
UCLA
UCLA Electronic Theses and Dissertations

Title
Process Structure-Aware Machine Learning Modeling for State Estimation and Model
Predictive Control of Nonlinear Processes

Permalink
https://escholarship.org/uc/item/7885c4b5

Author
Alhajeri, Mohammed S.

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7885c4b5
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Process Structure-Aware Machine Learning Modeling for State Estimation and Model Predictive

Control of Nonlinear Processes

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Chemical Engineering

by

Mohammed Alhajeri

2022

ABSTRACT OF THE DISSERTATION

Process Structure-Aware Machine Learning Modeling for State Estimation and Model Predictive

Control of Nonlinear Processes

by

Mohammed Alhajeri

Doctor of Philosophy in Chemical Engineering

University of California, Los Angeles, 2022

Professor Panagiotis D. Christofides, Chair

Big data is a cornerstone component of the fourth industrial revolution, which calls on

engineers and researchers to fully utilize data in order to make smart decisions and enhance

the efficiency of industrial processes as well as control systems. In practice, industrial process

control systems typically rely on a data-driven model (often linear) with parameters that are

determined by industrial/simulation data. However, in some scenarios, such as in profit-critical

or quality-critical control loops, first-principles concepts that are based on the underlying

physico-chemical phenomena may also need to be employed in the modeling phase to improve

data-based process models. Hence, process systems engineers still face significant challenges

when it comes to modeling large-scale, complicated nonlinear processes. Modeling will continue

to be crucial since process models are essential components of cutting-edge model-based control

systems, such as model predictive control (MPC).

Machine learning models have a lot of potential based on their success in numerous

applications. Specifically, recurrent neural network (RNN) models, designed to account for every

input-output interconnection, have gained popularity in providing approximation of various highly

nonlinear chemical processes to a desired accuracy. Although the training error of neural networks

ii

that are dense and fully-connected may often be made sufficiently small, their accuracy can be

further improved by incorporating prior knowledge in the structure development of such machine

learning models. Physics-based recurrent neural networks modeling has yielded more reliable

machine learning models than traditional, fully black-box, machine learning modeling methods.

Furthermore, the development of systematic and rigorous approaches to integrate such machine

learning techniques into nonlinear model-based process control systems is only getting started. In

particular, physics-based machine learning modeling techniques can be employed to derive more

accurate and well-conditioned dynamic process models to be utilized in advanced control systems

such as model predictive control. Along with Lyapunov-based stability constraints, this scheme

has the potential to significantly improve process operational performance and dynamics. Hence,

investigating the effectiveness of this control scheme under the various long-standing challenges

in the field of process systems engineering such as incomplete state measurements, and noise

and uncertainty is essential. Also, a theoretical framework for constructing and assessing the

generalizability of this type of machine learning models to be utilized in model predictive control

systems is lacking.

In light of the aforementioned considerations, this dissertation addresses the incorporation of

prior process knowledge into machine learning models for model predictive control of nonlinear

chemical processes. The motivation, background and outline of this dissertation are first presented.

Then, the use of machine learning modeling techniques to construct two different data-driven state

observers to compensate for incomplete process measurements is presented. The closed-loop

stability under Lyapunov-based model predictive controllers is then addressed. Next, the

development of process-structure-based machine learning models to approximate large, nonlinear

chemical processes is presented, with the improvements yielded by this approach demonstrated via

open-loop and closed-loop simulations. Subsequently, the reliability of process-structure-based

machine learning models is investigated in the presence of different types of industrial noise.

Two novel approaches are proposed to enhance the accuracy of machine learning models in the

presence of noise. Lastly, a theoretical framework that connects the accuracy of an RNN model to

iii

its structure is presented, where an upper bound on a physics-based RNN model’s generalization

error is established. Nonlinear chemical process examples are numerically simulated or modeled

in Aspen Plus Dynamics to illustrate the effectiveness and performance of the proposed control

methods throughout the dissertation.

iv

The dissertation of Mohammed Alhajeri is approved.

Carlos G. Morales Guio

Dante A. Simonetti

Tsu-Chin Tsao

Panagiotis D. Christofides, Committee Chair

University of California, Los Angeles

2022

v

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Background . 3

1.3 Dissertation Objectives and Structure . 6

2 Machine Learning-Based State Estimation and Predictive Control of Nonlinear

Processes 9

2.1 Introduction . 9

2.2 Preliminaries . 12

2.2.1 Notations . 12

2.2.2 Class of Systems . 13

2.2.3 Extended Luenberger Observer . 13

2.2.4 Stabilization via Control Lyapunov Function 14

2.3 Machine Learning Based State Estimation . 15

2.3.1 RNN-based State Estimator . 15

2.3.2 Hybrid-Model-Based State Estimator . 20

2.4 Output Feedback Model Predictive Control . 23

2.5 Application to a Chemical Reactor Example . 26

2.5.1 Simulation Settings . 28

2.5.2 Neural Networks Model Training . 29

vi

2.5.3 Closed-loop Simulation Results . 30

3 Process structure-based recurrent neural network modeling for predictive control: A

comparative study 40

3.1 Introduction . 40

3.2 Preliminaries . 43

3.2.1 Notations . 43

3.2.2 Class of Systems . 43

3.2.3 Stabilizability assumption . 43

3.3 Recurrent Neural Networks (RNN) Models . 44

3.4 Partially-connected RNN Model . 46

3.5 RNN-Based Model Predictive Control . 53

3.6 Application to a Chemical Process Modeled in Aspen Plus 54

3.6.1 Dynamic Model in Aspen Plus Dynamics 55

3.6.2 First-principles Model Development . 58

3.6.3 Data Generation and RNN Models Development 60

3.6.4 Closed-loop Simulation: First-principles Process Model 62

3.6.5 Closed-loop Simulation: Aspen Plus Dynamic Model 67

4 Physics-informed Machine Learning Modeling for Predictive Control Using Noisy

Data 70

4.1 Introduction . 70

4.2 Preliminaries . 73

4.2.1 Notations . 73

4.2.2 Class of systems . 74

4.2.3 Stabilizability Assumption . 74

4.3 Recurrent neural networks model (RNN) . 75

4.3.1 Partially-connected RNN . 76

vii

4.3.2 Long short term memory (LSTM) . 78

4.4 Co-Teaching technique . 80

4.5 Dropout technique . 81

4.6 RNN-LSTM based model predictive control . 84

4.7 Application to a Chemical Process Using Aspen Plus Simulator 85

4.7.1 Process description . 86

4.7.2 Data generation and model training . 89

4.7.3 Closed-loop simulation: Gaussian noise 96

4.7.4 Closed-loop simulation: non-Gaussian noise 97

5 On Generalization Error of Neural Network Models and its Application to Predictive

Control of Nonlinear Processes 103

5.1 Introduction . 103

5.2 Preliminaries . 106

5.2.1 Notation . 106

5.2.2 Class of Systems . 107

5.2.3 Stabilizability assumption . 107

5.3 Recurrent neural networks (RNNs) . 108

5.3.1 Physics-informed RNNs . 110

5.4 Generalization error . 113

5.4.1 General considerations . 113

5.4.2 Physics-based RNNs generalization bound 117

5.5 RNN based model predictive control . 119

5.6 Application to a chemical process . 121

5.6.1 Data generation and RNN models construction 123

5.6.2 Open-loop simulation . 124

5.6.3 Closed-loop simulation . 126

viii

6 Conclusions 131

Bibliography 134

ix

List of Figures

2.1 Structure of recurrent neural network. 16

2.2 Three-layer feed-forward neural network structure with biases represented by

neuron ‘1’. 21

2.3 True state (red line) and estimated state (blue line) trajectories for the closed-loop

CSTR under LMPC using RNN-based estimator with the initial condition IC1 (top

three plots). The bottom plot displays the manipulated input profile. 31

2.4 True state (red line) and estimated state (blue line) trajectories for the closed-loop

CSTR under LMPC using RNN-based estimator with the initial condition IC2 (top

three plots). The bottom plot displays the manipulated input profile. 32

2.5 True state (red line) and estimated state (blue line) trajectories for the closed-loop

CSTR under LMPC using RNN-based estimator with the initial condition IC3 (top

three plots). The bottom plot displays the manipulated input profile. 33

2.6 True state (red line) and estimated state (blue line) trajectories for the closed-loop

CSTR under LMPC using RNN-based estimator with the initial condition IC4 (top

three plots). The bottom plot displays the manipulated input profile. 34

2.7 True state (red line) and estimated state (blue line) trajectories for the closed-loop

CSTR under LMPC using hybrid-model-based estimator with the initial condition

IC1 (top three plots). The bottom plot displays the manipulated input profile. 35

x

2.8 True state (red line) and estimated state (blue line) trajectories for the closed-loop

CSTR under LMPC using hybrid-model-based estimator with the initial condition

IC2 (top three plots). The bottom plot displays the manipulated input profile. 36

2.9 True state (red line) and estimated state (blue line) trajectories for the closed-loop

CSTR under LMPC using hybrid-model-based estimator with the initial condition

IC3 (top three plots). The bottom plot displays the manipulated input profile. 37

2.10 True state (red line) and estimated state (blue line) trajectories for the closed-loop

CSTR under LMPC using hybrid-model-based estimator with the initial condition

IC4 (top three plots). The bottom plot displays the manipulated input profile. 38

