree up to zero modes, so det(δkdk) = det(dkδk). Then

Zosc =

p∏

k=0

det(δkdk)
(−1)p+1−k(p+1−k)/2

p∏

k=1

det(dk−1δk−1)(−1)p+1−k(p+1−k)/2

=

p∏

k=0

det(δkdk)
(−1)p+1−k/2. (3.158)

Letting Ek = det(δkdk), the ratio of oscillator partition functions is

Zosc

Z̃osc

=

p∏

k=0

E
(−1)p+1−k/2
k

p̃∏

k=0

E
(−1)p̃−k/2
k

=

p∏

k=0

E
(−1)p+1−k/2
k

D−p−2∏

k=0

E
(−1)D−p−2−k/2
D−k−1 =

[
D−1∏

k=0

E
(−1)k−1/2
k

](−1)p

. (3.159)

This expression is a power of the Ray-Singer analytic torsion

τRS =
D−1∏

k=0

E
(−1)k/2
D−k−1 =

D∏

k=0

(det ∆k)
k(−1)k+1/2 . (3.160)

choice of basis.
11For k = 0 or D, only the nontrivial term contributes.
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In even D, τRS = 1 by Poincaré duality (Ek = ED−k−1). Comparing (3.159) and

(3.160), the ratio of oscillator partition functions is

log
Zosc

Z̃osc

=





0 D = 2n

(−1)p+1 log τRS D = 2n+ 1
(3.161)

which was the result of [243].

Next up are the zero modes and instantons. From (3.157) we get

ZzeroZinst

Z̃zeroZ̃inst

=

p∏

k=0

det

(
2π

q2
Γk

)(−1)p−k/2

det

(
2π

q2
Γp+1

)−1/2 p̃∏

k=0

det

(
q̃2

2π
Γ−1
k

)(−1)p̃−k/2

=

p+1∏

k=0

det

(
2π

q2
Γk

)(−1)p−k/2 D−p−2∏

k=0

det

(
2π

q2
ΓD−k

)(−1)D−p−2−k/2

=

[
D∏

k=0

(
2π

q2

)(−1)kbk

det (Γk)
(−1)k

](−1)p/2

=

[(
2π

q2

)χ D∏

k=0

det (Γk)
(−1)k

](−1)p/2

(3.162)

where we used Poincaré duality in the second line, then zeta-function regulariza-

tion in the third to pull out the charge factors.12 In even D = 2n, the det Γs

cancel pairwise, while the ratio in odd dimensions is a power of the Reidemeister

torsion:

τReid =
D∏

k=0

det Γ
(−1)k/2
k . (3.163)

12We define our determinants using zeta-function regularization, det ∆ = e−ζ
′
∆|s=0 , and so

det(a∆) = aζ∆|s=0 det ∆ for scalar a. The fact that ζ∆|s=0 = −dim ker ∆ [277] (up to a term
in even D that can be absorbed into a local counterterm [217]) then implies the equality in the
third line of (3.162).
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Rewriting (3.162) as

ZzeroZinst

Z̃zeroZ̃inst

=





(−1)p+1 χ(M) log
√

q
q̃

D = 2n

(−1)p log τReid D = 2n+ 1,
(3.164)

and using the Cheeger-Müller theorem

τRS = τReid, (3.165)

the duality anomaly of a p-form theory on a D-manifold M is

log
Zp

Z̃p̃
=





(−1)p+1 χ(M) log
√

q
q̃

D = 2n

(−1)p+1 log τRS

τReid
= 0, D = 2n+ 1.

(3.166)

The quantity q/q̃ has mass dimension 2(p + 1) − D. However, the dimensionful

factor µ in the measure (3.109) renders the argument of the log dimensionless,

after proper consideration of an anomaly in zeta-function regularization discussed

at the end of this appendix.

Next we consider the possibility that some of the cohomology groups Hk(M,Z)

have nontrivial torsion subgroups.13 The partition functions for this more gen-

eral case were explained in § 3.3.2, see (3.117) and (3.120). Separating out the

contribution of these factors as

Zp = Zp,torsZp,free (3.167)

13We apologize to the reader for introducing a third kind of torsion.
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where Zp,tors contains the contribution of all the torsion subgroups, we have

Zp,tors =

p+1∏

k=0

|T p+1−k|(−1)k (3.168)

where |T k| is the size of the torsion subgroup of Hk(M,Z).

We need the duality relation for torsion subgroups to proceed further. It is

common mathematical knowledge [278] that Hk(M,Z) ∼= (Hk/Tk) ⊕ Tk−1 and

so T k = Tk−1. Together with Poincaré duality (Hk ∼= HD−k) this implies T k ∼=

TD−k+1. Using (3.168), we find

Zp,tors

Z̃p̃,tors

=

∏p+1
k=0 |T p+1−k|(−1)k

∏p̃+1
k=0 |T p̃+1−k|(−1)k

=

p+1∏

k=0

|T p+1−k|(−1)k
D−p−1∏

k=0

|T p+2+k|(−1)k+1

=

[
D∏

k=0

|T k|(−1)k+1

](−1)p

(3.169)

which is equal to 1 by Poincaré duality in even D. The odd-D duality relation

becomes

Zp

Z̃p̃
=

(
τRS

τReid

)(−1)p+1
[

D∏

k=0

|T k|(−1)k+1

](−1)p

. (3.170)

Thus it appears at first as if we have recovered a nontrivial anomaly. However,

Cheeger [248] showed that the relation between Ray-Singer and Reidemeister tor-
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sion is modified in the presence of torsion subgroups14. The general relation is

τRS

τReid

=
D∏

k=0

|T k|(−1)k+1

(3.171)

and so the odd-dimensional duality remains trivial even on manifolds whose in-

tegral cohomologies have nontrivial torsion subgroups. This completes our proof

that the odd-dimensional duality anomaly vanishes.

Last we discuss the measure factors in (3.109) which correct the units in

(3.166). We define our functional determinants using zeta-function regularization,

det ∆ = e−ζ
′
∆|s=0 , and so det(a∆) = aζ∆|s=0 det ∆ for scalar a. In even dimensions

there is an anomaly15 in ζ∆|s=0: it is given by [277]

ζ∆k
|s=0 = Ak − dim ker ∆k (3.172)

where Ak = a
(k)
D/2 is the coefficient of t0 in the asymptotic expansion of the trace

of the heat kernel Tr e−t∆k as t→ 0. They satisfy a Betti number-like relation to

the Euler character, the McKean-Singer formula [270]:

D∑

k=0

(−1)kAk = χ(M). (3.173)

In odd dimensions Ak = 0 for all k.

14We found appendix E of [237] particularly helpful in understanding these results.
15We apologize to the reader for introducing a third kind of anomaly.
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The full partition with all the factors of µ was given in (3.121):

Zp =

p∏

k=0




det
(

2πµ2(p−k+1)

q2 Γk

)1/2

|T k| det
(

∆k

µ2

)(p−k+1)/2




(−1)p−k

|T p+1|
∑

F∈Zbp+1

e−I[F ]. (3.174)

Scaling out the factors of µ in the functional determinants using (3.172), it is

obvious that the nonanomalous pieces in the rescaling cancel with the factors of µ

from the zero modes. However, we must deal with the anomalous piece. We find

ZoscZzero =

p∏

k=0

µ−Ak(p+1−k)(−1)p+1−k




det
(

2π
q2 Γk

)1/2

|T p| det(∆k)(p−k+1)/2




(−1)p−k

. (3.175)

Note that we have defined the dimensionful measure factors for the ghosts to be

given by the same µ as appeared in the measure for the p-forms; this is part of

our definition of the theory. We will also take the dual measure factors µ̃ equal

to the original µ. With these choices, the net effect of the anomaly is to multiply

the ratio of partition functions (3.157) by

p∏

k=0

µ−Ak(p+1−k)(−1)p+1−k
p̃∏

k=0

µAk(p̃+1−k)(−1)p̃+1−k
. (3.176)

The log of (3.157) picks up a piece

D∑

k=0

(−1)p−kAk(p+ 1− k) = (−1)p

[
(p+ 1)

D∑

k=0

(−1)kAk −
D∑

k=0

(−1)k
k

2
Ak

−
D∑

k=0

(−1)k
(D − k)

2
Ak
]
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= (−1)p
(
p+ 1− D

2

)
χ(M) (3.177)

multiplied by log µ. The LHS of (3.177) follows from (3.176) after using Poincaré

duality, Ak = AD−k. The first equality follows from Poincaré duality, the second

from (3.173). Thus the net effect of the measure factors is to correct the even-

dimensional duality relation to

log
Zp

Z̃p̃
= (−1)p+1 χ(M) log

√
q/q̃

µ2(p+1)−D , (3.178)

which is dimensionless as expected.

3.3.7 Appendix B: With a θ term

In this appendix we extend our analysis of the duality anomaly of p-form

Maxwell theories to include a topological term. We focus on terms of the form

θ

∫

M

F ∧ F (3.179)

which only exist when p + 1 = D/2 and vanish unless D is a multiple of 4. For

concreteness we describe the case of p = 1 duality with a θ term, which was

studied by [244] (and earlier [279]); our analysis extends to all D = 4n.

We start with the action

I =
2π2

q2

(
1

8π2

∫

M

FµνF
µν

)
+
iθ

2

(
1

8π2

∫

M

1

2
εµνρσF

µνF ρσ

)
. (3.180)

The terms in parentheses are the metric on the middle cohomology and the inter-
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section form, respectively. The intersection form calculates the winding number

of F and depends only on its cohomology. On a spin manifold, the intersection

form is even, and the action is invariant under modular transformations.16

The θ term only affects the instanton contribution to the partition function.

As described in § 3.3.2, the instanton contribution to the action is 17

Iinst =
2π2

q2
~m · Γ · ~m+

iθ

2
~m · P · ~m

= ~m · Γ
(

2π2

q2
+
iθ

2
S

)
· ~m

= iπ(τ̄ ~m+ · Γ+ · ~m+ − τ ~m− · Γ− · ~m−) (3.181)

In the first line we defined the matrix Pij =
∫
wi ∧ wj. In the second line we

related P to Γ via P = ΓS, where S is defined by ?wi = Sijwj. This notation

follows [263]. In the last line we used the orthogonal decomposition of the middle

homology into self-dual and anti-self-dual forms, writing ~m = (~m+, ~m−), where

~m± are basis vectors for H2
±(M,Z) and have b±2 components each. In this basis S

takes the form diag(1,-1).

Now we can get cracking. Using Poisson summation, the instanton partition

function is

Zinst =
∑

~m∈H2(M,Z)

e
−~m·Γ

(
2π2

q2
+ iθ

2
S
)
·~m

= det

(
π

Γ(2π2/q2 + iθS/2)

)1/2 ∑

~n∈H2(M,Z)

e
−~n·Γ−1

(
2π2

q2
+ iθ

2
S
)−1
·~n·π2

(3.182)

16If the manifold does not admit a spin structure, the invariance is under the Hecke group
generated by S and the T-transformation τ → τ + 2 [280].

17In this section Γ refers to Γ2.
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Consider the determinant out front first:

det

(
π

Γ(2π2/q2 + iθS/2)

)1/2

= det Γ−1/2 det+

(
2π2

q2
+
iθS

2

)−1/2

det−
(

2π2

q2
+
iθS

2

)−1/2

= det Γ−1/2

(
2π2

q2
+
iθ

2

)−b+2 /2(2π2

q2
− iθ

2

)−b−2 /2

= det Γ−1/2(iτ̄)−b
+
2 /2(−iτ)−b

−
2 /2. (3.183)

In the first line we used the decomposition H2 = H2
+ ⊕H2

−.