3.1 A schematic of a recurrent neural network. 45

3.2 Fully-connected and Partially-connected RNN structure, where u = [u1,u2] and

x = [x1,x2]. 49

3.3 Aspen Plus model flow sheet of two reactors in series. 57

3.4 Open-loop state and manipulated input profiles for CST R1. 60

3.5 Open-loop state and manipulated input profiles for CST R2. 60

3.6 RNN modeling structures for Ethylbenzene production in two CSTRs in series,

where xi and xi
+ are defined at t = tk and t = tk +∆, respectively. 62

3.7 Partially-connected RNN model training and validation loss functions. 63

3.8 Fully-connected RNN model training and validation loss functions. 63

3.9 Open-loop simulation under step change in (Q2 − Q2s) of the two RNN

models: partially-connected RNN (denoted by PC-RNN in dashed line), and the

fully-connected RNN (denoted by FC-RNN in dash-dotted line). 65

3.10 State profiles of the closed-loop simulation of the first-principles process model

under the LMPC using three models: first-principles (denoted by FP in solid

line), partially-connected RNN (denoted by PC-RNN in dashed line), and

fully-connected RNN (denoted by FC-RNN in dash-dotted line). 66

xi

3.11 Input profiles of the closed-loop simulation of the first-principles process model

under the LMPC using three models: first-principles (denoted by FP in solid

line), partially-connected RNN (denoted by PC-RNN in dashed line), and

fully-connected RNN (denoted by FC-RNN in dash-dotted line). 66

3.12 State profiles of the closed-loop simulation of the Aspen Plus Dynamics model

under the LMPC using three models: first-principles (denoted by FP in solid

line), partially-connected RNN (denoted by PC-RNN in dashed line), and

fully-connected RNN (denoted by FC-RNN in dash-dotted line). 68

3.13 Input profiles of the closed-loop simulation of the Aspen Plus Dynamics model

under the LMPC using three models: first-principles (denoted by FP in solid

line), partially-connected RNN (denoted by PC-RNN in dashed line), and

fully-connected RNN (denoted by FC-RNN in dash-dotted line). 69

3.14 Ratio of computational time needed to calculate the control actions by LMPC using

fully-connected RNN and partially-connected RNN at each samplint time ∆. . . . 69

4.1 Schematic of (a) Standard and (b) Physics-informed RNN structures, with u =

[ua,ub] and x = [xa,xb]. 77

4.2 RNN-LSTM network schematic. 79

4.3 Developing machine learning (ML) model via co-teaching method. 81

4.4 Fully-connected neural network layers (a) without dropout and (b) with dropout. . . 83

4.5 Aspen Plus model flow sheet of two chemical reactors in series. 88

4.6 Normalized industrial noise from Aspen public domain data. 91

4.7 Probability density plot of normalized industrial noise introduced to the Aspen

model. 92

4.8 Open-loop state and manipulated inputs profiles for the process (noise-free). . . . 94

4.9 Partially-connected RNN model development methods. 94

xii

4.10 Open-loop state trajectory predicted by dropout LSTM, co-teaching LSTM, and

standard LSTM, respectively, under the same time varying inputs in the presence

of non-Gaussian noise. 95

4.11 Open-loop state trajectory predicted by dropout LSTM, co-teaching LSTM, and

standard LSTM, respectively, under the same time varying inputs in the presence

of Gaussian noise. 96

4.12 State and input profiles of the closed-loop simulation in the presence of Gaussian

noise under the LMPC using PCRNN-LSTM models developed by: standard

method (dashed line) and co-teaching method (dash-dotted line). 97

4.13 State and input profiles of the closed-loop simulation in the presence of Gaussian

noise under the LMPC using PCRNN-LSTM models developed by: standard

method (dashed line) and MC dropout method (dash-dotted line). 98

4.14 State and input profiles of the closed-loop simulation in the presence of

non-Gaussian noise under the LMPC using PCRNN-LSTM models developed by:

standard method (dashed line) and co-teaching method (dash-dotted line). 99

4.15 State and input profiles of the closed-loop simulation in the presence of

non-Gaussian noise under the LMPC using PCRNN-LSTM models developed by:

standard method (dashed line) and MC dropout method (dash-dotted line). 100

4.16 State and input profiles of the closed-loop simulation in the presence of

non-Gaussian noise under the LMPC using FCRNN-LSTM models developed by:

standard method (dashed line) and co-teaching method (dash-dotted line). 101

4.17 State and input profiles of the closed-loop simulation in the presence of

non-Gaussian noise under the LMPC using FCRNN-LSTM models developed by:

standard method (dashed line) and MC dropout method (dotted line). 102

5.1 Structure of (a) standard fully-connected and (b) partially-connected RNN. 112

xiii

5.2 Weights and connections in (a) standard fully-connected and (b)

partially-connected RNN structures, where zeroed weights for links between

units are represented by dashed lines. 117

5.3 Two continuous-stirred tank reactors in series. 122

5.4 Five different testing data sets, where each marker indicates a single set. 125

5.5 Generalization error for five different testing data sets, where PCRNN and FCRNN

stands for partially-connected RNNs (orange bars) and fully-connected RNNs

(blue bars), respectively. 126

5.6 Time-varying profiles of the states and inputs for the second open-loop simulation

under random time varying inputs using the first-principles process model (red

line), the partially-connected RNN model (blue line), and the fully-connected RNN

(black line). 127

5.7 Time-varying profiles of the states and inputs for the open-loop simulation under

a step change in u2 using the first-principles process model (red line), the

partially-connected RNN model (blue line), and the fully-connected RNN (black

line). 128

5.8 Sate and input profiles of the first closed-loop simulation under the LMPC using

three models: first-principles (red line), partially-connected RNN (blue line), and

fully-connected RNN (black line). 129

5.9 State and input profiles of the second closed-loop simulation under the LMPC

using three models: first-principles (red line), partially-connected RNN (blue line),

and fully-connected RNN (black line). 130

xiv

List of Tables

2.1 Parameter and steady-state values for the CSTR. 27

2.2 Estimation mean squared error of the closed-loop CSTR under LMPC using

RNN-based and hybrid-model-based state estimators 39

3.1 Parameter and steady-state values of the Aspen Plus model. 58

3.2 Input and output states of the RNN models. 64

3.3 MSE comparison of the open-loop prediction results between the RNN models and

the Aspen Plus simulation model. 65

3.4 Statistical analysis of the computational times (in minutes) needed to calculate the

control actions using the two RNN structuers in LMPC. 68

4.1 Parameter values, steady-state values, and model configuration of the Aspen Plus

model. 86

4.2 Input and output states of the RNN-LSTM models. 93

4.3 Open-loop prediction MSE results under Gaussian and non-Gaussian noise. 95

4.4 Open-loop prediction results (MSE) by the three different models under

non-Gaussian and Gaussian industrial noise. 95

4.5 The value of the time integral of the cost function using different models under two

modeling architectures. 100

5.1 Parameter and steady-state values for the CSTR 123

5.2 Open-loop prediction results (MSE) . 126

xv

5.3 Closed-loop prediction results (MSE) . 129

xvi

ACKNOWLEDGEMENTS

First and foremost, I would want to praise and thank God, the All-Powerful, who has given the

writer innumerable blessings, knowledge, and opportunities as a result of which I have finally been

able to complete this thesis.

I would like to sincerely thank my advisor Professor Panagiotis D. Christofides for his unending

support throughout my doctoral studies. I recall vividly the moment I first contacted Professor

Christofides in the Winter of 2018 and how welcoming he was. Throughout my doctoral studies, he

was always available to assist me and point me in the right direction. I consider myself extremely

fortunate to have completed my Ph.D. under his supervision during my time here at UCLA.

Professor Christofides is an outstanding researcher, mentor, educator, and source of inspiration. His

guidance on control theory, process systems engineering, and most notably life decisions has had a

significant impact on both my personal life and professional life as well. In the same vein, I would

also like to thank Professor Dante A. Simonetti, Professor Carlos Morales-Guio and Professor

Tsu-Chin Tsao, for serving on my doctoral committee.

In addition, I would like to thank all of my colleagues with whom I have worked over the years

in the Christofides research group, including Dr. Zhihao Zhang, Dr. Yangyao Ding, Dr. Yichi

Zhang, Mr. Matthew Tom, and Mr. Berkay Citmaci. I would particularly like to thank Professor

Zhe Wu, Professor Fahad Albalawi, Dr. David Rincon, Mr. Junwei Luo, Dr. Yi Ming Ren, Mr.

Fahim Abdullah, Ms. Aisha Alnajdi, Dr. Scarlett Chen, and Mr. Atharva Suryavanshi with whom

I have collaborated extensively and spent long hours working on papers together. It was a nice and

enriching voyage!

I was also fortunate to meet and get to know a number of people outside of my research group

during my time at UCLA which made the experience much more enjoyable. I would like to thank

my friend Dr. Anas Alaqeeli for our extensive philosophical and technical conversations about

everything from stock markets to where to get the finest coffee in Los Angeles. This extends to

Aziz Alawadi, Dr. Mohammaed Alabdullah, Alwaleed Aldhefieri, Dr. Ali Alsheri, Ali Dashti,

Fahad Alburiki, M. Galadari with whom I had the pleasure of being good friends, in addition to

xvii

going through various adventures, playing sports, and hiking with them.

Last but not least, I am deeply indebted to my role model and father, my beloved mother,

my siblings, my spouse, and my two little angels for their unwavering support and never-ending

encouragement throughout my years of study as well as during the process of researching and

writing this thesis. It would not have been possible to finish this task without them. In the same

vein, thanks to all my friends back in Kuwait, specially Mohammed Alshammari, their kind words

always pushed me forward. Also, I want to express my gratitude to my late grandparents, they will

always be in my heart. They both helped shape the person I am today and gave me the courage and

desire to pursue my higher education studies, and to always become a better version of myself.

Financial support from Kuwait University is gratefully acknowledged, and my work could

not have been done without this support. In addition, I appreciate the role of the scholarship

committee in Chemical Engineering Department and the Cultural Relations Department at Kuwait

University with special thanks to Reeham Aladwhani and Sameerah Almansour. Also, I appreciate

the services of the Kuwait Cultural office in Los Angeles, specifically, Dr. Mohammed Alreshidi,

Dr. Hassan Alkanderi, Tatiana Mollahzadeh, and Anna Kim.

Chapter 2 contains versions of: Alhajeri, M., Z. Wu, D. Rincon, F. Albalawi and P. D.

Christofides, “Machine Learning-Based State Estimation and Predictive Control of Nonlinear

Processes, ” Chem. Eng. Res. & Des., 167, 268-280, 2021.

Chapter 3 contains versions of: Alhajeri, M., J. Luo, Z. Wu, F. Albalawi and P. D. Christofides,

“Process Structure-Based Recurrent Neural Network Modeling for Predictive Control: A

Comparative Study, ” Chem. Eng. Res. & Des., 179, 77-89, 2022.

Chapter 4 contains versions of: Alhajeri, M., F. Abdullah, Z. Wu and P. D. Christofides,

“Physics-informed Machine Learning Modeling for Predictive Control Using Noisy Data, ” Chem.

Eng. Res. & Des., 186, 34-49, 2022.

Chapter 5 contains versions of: Alhajeri, M., A. Alnajdi, F. Abdullah and P. D. Christofides,

“On Generalization Error of Neural Network Models and its Application to Predictive Control of

Nonlinear Processes,” Chem. Eng. Res. & Des., submitted.

xviii

Curriculum Vitae

Education

Drexel University Sep. 2016 - Sep. 2018

M.S., Chemical Engineering Philadelphia, PA

Supervisor: Prof. Masoud Soroush

Thesis: ”Nonlinear Model Predictive Control of Processes with

Incomplete State Measurements”

Kuwait University Sep. 2010 - Dec. 2015

B.S., Chemical Engineering Khalidya, Kuwait

Experince

Ministry of Electricity and Water Jan. 2016 - Aug. 2016

Al-Zour Desalination Plant Al-Zour, Kuwait

Process engineer

Publications

1. Alhajeri, M. S., A. Alnajdi, Z. Wu and P. D. Christofides, “Statistical Machine

Learning in Model Predictive Control: An Overview of Recent Results,” Proceedings

of Foundations of Computer Aided Process Operations / Chemical Process Control, 6

pages, San Antonio, Texas, 2023.

2. Alhajeri, M. S., A. Alnajdi, F. Abdullah and P. D. Christofides, “On Generalization

Error of Neural Network Models and its Application to Predictive Control of Nonlinear

Processes,” Chem. Eng. Res. & Des., submitted.

xix

4. Abdullah, F., M. S. Alhajeri, and P. D. Christofides, ”Modeling and control of nonlinear

processes using sparse identification: Using dropout to handle noisy data,” Industrial &

Engineering Chemistry Research, in press.

5. Alhajeri, M. S., F. Abdullah, Z. Wu and P. D. Christofides, “Physics-informed Machine

Learning Modeling for Predictive Control Using Noisy Data,” Chem. Eng. Res. & Des.,

186, 34-49, 2022.

6. Ren Y., M. S. Alhajeri, J. Luo, S. Chen, F. Abdullah, Z. Wu, and P. D. Christofides, “A

Tutorial Review of Neural Network Modeling Approaches for Model Predictive Control,”

Computers & Chemical Engineering, 165, 107956, 2022.

7. Alhajeri, M. S., J. Luo, Z. Wu, F. Albalawi and P. D. Christofides, “Process

Structure-Based Recurrent Neural Network Modeling for Predictive Control: A

Comparative Study,” Chem. Eng. Res. & Des., 179, 77-89, 2022.

8. Alhajeri, M. S., Z. Wu, D. Rincon, F. Albalawi and P. D. Christofides, “Machine

Learning-Based State Estimation and Predictive Control of Nonlinear Processes, ” Chem.

Eng. Res. & Des., 167, 268-280, 2021.

9. Alhajeri, M. S., Wu, Z., Rincon, D., Albalawi, F. and Christofides, P.D.,

“Estimation-Based Predictive Control of Nonlinear Processes Using Recurrent Neural

Networks,” Proceedings of 16th IFAC International Symposium on Advanced Control of

Chemical Processes, 6 pages, Venice, Italy, 2021.

10. Alhajeri, M. S. and M. Soroush, “Tuning Guidelines for Model Predictive Control,”

Industrial & Engineering Chemistry Research, 59, 4177–4191, 2020.

xx

Chapter 1

Introduction

1.1 Motivation

Mathematical models that describe the relationship between the manipulated inputs and

the process outputs are essential for constructing model-based control systems for industrial

applications. Currently, the development of a process model is based on either first-principles

or process data under various assumptions depending on the process of interest. However, certain

limitations on model performance exist. For example, linearized models of nonlinear processes are

only valid around a vicinity of the operating point that is used in the linearization. Furthermore,

due to the dynamical nature alongside with the inherent nonlinear behavior and high complexity of

most of chemical processes, it is usually not an easy task to find an accurate first-principles model.

Modern industries have seen an incredible increase in data availability over the past ten years;

it is anticipated that, each year, machines and devices produce more than 1000 Exabytes of data

(e.g., [124]). Industrial process control systems typically use a (linear) data-driven model with

factors that are defined by industrial/simulation data [25,108], though in some circumstances, such

as in profit-critical control loops, first-principles models (with data-determined model parameters)

that describe the underlying physico-chemical phenomena may also be used. Nevertheless, process

systems engineering experts still face significant challenges when it comes to modeling large-scale,

1

complicated nonlinear processes. Model quality is influenced by a variety of variables, such as

model parameter estimates, model uncertainty, the number of assumptions used during model

construction, the model’s dimensionality, its structure, and the amount of computational power

required to solve the model in real-time (e.g., [37,38]). Machine learning has received more focus

in the identification of models in recent years. Recurrent neural networks (RNNs) are a popular

machine learning technique for modeling general classes of nonlinear dynamical systems [23,85].

Tensorflow and Keras are two examples of open-source software libraries for machine learning

applications that have been developed over the past years concurrently with the development

of machine learning algorithms and computing resources/platforms. These advancements have

facilitated the usages of machine learning techniques beyond the computer science field to

traditional engineering fields (e.g., [10, 80, 100, 112, 117]). In particular, since RNNs are able

to approximate steady-state input-output interrelations and different systems’ nonlinear dynamic

behavior, feed-forward neural network (FNN) models and RNN models and their variants (e.g.,

[23, 40, 53, 85]), have shown promise for use in model-based control systems. In order to further

enhance the performance of machine learning models, real-time data sets gathered from numerous

sensors can be used for online adaptation and training to minimize modeling error and account

for model uncertainties, and parallel computing units can be utilized to expedite calculations for

real-time tasks like process control. Designing model-based control systems that utilize machine

learning modeling methods to leverage massive data sets is, therefore, a major breakthrough in

process system engineering that will have a vast influence on the industry, especially on the

following generation of industrial control systems.

The fundamental benefit of data-driven modeling techniques is that no prior knowledge of the

process is required. However, historical data including key measured process variables is required

to develop data-driven models. The effectiveness of data-driven modeling methods is based on

the quality and amount of process data. Moreover, owing to their capability to analyze data

in vast quantities from industrial processes, machine learning techniques have recently attracted

significant attention in traditional engineering fields. Machine learning is a broad family of

2

techniques including neural networks and their variants, which have been used successfully in

regression and classification problems such as process modeling, process monitoring, and fault

detection. RNNs and long short-term memory (LSTM) networks are two of the many types

of neural networks that have gained popularity for modeling nonlinear dynamic systems from

sequential data (i.e., time-series data) and have been used in advanced control strategies such as

model predictive control (MPC) to predict the evolution of process states when first-principles

process models are unavailable (e.g., [21, 29, 118]).

Standard RNN models, also known as fully-connected RNN models, are a popular candidate

for analyzing time-series data within a black-box modeling framework. Such a modeling

methodology, however, may not always be optimal, particularly for large chemical processes

due to the complex interactions among process variables. Hence, to improve RNN performance,

several studies (e.g., [48, 92, 129]) have looked into gray-box modeling, also referred to as hybrid

modeling, which involves integration of prior physical knowledge and expertise into the modeling

of neural networks. Another method is to reflect physical relations among the given process inputs

and outputs into the modeling of neural networks (i.e., known as partially-connected modeling),

which was discussed in several works such as in [62, 114], where they were shown to yield better

closed-loop performance.

1.2 Background

With the continuous improvement of data availability and accessibility,

machine-learning-based model predictive control (MPC) methods have received increasing

attention as the next generation of control systems. Conceptually, an MPC contains three

major components: a predictive model, an objective function and constraints, and a process

optimizer [15]. By using the neural network as the predictive model, the MPC can capture the

process dynamics and accordingly make smart decisions: approaching the target states efficiently,

automatically, and economically. Furthermore, recent works have demonstrated that ML-based

3

MPC can be utilized to deal with various challenging tasks to improve manufacturing processes

such as suppressing measurement noise and searching optimum economic benefits, which

classical control techniques are incapable of accomplishing [30, 113]. Moreover, data-driven

modeling [102] has historically drawn substantial attention in the context of MPC due to the

fact that it is typically challenging to develop a first-principles model that captures complicated,

nonlinear behavior of a large-scale process. According to studies [97, 99], modeling with neural

networks has been effective in approximating nonlinear dynamical systems. Neural networks may

better capture “difficult nonlinearities” due to a broader class of learnable nonlinear functions than

polynomial approximation [72], the latter of which is often simple to solve. RNN-based modeling

has been the subject of much study, which also helps to construct model-based control schemes

that employ data-driven models to forecast process dynamics [73, 109].

The investigation of utilizing artificial intelligence (AI) techniques in chemical engineering has

been carried out intensively. AI technology has provided classic and powerful modeling tools such

as fuzzy logic in the 1960s [125], expert systems in the 1980s [57,59], and machine learning in the

1990s [101]. Moreover, the implementation of ML techniques in the modeling of complex systems

comes with a successful history in different chemical processes applications [12, 27, 89, 109].

For example in [12], an artificial neural network (ANN) model was developed for a bio-diesel

production process, where the ANN model provided an approximation of the percentage of fatty

acid methyl ester yield within ±8% deviation from the experimental data. Additionally, among

various ML modeling techniques, RNNs have been broadly employed for modelling a general class

of dynamical systems for control and state estimation purposes [73]. In [89], a RNN model of a

continuous binary distillation column (BDC) was trained and validated using experimental data,

and the study demonstrated that the RNN model prediction could outperform a first-principles

model for large-scale, complex, nonlinear process, due to its high degree of freedom to solve the

complex non-linear regression problem with the process dataset.