Next, the exponent of (3.182), which is

π2~n · Γ−1

(
2π2

q2
+
iθ

2
S

)−1

· ~n = π(~n+ ~n−)Γ−1




2π
q2 + iθ

2π
0

0 2π
q2 − iθ

2π




−1

~n+

~n−




= iπ

[(−1

τ̄

)
~n+ · Γ+ · ~n+ −

(−1

τ

)
~n− · Γ− · ~n−

]

(3.184)

= Ĩinst(?F ) (3.185)

i.e. the action of an instanton in the dual theory. The full p-form partition

function is

Zp = ZoscZoscZinst

= ZoscZ̃inst det

(
2π

q2
Γ0

)−1/2

det

(
2π

q2
Γ1

)1/2

det Γ
−1/2
2 (iτ̄)−b

+
2 /2(−iτ)−b

−
2 /2

= ZoscZ̃inst det Γ
−1/2
0 det Γ

1/2
1 det Γ

−1/2
2

(
2π

q2

)(b1−b0)/2

(iτ̄)−b
+
2 /2(−iτ)−b

−
2 /2
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= Z̃oscZ̃inst det Γ
−1/2
0 det Γ

1/2
1 det Γ

−1/2
2 (Im τ)(b1−b0)/2 (iτ̄)−b

+
2 /2(−iτ)−b

−
2 /2

(3.186)

while the dual partition function is

Z̃p̃ = Z̃oscZ̃zeroZ̃inst

= Z̃oscZ̃inst det

(
2π

q̃2
Γ0

)−1/2

det

(
2π

q̃2
Γ1

)1/2

= Z̃oscZ̃inst det Γ
−1/2
0 det Γ

1/2
1

(
Im
−1

τ

)(b1−b0)/2

. (3.187)

It then follows from Im −1
τ

= Im τ
τ τ̄

and det Γ2 = 1 that18

Z̃ = Z

(−1

τ

)
= eiπσ/4τ̄ (b+2 −b1+b0)/2τ (b−2 −b1+b0)/2Z(τ)

= eiπσ/4τ̄ (χ+σ)/4τ (χ−σ)/4Z(τ). (3.188)

From eq. (3.188) we see that the partition function transforms as a modular

form, up to a phase. This agrees with Witten’s result for the duality anomaly

[244] except for the phase, which also appears in the calculation of the anomaly

by Alvarez and Olive in [280], and in Metlitski’s calculation in [237]. It seems that

the partition function is a modular form only up to this phase, whose presence

allowed us to make a physical argument about the topological signature of the

replica manifold in § 3.3.4.

While θ
∫
F ∧F vanishes in 0-form theory in two dimensions, in 1-form theory

there is a term θ
∫
F which plays a similar role to the θ term in D = 4n dimensions

18Γ2 is a positive matrix, and P−1 is an integer matrix (by Poincaré duality), so |det Γ2| = 1.
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(i.e. it assigns a phase linear in n to instantons in the path integral). However,

since it is linear in the field strength, it enters differently into the duality relation.

The action

S =
1

2

∫
F ∧ ?F +

iθq

2π

∫
F (3.189)

leads to the bundle sum

Zinst =
∑

m∈Z

e−
1
2( 2π

q )
2
m2+iθm

= det

(
2π

q2
Γ2

)−1/2∑

n∈Z

e−
1
2( 2π

q̃ )
2
(n+ θ

2π )
2

. (3.190)

The shift by θ in the lattice of integer charges in the dual theory is the Witten

effect [281]. However, since it does not enter into the determinant, θ does not

affect the duality anomaly in D = 2.

3.3.8 Appendix C: One-dimensional Maxwell theory

Maxwell theory in one spacetime dimension is a particularly trivial theory. It

has only a vacuum state, so the canonical partition function is simply

Zcanonical =
∑

states

e−βE = 1. (3.191)

We can use the sledgehammer forged in the body of this work to reproduce this

trivial result. This exercise serves to clarify the role of the non-oscillator contri-

butions in a simple example.
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The oscillator partition function is

Zosc = (det ∆1)−1/2
[
(det ∆0)1/2

]2

= (det ∆0)1/2 (3.192)

where the last equality follows from Poinaré duality. As usual, we will calculate the

functional determinant using ζ-function regularization: det ∆ = e−ζ
′
∆(0). Noting

that the eigenfunctions fn of the scalar Laplacian take the form fn(θ) ∼ e
2πinθ
β ,

the relevant zeta function reads

ζ∆(s) =
∑

n6=0

1

λsn
= 2

[
−
(
β

2π

)2
]
ζR(2s) (3.193)

where in the second equality we introduced the Riemann zeta function ζR(s) =
∑

n∈Z+
1
ns

.

Evaluation then yields

ζ ′∆(0) = 4ζ ′R(0) + 2 log

[
−
(
β

2π

)2
]
ζR(0) = −β2 (3.194)

and so

Zosc = β 6= Zcanonical. (3.195)

However, the zero mode partition function is

Zzero = det

(
2π

q2
Γ1

)1/2

det

(
2π

q2
Γ0

)−1/2

= det Γ−1
0 = β−1 (3.196)

where in the last line we used Poincaré duality. There are no instantons in this
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simple scenario so we are done. We now see that

Zosc · Zzero = 1 = Zcanonical, (3.197)

i.e. the gauge theory partition function agrees with the canonical partition func-

tion only once the functional determinants are combined with the contribution

from the zero modes.
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3.4 Remarks on Rindler Quantization

In § 3.2 and § 3.3 we described new effects that must be taken into account

in a complete calculation of entanglement entropy. One might wonder whether

these effects are also relevant for the proper calculation of more traditional field

theory quantities, such as correlation functions. The issue arises, in principle,

when one attempts to calculate correlation functions using a quantization that

splits the Hilbert space into multiple pieces, such as Rindler coordinates. In such

a quantization the Minkowski vacuum is [284]

|Ω〉 ∼
∑

n

e−πEn|ψ̄n〉L |ψn〉R. (3.198)

where the sum runs over the energy eigensates |ψn〉 of the theory, and left/right

subscripts refer to states living in the Hilbert space defined on the left/right halves

of space at t = 0. However, in gauge theory the proper calculation of entanglement

[218, 217] mandates instead the use of the state

|Ω〉 ∼
⊕

E⊥

√
p (E⊥)

∑

n

e−πEn|ψ̄n, E⊥〉L |ψn, E⊥〉R. (3.199)

where the state |ψn, E⊥〉 lives in the Hilbert space with fixed E⊥ where the two

halves meet, and the distribution {p(E⊥)} of fluxes through the Rindler horizon

makes the necessary extra contribution to the entanglement.

I showed that one obtains the correct gauge theory correlation functions using

the naive state (3.198) without any consideration of the horizon fluxes. This

follows simply from a computation of the two-point function in the scalar theory
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in the state (3.198): one obtains the Minkowski vacuum result while neglecting the

need to apply boundary conditions, even for trans-horizon correlators. Working in

Feynman gauge, one can trivially show that this implies that all gauge-invariant

correlators in the gauge theory also assume their Minkowski vacuum values.

3.4.1 Introduction

One peculiar feature of relativistic quantum theories is the freedom to quantize

in any time coordinate. This leads to interesting physics even in flat space, such

as the Unruh effect [282]: accelerating observers quantize in Rindler time τ rather

than Minkowski time t and experience the Minkowski vacuum as a thermal state,

a fact encoded in the Bogoliubov transformations between the accelerated and

inertial mode functions.

Quantization in Rindler modes was first described by Fulling in his 1972 PhD.

thesis [283] and is most often used as a tool to understand the thermal nature

of the Minkowski vacuum [282, 284]. However it is also a perfectly valid way to

describe operators in either Rindler wedge, and like any other quantization can be

used to compute correlation functions wherever the coordinates are well-defined.

At the Unruh temperature these computations ought to reproduce Minkowski ex-

pectation values, while at the physics at other temperatures can be quite different.

Correlation functions in Rindler quantization were the subject of intensive

study in the 1970s and 1980s. However, the connection to Minkowski quantization

is somewhat hidden in the literature, and has not to our knowledge been discussed

in the context of the emerging links between entanglement and spacetime. It is the

purpose of this note to highlight these old results, offer a new and more explicit
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derivation using the thermofield double state and explore the connection to issues

relevant to entanglement entropy and the black hole information paradox.

Boulware was the first to show equivalence between the quantization of a free

scalar in the Minkowski vacuum and Rindler quantization in the thermal state

at the Unruh temperature, which is often called the Hartle-Hawking state [285].

The argument is in appendix B of [286]: an integral representation of the Hartle-

Hawking two-point function can be manipulated into an integral representation

of the Minkowski vacuum two-point function, using integral representations for

the concomitant modified Bessel functions and an analytic continuation. This is

enough to conclude equivalence.

More general thermal states are also interesting, and away from the Unruh

temperature they are singular on the horizon. The thermal two-point function

was computed by Dowker in d = 4 [287, 288]. His main tool, Wick rotation, has

played a prominent role in studies of Rindler space: at inverse temperature β

the Wick rotation of Rindler space is a Euclidean cone of opening angle β, which

is amenable to classical techniques. In [287] Dowker used Carslaw’s result from

1919 [289] for the propagator on the infinite cover of the plane before imposing

periodicity with the method of images to obtain a contour integral representation

of the Euclidean two-point function, which can be evaluated [288] and continued

[290] to obtain Lorentzian correlators.

The renormalized thermal stress-energy tensor can be computed either by

conformal methods or by direct differentiation of Dowker’s correlator; using the

latter method, Brown and Ottewill [291] found that the boost energy density

diverges at the horizon except when β is the inverse of the Unruh temperature.

289



Entanglement Chapter 3

Candelas and Deutsch [292] described a similar effect when a brick-wall boundary

condition is imposed just outside the horizon, even at the Unruh temperature.

Candelas [293] also studied some of these questions in the Schwarzschild geometry.

While the results of this note largely recapitulate the literature, our methods

are different and it is instructive in any case to review these calculations since they

bear on questions that had not arisen when they were first performed. In § 3.4.2

we give a new proof of the equivalence between the Minkowski vacuum and the

Hartle-Hawking state using canonical quantization in the thermofield double state

via explicit Lorentzian computation of the Wightman function. This evaluation

makes manifest convergence issues which demand an iε prescription in agreement

with the corresponding Minkowski correlator. Our computation does not simply

extend to arbitrary β but we study β →∞, the Boulware vacuum, and reproduce

the results of Dowker in a tractable coincidence limit. We find a straightforward

way to extend our discussion to U(1) gauge theory, which simplifies previous work

[294, 295, 296]. In § 3.4.3 we discuss non-Hartle-Hawking states. After reviewing

the behavior of the stress tensor at the horizon in § 3.4.4, following [291] and

[292], we close in § 3.4.5 by addressing questions that arise from calculations of

entanglement entropy: the necessity of flux and boundary condition sums at the

horizon.

3.4.2 Minkowski correlations from Rindler quantization

The Hartle-Hawking state is the Minkowski vacuum [282, 284] and so Rindler

correlation functions in the Hartle-Hawkingstate should reproduce their Minkowski

vacuum expectation values. Our point of comparison will be the two-point (Wight-
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man) function of a free massless scalar in the Minkowski vacuum of flat d-dimensional

spacetime, which is [297]

〈0|ϕ(xM , t)ϕ(x′
M
, t′) |0〉 =

Γ
(
d−2

2

)

4πd/2
1

[
(xM − x′M)2 − (t− t′ − iε)2

](d−2)/2
. (3.200)

The index M = 1 . . . d− 1 and ε > 0. Rindler quantization in the Hartle-Hawking

state must reproduce this result.

Rindler coordinates in the right (left) wedge (τ, z, ~x) are related to the Minkowski

coordinates (t, xM) by

t = (−)z sinhατ, x1 = (−)z coshατ, ~x = (x2, . . . , xd−1). (3.201)

z ranges from 0 to∞ while the other coordinates are unbounded; with this choice

z is positive in each wedge. When written unadorned, x refers to ~x. We will set

α → 1 for the remainder, but dependence on the acceleration can be restored by

dimensional analysis.

The solutions to the Rindler equation of motion

(∂2
z + z−1∂z + ~∂2 − z−2∂2

τ )ϕ = 0 (3.202)

involve the modified Bessel functions I(z) and K(z), the latter of which is finite

as z →∞.1 In the right and left wedges respectively, the mode functions

fωk(z, τ, x) = Kiω(|k|z)ei(kx−ωτ), f̃ωk(z, τ, x) = Kiω(|k|z)ei(kx+ωτ) (3.203)

1In the past and future wedges the argument becomes complex, and the relevant solutions
involve the second Hankel function H(2) in place of K.
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parametrize the solutions to (3.202) with the appropriate asymptotics. Solutions

with ω > 0 are positive-frequency modes with respect to the generator of Rindler

time translations in each wedge and accompany the creation/annihilation oper-

ators of a field expanded in Rindler coordinates just as planar mode functions

accompany the Cartesian field expansion in flat space:

ϕR(z, τ, x) =

∫ ∞

0

dω

∫
dd−2k Nωk

[
fωk(z, τ, x)aRωk + h.c.