Due to their high data needs, failure to yield physically consistent outputs, and lack of

generalizability to out-of-sample conditions, even the most cutting-edge black box ML models

4

(for example dense fully-connected RNN models) have had only sporadic success when applied in

scientific domains [49]. The research community is starting to investigate the continuum between

mechanistic and ML models, in which both scientific knowledge and data are integrated in a

synergistic way. This is because neither an ML-only nor a scientific knowledge-only approach

can be considered sufficient for complex scientific and engineering applications [3, 11, 79]. This

paradigm uses domain-specific knowledge, but in supporting roles, such as feature engineering or

post-processing, in a fundamentally different way than dominant approaches in the ML community.

On the other hand, although the concept of combining scientific principles and ML models has

only recently gained popularity [49], there has already been a substantial amount of research

done on the subject. This research direction is being conducted in various disciplines other than

chemical engineering including earth systems [81], climatology [51, 70], material exploration

[16, 84], quantum chemistry [18, 86], biological sciences [123], and hydrology [121]. Early

findings in isolated and straightforward scenarios have been encouraging, and expectations are

growing that this paradigm will speed up scientific advancement and aid in resolving some of the

global challenges that humanity is currently facing with regard to the environment [33], health

sciences [105], and food and nutrition security [47].

Similarly, in process systems engineering and chemical engineering disciplines, the present

paradigm of numerical approaches to get approximate solutions is based solely on physics:

numerical differentiation and integration algorithms are used to solve for systems of associated

differential equations that reflect established physical principles throughout space and time

[14, 45, 83]. A different approach is to look for simplified models that can roughly characterize

the dynamics of the underlying systems, such as the Euler equations for gas dynamics and, for

turbulent flows, one may utilize Reynolds-averaged Navier-Stokes equations [19,96]. But creating

a simplified model that accurately captures a phenomenon is quite difficult. More crucially, only

a portion of the dynamics of many complicated real-world processes is recognized. The equations

may not accurately reflect the actual system states. On the other hand, numerous recent studies,

from turbulence and reaction modeling to state prediction, have demonstrated that ML models can

5

produce realistic predictions and greatly speed up the simulation of complex dynamics compared

to numerical solvers [50, 63]. However, ML models are dense and purely data-driven by nature,

which has many limitations. Without strict boundaries, ML models are likely to provide predictions

that defy the fundamental principles governing physical systems. Furthermore, ML models

frequently experience difficulties with generalization, i.e., models trained on a single dataset cannot

adequately adapt to unseen scenarios. Hence, approximating complicated dynamical systems in

scientific areas cannot be considered to be a problem that is sufficiently solved by either ML models

alone or simply physics-based methods. As a result, there is a significant necessity to integrate

ML models with conventional physics-based methodologies, through which we can maximize the

benefits of both techniques.

1.3 Dissertation Objectives and Structure

In the context of machine-learning-based model predictive control systems, this dissertation

proposes control theoretic approaches to process operation and modelling. Chemical process

examples are employed to demonstrate the applications of the suggested control strategies. The

following summarizes this dissertation’s goals in further detail:

1. To present a framework of integrating machine-learning-based state estimator implemented

in the contexts of nonlinear chemical processes under machine-learning-based MPC, while

ensuring closed-loop stability via Lyabunov stability constraints.

2. To develop a partially-connected RNN model based on the physical input-output relationship

of highly nonlinear and complex chemical processes in the context of RNN-based MPC.

3. Overcoming the over-fitting issue originating due to the presence of noise in training data of

partially-connected RNN models.

4. Developing a theoretical generalization error upper bound for a class of partially-connected

RNN models.

6

The dissertation comprises of 6 chapters and is organized as follows.

As full state measurements may be unavailable in chemical plants, in chapter 2, we

propose two machine learning-based state estimation approaches. The first approach integrates

a RNN model within the extended Luenberger observer framework to develop data-based

state estimators. The second approach utilizes a hybrid model that integrates feed-forward

neural networks with first-principles models to capture process dynamics in the state estimator.

Then, an output feedback model predictive controller is designed based on the state estimates

provided by the machine-learning-based estimators to stabilize the closed-loop system at the

steady-state. A chemical process example is utilized to illustrate the effectiveness of the proposed

machine-learning-based state estimation and control approaches.

RNN models have demonstrated their ability in providing a remarkably accurate modeling

approximation to describe the dynamic evolution of complex, nonlinear chemical processes in

several applications. Although conventional fully-connected RNN models have been successfully

utilized in MPC to regulate chemical processes with desired approximation accuracy, the

development of RNN models in terms of model structure can be further improved by incorporating

physical knowledge to achieve better accuracy and computational efficiency. Hence, chapter

3 investigates the performance of MPC based on two different RNN structures. Specifically,

a fully-connected RNN model, and a partially-connected RNN model developed using a prior

physical knowledge are considered. This study uses an example of a large-scale complex chemical

process simulated by Aspen Plus Dynamics to demonstrate improvements in the RNN model and

an RNN-based MPC, when prior knowledge of the process is taken into account.

In chapter 3, the proposed RNN modeling method was developed with clean training data.

However, in practice, and generally in chemical processes, noise-free data is not always available.

Furthermore, due to the occurrence of over-fitting at the learning phase, the modeling of chemical

processes via ANNs by using corrupted data (i.e., noisy data) is an ongoing challenge. Therefore,

Chapter 4 investigates the effect of both Gaussian and non-Gaussian noise on the performance

of process-structure based RNN models, which take the form of partially-connected RNN

7

models, that are used to approximate a class of multi-input-multi-outputs nonlinear systems.

Furthermore, two different techniques, specifically Monte Carlo dropout and co-teaching, are

utilized in the development of partially-connected RNN models. These two techniques are

employed to reduce the over-fitting in ANNs when noisy data is used in the training process

and, hence, to improve the open-loop accuracy as well as the closed-loop performance under

a Lyapunov-based model predictive controller (LMPC). Aspen Plus Dynamics, a well-known

high-fidelity process simulator, is used to simulate a large-scale chemical process application

in order to demonstrate the anticipated improvements in both open-loop approximation and

closed-loop controller performance in the presence of Gaussian and non-Gaussian noise in the

data set using physics-informed RNNs.

From chapters 3 and 4, alongside with different works in literature, it has been demonstrated

that physics-informed RNN models (where the network structure is informed by the physical

interactions among process variables) are preferable to dense RNN models. Motivated by

this, chapter 5 focuses on developing a theoretical upper bound of the generalization error of

partially-connected RNN models and its relationship to the corresponding error of fully-connected

RNN models for the same training and testing data sets. The RNN models are subsequently used

in the model predictive control of nonlinear processes. Through the use of a chemical process

example, the advantages of the use of partially connected RNN models in MPC are then illustrated

via open-loop and closed-loop simulations.

Chapter 6 summarizes the main results of the dissertation.

8

Chapter 2

Machine Learning-Based State Estimation

and Predictive Control of Nonlinear

Processes

2.1 Introduction

Closed-loop performance of chemical processes under model-based controllers (e.g., model

predictive control (MPC)) depends on the model representation of the process, and the availability

of real-time state measurements. In general, MPC uses a first-principles model or a data-driven

process model to predict state evolution in the optimization problem, and adjusts its control actions

with state feedback from the sensor measurements. However, measurements of key process states

such as species concentration in a chemical reactor could be time-consuming and sometimes

involves manual manipulation of samples during offline protocols [66,126]. Additionally, the cost

of equipment for getting the targeted measurement in real time also hinders its real-time application

in chemical plants [76]. One way to address this issue is to combine measurable process state

variables (e.g., pressure, level, and temperature measurements) with state estimation techniques to

predict unmeasured states in real-time operation.

9

State estimation has been extensively studied in the literature, and includes methods for

both deterministic and stochastic cases (e.g., [4, 28, 76, 78]). In stochastic state estimation,

many methodologies have been proposed including recursive and optimization-based approaches,

which can also address the constrained and unconstrained estimation problems. Extended

Kalman filter (EKF) is one of the most popular recursive methods for unconstrained nonlinear

systems. Moving horizon estimator is an optimization-based methodology that can account for

constraints in its formulation. Additionally, other methodologies such as unscented Kalman

filter, particle filter, constrained version of the EKF, and combination of the above methods,

have been proposed to improve the performance of EKF (e.g., [4, 60, 76]). In deterministic state

estimation, Luenberger-based observers are common estimation methods for the practitioners [9,

28]. Additionally, extended Luenberger observer, sliding mode observer, adaptive state observer,

high-gain observer, geometric observer, backstepping observer have found diverse applications in

many fields (e.g., [9]). Similarities and differences among the above methods and their advantages

and disadvantages are further discussed in [9, 78]. In order to achieve a desired performance

using these methodologies, a mathematical model for the targeted system is generally needed

to describe process dynamics in a certain operating region. However, the development of such

a process model for some complex reacting systems using first-principles knowledge could be

challenging. For example for a catalytic carbon monoxide oxidation over Pt-alumina, a common

Langmuir-Hinshelwood rate law is only valid in a small region of operation [77].

Machine learning has recently attracted an increasing level of attention in process modeling.

Among many different machine learning methods, recurrent neural networks (RNN) and

Long-Short-Term-Memory (LSTM) networks have been utilized to model dynamic systems due to

their temporal dynamic behavior. Additionally, hybrid modeling that relies on both first-principles

knowledge and process operational data can also be used to model nonlinear chemical processes

and is one of the most interesting and challenging problems in the data science era [100]. The idea

of hybrid modeling is to use the best features of first-principles model (i.e., parametric models) and

of data-driven models (i.e., non-parametric models) to better capture the process dynamics. There

10

are many examples of hybrid modeling and their applications to chemical engineering problems in

the literature (e.g., [13,58,71,77,103,128]). For example, in [13], a hybrid model was developed for

a hydraulic fracturing process, where the process first-principles model was integrated with a deep

neural network. Due to advance in computational science like in quantum computing, it is expected

the applications of infeasible challenging problem from the past by means of hybrid modelling

and consequently the need of more complex algorithms [128]. Recently, hybrid modelling has

been also pointed out as one of the most interesting challenging problem in this data science

era [100]. For a better performance of these methodologies, the mathematical model that represents

the targeted system should be able to cover all the possible phenomena over the entire operating

conditions. However, this could be a difficult task in some complex reacting systems by only

using a first-principle model that it is tractable in online conditions. However, this can increased

considerable the time needed for implementing the proposed techniques, specially when using

first-principles models. To work around this issue due to the recent advances, machine learning

modeling can be used to unify the modeling approach for state estimation and control theory in an

efficient way. In [77], a neural network model was developed to represent the reaction kinetics and

was coupled with the first-principles model to obtain a hybrid model that was successfully applied

within the EKF. It is reported that hybrid models can not only augment the region of operation,

but also provide a more general modeling framework that can build models faster and need no

process insights [107]. Furthermore, hybrid artificial neural network has been also considered

in control strategies [103, 122]. For example, MPC was implemented in a batch polymerization

process using an hybrid artificial neural network (ANN) [98]. In this work, experimental studies

showed the benefits of using hybrid ANN in the control loop over other methodologies [98].

Similarly, hybrid stacked recurrent neural network(RNN) model showed a better performance

during gel effect prediction and also during the control studies in a batch polymerization process

when comparing with a single RNN model [95]. Hybrid modelling using neural networks and first

principle models in a batch polymerization system showed better set-point tracking over other two

control design [106].

11

Machine learning models can be utilized in model-based controllers to predict future states.

Recently, in [114, 118], machine-learning-based MPC schemes have been proposed to optimize

process performance and ensure system stability with feedback measurements of process state

variables assumed to be available. However, the assumption of availability of full state

measurements for feedback control may not hold for the chemical processes with state variables

difficult to measure in real time. In this work, we propose two machine learning approaches:

a) recurrent neural networks, and b) hybrid models using feed-forward neural networks and

first-principles models, to model nonlinear processes. Then, we integrate the RNN model and the

hybrid model within the extended Luenberger observer framework and develop Lyapunov-based

MPC using state estimates from machine-learning-based state estimators. Specifically, section

2.2 introduces the preliminaries, including the class of systems, and the formulation of extended

Luenberger observer. Section 2.3 presents the formulation of RNN models and of the RNN-based

Luenberger observe along with the formulation of hybrid models and of the hybrid-model-based

state estimator. An output feedback model predictive controller that uses state estimates from the

aforementioned machine-learning-based state estimators formulation is also introduced in section

2.3, and then it is applied to a chemical reactor example to illustrate the effectiveness of the

proposed estimation approaches.

2.2 Preliminaries

2.2.1 Notations

The Euclidean norm of a vector is represented by | · |. The standard Lie derivative is represented

as L f h(x) = ∂h(x)
∂x f (x). The notation \ stands for set subtraction, i.e., A\B = {x ∈ Rn|x ∈ A,x /∈ B}.

The function f (·) is said to be of class C1 if it is continuously differentiable.

12

2.2.2 Class of Systems

We consider the following class of continuous-time nonlinear systems in state-space form:

ẋ = F(x,u) := f (x)+g(x)u (2.1a)

y = h(x) (2.1b)

where the state vector is x = [x1, ...,xn]
T ∈ Rn, the output vector is y = [y1, ...,yq]

T ∈ Rq, and the

input vector is u = [u1, ...,um]
T ∈ Rm. F(x,u) is a nonlinear function with respect to x and u. The

constraints on control inputs is given by u ∈U := {ui
min ≤ ui ≤ ui

max}. The function f (·), g(·) and

h(·) are matrices of dimension n×1, n×m, and q×1, respectively.

2.2.3 Extended Luenberger Observer

Extended Luenberger observer (ELO) has been proposed for nonlinear processes as a natural

extension of Luenberger observer based on a linear approximation of the process [28, 127]. The

practical goal of the state observer is to provide an estimation of the unmeasured internal states of

a given system by utilizing measured states from the process along with the implemented inputs.

The extended Luenberger observer is presented in the following form for the nonlinear system of

Eq. 2.1.

˙̂x = F(x̂,u)+K(y−h(x̂)) (2.2)

where x̂ represents the estimated state vector, and the observer gain is denoted by K. The observer

gain is also associated with desired properties from the state estimator and will be discussed in

detail later. It is observed from Eq. 2.2 that the first term is the process model, and the last term

K(y−h(x̂)) is known as the output prediction error, which is also considered as a correction term.

The goal of the ELO is to minimize the estimation error (i.e., e = x− x̂) in which the dynamic

13

of the error is determined by the following equation [28, 67]:

ė = F(x̂+ e,u)−F(x̂,u) −K(h(x̂+ e)−h(x̂)) (2.3)

As shown in Eq. 2.3, the problem now is to determine under which conditions e can decay to

zero. Therefore, it is important to design K to achieve this goal. In order to design K, Eq. 2.3 can

be simplified to the following equation by linearizing the process model at a fixed point:

ė = (A−KL)e (2.4)

where A = [∂F(x,u)/∂x]x=x̂ and L = [∂h(x,u)/∂x]x=x̂ are the linearized terms of the nonlinear

system evaluated at a fixed-point (typically the operating steady-state). Finally, K is selected such

that the eigenvalues of the matrix A−KL have strictly negative real parts.

2.2.4 Stabilization via Control Lyapunov Function

We assume that there exists an observer and a feedback control law u = Φ(x̂) ∈ U using the

estimated states x̂ from the observer to form an output feedback controller that can render the origin

of the nonlinear system of Eq. 2.1 exponentially stable. This stabilizability assumption implies that

there exists a C1 Control Lyapunov function V (x) such that the following inequalities hold for all

x, x̂ in an open neighborhood D around the origin:

c1|x|2 ≤V (x)≤ c2|x|2, (2.5a)

∂V (x)
∂x

F(x,Φ(x̂))≤−c3|x|2, (2.5b)∣∣∣∣∂V (x)
∂x

∣∣∣∣≤ c4|x| (2.5c)

where c1, c2, c3 and c4 are positive constants. F(x,u) is the nonlinear system of Eq. 2.1.

A candidate controller for Φ(x̂) is provided by the universal Sontag control law [61]. Then,

14

following [118], we characterize the closed-loop stability region Ω
ρ
′ as a level set of Lyapunov

function in the region D where the time-derivative of V is rendered negative under the controller

Φ(x̂) ∈ U , i.e., Ω
ρ
′ := {x ∈ D | V (x) ≤ ρ

′}, where ρ
′
> 0. Additionally, based on the Lipschitz

property of F(x,u) and the boundedness of u, there exist positive constants M, Lx,L
′
x such that the

following inequalities hold for all x,x′ ∈ D and u ∈U :

|F(x,u)| ≤ M (2.6a)

|F(x,u)−F(x′,u)| ≤ Lx|x− x′| (2.6b)∣∣∣∣∂V (x)
∂x

F(x,u)− ∂V (x′)
∂x

F(x′,u)
∣∣∣∣≤ L

′
x|x− x′| (2.6c)

Remark 2.1. The assumption of the existence of an output feedback controller satisfying Eq. 2.5

requires that the observer states are bounded in Ω
ρ
′ and the estimate error, e = x− x̂, converges to

zero within finite time. In this work, the ELO of Eq. 2.2 and the Sontag control law [90] are used

as the observer and state feedback controller, respectively.

2.3 Machine Learning Based State Estimation

In this Chapter, the theory and design of two ML-based state observers is discussed and

constructed in the framework of Luenberger observer. The necessary stability assumptions were

made to prove the stability of the closed-loop system under output feedback ML-based MPC.

2.3.1 RNN-based State Estimator

2.3.1.1 Recurrent Neural Network (RNN)

As a process model is needed in the extended Luenberger observer of Eq. 2.2. The following

RNN model is developed to approximate the nonlinear system of Eq. 2.1 using process operational

15

data when a first-principles model is not available:

˙̄x = Frnn(x̄,u) := Ax̄+Θ
T y (2.7)

where x̄ = [x̄1, ..., x̄n] is the RNN state vector, and u = [u1, ...,um] is the manipulated input vector.

y = [y1, ...,yn,yn+1, ...,ym+n] = [σ(x̄1), ...,σ(x̄n),u1, ...,um] ∈ Rn+m is a vector of both x̄ and u,

where σ(·) is the nonlinear activation function. A is a diagonal coefficient matrix and Θ =

[θ1, ...,θn] ∈ R(m+n)×n is a matrix with neural network weights to be optimized. The structures of

unfolded and folded RNNs are shown in Fig. 3.1. The coefficient matrices A = diag[−a1, ...,−an],

ai > 0, i = 1, ...,n and Θ consist of neural network weights that will be optimized during training.

In practical implementation, the neural network weights are optimized to minimize the error

between predicted outputs and the actual outputs in the training dataset.

Figure 2.1: Structure of recurrent neural network.

After designing the RNN structure in terms of the number of layers and neurons and other

hyper-parameters, the RNN is trained following the standard learning process as discussed in

[118, 119]. Specifically, training, validation and testing datasets are generated from open-loop

16

simulations of Eq. 2.1 under different initial conditions and control actions for a finite period

of time. The continuous-time system of Eq. 2.1 is integrated using explicit Euler method

with a sufficiently small integration time step hc, and the control actions u are applied in a

sample-and-hold fashion, i.e., u(t)= u(tk), ∀t ∈ [tk, tk+1), where tk+1 := tk+∆ and ∆ is the sampling

period. Since RNN models are able to capture process dynamic behavior from time-series data,

the RNN model in this work is developed using all the integration time step data (i.e., data at

each hc step) within each sampling period to predict the state evolution for one sampling period.

Additionally, as discussed in [118], the RNN models needs to satisfy a sufficiently small modeling

error, i.e., |ν | = |F(x,u)− Frnn(x̄,u)| ≤ γ|x| ≤ νm, between the RNN model and the nonlinear

model of Eq. 2.1 during the training process such that it can well represent process dynamics in the

operating region considered. Note that the modeling error ν is defined as the error between ẋ from

the first-principles model and the ẋ predicted by the RNN model under the same input and states.