]
(3.204)

in the right wedge, and

ϕL(z, τ, x) =

∫ ∞

0

dω

∫
dd−2k Nωk

[
f̃ωk(z, τ, x)aLωk + h.c.

]
(3.205)

in the left. The range of the ω integral reflects the division into positive and

negative frequency modes. With the normalization

N2
ωk = (2π)d−2 sinhπω

π2
(3.206)

the modefunctions are Klein-Gordon orthonormal (which can be shown using the

orthogonality relation
∫∞

0
dx
x
Kiω(x)Kiω′(x) = π2

2ω sinhπω
δωω′ – proved quite recently,

see [298]) and

[aiωk, a
j†
ω′k′ ] = δijδωω′δkk′ (3.207)

follows from the canonical commutation relation for ϕ. Here i, j are either L or

R.
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We will compute correlation functions in the thermofield double state

|TFD, β〉 =
⊗

ω,k

Zω,k
∑

n

e−
βnω

2 |Θ(n, ω, k)〉L |n, ω, k〉R. (3.208)

Θ is a CPT conjugation picked out by the path integral preparation, with its P

operator acting only on the (τ, z) plane:

|Θ(n, ω, k)〉 = |n, ω,−k〉, (3.209)

and the Zω,k are chosen such that 〈TFD, β|TFD, β〉 = 1. The Hartle-Hawking

state |Ω〉 is the thermofield state (3.208) at β = 2π [282, 284],

|Ω〉 = |TFD, 2π〉 . (3.210)

The details of the computation depend on whether or not the operators are on

the same side of the horizon. First we study one-sided correlators, putting both

operators in the right wedge. It will be useful to separate the product of fields

into the commutator and the anticommutator:

ϕ(X)ϕ(X ′) =
1

2
[ϕ(X), ϕ(X ′)] +

1

2
{ϕ(X), ϕ(X ′)}. (3.211)

The commutator is independent of the state and so the interesting piece is the an-

ticommutator, a hermitean operator and the subject of our first computation. We

have denoted the coordinates collectively by X and will also abbreviate (ω,~k) ≡ S,
∫∞

0
dω
∫
dd−2k ≡

∫
dS. Taking the expectation value in the Hartle-Hawking state
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(3.210) and using the field expansion (3.204), one finds

〈Ω| {ϕR(X), ϕR(X ′)} |Ω〉 = 〈Ω|
[∫

dSdS ′NSN
′
S

(
aSfS(X) + a†Sf

∗
S(X)

)

×
(
aS′fS′(X

′) + a†S′f
∗
S′(X

′)
)]
|Ω〉+ (X ↔ X ′).(3.212)

The aa and a†a† terms do not contribute because the left and right occupation

numbers must match, while the a†a and aa† terms can be computed using the

properties of the Bose-Einstein distribution, since |Ω〉 is a thermal state in ω with

β = 2π:

〈Ω| a†kωak′ω′ |Ω〉 =
1

e2πω − 1
δSS′ , 〈Ω| akωa†k′ω′ |Ω〉 =

e2πω

e2πω − 1
δSS′ . (3.213)

Their sum is cothπω. After a short computation one finds

〈Ω| {ϕR(X), ϕR(X ′)} |Ω〉 =

∫
dS cothπω N2

ωk [fS(X)f ∗S(X ′) + f ∗S(X)fS(X ′)]

=

∫ ∞

0

dω

∫
dd−2k

(2π)d−2

coshπω

π2

[
ei[k∆x−ω∆τ ]Kiω(|k|z)K∗iω(|k|z′)

+(X ↔ X ′)] . (3.214)

The evaluation of this integral is left to the appendix. The basic idea is to first

do the integral without the cosh, using integral representations for the Bessel

functions and the fact that the integrand is even in ω. The cosh can then be

accomodated via analytic continuation, which is only well-defined if we implement
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the iε prescription below. The result is

〈Ω| {ϕR(X), ϕR(X ′)} |Ω〉 =
Γ
(
d−2

2

)

4πd/2

[
1

[z2 + z′2 − 2zz′ cosh(τ − τ ′ − iε) + (~x− ~x′)2](d−2)/2

+
1

[z2 + z′2 − 2zz′ cosh(τ − τ ′ + iε) + (~x− ~x′)2](d−2)/2

]
.

(3.215)

The computation of the commutator yields a similar expression:

[ϕR(X), ϕR(X ′)] =
Γ
(
d−2

2

)

4πd/2

[
1

[z2 + z′2 − 2zz′ cosh(τ − τ ′ − iε) + (~x− ~x′)2](d−2)/2

− 1

[z2 + z′2 − 2zz′ cosh(τ − τ ′ + iε) + (~x− ~x′)2](d−2)/2

]
.

(3.216)

This vanishes except on the light cone. Together they imply the one-sided Wight-

man function

〈Ω|ϕR(X)ϕR(X ′) |Ω〉 =
Γ
(
d−2

2

)

4πd/2
1

[z2 + z′2 − 2zz′ cosh(τ − τ ′ − iε) + (~x− ~x′)2](d−2)/2

(3.217)

which is just the Minkowski expression (3.200) after the change of coordinates

(3.201). The εs in (3.217) and (3.200) are related by a z-dependent redefinition,

but since z > 0 this does not affect the sign.

The computation of the two-sided correlator is similar but the matrix elements
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take more work, again left to the appendix. The correlator

〈Ω|ϕR(X)ϕL(X ′) |Ω〉 =
Γ
(
d−2

2

)

4πd/2
1

[z2 + z′2 + 2zz′ cosh(τ − τ ′) + (~x− ~x′)2](d−2)/2

(3.218)

is once more the Minkowski result (3.200) with the change of coordinates (3.201),

after accounting for the extra sign in the transformation to the left wedge (recall

we defined z to be positive in both wedges). As explained in the appendix there

is no need for an iε prescription, which is consistent because points in different

wedges are spacelike separated. The two-sided commutator vanishes, as required

by causality:

[ϕR(X), ϕL(X ′)] = 0. (3.219)

These results extend to gauge theory. As reviewed in the appendix, the only

difference between the scalar and gauge calculations is the presence of a polar-

ization sum. The thermal trace includes a sum over longitudinal modes, but the

same modes appear in the Minkowski calculation and drop out of gauge-invariant

correlators. In Feynman gauge the propagator is just the scalar propagator times

the metric and so

〈Ω|Aµ(X)Aν(X
′) |Ω〉 = gµν 〈Ω|ϕ(X)ϕ(X ′) |Ω〉 . (3.220)

It follows that correlation functions of gauge invariant (and in Feynman gauge,

gauge variant) operators match their Minkowski vacuum expectation values.

This correlation structure implies the familiar fact that the Rindler horizon

is invisible in the Hartle-Hawking state, since correlators match their Minkowski
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vacuum expectation values. All trans-horizon probes necessarily are well-behaved:

for example, the two-point function changes smoothly as an operator is dragged

across the horizon, and the expectation values of all operators everywhere assume

their Minkowski vacuum values.

3.4.3 Non-Hartle-Hawking states

In other thermal states |TFD, β〉 the Rindler horizon is far from invisible. The

anticommutator in the thermofield state (3.208) is

〈TFD, β| {ϕR(X), ϕR(X ′)} |TFD, β〉 =

∫
dS coth (βω/2)

sinh (πω)

π2
ei(k∆x−ω∆τ)

×Kiω(|k|z)K∗iω(|k|z′)

+ (X ↔ X ′). (3.221)

At β 6= 2π we will not obtain Minkowski vacuum expectation values. The simplest

state with β 6= 2π is the Boulware vacuum [286]

|B〉 ≡ |TFD,∞〉 = |0〉L ⊗ |0〉R (3.222)

obtained by taking β → ∞ in (3.208). It is annihilated by the aiωk. As in any

product state there are no trans-horizon correlations, and their absence necessarily

implies a firewall.

The argument is straightforward. The renormalized stress tensor T µν is defined

by subtracting off the Minkowski vacuum expectation value 〈0|Tµν |0〉, which is

divergent everywhere due to the short-distance correlation structure. When all

297



Entanglement Chapter 3

trans-horizon correlators are zero,

〈B|T µν(z = 0, τ, x) |B〉 = −〈0|Tµν(z = 0, τ, x) |0〉 , (3.223)

since 〈B|Tµν(z = 0, τ, x) |B〉 = 0 follows immediately from the lack of trans-

horizon correlations and the point-splitting [297] definition of Tµν . The renor-

malized stress tensor at the horizon is therefore proportionate to the singular

unrenormalized Minkowski vacuum expectation value.

Actually, any non-Hartle-Hawking thermal state is singular on the horizon

[291] despite the thermal entanglement (albeit at the wrong temperature). Dowker

computed the two-point function at arbitrary inverse temperature in d = 4 using

Euclidean techniques [288]:

〈ϕ(z, τ, x)ϕ(z′, 0, 0)〉β =
i

4πβzz′ sinh γ

sinh (2πγ/β)

cosh (2πγ/β)− cosh (2πτ/β)
(3.224)

where

cosh γ =
z2 + z′2 + |x|2

2zz′
. (3.225)

As we review in the next section, these states have divergent stress-energy as

z → 0 whenever β 6= 2π. On the other hand, taking β = 2π and doing the

appropriate Lorentzian continuation, it is easy to see that (3.224) agrees with the

Hartle-Hawking result (3.217). This is our point of comparison for the general

thermal calculation in d = 4.

The β → ∞ limit of (3.221) is harder to compute since the integrand is odd

in ω, so the tricks applied to the Hartle-Hawking state in the previous section will
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not work here.2 However it is relatively easy to evaluate the integrals in the limit

of coincident ~x in d = 4, where we obtain

〈B|ϕR(z, τ, x)ϕR(z′, τ ′, x) |B〉 =
1

4π2(z2 − z′2)

[
1

∆τ + log z
z′
− iε −

1

∆τ − log z
z′
− iε

]
.

(3.226)

This agrees with Dowker’s result (3.224) when x = 0 (i.e. γ = log(z/z′)). As

either of the operators is taken to the horizon (z or z′ → 0), (3.226) vanishes. By

contrast the Wightman function in the Hartle-Hawking state (3.217) approaches

1
z2 when z′ → 0 at coincident x, which is just a reflection of the fact that all points

on a boost orbit have the same distance from the origin.

3.4.4 Stress-energy at the horizon

Since the Wightman function in a general state in the thermofield double

differs from the Wightman function in the Minkowski vacuum, it corresponds to

a non-Minkowski vacuum distribution of stress-energy. The stress tensor can be

computed either directly from (3.224) [299], or by computing the response of the

effective action to a change in the metric. Brown and Ottewill [291] took the

latter approach in d = 4 and computed the stress tensor using the dimensionally

regularized effective action; in this scheme one obtains a vanishing Minkowski

vacuum stress tensor and so the method agrees with the canonical computation in

the vacuum subtraction scheme. When the manifold is conformally related to one

on which the trace of the stress tensor vanishes, such as Rindler to Minkowski,

the stress tensor on the original manifold is determined in terms of the (a, c)

2The integral representation Kiω(|k|z)K∗iω(|k|z′) = 1
2

∫∞
−∞ dλeiωλK0(|k|υ), where υ = z2 +

z′2 + 2zz′ coshλ, might be useful; finite β and general d are likely tractable.
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anomalies of the theory and geometric data of the conformal relation. They find

for the thermal expectation value of the stress tensor in the Rindler theory at

inverse temperature β

〈TFD, β|T µν(z, τ, x) |TFD, β〉 =
1

1440π2z4

[(
2π

β

)4

− 1

]
(gµν + 4vµvν) (3.227)

where vµ = (z,~0) is a unit vector proportionate to the boost Killing vector ∂τ .

This is a renormalized stress tensor (it vanishes in the Minkowski vacuum) and

a zero-temperature term has been omitted [291]. From (3.227) it is clear that

the stress-energy diverges at the Rindler horizon at any non-Unruh temperature:

there is a firewall. The states with β 6= 2π are still thermally entangled and have

two-sided correlations at finite β but correspond to Euclidean path integrals with

a conical deficit inserted at the origin on the t = 0 slice.