The modeling error ν is not a constant for different states and input. However, since we limit the

operation in the stability region Ωρ (i.e., both states and inputs are bounded), and the RNN model

is trained using the datasets generated in Ωρ to achieve a very high accuracy, the modeling error

can be made sufficiently small for all the states within Ωρ .

Remark 2.2. The RNN models are chosen in this work due to the ability of modeling a general

class of nonlinear dynamical systems through the feedback loop in the hidden layer that introduces

the past information to the current network (similar to the evolution of dynamical systems

where past states values influence current values). The proposed approach can be extended to

other machine learning approaches such as long short-term memory networks which are also

widely used in modeling nonlinear dynamical systems [21, 31].In addition to neural network

modeling approaches, sparsity promoting algorithms, (extended) dynamic mode decompositions,

and Koopman system identification have also been used to approximate nonlinear systems in recent

works [55, 69].

Remark 2.3. The RNN model in this work is developed using noise-free data from extensive

open-loop simulations of Eq. 2.1 to capture process dynamics in the operating region Ω
ρ
′ . In

17

addition to computer simulations, datasets can also be generated using industrial measurements

and experimental data. In the case that real industrial measurements are corrupted by noise

from sensors variability and common plant variance, co-teaching training algorithm and dropout

technique can be utilized in machine learning modeling approaches to improve the approximation

performance by reducing the impact of noise. The interested reader is referred to [113] for a

detailed development of co-teaching and dropout methods.

Remark 2.4. Overfitting is one of the most common issues in the development of neural network

models [44, 113]. To reduce overfitting in this study, we start with a simple neural network with

one layer and a few neurons, and keep increasing the number of layers and of neurons until no

further improvement is noticed. We also use a large amount of data for validation such that the

model performs well with respect to training and validation datasets.

2.3.1.2 RNN-based State Estimator

The RNN model is then used in the extended Luenberger observer of Eq. 2.2 as follows:

˙̂x = Frnn(x̂,u)+K(y−h(x̂)) (2.8)

Specifically, the state estimation based on the RNN model of Eq. 2.7 is obtained from the following

steps. 1) Given an initial state estimate x̂(tk) at time t = tk along with the manipulated input vector

u(tk), the RNN model predicts the state at the next integration time step at t = tk+hc, then the state

estimate at t = tk + hc is obtained following Eq. 2.8 by adding the second term hc ×K(y− h(x̂)).

2) After the state estimate at t = tk + hc is obtained, the above process is repeated with the same

input u (because u remains constant within one sampling period). 3) Finally, the state estimate at

the next sampling period t = tk+1 := tk +∆ is obtained through ∆

hc
iterations of the above process.

Similarly, we assume that the RNN-based observer together with the state feedback control law

u = Φ(x̂) ∈U form an output feedback controller that can render the origin of the RNN system of

Eq. 2.7 exponentially stable. This implies that there exists a C1 Lyapunov function V (x) such that

18

the following inequalities hold for all x, x̂ in an open neighborhood D around the origin:

ĉ1|x|2 ≤V (x)≤ ĉ2|x|2, (2.9a)

∂V (x)
∂x

Frnn(x,Φ(x̂))≤−ĉ3|x|2, (2.9b)∣∣∣∣∂V (x)
∂x

∣∣∣∣≤ ĉ4|x| (2.9c)

where ĉ1, ĉ2, ĉ3 and ĉ4 are positive constants. Note that the control law in this section is designed

based on the RNN model of Eq. 2.7, while the control law in Section 2.2.4 is designed based on

the first-principles model of Eq. 2.1. Subsequently, a new closed-loop stability region Ωρ can be

characterized within D, where Eq. 2.9 is satisfied under u = Φ(x̂) ∈ U . Since the RNN model

is trained with a sufficiently small modeling error, the state estimation through RNN-based state

estimator of Eq. 2.8 is sufficiently close to the estimated value provided by Eq. 2.2 when the

process model of Eq. 2.1 is known. The following proposition demonstrates that the controller

u = Φ(x̂) ∈U designed based on the estimated state from RNN-based estimator is able to stabilize

the system of Eq. 2.1 if the modeling error |ν |= |F(x,u)−Frnn(x̄,u)| is sufficiently small.

Proposition 2.1. Consider the nonlinear system of Eq. 2.1 with an initial state x0 ∈ Ωρ and a

stabilizing control law u = Φ(x̂) ∈ U based on the estimated states from Eq. 2.8, if the modeling

error can be bounded, i.e., |ν |= |F(x,u)−Frnn(x,u)| ≤ γ|x|, for all x ∈ Ωρ and u ∈U, where γ is

a positive real number satisfying γ < ĉ3/ĉ4, then the origin of the closed-loop system of Eq. 2.1 is

rendered exponentially stable under u = Φ(x̂) ∈U for all x, x̂ ∈ Ωρ .

Proo f : Based on Eq. 2.9, the time-derivative of V for the nonlinear system of Eq. 2.1 is derived

as follows:

V̇ =
∂V (x)

∂x
F(x,Φ(x̂))

=
∂V (x)

∂x
(Frnn(x,Φ(x̂))+F(x,Φ(x̂))−Frnn(x,Φ(x̂)))

≤− ĉ3|x|2 + ĉ4|x|(F(x,Φ(x̂))−Frnn(x,Φ(x̂)))

≤− ĉ3|x|2 + ĉ4γ|x|2

(2.10)

19

Therefore, V̇ ≤−(ĉ3− ĉ4γ)|x|2 ≤ 0 holds if γ satisfies γ < ĉ3/ĉ4. This implies that for all x0 ∈ Ωρ ,

the origin of the nonlinear system of Eq. 2.1 is rendered exponentially stable under the controller

u = Φ(x̂) ∈U with state estimates from RNN-based estimator.

2.3.2 Hybrid-Model-Based State Estimator

In this section, we introduce a state estimator designed based on a hybrid model that integrates

feed-forward neural network (FNN) with first-principles model. In this case, the FNN model is

only used to approximate the nonlinear terms in Eq. 2.1, while the first-principles model of Eq. 2.1

can be derived from physical laws such as mass and energy balances.

2.3.2.1 Feed-forward Neural Network (FNN)

We develop a feed-forward neural network FNN(x) with input vector x = [x1, ...,xn] and output

vector y = FNN(x) = [y1, ...,ym] to approximate the nonlinear terms in Eq. 2.1. Figure 2.2 shows

the structure of a feed-forward neural network with three layers, i.e., input layer, hidden layer,

and output layer. The hidden neurons h j, j = 1, ..., p, and the outputs yk are obtained using the

following equations:

h j = σ1(
n

∑
i=1

w[1]
ji xi +w[1]

j0), j = 1,2, ..., p (2.11)

yk = σ2(
p

∑
i=1

w[2]
ki hi +w[2]

k0), k = 1,2, ...,m (2.12)

The weights in the first two layers are denoted by w[1]
ji , and w[2]

ki respectively, with w[1]
j0 and

w[2]
k0 representing biases. σ1 and σ2 are nonlinear activation functions such as hyperbolic tangent

function, tanh(x) = 2
(1+ e−2x)

− 1, and logistic sigmoid function S(x) = 1
(1+ e−x) . The activation

function σ1 is utilized with a linear combination of input variables xi in the calculation of hidden

neurons h j, while the output variable yk is calculated through σ2 with a linear combination of

hidden neurons.

20

Figure 2.2: Three-layer feed-forward neural network structure with biases represented by neuron
‘1’.

The development of FNN models also requires datasets for training and validating. Hence,

a set of input vectors {xn} with the corresponding output vectors {ŷn} are used in constructing

datasets. The data can be collected in a variety of ways, including but not limited to experimental

data and extensive computer simulations. The FNN model is trained to minimize the following

loss function:

E(w) =
1
2

N

∑
n=1

|y(xn,w)− ŷn|2 (2.13)

where N is the number of data points in training. The loss function is the sum of squared error

between the predicted output by FNN model and the actual output in datasets. The weight vectors

21

w are obtained by minimizing Eq.2.13 via the gradient descent optimization method wι+1 = wι −

η∇E(wι), where the iteration is denoted by ι , and η > 0 is the learning rate.

2.3.2.2 Hybrid-model-based Estimator

The hybrid model is developed by integrating the FNN model with the first-principles model of

Eq. 2.1. The FNN model is used to represent the nonlinear terms, while the first-principles model

is developed from the physical knowledge [114]. The hybrid model for the system of Eq.2.1 is in

the following form:

ẋ = Fh(x,FNN(x),u) (2.14)

where Fh denotes the hybrid model and FNN is the FNN model used to capture the static nonlinear

relationship between the inputs and outputs of the nonlinear terms. The hybrid-model-based state

estimator utilizes the hybrid model of Eq.2.14 as the process model and includes the estimation

correction term as follows:

˙̂x = Fh(x̂,FNN(x̂),u)+K(y−h(x̂)) (2.15)

Fh represents the hybrid model that is developed to capture the dynamics of the whole nonlinear

system of Eq. 2.1. It should be noted that the hybrid model is used when a full first-principles model

is unavailable. In that case, some of the nonlinearities like reaction rates are unknown and can be

approximated by feedforward neural networks from data. Similar to the RNN-based estimator of

Eq. 2.8, the hybrid-model-based state observer takes the state estimate x̂(tk−1) and the manipulated

variable u(tk−1) along with the last measurement y(tk) as inputs, and integrates Eq. 2.15 for one

sampling period to estimate the states at the next sampling time. The explicit Euler method is

used to integrate Eq. 2.15 with a small integration step hc. Both estimators are initialized with

initial conditions within Ωρ and, if they calculate an estimate outside of Ωρ , then this estimate is

discarded and is replaced with an estimate within Ωρ which ensures via the conditions of Eq. 2.5

that closed-loop stability is maintained.