It is interesting to contrast this behavior with the stress tensor obtained from

a brick-wall quantization of the scalar field, where a boundary condition such as

ϕ(z = z0, τ, ~x) = 0 (3.228)

is imposed on the “stretched horizon” at z = z0 and the field expansion (3.204)

modified to satisfy the boundary conditions. This quantization was studied in

detail (in d = 4) by Candelas and Deutsch [292]. Letting G0 denote the Hartle-

Hawking Wightman function (3.217), they found

D(X,X ′) = G0(X,X ′)− i
π

∫ ∞

0

dω

2π
e−iω∆τ

∫
d2k

(2π)2
eik∆xKiω(eiπ|k|z0)

Kiω(|k|z0)
Kiω(|k|z)Kiω(|k|z′)

(3.229)
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for the Wightman function in the Hartle-Hawking state with Dirichlet boundary

conditions, and

N(X,X ′) = G0(X,X ′)+
i

π

∫ ∞

0

dω

2π
e−iω∆τ

∫
d2k

(2π)2
eik∆xK

′
iω(eiπ|k|z0)

K ′iω(|k|z0)
Kiω(|k|z)Kiω(|k|z′)

(3.230)

with Neumann. The expectation value of the renormalized stress tensor is

〈TFD (brick wall), 2π|T µν(z, τ, ~x) |TFD (brick wall), 2π〉 = diag(c1, c2, c3, c3)

(3.231)

where c1,2,3 depend on the choice of boundary conditions.3 Candelas and Deutsch

give integral representations for the ci and evaluate the stress tensor near the brick

wall at z = z0:

c1 ∼ −
z2

360π2z0(z − z0)3
, c2 ∼

(z − z0)c1

2z0z2
, c3 ∼

c1

2z2
(3.232)

for both Dirichlet and Neumann conditions. The independence of the near-horizon

stress tensor on the choice of boundary conditions is unexpected. They find a

similar result for gauge fields.

The Hartle-Hawking state with a brick wall is qualitatively similar to a thermal

state at β 6= 2π, as both have divergent stress-energy at the horizon. However,

the degree of divergence is different. The divergence structure of the brick-wall

stress-energy follows from dimensional analysis and the fact that the stress tensor

3This expectation value is computed in the analog of the Hartle-Hawking state in the brick-
wall quantization. The boundary condition imposes a quantization condition on the frequencies,
and so the tensor product in (3.208) runs over a discrete set that depends on the boundary
condition.
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must reproduce the result for an unaccelerated barrier as z0 →∞.

3.4.5 Discussion: Correlations vs. entanglement

It is useful to contrast these results with calculations of entanglement entropy,

which can be quite subtle [300, 220], especially in gauge theory [300, 216, 218].

Gauge invariance implies [218] that the state that leads to the correct calculation

of the entropy in ordinary Maxwell theory is the extended thermofield state

|eTFD, β〉 =
⊕

E⊥

√
p (E⊥)

⊗

λ,ω,k

Zωk
∑

n

e−
βnω

2 |n, λ, ω,−k;E⊥〉L |n, λ, ω, k;E⊥〉R.

(3.233)

Here E⊥ is a configuration of the normal components of the electric field on the

horizon, p (E⊥) are a set of probabilities that were computed for d = 4 Maxwell

theory in [257, 217], and the polarizations λ and an omitted ghost dressing are

discussed around eq. (3.261) in the appendix. The general structure of the state

(3.233) was described by Donnelly [218] in d = 2, where E⊥ is the only quantum

number. The nth term in the sum (3.233) is a product of states with n photons on

top of the coherent state |0;E⊥〉 in which the normal electric field at the horizon

is E⊥.

The block-diagonal structure of (3.233) is required by Gauss’s law, which

equates gauge-invariant operators at the boundary of the subregion with a sum of

operators localized outside the subregion. Consequently, by causality the bound-

ary operators must commute with any operators localized to the subregion, and

the algebra of the subregion decomposes into superselection sectors: in the Rindler

wedge they are labeled by the normal electric field E⊥ at the horizon. The block-
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diagional structure in (3.233) makes an additional Shannon contribution to the

vacuum entanglement entropy of the Rindler wedge [218] which must be included

in order to obtain a result consistent with conformal symmetry in d = 4 Maxwell

theory [217]. In conformal theories the individual blocks are BCFT states, and

their contribution to the entropy is a weighted sum of Affleck-Ludwig entropies

[301, 220].

Computations of correlation functions, or the stress tensor – actual observ-

ables, unlike vacuum entanglement – could in principle share this structure: it

might have been necessary to do a flux sum in order to obtain the correct value.

However, we computed eq. (3.220), which demonstrated the equivalence between

the Rindler and Minkowski quantizations of Maxwell theory, using the naive ther-

mofield state described in the appendix

|TFD, β〉 =
⊗

λ,ω,k

Zωk
∑

n

e−
βnω

2 |n, λ, ω,−k〉L |n, λ, ω, k〉R (3.234)

which has no flux sum. It is possible that the right computation in the block-

diagonal state (3.233) leads to (3.220) as well, but the correct correlator can be

obtained more simply using (3.234) sans flux sum. In the scalar theory there is no

gauge invariance to complicate the factorization of the Hilbert space, but the issue

of boundary conditions at the horizon remains [220]. One might have considered a

sum over horizon field values motivated by the vacuum path integral, but (3.217)

shows that correlators can be correctly computed without such a horizon sum.
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3.4.6 Appendix

This appendix describes the canonical quantization computation of the mass-

less scalar two-point function in the Hartle-Hawking state. We also discuss the

Boulware vacuum and the quantization of Maxwell theory.

Our ultimate goal is to evaluate the Wightman function but we will have to

begin with the anticommutator:

〈Ω| {ϕR(X), ϕR(X ′)} |Ω〉 =

∫ ∞

0

dd−2k

(2π)d−2

cosh πω

π2

[
ei(k∆x−ω∆τ)

+(X ↔ X ′)] . (3.235)

The first step is to evaluate the integral without the cosh πω:

1

π2

∫ ∞

0

∫
dd−2k

(2π)d−2

[
ei(k∆x−ω∆τ)Kiω(|k|z)K∗iω(|k|z′) + (X ↔ X ′)

]

=
1

2π2

∫ ∞

−∞
dω

∫
dd−2k

(2π)d−2

[
ei(k∆x−ω∆τ)Kiω(|k|z)K∗iω(|k|z′) + (X ↔ X ′)

]

≡ C(X,X ′) + (X ↔ X ′). (3.236)
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We proceed by using an integral representation of the modified Bessel function

Kα(t) =
1

2
(t/2)α

∫ ∞

0

du

uα+1
e−u−

t2

4u (3.237)

and then doing the ω integral:

C(X,X ′) =
1

8π2

∫ ∞

−∞
dω

∫
dd−2k

(2π)d−2
ei(k∆x−ω∆τ)

∫ ∞

0

dudu′

uu′

(
zu′

z′u

)iω
e−(u+u′)e

− k
2

4

(
z2

u
+ z′2
u′

)

=
1

8π2

∫
dd−2k

(2π)d−3
eik∆x

∫ ∞

0

dudu′

uu′
e−(u+u′)e

− k
2

4

(
z2

u
+ z′2
u′

)
δ

(
log

zu′

z′u
−∆τ

)

=
1

8π2

∫ ∞

0

du

u
e
−u
(

1+ z′
z
e∆τ

) ∫
dd−2k

(2π)d−3
eik∆xe

− k
2z2

4u

(
1+ z′

z
e−∆τ

)

=
(2π)2− d

2

8π2

∫ ∞

0

du

u
e
−u
(

1+ z′
z
e∆τ

)(
z2 + zz′e−∆τ

2u

)− (d−2)
2

e
−u
(

x2

z2+zz′e−∆τ

)

=
Γ
(
d−2

2

)

4πd/2
(
z2 + z′2 + 2zz′ cosh ∆τ + ∆x2

)− d−2
2 . (3.238)

Note that the original integrand had to be even in ω in order for this method to

work.

Now we return to the anticommutator, which differs from (3.238) by a cosh πω

factor. This factor can be almost be accomodated by analytically continuing the

integral to ∆τ → ∆τ ± iπ, but the integral diverges outside a strip in the complex

∆τ plane and will require regulation. The problematic regions of the integral are

at ω → ±∞. At large imaginary order, the modified Bessel functions have the

expansion [302]

Kiω(x) = −
( π

ω sinhπω

)1/2

sin (ω log(x/2)− γω) +O(x2), (3.239)
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where γω is the phase of Γ(1 + iω). Therefore the integral (3.238) is only finite at

ω → ±∞ if

−π < Im ∆τ < π. (3.240)

Using symmetry in ω, the anticommutator (3.235) is

〈Ω| {ϕR(X), ϕR(X ′)} |Ω〉 =

∫ ∞

−∞

dd−2k

(2π)d−2

eπω + e−πω

4π2

[
ei(k∆x−ω∆τ)Kiω(|k|z)K∗iω(|k|z′)

+(X ↔ X ′)] . (3.241)

The only effect of the cosh is to multiply the integrand in (3.238) by an e±πω factor

but this renders the integral divergent. The integral can be regulated by inserting

a factor e∓εω into the integrand, the sign depending on whether the offending

divergence is at ±∞; ε > 0 will be taken to zero at the end of the calculation.

The integral with the e±πω factor and the necessary regulator e∓εω can then be

computed by continuing ∆τ → ∆τ ± iπ∓ iε in (3.238) (∆τ → ∆τ ∓ iπ± iε in the

X ↔ X ′ term in (3.236)). This procedure is well-defined since the continuation

stays within the convergence bounds (3.240). One evaluates

∫ ∞

−∞

dd−2k

(2π)d−2
eπωei(k∆x−ω∆τ)Kiω(|k|z)K∗iω(|k|z′)

→
∫ ∞

−∞

dd−2k

(2π)d−2
eπωe−ωεei(k∆x−ω∆τ)Kiω(|k|z)K∗iω(|k|z′)

=

∫ ∞

−∞

dd−2k

(2π)d−2
ei(k∆x−ω∆τ)Kiω(|k|z)K∗iω(|k|z′)

∣∣∣∣
∆τ→∆τ+iπ−iε

(3.242)

and similarly for the other terms. Combined with the result (3.238) for the integral
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to be continued,

〈Ω| {ϕR(X), ϕR(X ′)} |Ω〉 =
Γ
(
d−2

2

)

4πd/2

[
1

[z2 + z′2 − 2zz′ cosh(τ − τ ′ − iε) + (~x− ~x′)2](d−2)/2

+
1

[z2 + z′2 − 2zz′ cosh(τ − τ ′ + iε) + (~x− ~x′)2](d−2)/2

]
.

(3.243)

Now we compute the commutator. Using the mode expansion (3.204),

[ϕR(X), ϕR(X ′)] =

∫ ∞

0

dd−2k

(2π)d−2

sinhπω

π2

[
ei(k∆x−ω∆τ)Kiω(|k|z)K∗iω(|k|z′)− (X ↔ X ′)

]
.

(3.244)

This differs from (3.235) by the sinh instead of the cosh, and the relative sign on

the (X ↔ X ′) term. It follows that the integrand is still even in ω and so we can

use the result (3.238), obtaining

[ϕR(X), ϕR(X ′)] =
Γ
(
d−2

2

)

4πd/2

[
1

[z2 + z′2 − 2zz′ cosh(τ − τ ′ − iε) + (~x− ~x′)2](d−2)/2

− 1

[z2 + z′2 − 2zz′ cosh(τ − τ ′ + iε) + (~x− ~x′)2](d−2)/2

]
.

(3.245)

after doing the requisite regulations and analytic continuations as described above.

From (3.235) and (3.244) we obtain the Wightman function (3.217) in the Hartle-

Hawking state. We could not have computed the Wightman function directly

using the methods of this appendix, since the integrand is not even in ω.

Now we consider operators inserted on opposite sides of the Rindler horizon.
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The anticommutator in the Hartle-Hawking state is

〈Ω| {ϕR(X), ϕL(X ′)} |Ω〉 = 〈Ω|
[∫

dSdS ′NSN
′
S

(
aRS fS(X) + aR

†
Sf
∗
S(X)

)

×
(
aLS′ f̃S′(X

′) + aL
†
S′ f̃
∗
S′(X

′)
)]
|Ω〉+ (X ↔ X ′).(3.246)

The aa† and a†a terms do not contribute because the left and right boson numbers

must match, while the aa and a†a† terms can be computed from the thermofield

double:

〈Ω| aRωkaLω′k′ |Ω〉 =
1

1− e−βω/2
∑

n,n′

〈n′ωk|R 〈n′ω(−k)|L e−
βω
2

(n+n′)aRkωa
L
k′ω′

× |nω(−k)〉L |nωk〉R

=
δωω′δk(−k′)

1− e−βω/2
∑

n,n′

n 〈n′ωk|R 〈n′ω(−k)|L e−
βω
2

(n+n′)

× |n− 1, ω(−k)〉L |n− 1, ωk〉R

=
1

2
csch

(
βω

2

)
δωω′δk(−k′)

=
(
〈Ω| aRωk

†
aLωk
† |Ω〉

)†
. (3.247)

The first equality is slightly nontrivial: inserting aRωka
L
ω′k′ into the thermofield state

(3.208), there are two tensor products over the momentum quantum numbers in

the bra and the ket (call them Sbra and Sket) which have been omitted here.

However, unless δωω′δk(−k′) = 1 there will be a mode number mismatch between

the left and the right; the orthonormality of the |n, ω, k〉 ensures that Sbra =

Sket ≡ (ω̄, k̄), and except for ω̄ = ω, the normalization factor Zω̄ = (1− e−βω̄/2)−1

cancels against the thermal sum since there are no insertions with those quantum

308



Entanglement Chapter 3

numbers. This implies the first equality of (3.247).

Plugging (3.247) into (3.246) one obtains for the anticommutator

〈Ω| {ϕR(X), ϕL(X ′)} |Ω〉 =

∫ ∞

0

dd−2k

(2π)d−2

1

π2

[
ei(k∆x−ω∆τ)Kiω(|k|z)K∗iω(|k|z′) + (X ↔ X ′)

]

(3.248)

which is the integral without the cosh evaluated above. Thus there is no need for

analytic continuation and the answer is just

〈Ω| {ϕR(X), ϕL(X ′)} |Ω〉 =
Γ
(
d−2

2

)

4πd/2
(
z2 + z′2 + 2zz′ cosh ∆τ + ∆x2

)− d−2
2 .

(3.249)

Since we did not analytically continue there is no need to regulate the integrals

with an iε prescription, which is perfectly consistent with the Minkowski descrip-

tion since insertions in different wedges are necessarily at spacelike separation.

This also implies that the commutator vanishes:

[ϕR(X), ϕL(X ′)] = 0 (3.250)

as required by causality.

Next we will attempt to compute the Wightman function in the Boulware

vacuum |B〉. Using the expansion (3.204) and the fact that a |B〉 = 0, one finds

for the anticommutator

〈B| {ϕR(X), ϕR(X ′)} |B〉 =

∫ ∞

0

dd−2k

(2π)d−2

sinhπω

π2

[
ei(k∆x−ω∆τ)Kiω(|k|z)K∗iω(|k|z′)

+(X ↔ X ′)] . (3.251)
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This integral cannot be evaluated using the methods of this appendix, since the

integrand is odd in ω. However, the computation simplifies at x = x′ in d = 4:

〈B|ϕR(X)ϕR(X ′) |B〉 =

∫ ∞

0

d2k

(2π)2

sinhπω

π2
e−iω∆τKiω(|k|z)K∗iω(|k|z′)

=
1

4π3

∫ ∞

0

dω sinhπω e−iω∆τ
( z
z′

)iω

×
∫ ∞

0

du du′ds

(
u′

u

)iω
e−(u+u′)e−s(z

2u′+z′2u)

=
1

4π2(z2 − z′2)

[
1

∆τ + log z
z′
− iε −

1

∆τ − log z
z′
− iε

]

(3.252)

after some manipulation. Again the iε prescription is obtained by demanding

convergence. This agrees with Dowker’s result (3.224) when ~x = 0, and approaches

(z∆τ)−2 as z → z′; in the same limit the thermofield correlator (3.217) approaches

(z(1− cosh ∆τ))−2.

Last, we study the Rindler quantization of abelian Maxwell theory. Our goal

will be to show that correlation functions of gauge-invariant operators in the

Hartle-Hawking state, such as

〈Ω|Fµν(X)Fρσ(X ′) |Ω〉 , (3.253)

agree with their Minkowski expectation values. We will do this by showing that

the Wightman function

〈Ω|Aµ(X)Aν(X
′) |Ω〉 (3.254)
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agrees with the Minkowski vacuum Wightman function

〈0|Aµ(X)Aν(X
′) |0〉 (3.255)

in Feynman gauge.

Ignoring the ghosts, the Lagrangian in Feynman gauge is

L = −1

2
(∂µAν)

2 (3.256)

and so the quantization of the gauge field is just that of a d scalars. In the right

wedge the d scalar fields can be expanded as

ARµ =
d−1∑

λ=0

∫ ∞

0

dω

∫
dd−2k Nωk

[
fωk(z, τ, x)aRλ,ωkε

λ
µ,ωk + h.c.

]
(3.257)

where the ελµ,ωk are polarization vectors and λ runs over d polarizations, including

two unphysical. Choosing Nωk as for the scalar gives

[aλ,ωk, a
†
λ′,ω′k′ ] = gλλ′δωω′δkk′ (3.258)

if we require the ε to obey

ελµ,ωk(ε
λ′

µ,ωk)
∗ = gλλ

′
(3.259)

and
∑

λ

ελµ,ωk(ε
λ
ν,ωk)

∗ = gµν . (3.260)
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We take the gauge theory analog of the thermofield state (3.208) to be

|TFD〉 =
⊗

λ,ω,k

Zωk
∑

n

e−
βωn

2 |n, ω,−k, λ〉L |n, ω, k, λ〉R. (3.261)

Note the absence of a flux sum. The state (3.261) lives in a Hilbert space that

is not obviously physical, as it includes states of negative norm. However, such

states are BRST-exact and thus equivalent to zero in the cohomology of physical

states; they do not contribute to gauge-invariant correlation functions. In order to

describe an actual state in the gauge-fixed Hilbert space (3.261) must technically

be dressed with a tensor factor describing the ghost fields, but in the abelian theory

the ghosts decouple and their tensor factor does not even affect the correlation

functions of gauge-variant operators.

As usual our object of interest will be the Wightman function in the state

(3.261) at β = 2π. After a short computation entirely analogous to the scalar

case, one finds the anticommutator

〈Ω| {ARµ (X), ARν (X ′)} |Ω〉 =

∫ ∞

0

dω

∫
dd−2k

(2π)d−2

cosh πω

π2

[
ei(k∆x−ω∆τ)

·Kiω(|k|z)K∗iω(|k|z′)
∑

λ

ελµ,ωk(ε
λ
ν,ωk)

∗ + (X ↔ X ′)
]
.

(3.262)

This differs from the scalar anticommutator (3.214) only by the presence of the

polarization sum. The Feynman gauge expression (3.260) for the polarization sum

leads immediately to the result (3.220) and the conclusion that gauge-invariant

correlation functions reproduce their Minkowski expectation values. The argu-
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ment for trans-horizon correlators proceeds identically.
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3.5 Living on the Edge: A Toy Model for Holo-

graphic Reconstruction of Algebras with Cen-

ters

Recent studies of holography have led to an intriguing new connection between

AdS/CFT and quantum information: the partial holographic reconstruction of

the bulk from boundary subregions shares features with quantum error-correcting

codes [303]. Perhaps the most prominent manifestation is the fact that a given

local bulk operator can be reconstructed on any boundary region that contains the

bulk operator in its entanglement wedge [365]. This redundant boundary encoding

of bulk information can be precisely analogized with such codes [350, 351], where

a certain set of physical (viz. boundary) qubits encodes a smaller set of logical

(viz. bulk) qubits. The encoding of the logical bits in the physical ones is robust

against the deletion of some of the physical bits, or a change in their state due

to noise, and so the encoding scheme is protected against such “errors”. This is

strongly remniscent of the ability to reconstruct the bulk operator using only a

subregion of the boundary.

A few years prior to [303] it was realized [366] that a particular class of tensor

network descriptions of quantum states (dubbed MERA, for multiscale entan-

glement renormalization ansatz [367]) captures certain properties of holography.

Most prominently, the entanglement structure in the tensor network reflects the

bulk geometry and so the network automatically implements the Ryu-Takayanagi

formula. After it was realized that holography is also error-correcting, it was nat-

ural to ask if there was a tensor network description that captured this behavior as

314



Entanglement Chapter 3

well, especially since error-correcting codes are often realized on tensor networks.

This question was answered affirmatively by [304], who showed that a particular

tensor network (built on the pentagon code) exhibits the quantum-error-correcting

features of holography. In this network, dubbed the HaPPY code, a local bulk

operator is redundantly encoded in multiple boundary regions, with each such

encoding robust to the deletion of the rest of the boundary.

However, bulk physics is not wholly local: there are bulk gauge fields, and

of course the graviton, which cannot be described by a local tensor model, and

so we proposed an extension of the HaPPY code that models bulk gauge fields.

Gauge fields naturally live on the links of a graph, rather than the vertices, as

in lattice gauge theory. In the HaPPY code the vertices are the tensors of the

network, and the crux of our extension is the addition of degrees of freedom that

live on the links instead. Our construction adds a tensor above each link that

makes two copies of its input (in a basis specified by hand) which are passed to

the two tensors at the vertices adjoining the link.

As a simple example, taking the Hilbert space of each tensor leg to be that of

a single spin, we could take the copying tensor to map

|+〉 → |++〉 , |−〉 → |−−〉 (3.263)

where |±〉 are σz eigenstates. With this choice of copying code, the action of σz

on the link is encoded (i.e. can be reconstructed) on any boundary region whose

entanglement wedge contains both of the vertices connected by the link, as in the

original HaPPY code. However, if the entanglement wedge contains only one of

the vertices adjoining the link, σz is encoded on the boundary region but σx acting
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on the same link is not. On such a boundary region σz lies in the center of the

algebra of operators on the subregion since it is also encoded on a complementary

boundary region, while σx is absent from the algebra entirely. One can treat more

general systems with a modification of the copying code but even this simple

example is enough to describe an (emergent) gauge theory via the toric code,

with σz mapping to the flux operator and σx to the conjugate holonomy.

These reconstruction properties mirror the structure of operator algebras on

subregions in lattice gauge theories [216], where the reduced Hilbert space decom-

poses into superselection sectors labeled by the flux through the entangling surface

(the same decomposition that gives rise to the edge mode theory of [218, 217]).

Essentially, the flux operators on links piercing the entangling surface must be

included in the algebra of operators in the entangling region in order to allow

fluctuations of the electric field on the entangling surface, but since the Gauss’s

law constraint expresses them entirely in terms of operators outside the region

they must commute with (i.e are in the center of) the algebra of operators on

that region. These flux operators are analogous to σz in our construction. On

the other hand, the holonomies conjugate to the flux operators on the entangling

surface are not elements of the algebra of operators in the entangling region (by

necessity, since the conjugate flux is in the center), like σx in our model.

It has been suggested [306] that this operator algebra structure leads naturally

to the Ryu-Takayanagi formula [307] for the entanglement entropy of subregion

of the boundary. Indeed, the R-T formula implies (in the absence of black holes)

that the area operator – the flux of gravitons across the R-T surface – can be re-

constructed either on the subregion or its complement, and so lies in the center of
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the algebra on either subregion. While our model lives on a fixed background net-

work and so cannot model the spacetime fluctuations necessary for a description

of quantum gravity, we show that our copying code can be modified to capture

contributions to the entanglement entropy that, like the area of the R-T surface,

are the dominant contributions in a certain large-N limit.