22

2.4 Output Feedback Model Predictive Control

In this section, an output feedback model predictive control (MPC) is designed based on state

estimates provided by the RNN-based estimator to stabilize the nonlinear system of Eq. 2.1 at the

steady-state. Specifically, the Lyapunov-based MPC is used in this work and the formulation is

presented as the following optimization problem:

J = min
u∈S(∆)

∫ tk+N

tk
L(x̃(t),u(t))dt (2.16a)

s.t. ˙̃x(t) = Frnn(x̃(t),u(t)) (2.16b)

u(t) ∈U, ∀ t ∈ [tk, tk+N) (2.16c)

x̃(tk) = x̂(tk) (2.16d)

V̇ (x̂(tk),u)≤ V̇ (x̂(tk),Φ(x̂(tk)),

if x̂(tk) ∈ Ωρ\Ωρnn (2.16e)

V (x̃(t))≤ ρnn, ∀ t ∈ [tk, tk+N), if x̂(tk) ∈ Ωρnn (2.16f)

where x̃ is the predicted state trajectory, S(∆) is the set of piecewise constant functions with period

∆, and N is the number of sampling periods in the prediction horizon. V̇ (x,u) represents the

time-derivative of V , i.e., ∂V (x)
∂x (Frnn(x,u)). The LMPC calculates the optimal input sequence u∗(t)

over the prediction horizon t ∈ [tk, tk+N), and sends the first control action u∗(tk) to the system

to be applied for the next sampling period. Then the LMPC receives new measurements and is

resolved with new state estimates at the next sampling time.

In the optimization problem of Eq. 2.16, Eq. 2.16a is the objective function of LMPC that

minimizes the time-integral of L(x̃(t),u(t)) over the prediction horizon subject to the following

constraints. The constraint of Eq. 2.16b is the RNN model of Eq. 2.7 for predicting state evolution

given control actions and an initial state. Eq. 2.16c is the input constraint. Eq. 2.16d defines the

initial condition x̃(tk) of Eq. 2.16b, which is the state estimates provided by the RNN-based state

estimator of Eq. 2.8 at t = tk. Specifically, given the state estimates at the previous time step, and

23

the control actions, the estimation for the current state at t = tk is obtained following the steps

as discussed in Section 2.3.1.2. Then, the state estimates x̂(tk) is used as the initial state for the

prediction model of Eq. 2.16b, and also in the constraints of Eq. 2.16e. If x̂(tk) ∈ Ωρ\Ωρnn , the

constraint of Eq. 2.16e is activated, under which the state is forced to move towards the origin since

Φ(x̂) is a stabilizing feedback control law. If the estimated state x̂(tk) enters a small neighborhood

around the origin, Ωρnn , then the constraint of Eq. 2.16f requires the states to remain inside Ωρnn

for the entire prediction horizon.

The following theorem is established to demonstrate guaranteed closed-loop stability for the

nonlinear system of Eq. 2.1 under the LMPC of Eq. 2.16 using state estimates from RNN-based

estimator.

Theorem 2.1. Consider the closed-loop system of Eq. 2.1 with an initial state x0 ∈ Ωρ under the

LMPC of Eq. 2.16. Let ∆ > 0, εw > 0 and ρ > ρmin > ρnn > ρs satisfy

− ĉ3 − ĉ4γ

ĉ2
ρs +L

′
xM∆ ≤−εw (2.17a)

ρnn = max{V (x̄(tk +∆)) | x̂(tk) ∈ Ωρs, u ∈U} (2.17b)

ρmin = max{V (x(tk)) | x̄(tk) ∈ Ωρnn}. (2.17c)

Then, for any initial state x0 ∈ Ωρ , it is guaranteed that the state is bounded in the stability region

for all times, i.e., x(t) ∈ Ωρ , ∀t ≥ 0, and x(t) ultimately converges to Ωρmin for the closed-loop

system of Eq. 2.1 under the LMPC of Eq. 2.16.

Proo f : We first consider the estimated state x̂(tk) ∈ Ωρ\Ωρnn at t = tk. In this case, the LMPC

uses the constraint of Eq. 2.16e to render the time-derivative of V under u less than that under the

stabilizing controller u = Φ(x̂). We show that under the constraint of Eq. 2.16e, the state is able to

move towards the origin over the next sampling period. Specifically, we derive the time-derivative

24

of V (x) under u = Φ(x̂) for the nonlinear system of Eq. 2.1 as follows:

V̇ (x(t)) =
∂V (x(t))

∂x
F(x(t),Φ(x̂(tk)))

=
∂V (x(tk))

∂x
F(x(tk),Φ(x̂(tk)))

+
∂V (x(t))

∂x
F(x(t),Φ(x̂(tk)))

− ∂V (x(tk))
∂x

F(x(tk),Φ(x̂(tk)))

(2.18)

Since Eq. 2.10 shows that the controller u = Φ(x̂) can render the time-derivative of V (x(tk))

negative, i.e., ∂V (x(tk))
∂x F(x(tk),Φ(x(tk)))≤−ĉ3|x(tk)|2+ ĉ4γ|x(tk)|2 < 0, ∀x(tk) ̸= 0, we can further

derive the following inequality for t ∈ [tk, tk+1):

V̇ (x(t))≤− ĉ3 − ĉ4γ

ĉ2
ρs +

∂V (x(t))
∂x

F(x(t),Φ(x̂(tk)))

− ∂V (x(tk))
∂x

F(x(tk),Φ(x̂(tk)))

≤− ĉ3 − ĉ4γ

ĉ2
ρs +L

′
x|x(t)− x(tk)|

≤− ĉ3 − ĉ4γ

ĉ2
ρs +L

′
xM∆

(2.19)

Therefore, if Eq. 2.17a is satisfied, the time-derivative of V (x) under u = Φ(x̂) for the nonlinear

system of Eq. 2.1 is rendered negative for the next sampling time, which implies the state of the

system of Eq. 2.1 will move towards the origin under the constraint of Eq. 2.16e. It should be

noted that the state estimate x̂ is assumed to be bounded in Ωρ . If the estimate is outside of Ωρ ,

we discard it and replace with an estimate inside the Ωρ . This new estimate could be a state

inside Ωρ that is closest to the original estimate. Since the state estimate is bounded in Ωρ for

all times, and closed-loop stability is ensured under the output feedback controller assumed in

Section 2.3.1.2 (i.e., the state feedback control law u = Φ(x̂) designed based on the estimated

states from RNN observer), the true state can be driven into a small neighborhood around the

origin within finite sampling periods. If the estimated state enters Ωρnn , the LMPC activates the

constraint of Eq. 2.16f to maintain the predicted states of the RNN model within Ωρnn over the

25

prediction horizon. However, since there exists a model mismatch between the nonlinear system

of Eq. 2.1 and the prediction model of Eq. 2.16b (i.e., the RNN model), we need to show that

the actual state of the nonlinear system of Eq. 2.1 is bounded in a small neighborhood around the

origin under LMPC. To that end, we characterize the set Ωρmin of Eq. 2.17c to account for the

sufficiently small modeling error between the RNN model and the nonlinear system of Eq. 2.1.

Eq. 2.17c shows that if the RNN predicted state x̄(tk) is inside Ωρnn , then the actual state of the

nonlinear system of Eq. 2.1 is bounded in Ωρmin . This completes the proof of closed-loop stability

for the system of Eq. 2.1 under LMPC.

Remark 2.5. The formulation of the LMPC using hybrid-model-based estimator is very similar to

that of Eq. 2.16 using RNN-based estimator, and therefore, is omitted here. The only difference

in the LMPC formulation would be the prediction model of Eq. 2.16b, for which the hybrid

model of Eq. 2.14 will be used to replace the RNN model. Additionally, the hybrid model will

also be used to provide state estimates at each sampling time in LMPC. The closed-loop stability

analysis for hybrid-model-based estimator is also similar to Theorem 2.1 based on the fact that a

well-conditioned feed-forward neural network is obtained to represent the nonlinear terms with a

sufficiently high accuracy.

2.5 Application to a Chemical Reactor Example

In this section, a nonlinear chemical process is used to illustrate the application of the proposed

RNN-based and hybrid-model-based estimators in the LMPC controller. A non-isothermal, a

well mixed continuous stirred tank reactor (CSTR) is considered, with the following reversible

first-order exothermic reaction [129]:

A ↔ B

26

The nonlinear dynamical model that describes the process dynamics is given by the following mass

and energy balance equations:

dCA

dt
=

1
τ
(CA0 −CA)− rA + rB (2.20a)

dCB

dt
=
−1
τ

CB + rA − rB (2.20b)

dT
dt

=
1
τ
(T0 −T)+

−∆H
ρCp

(rA − rB)+
Q

ρCpV
(2.20c)

rA =kAe
−EA
RT CA (2.20d)

rB =kBe
−EB
RT CB (2.20e)

The concentration of A and B in the CSTR are given by CA and CB respectively, and T represents

the reactor temperature. The feed concentration is denoted by CA0 and the feed temperature is

denoted by T0. As for the reaction kinetics, kA and EA represent the pre-exponential constant

and the activation energy for the forward reaction, while kB and EB are for the reverse reaction.

The reactor residence time is denoted by τ . V represents the reactor volume, ∆H is the reaction

enthalpy, and the heat capacity of the mixture liquid is denoted by Cp. The CSTR is equipped with

a heating/cooling jacket to provide/remove required heat at rate Q to/from the reactor. [129] has

provided the optimal steady-states for the process described in Eq. 2.20. The optimal steady-state

values and process parameter values are listed in Table 2.1.

Table 2.1: Parameter and steady-state values for the CSTR.

To = 400 K Ts = 426.743 K

kA = 5000 /s EA = 1×104 cal/mol

kB = 106 /s EB = 1.5×104 cal/mol

R = 1.987 cal/(mol K) ∆H =−5000 cal/mol

ρ = 1 kg/L Cp = 1000 cal/(kg K)

CA0 = 1 mol/L V = 100 L

CAs = 0.4977 mol/L τ = 60 s

CBs = 0.5023 mol/L Qs = 40386 cal/s

27

2.5.1 Simulation Settings

The control objective is to drive CA, CB, and T to the steady-state by manipulating the heat

input rate Q. The manipulated variable is considered in the deviation form as u = Q − Qs.