3.5.1 Introduction

Recent works [303, 304, 305, 306] have introduced models of gauge/gravity du-

ality based on quantum error correcting codes and thus provided a new paradigm

for studying holographic systems. The models implement their codes via tensor

networks that map bulk logical operators to operators on a code subspace of a

larger boundary Hilbert space. Such representations were termed “holographic

codes” in [304] and have been shown to exhibit key properties of the AdS/CFT

correspondence such as bulk reconstruction and the Ryu-Takayanagi (RT) rela-

tion between entanglement in the boundary theory and the area of bulk minimal

surfaces [307, 308].

Indeed, as noted in [304], such holographic codes also reproduce an important

part of the 1/N2 corrections to RT found by Faulkner, Lewkowycz, and Maldacena

(FLM) [309]. Recall [309] that with such corrections the entropy SA of a boundary

region A takes the interesting form

SA =
Area

4GN

+ Sbulk(ρW (A)) +
δArea

4GN

+ . . . (3.264)

The first term on the right is the leading-order Ryu-Takayanagi piece, which is
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local on the entangling surface and independent of the state. The second accounts

for bulk entropy in the entanglement wedge W (A) defined by the RT minimal

surface, and is thus generally both non-local and non-linearly dependent on the

bulk state. The third is an additional effect from quantum corrections to the RT

area, which is distinguished by being both local on the RT surface and linear in

the bulk state; i.e. it is an expectation value. The . . . denote higher order terms

in the 1/N expansion. In the codes from [304], the analogous result contains the

first two terms on the right-hand side.

It was suggested in [306] that the remaining δArea
4GN

term would also arise natu-

rally from a quantum error correction model containing operators O, associated

with the boundary between the entanglement wedge of A and that of its com-

plement Ā, that are reconstructible from both A and Ā. Such O must lie in the

center of either reconstructed algebra. The terms Area
4GN

+ δArea
4GN

then naturally cor-

respond to aspects of the code that are, in some sense, dependent on the values

of operators in this center.

Much of the above structure is familiar from analyses [310, 274, 216] of entropy

in lattice gauge theories. In that context, the (electric [216]) algebra of operators

acting in a bulk subregion contains the electric fields E`|∂A along the links ` at

the boundary of the subregion [310, 274, 216, 218]. And since Gauss’s law equates

the E`|∂A with operators spatially separated from A, the boundary electric fields

commute with the entire subalgebra on A. In particular, the canonical conjugates

of the E` are closed Wilson loops that pass through `, which are not elements of

the subalgebras on either A or Ā when ` ∈ ∂A.

It is thus natural to consider modifications of the HaPPY code inspired by
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lattice gauge theory and having additional degrees of freedom that live on the

links of the bulk lattice. This is done in section 3.5.2 building on the HaPPY

pentagon code [304]. As desired, a key feature of our model is the existence of bulk

operators that are reconstructible on both a boundary region and its complement.

Such properties are derived in section 3.5.3 and follow directly from results of

[304]. We then demonstrate in section 3.5.4 that such central elements do indeed

endow our model with an FLM-like relation containing analogues of all three

terms shown explicitly on the right-hand side of (3.264). Section 3.5.5 concludes

with some final discussion. In particular, comparison with lattice gauge theory

constructions suggests that the FLM δArea
4GN

term might be usefully reinterpreted

as part of the bulk entropy of metric fluctuations in an appropriate extension of

the physical bulk Hilbert space.

3.5.2 Edge Mode Construction

The fact that gauge theories are described canonically by a connection and a

conjugate electric flux makes it natural to describe these degrees of freedom as

living on the links of a discrete graph-like model, as is common in lattice gauge

theory. This allows holonomies to be described as paths through the lattice and

the Gauss law constraint to be imposed by requiring the electric fields on links

attached to any vertex v to sum to the charge at v.

Since we wish to extend holographic codes in a manner reminiscent of bulk

gauge theories, we will introduce degrees of freedom below on the links of the

tensor network corresponding to the pentagon code of [304]. We will first review

the relevant features of this code and then describe the desired augmentations.
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The pentagon code is a tiling of a hyperbolic disk where the fundamental unit

is a six index tensor T drawn in figure 3.1. The disk has finite size as the code

is to be thought of as a model of a holographic CFT with a cutoff. Except at

the boundary of the disk, five of the legs of the tensor are connected to adjacent

tensors as depicted in figure 3.1. Even at the boundary, we refer to these five as

network legs. Each such tensor has one uncontracted index representing a local

bulk degree of freedom. If T is chosen to be a perfect tensor, meaning that it

describes an isometry from any subset of at most 3 legs to the rest, an operator

O acting on any bulk input can be “pushed” along three of the output legs to

three adjacent tensors: the action of O on T can be replaced by the action of

O′ = T †OT on one of the adjacent tensors.

T

(a) (b)

Figure 3.1: (a) The fundamental tensor T of the pentagon code showing the
bulk leg (dashed line, red in color version) and the network legs (solid lines).
(b) These units are contracted along their networks legs to form a pentagonal
tiling of the hyperbolic plane.

This procedure allows us to push local bulk operators to the boundary, as the

negative curvature of the hyperbolic plane ensures that each tensor has at least
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three legs pointing toward the boundary in a suitable sense. Since T is a perfect

tensor, one can also show [304] that the entropy is given by an FLM-like formula

having analogues of the first two terms on the right-hand side of (3.264).

We wish to introduce additional degrees of freedom modeling bulk gauge fields

in a way that largely preserves these properties. As a first guess, one might add

to each of the non-bulk legs of the fundamental unit a three index tensor Gijk,

whose role in the network is to link two adjacent tensors to a common input

modelling the electric flux of some bulk gauge field. One might then choose the

tensor structure

G = δijδjkδik (3.265)

to impose flux conservation along each each link in the network. This new funda-

mental unit is drawn in figure 3.2. However, the values on all the network legs are

T G

G

G

G

G

Figure 3.2: An unsuccessful first attempt to add edge degrees of freedom. A
copy of the tensor G has been attached to each of the 5 network legs of the
tensor T from figure 3.1. The bulk input leg of G is drawn in small dashes.
This attempt does not succeed, as the tensor annihilates bulk states lacking
particular correlations among the 6 bulk inputs.

then determined by the inputs to the associated Gs, so there is no room for further

input from the bulk leg of T . Indeed, the network just described will annihilate
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all bulk states orthogonal to a space in which the T inputs are determined by the

G inputs (and where the G inputs also satisfy a further set of constraints).

This unfortunate issue can be resolved by considering a model in which the

above 6 bulk inputs are manifestly independent. We do so by extending the

fundamental unit T to the 6-fold tensor product ⊗6
m=1T = T ⊗T ⊗T ⊗T ⊗T ⊗T

and again connecting these units as in the pentagonal tiling of the hyperbolic disk

shown in figure 3.1 (b). Each factor in the resulting tensor product will be called

a “copy” of the network: the first copy will be treated as an independent HaPPY

network, while the additional copies will be contracted with our 3-legged tensor

(or indeed any isometry) G as described below.

Thus far our network has 6 bulk input legs at each vertex. We will turn 5 of

these into inputs associated with edges instead. Consider some particular edge in

the interior of the disk and choose one input leg from each of the two vertices it

connects (to simplify the figures, both input legs are chosen from the same copy).

Our edge-mode code is constructed by contracting these legs with two legs of the

tensor G; see figure 3.3. We will treat these two legs of G as output legs; the

remaining input is naturally associated with the edge under consideration. Doing

so for each edge uses 5 of the bulk legs at each vertex, leaving the 6th free to serve

as a normal bulk input at each vertex just as in the original code from [304]. To

be concrete, we take this 6th bulk input to live in the first copy of the network.

Figure 3.4 shows a pictorial representation of the full edge-mode code including

all six copies the pentagon code. Note that we have added one G for every two

bulk legs, and thus also for every two T s.

The resulting code defines an isometry from the bulk degrees of freedom to
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T

G

T

Figure 3.3: Our code is built from 6 copies of the code from [304] by contracting
the tensor G with a pair of neighboring bulk inputs. The relevant two T -tenors
are shown here, where we have chosen them both to be part of the same copy
of the pentagon code.

(a) (b)

Figure 3.4: (a) The structure near each vertex of our edge-mode code. The
thick black legs carry 5 indices. The central input (long dashes, red in color
version) corresponds to a bulk matter field as in [304] while the inputs on each
edge (short dashes, green in color version) are to be interpreted as degrees of
freedom of a bulk gauge field. (b) A sketch of the full edge-mode code.

the boundary, and therefore has many of the same features as the code described

in [304]. This is because one may view this edge-mode code as six copies of the

HaPPY pentagon code together with a set of G tensors interposed between these

codes and the bulk state. Since the G tensors are isometries, composing them in
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this way with the original HaPPY network yields another isometry. As described

below, this observation allows us to import all of the main technology from [304]

including operator pushing, the greedy entanglement wedge construction, and

the Ryu-Takayanagi formula for entanglement entropy. However, the additional

tensors G introduce certain subtleties which we will discuss in depth.

3.5.3 Operators in the Center and Bulk Reconstruction

We now consider properties of our code associated with subregion duality,

showing that our model leads to the bulk reconstruction of algebras with centers.

This reproduces the structure suggested in [306]. Here we view the tensor network

of our edge-mode code as an isometry from a bulk Hilbert space Hbulk defined by

the set of all bulk inputs (both edge and vertex) to a boundary Hilbert spaceHbndy

defined by the set of network links that reach the boundary of the hyperbolic disk.

For simplicity of notation, we follow standard practice and use the above isometry

to identify Hbulk with its image Hcode in Hbndy. Bulk operators are then maps

from Hbulk = Hcode to itself.

As in [303, 304, 306], we shall say that a bulk operator O lies in the algebra

MA that can be reconstructed from a region A of the boundary if (and only if)

there exists an operator O(A) with support in A such that

O(A) |ψ〉 = O |ψ〉 ∀ |ψ〉 ∈ Hcode . (3.266)

Note that, with this definition, bulk operators O1 ∈ MA1 and O2 ∈ MA2 for
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non-intersecting regions A1 and A2 must commute. In detail, on Hcode we have

[O1,O2] |ψ〉 = O(A1)
1 O2 |ψ〉 − O(A2)

2 O1 |ψ〉

= O(A1)
1 O(A2)

2 |ψ〉 − O(A2)
2 O(A1)

1 |ψ〉

=
[
O(A1)

1 ,O(A2)
2

]
|ψ〉 = 0. (3.267)

In the first step we have used the fact that bulk operators preserve Hcode, while

the final step uses the fact that all operators in A1 commute with those in A2. As

a result, any bulk O lying in both MA1 and MA2 must be a central element of

both algebras.

This is precisely the structure suggested by [306] as the natural quantum-error-

correction model of FLM corrections to the Ryu-Takayanagi relation. It is useful

to contrast this situation with that of the HaPPY code, where reconstruction on

A succeeds for any operator in the greedy entanglement wedge w∗(A) (or greedy

wedge for short) defined by the greedy algorithm of [304].1 The boundary of this

greedy wedge consists of two parts, one lying on the boundary of our hyperbolic

disk and the other in the interior of the disk. We refer to the latter as the greedy

entangling surface γ∗A. In our edge-mode code, we define a corresponding greedy

wedge and γ∗A using only the tensors T associated with our 6 copies of the pentagon

code. When we then add the additional G tensors, some bulk operators (G-inputs)

act on links that straddle the resulting γ∗A. Only certain bulk operators acting on

such links can be reconstructed on A, and those operators will typically lie in the

1The greedy wedge associated with a region A on the boundary is constructed by first taking
all tensors with at least three legs contained in A. Next all tensors with at least three legs
contracted with this set of tensors are included, and this procedure continues until there are no
more tensors to add.
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center of the algebra of operators on A.

The essential point can be illustrated by considering only a pair of T s (TL/R)

that are linked by a single G as in figure 3.3. We take the one bulk edge input to

be a single qubit that feeds into G, and we take G to map

|0〉 → |00〉 and |1〉 → |11〉 (3.268)

as in (3.265). For this reason we refer to G as the copying tensor below. The

perfect tensors TL/R each have 4 uncontracted legs which we treat as proxies for

the left and right halves of the boundary.

One bulk operator of interest is the Pauli σz defined by σz|0〉 = −|0〉, σz|1〉 =

|1〉 acting on the bulk edge input. The structure of G allows one to push σz

through G onto either output leg of G: writing G = |00〉 〈0| + |11〉 〈1|, it follows

that

Gσz = − |00〉 〈0|+ |11〉 〈1| = σ(L)
z G = σ(R)

z G. (3.269)

Here σ
(L/R)
z denotes a corresponding Pauli matrix acting on the output of G that

feeds into TL/R as depicted in figure 3.5. It follows that we can reconstruct σz in

G

G G
==

�z

�(L)
z �(R)

z

Figure 3.5: Pushing σz through G

the left boundary by pushing σ
(L)
z through TL. But the same procedure allows us

to reconstruct σz as an operator acting only on R by pushing σ
(R)
z through TR.
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So as above σz must lie in the center of ML, and also of MR.

As a result, the other Pauli operators σx, σy at our bulk edge input cannot

be reconstructed from either L or R alone. But these operators can still be

reconstructed if we are granted simultaneous access to both sets of boundary

sites. Indeed, σx satisfies

Gσx = |00〉〈1|+ |11〉〈0| = σ(L)
x σ(R)

x G. (3.270)

We may then push each of σ
(L/R)
x through its respective T to the boundary, and

so any boundary region whose greedy entanglement wedge includes both TL and

TR will be able to reconstruct the σx that acts between them. σy will also be

reconstructible on the region, and σz will not be central.

Returning to the full edge-mode code, we may consider the greedy wedge for

any region A on the boundary. Bulk operators in this wedge may be generated

by taking sums and products of the following three types of ‘local’ operators: (i)

operators that act on inputs at a single vertex, (ii) operators acting on a single

link that lies in the interior of the greedy wedge, and (iii) operators acting on a

single link that straddles the corresponding greedy entangling surface.

Operators of type (i) are precisely the bulk operators defined in [304] and

act on the first copy of the code constructed in section 3.5.2, so as in [304] such

operators lie inMA. Operators of type (ii) were shown above to be equivalent to

a pair of operators acting on tensors T on either side of the link, thus they also lie

in the interior of the greedy wedge. In particular, each member of the pair acts

on the leg of T that was interpreted in [304] as a bulk input of a pentagon code.
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So again such operators lie in MA.

For operators of type (iii), there are two cases. When the operator acts like

σz above it can be replaced by a single operator acting on the adjacent tensor

T lying inside the greedy wedge. It acts on a leg that was interpreted in [304]

as a bulk input of a pentagon code and so can be reconstructed in A. However,

other operators on this edge input cannot generally be reconstructed in A. In-

deed, when the relevant edge e also straddles the greedy entangling surface of the

complementary (Ā) boundary region2 it follows as above that σz lies in the center

of both MA and MĀ.

We close this section by noting that our model admits a broad class of gener-

alizations preserving the above properties. The point is that the above arguments

depended only on G copying the input into both outputs. In particular, this

makes G and isometry from any one leg to the remaining two, allowing us to push

operators of type (ii) as above to a two site operator completely contained in the

greedy wedge. This remains the case if we break the symmetry between the first

(input) leg of G and the output legs (second and third) by replacing (3.268) with

any map of the form

G : Hin → (Hin ⊗Haux)L ⊗ (Haux ⊗Hin)R, G|α〉 7→ |α〉|ψ(α)〉|α〉. (3.271)

Here {|α〉} is a basis for the input Hilbert space Hin (which we call the copying

2For the entanglement wedges defined by minimal surfaces in gauge/gravity duality, this
would always be true in a pure state as the entanglement wedge of A is the complement of that
for Ā. In contrast, in the model of [304] there can be a region that lies in neither the greedy
wedge for A nor that for Ā. The existence of such a region is to be regarded as an artifact
of the model associated with discretization of the bulk spacetime; see section 3.5.4 for further
discussion.
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basis), |ψ(α)〉 is a state on an auxiliary product Hilbert space Haux⊗Haux, and the

tensor factors marked L,R in (3.271) correspond respectively to the two output

legs of G. As a concrete example, one may consider

G : |0〉 → |0000〉 , |1〉 → |1〉 ⊗ 1√
2

(|00〉+ |11〉)⊗ |1〉 , (3.272)

which has

|ψ(0)〉 = |00〉 , |ψ(1)〉 =
1√
2

(|00〉+ |11〉) . (3.273)

The generalization (3.271) allows us to make direct contact with the extended-

lattice discussion [218] of entropy in lattice gauge theories. Ref. [218] considered

regions of a lattice with the boundary γ of the region taken to intersect only links

(i.e., no vertices lie on γ). Each link was then divided into two parts, with separate

Hilbert spaces defined on the parts on either side of γ. The original link carries

a Hilbert space Hin, which may be thought of as defined by the ‘electric’ basis

{|R〉} with R ranging over all representations of the gauge group. The entropy

of the chosen region is defined in [218] by taking, for each R, the state on the

corresponding two half-links to be the maximally-entangled pure state |ψ̃〉RR on

two copies (one for each half-link) of the representation R. The operation mapping

the original lattice to the extended lattice of half-links may then be cast in the

form (3.271) by taking {|α〉} = {|R〉} and |ψ(R)〉 to be supported on some dim(R)

dimensional subspaces of each copy of Haux, and in which it is unitarily equivalent

to |ψ̃〉RR. Here Hin has dimension equal to the (potentially infinite) number of

representations, and the dimension of Haux is correspondingly infinite. It is thus
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natural to apply this version of our edge-mode code when the bulk theory on the

links is a lattice gauge theory.

3.5.4 Subsystem Entropy and Edge-Mode Codes

We now turn to the issue of how our code relates to various discussions of

holographic entropy. In particular, following [304] we show that the entropy of a

boundary region A can be written in a form analogous to the explicit terms in the

FLM formula (3.264), but in constrast to the original HaPPY code, for general

codes of the form (3.271) there is a non-trivial term playing the role of δArea
4GN

. This

is to be expected from the algebraic entropy analysis of [306], though we give a

direct calculation in section 3.5.4. To allow proper comparison, we first review

the results of [306] before beginning our computation. We save discussion of the

result for section 3.5.5, where examination of the lattice gauge theory edge-mode

codes described below (3.271) and comparison with [218], [216] will suggest that,

in a corresponding analysis of linearized gravity, the FLM δArea
4GN

term would be

precisely the difference between an extended-lattice bulk entropy analogous to

that of [218] and an algebraic entropy analogous to that of [216].

The general structure of entropy in holographic codes was studied in [306].

For an error-correcting code with complementary recovery3 it takes the form

SA = S (ρA,MA) + tr (ρLA) (3.274)

in a code state ρ, where A is a subsystem of the bulk Hilbert space. The first

term is the entropy of ρ with respect to the von Neumann algebraMA associated

3As for [304], our code satisfies this requirement for a region A when γ∗A = γ∗
Ā

.
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to A, while the second is the expectation value of a linear operator (LA) lying in

the center ofMA. It was proposed that the tr (ρLA) corresponds to the first and

third (Area
4GN

and δArea
4GN

) terms in (3.264), while the S (ρA,MA) term corresponds to

the second (S(ρW (A))) term in (3.264).

If MA has a non-trivial center, any operator in MA is block-diagonal, with

blocks labeled by eigenvalues α of the center operators:

OA =
⊕

α

O(α)
A . (3.275)

This is also true of any state ρA, which we write as ρA =
⊕

α pαρ
(α)
A in terms of

normalized states ρ
(α)
A . The entropy of ρA with respect toMA can then be defined

as −tr (ρA ln ρA) using the representation (3.275), so we have

S (ρA,MA) = −
∑

α

pα ln pα +
∑

pαS
(
ρ

(α)
A

)
, (3.276)

with S
(
ρ

(α)
A

)
= −tr

(
ρ

(α)
A ln ρ

(α)
A

)
. This is the same as the entanglement entropy

we would obtain by tracing the full system state ρ over Ā and then decohering

the blocks by deleting all the matrix elements that are not block-diagonal:

S (ρA,MA) = S ([ρA]dec) (3.277)

where [ρA]dec is the reduced density matrix ρA = trĀρ after decohering the blocks.

By contrast, the second contribution to the entanglement in (3.274) depends
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on the details of the code. Since LA lies in the center of MA, it takes the form

LA =
⊕

α

sα1α. (3.278)

1α is the identity matrix on the block α and the sα are just numbers.

Since the algebras relevant to the original HaPPY code had trivial centers, a

primary goal of our work is to manifest this structure in a holographic code. When

the center is trivial there is only one value for the index α and (3.276) becomes the

tautalogy S(ρA) = S(ρA) and the tr(ρLA) term becomes independent of the state

(though it still depends on A). As reviewed in section 3.5.4 below, in the HaPPY

code this constant is given by the logarithm of the bond dimension χ times the

length of the minimal surface anchored to the boundary of A. This term is then

interpreted as a model for the leading Ryu-Takayanagi term in the holographic

entanglement entropy, so that it is natural to think of χ as large. Similarly, the

S(ρA,MA) term is interpreted as modeling the second term in (3.264).

Entropy from Edge Modes

We now compute the entropy of an arbitrary boundary region A in our edge-

mode code with an arbitrary bulk state. To the extent that our code satisfies

the assumptions of [306], the result must take the form (3.274). The goal of the

calculation is thus to determine the explicit form of LA for our edge-mode code,

as well as to take into account small violations of the complementary recovery

assumption of [306] (which are also present in the original code [304]). We will

see that LA takes the form of a local density on the entangling surface, as appro-

priate for the term that gives rise to the Area
4G

and δArea
4G

pieces of the holographic
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entanglement.

It is useful to begin by reviewing results for the pentagon code of [304] on

which our edge-mode code is strongly based. In order to arrive an an explicit

FLM-like form, we rewrite the original arguments of [304] as a tensor network

computation. We begin by thinking of the code as a map from bulk states |ψ〉bulk
to boundary states |ψ〉bndy. In figure 3.6, this map is thought of as a tensor

network built out of 3 parts: the greedy wedges w∗(A), w∗(Ā), and a residual

bulk region X =
(
w∗(A) ∪ w∗(Ā)

)
excluded from both w∗(A) and w∗(Ā). Here

the long overline denotes the complement in the bulk.

=| ibndy

A Ā

| ibulk

ba bā

w⇤(A) w⇤(Ā)X

bx

(a)

A Ā

i

j

k

�⇤A �⇤Ā
j

k

i

i

j

j

k

k

i

(b)

Figure 3.6: In (a) the network that computes the boundary state, broken into
pieces corresponding to the wedges w∗(A), w∗(Ā), and the residual region X.
In general all three regions receive inputs from bulk legs. In (b) we label the
links cut by γ∗(A) and γ∗(Ā) with j and k respectively, and the links cut by
both with i.

We may of course also use this network to map bulk density matrices ρbulk to

boundary density matrices ρbndy. Although ρbndy is defined on the entire boundary,

tracing over Ā gives a reduced density matrix ρA on boundary region A. The

associated tensor network is shown in figure 3.7, displaying the different roles
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performed by network links cut by γ∗A, those cut by γ∗
Ā

, and those cut by both.

We then recall that w∗(Ā) defines an isometry (which we will also denote as w∗(Ā))

⇢A =

i

j k

ba bā bā

i

jk

ba

⇢bulk

bx bx

w⇤(A) w⇤(Ā)

X X†

w⇤(A)†w⇤(Ā)†

Figure 3.7: The reduced density matrix ρA on boundary region A described as
a circuit and broken into pieces corresponding to w∗(A), w∗(Ā), and X. The j
links describe network edges cut by γ∗A, the k links describe network edges cut
by γ∗

Ā
, and the i links describe those cut by both.

from the associated bulk indices and the network edges cut by γ∗
Ā

to Ā, i.e. it

satisfies

[w∗(Ā)]†w∗(Ā) = 1, (3.279)

with 1 being the identity on the space of inputs. As a result, the tensor network

may be simplified to that shown in figure 3.8.

A key part of this network representation of ρA is given by the state ργ∗A ,

defined on the Hilbert space Hw∗(A) ⊗ Hγ∗A
as show in figure 3.9. Here Hw∗(A) is

the space associated with bulk inputs to w∗(A), and Hγ∗A
is the space defined by

network edges cut by γ∗A. Figure 3.8 then implies that we may write

ρA = w∗(A)ργ∗Aw
∗(A)† (3.280)
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⇢A = i

j k j

ba ba

w⇤(A)

X X†

w⇤(A)†

bx bx

⇢w⇤(A)[X

Figure 3.8: A simpler network for ρA obtained from figure 3.7 by using the fact
that w∗(Ā) defines an isometry from the indices k, i, and bā to the boundary
Ā.

i

j
k

j0

i0

ba b0a

⇢�⇤
A

= X X†

bx bx

⇢w⇤(A)[X

Figure 3.9: The state ργ∗A used to compute SA.

in terms of the isometry w∗(A). Since isometries preserve von Neumann entropy,

the entropy of the boundary region A may be written

SA = −tr (ρA ln ρA) = −tr
(
ργ∗A ln ργ∗A

)
. (3.281)

To the extent that we can ignore the excluded region X, we have that ρw∗(A)∪X ≈

ρw∗(A) and the density matrix ργ∗A is

ργ∗A ∼ ρw∗(Ā) ⊗ 1i ⊗ 1j (3.282)
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up to normalization. The von Neumann entropy SA is then precisely

SA = S(ρw∗(A)) + |γ∗A| lnχ , (3.283)

in terms of the bond dimension χ of each network edge and the number |γ∗A| of

edges cut by γ∗A (i.e. the total number of i and j indices).

More generally, the region X introduces further corrections to (3.283). While

such corrections are difficult to compute explicitly, subadditivity and the Araki-

Lieb inequality (|SB − SC | ≤ SBC ≤ SB + SC) can be used to bound departures

from this estimate in terms of χ and the number of j edges as defined in figure 3.7

(those cut by γ∗A but not by γ∗
Ā

). In special cases X can be quite large, but this

is not generally the case [304]. Indeed, X can often be made to vanish by moving

a small number of boundary points from A to Ā and/or from Ā to A. It is thus

natural to think of think of X as an artifact of the discrete toy model used here.

As a result, although there is no limit of our model in which the region X can be

systematically neglected in all cases, as in [304] we choose to ignore the region X

when considering implications for gauge/gravity duality. We thus consider only

cases with trivial X = ∅ below.

With this technology in hand, we now turn to our edge mode code. Our code

attaches bulk states |ψ〉bulk, EMC to a product of HaPPY codes via an isometry

G built from the copying tensors G. The end result is thus just what would be

obtained by feeding the state

|ψ〉bulk, HaPPY = G |ψ〉bulk, EMC (3.284)
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into a product of HaPPY codes. Thus all that remains is to replace ρw∗(A)∪X in

figure 3.9 with the corresponding density matrix obtained from the state with Gs

inserted.

Now, since G is an isometry from its single input to its pair of outputs, adding

G-tensors with both outputs in w∗(A) will not change the entropy of figure 3.9

and may be ignored. Furthermore, the trace over w∗(Ā) in passing from figure 3.6

to figure 3.8 removes all G’s with both outputs in w∗(Ā). When X = ∅, G has no

outputs in X.

Thus the only remaining Gs to consider are those with one output in each

of w∗(A), w∗(Ā). They will act on bulk indices which we may organize in pairs

containing one unprimed index (a ket index of ρw∗(A)) and the corresponding

primed index (a bra index of ρw∗(A)). As shown in figure 3.10, the w∗(Ā) output

legs of the pair of G-tensors acting on these bulk indices are contracted by the

above-mentioned trace over w∗(Ā).

i i0

ba b0a

⇢�⇤
A

=

⇢w⇤(A)

G G†

bei
b0ei

ei e0i

Figure 3.10: A state ργ∗A that may be used to compute SA in our edge-mode
code when X = ∅. Every leg i cut by γ∗A has an associated bei and ei, although
only one such leg is drawn for simplicity.

The effect of these final Gs on the entropy is easy to understand by thinking

about the action of a single G on any pure-state input |ψ〉 =
∑

α cα|α〉. Due to
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the copying property of G in (3.271), the action of G on |ψ〉 may be thought of

as a von Neumann measurement; i.e., as a unitary transformation that entangles

the original system (here (Hin)L, which we take to lie in w∗(A)) with a ‘measuring

apparatus’ (Hin ⊗ Haux)R in w∗(Ā). At the same time, it also creates further

entanglement with (Haux)L. Tracing over the w∗(Ā)-output then decoheres the

state into the copying basis {α} so that ργ∗A is block-diagonal in this basis, and

the entanglement with (Haux)L means that the |α〉〈α|-blocks appear tensored with

the state

ρaux(α) = tr(Haux)R (|ψ(α)〉〈ψ(α)|) . (3.285)

on (Haux)L. Thus we have

ργ∗A =
⊕

{α}

p{α}

([
ργ∗A
]
{α} ⊗ ρaux({α})

)
, (3.286)

with p{α} =
∏

i |cαi |2, ρaux({α}) = ⊗i ρaux(αi), and i again ranging over all links

cut by both γ∗A and γ∗
Ā

. The relevant
[
ργ∗A
]
{α} may be described by introducing

the α-decohered bulk state

[
ρw∗(A)

]
dec

=
⊕

{α}

p{α}
[
ρw∗(A)

]
{α} . (3.287)

The
[
ργ∗A
]
{α} are then given by figure 3.9 (here withX = ∅ and thus no j, j′ indices)

in terms of the
[
ρw∗(A)

]
{α} defined by (3.287). Putting everything together, we

draw the network representation of (3.286) in figure 3.11.
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i i0

ba b0a⇥
⇢w⇤(A)

⇤
↵i

⇢�⇤
A

=
M

{↵}
p{↵} ( )

h
(↵i)
in h0

in
(↵i)

h0
aux

(↵i)h(↵i)
aux ⇢aux(↵i)

Figure 3.11: The state ργ∗A in terms of the states
[
ργ∗A

]
{α}

obtained by deco-

hering the tensors G in figure 3.10 with respect to the α basis. The index h
(αi)
in

refers to the subspace of (Hin)L at link i associated with the eigenvalue α, and

similarly for h
(αi)
aux . Again we have drawn only one link i for simplicity.

This gives

SA = |γ∗A| lnχ+
∑

{α}

p{α}

(
− ln p{α} + S(

[
ρw∗(A)

]
{α}) + S (ρaux({α}))

)

= S(ρA,MA) + |γ∗A| lnχ+
∑

{α}

p{α}S (ρaux({α})) , (3.288)

where χ now denotes the total bond dimension associated with the T tensors (i.e.

6 times that of the HaPPY code for the code described in section 3.5.2). Here

we have used (3.276) to identify the “bulk entanglement” term S(ρA,M). Note

that (3.288) takes Harlow’s form (3.274) if we define LA by (3.278) and make the

further identification

s{α} = |γ∗A| lnχ+ S (ρaux({α})) =
∑

i

[lnχ+ S (ρaux(αi))] . (3.289)

This manifestly takes the form of a local density on the entangling surface. The

contribution of the first term in (3.289) to SA is independent of the state, anal-

ogous to the leading Ryu-Takayanagi piece in the entropy. The contribution of
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the second piece to SA linearly second depends on the bulk state, like the δArea
4G

correction of [309].

As a concrete example, consider the copying tensor defined in (3.272). It is

easy to show that s0 = 0 and s1 = ln 2.

3.5.5 Discussion

We have constructed edge-mode holographic codes by composing (copies of)

the HaPPY pentagon code [304] with certain ‘copying tensors’ G (3.271). The

results provide toy models for holography that implement the structure described

in [306]. In particular, subregions A of the boundary allow the reconstruction of

bulk algebras M having a non-trivial center associated with the interior boundary

of the (greedy) entanglement wedge w∗(A), i.e. with the holographic code ana-

logue of the Ryu-Takayanagi minimal surface. As a result, subject to the same

caveats as for the original HaPPY code [304], our model gives rise to an FLM-like

relation (3.274). We expect that a similar edge-mode extension can be applied to

other holography-inspired codes including [311, 312, 305].

In particular, the linear operator LA of [306] receives a contribution that de-

pends on the choice of copying tensor G. For general G this term depends non-

trivially on the bulk state. This behavior is in contrast to that of contributions

from the |γ∗A| lnχ term in χ{α}. Because the |γ∗A| lnχ term does not depend on α,

it contributes
∑
{α} p{α}|γ∗A| lnχ = |γ∗A| lnχ to the entropy for any bulk state.

Due to this distinction, and following the spirit of [306], it is natural to think

of the |γ∗A| lnχ term in (3.288) as modeling the Ryu-Takayanagi term in (3.264),

the S(ρA,MA) term as corresponding to Sbulk(ρw(R)), and the remaining term

340



Entanglement Chapter 3

∑
{α} p{α}S (ρaux({α})) from tr (ρLA) as modeling FLM’s δArea

4GN
. We expect that

this is roughly correct, though it remains to be verified in detail due to a subtle

difference between [306] and the approach of FLM. The point here is that to

identify a part of tr (ρLA) with δArea
4GN

we must take the bulk state to include

propagating metric fluctuations. But the analysis [309] of FLM treated the bulk as

a ‘normal’ quantum field theory which could be defined on any metric background,

and in particular on backgrounds with conical defects. This is not the case for

metric fluctuations which propagate consistently only when the background is

on-shell, and so a conclusive result awaits a more complete re-analysis of FLM

including a careful treatment of bulk gravitons.4

However, perturbative gravity is a gauge theory having much in common with

Yang-Mills theory. It is thus interesting to consider in detail the form of (3.288)

when the bulk degrees of freedom are taken to describe Yang-Mills. As described

at the end of section 3.5.3, it is natural to do so by introducing a lattice gauge

theory on the links of the network links and attaching the bulk state to 5 pentagon

codes using copying tensors that transform this lattice into an extended lattice as

in [274, 218]. Only 5 pentagon codes are required as, for the moment, we suppose

that the gauge theory defines all bulk degrees of freedom.

The resulting system can now be viewed in two different ways. The viewpoint

4A further source of confusion, though not real difficulty, is the fact that [306] allows an
arbitrary bulk state to be considered independent of any choice of background, while the semi-
classical approach of [309] naturally correlates the bulk state with the background. In particular,
this approach generally selects bulk state in which deviations from the background metric have
vanishing expectation value, so that there is no explicit first-order contribution to δArea

4GN
from

linearized gravitons and, instead, this term receives contributions only from back-reaction and
quadratic terms at the next order. But the freedom to expand around a different background
makes clear that, in principle, this δArea

4GN
would indeed receive a linear contribution from lin-

earized metric fluctuations.
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used thus far is that the bulk system consists of lattice gauge theory on the

network links and that we act on this system with our edge-mode code to obtain

the associated boundary state. This leads to (3.288) and the above identification

of terms. However, the result can equally-well be viewed as a bulk system defined

by an extended lattice, in which each link has been replaced by a pair of half-links,

acted on by a code that is precisely the tensor product of 5 copies of the HaPPY

pentagon code. We may then use the result (3.283), taking the first term on

the right to be the entropy S(ρextw∗(A)) defined by the extended bulk lattice. The

entropy of such extended lattice states was discussed in [218], and letting αi range

over representations Ri of the gauge group as at the end of section 3.5.3, takes

the form

S(ρextw∗(A)) =
∑

{R}

p{R}

(
− ln p{R} + S(

[
ρw∗(A)

]
{R}) +

∑

i

ln(dim Ri)

)

= S(ρA,MA) +
∑

{α}

p{α}
∑

i

S (ρaux(αi)) , (3.290)

as expected for agreement with our previous computation of SA.

The final result (3.290) becomes particularly interesting if we assume that

corresponding results for perturbative gravitons are given by a naive extrapolation.

Given the identification in that context of the FLM δArea
4GN

term with the second

term on the right hand side of (3.290) as described above, such extrapolation

suggests that – at least to some order in the bulk Newton constant – the FLM

relation may be rewritten as simply

SA =
Area

4G
+ S(ρextw(A)), (3.291)
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with the first term computed in some classical background and the second defined

by an appropriate extended lattice construction for the perturbative metric fluc-

tuations. The form (3.291) is particularly natural given the reliance of FLM on

the replica trick and the agreement between the replica trick and extended lattice

constructions noted in [257, 217]. It would thus be very interesting to explore

such a construction directly in linearized gravity, either on a lattice or in the con-

tinuum with an appropriate corresponding extension of the Hilbert space, and to

establish any relation to the fully non-linear extended classical phase space for

gravity described recently in [313].
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