The control action u is bounded with upper bound uUB = 40,000 cal/s and a lower bound

uLB = −40,000 cal/s. The process states are all represented in the deviation form. The optimal

steady-state is at xT = [x1 x2 x3] = [CA−CAs CB−CBs T −Ts] such that the origin is the equilibrium

point of this system. Since in practice not all process states are measurable [54], unmeasurable

states needs to be estimated based on measurable states. In this case study, we assume that the only

measured state is x3 = T −Ts. Therefore, x1 =CA −CAs and x2 =CB −CBs can be estimated using

the proposed machine-learning-based state estimators. Based on the measurement y of the state

variable x3, the machine-learning-based observer first utilizes the RNN model (or hybrid model)

to predict x1 and x2, and then add the estimation error part (K(y− x̂3)) to obtain the state estimates

at the current time step. Subsequently, the estimated states x̂T = [x̂1 x̂2 x̂3] are sent to the MPC

for solving the optimal control action for the next sampling period. Additionally, the nonlinear

system of Eq. 2.20 is observable for the given output (i.e., temperature T) in the sense there exists

an estimator-based output feedback controller that exponentially stabilizes the closed-loop system.

The nonlinear optimization problem of LMPC is solved using the IPOPT software package

([104]), and its python version, PyIpopt, with the sampling period ∆ = 10s. The objective function

of LMPC is of the form: L(x,u) = xT Qx+ uT Ru, where Q = diag[5× 104 5× 104 1], and R =

[10−7] are penalty matrices that should be tuned properly to achieve a better MPC performance

([6]). The observer gains used in this work are K = [0.0005,0.0005,0.5]. The Lyapunov functions

is given by V (x) = xT P x, with the following positive definite P matrix:

P =


625 0 0

0 625 0

100 100 105



28

2.5.2 Neural Networks Model Training

The data generation, neural network training and validation process for the RNN model are

carried out as follows. To generate the dataset for RNN model, the system of Eq. 2.20 was

numerically integrated for one sampling period under different initial conditions. The explicit

Euler method with an integration time step of hc = 0.5 s is utilized. Specifically, a data set of size

1.6× 106 was built using MATLAB. The data base was then divided into an input matrix with

u,x1,x2,x3 at t = tk and an output matrix with x1,x2, and x3 as outputs at t = tk+1, from which

70% of the data was utilized for model training, and 30% was for validation. Note that the full

state measurements are available in the training stage as the data can be obtained offline, while

in real-time operation of CSTR, only the temperature can be measured every sampling time. The

RNN model was developed using Keras library with two hidden layers of 50 unit in each layer and

tanh activation function, and an output layer with 3 neurons and linear activation function. 274

epochs were used for the training process.

Similarly, the data was generated for feed-forward neural networks using MATLAB

simulations of different values of x1,x2, and x3 in the reaction kinetics model of Eq. 2.20. A dataset

consisting of 1.25× 105 data points was generated with x1,x2, and x3 as inputs, and reaction rate

as the output. Keras library was used for the FNN model training with three inputs and one output

(i.e., the output is rA − rB). Three layers were used with 6 neurons, 12 neurons, and 1 neuron in

each layer, respectively. Relu activation function was utilized in the first two layers and sigmoid

activation function was used for the last layer.

Remark 2.6. The RNN is developed to approximate the process model using all the states

including temperature and species concentrations. The RNN outputs are the process states in the

first-principles model. To build the state estimator, the RNN model is used to replace the process

model F(x̂,u) in the extended Luenberger observer of Eq. 2.2. The training dataset is generated

from simulations of the first-principles model, and the RNN model is trained with a sufficiently high

accuracy, which guarantees that the RNN model predictions are sufficiently close to the estimates

of the first-principles model. As the RNN model is developed to approximate the process model,

29

the datasets include all the process states.

Remark 2.7. Hybrid modeling approaches require a careful selection of process

parameter/variable in first-principle models which will be estimated through data based

approaches. Local/global sensitivity analysis is one of the most common methods for selecting

such parameters during model identification for hybrid representations ([41, 65, 103]). In

this example, the nonlinear terms in a nonlinear process (i.e., the reaction rates in CSTR

first-principles equations) are chosen to be represented by neural networks to better capture the

nonlinearities in a wide operating region.

2.5.3 Closed-loop Simulation Results

Closed-loop simulation study is carried out to demonstrate the performance of the two proposed

estimation approaches in the CSTR of Eq. 2.20. The closed-loop simulations results using the

RNN-based estimator with four different sets of initial conditions, IC1, IC2, IC3, and IC4 are shown

in Figs. 2.3-2.6, and the closed-loop simulation results using hybrid-model-based estimator with

the same four initial conditions are shown in Figs. 2.7-2.10.

It can be seen from Figs. 2.3-2.6 that starting from different initial conditions and different

initial estimates, the closed-loop states are stabilized at the steady-state under LMPC using

RNN-based state estimator. Specifically, in Fig. 2.3 and Fig. 2.4, we consider two initial estimates

that are very close to the true state values, where the true states are obtained from the first-principles

model of Eq. 2.20. It is demonstrated that the state estimates provided by the RNN-based estimator

converge to the true state value quickly, and after that, the closed-loop states are driven the the

steady-state smoothly. In Fig. 2.5 and Fig. 2.6, we consider two initial estimates that are not close

to the true state values at the beginning. It is demonstrated that the state estimates still converge

to the true states but takes longer time than those in Fig. 2.3 and Fig. 2.4. In all cases, closed-loop

stability is achieved for the system under LMPC.

Subsequently, the mean squared errors (MSE) between true state profiles and estimate state

30

0 20 40 60 80 100 120 140 160 180 200
-0.2

-0.1

0
C

A
 -

 C
A

s
 (

m
o

l/
L

)

True state

Estimated state

0 20 40 60 80 100 120 140 160 180 200

0

0.05

0.1

C
B

 -
 C

B
s
 (

m
o

l/
L

)

True state

Estimated state

0 20 40 60 80 100 120 140 160 180 200
0

50

T
 -

 T
s
 (

K
)

True state

Estimated state

0 20 40 60 80 100 120 140 160 180 200

Time (sec)

-4

-2

0

Q
-

Q
s
(C

a
l/
s
e

c
) 10

4

Figure 2.3: True state (red line) and estimated state (blue line) trajectories for the closed-loop
CSTR under LMPC using RNN-based estimator with the initial condition IC1 (top three plots).
The bottom plot displays the manipulated input profile.

profiles are used to evaluate the performance of the estimator. Table 2.2 summarized the MSE

of state estimation using the RNN-based state estimator in the four closed-loop simulations. It is

shown that all the closed-loop simulations achieve sufficiently small MSEs, and the simulations

with IC1 and IC2 achieve better results due to better initial estimates. This is consistent with the

closed-loop simulation results as shown in Figs. 2.3-2.6. Therefore, from this simulation study

of CSTR example, it is demonstrated that the RNN-based estimator can estimate true state values

with a sufficiently high accuracy.

The closed-loop simulation results using hybrid-model-based estimator with the same four

initial conditions are shown in Figs. 2.7-2.10, and the MSE results are also summarized in

31

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1
C

A
 -

 C
A

s
 (

m
o

l/
L

)

True state

Estimated state

0 20 40 60 80 100 120 140 160 180 200
-0.2

-0.1

0

C
B

 -
 C

B
s
 (

m
o

l/
L

)

True state

Estimated state

0 20 40 60 80 100 120 140 160 180 200

-30

-20

-10

0

T
 -

 T
s
 (

K
)

True state

Estimated state

0 20 40 60 80 100 120 140 160 180 200

Time (sec)

0

2

4

Q
-

Q
s
(C

a
l/
s
e

c
) 10

4

Figure 2.4: True state (red line) and estimated state (blue line) trajectories for the closed-loop
CSTR under LMPC using RNN-based estimator with the initial condition IC2 (top three plots).
The bottom plot displays the manipulated input profile.

Table 2.2. The closed-loop stability analysis and the MSE results are similar to those using

RNN-based estimator, and are omitted here.

32

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

C
A

 -
 C

A
s
 (

m
o

l/
L

)

True state

Estimated state

0 20 40 60 80 100 120 140 160 180 200

-0.2

-0.1

0

C
B

 -
 C

B
s
 (

m
o

l/
L

)

True state

Estimated state

0 20 40 60 80 100 120 140 160 180 200

-30

-20

-10

0

T
 -

 T
s
 (

K
)

True state

Estimated state

0 20 40 60 80 100 120 140 160 180 200

Time (sec)

0

2

4

Q
-

Q
s
(C

a
l/
s
e

c
) 10

4

Figure 2.5: True state (red line) and estimated state (blue line) trajectories for the closed-loop
CSTR under LMPC using RNN-based estimator with the initial condition IC3 (top three plots).
The bottom plot displays the manipulated input profile.

33

0 20 40 60 80 100 120 140 160 180 200
-0.2

-0.1

0

C
A

 -
 C

A
s
 (

m
o

l/
L

)

True state

Estimated state

0 20 40 60 80 100 120 140 160 180 200

0

0.1

0.2

C
B

 -
 C

B
s
 (

m
o

l/
L

)

True state

Estimated state

0 20 40 60 80 100 120 140 160 180 200
0

50

T
 -

 T
s
 (

K
)

True state

Estimated state

0 20 40 60 80 100 120 140 160 180 200

Time (sec)

-4

-2

0

Q
-

Q
s
(C

a
l/
s
e

c
) 10

4

Figure 2.6: True state (red line) and estimated state (blue line) trajectories for the closed-loop
CSTR under LMPC using RNN-based estimator with the initial condition IC4 (top three plots).
The bottom plot displays the manipulated input profile.

34

0 20 40 60 80 100 120 140 160 180 200
-0.2

-0.1

0

C
A

 -
 C

A
s
 (

m
o

l/
L

)

True state

Estimated state (Hybrid)

0 20 40 60 80 100 120 140 160 180 200

0

0.05

0.1

C
B

 -
 C

B
s
 (

m
o

l/
L

)

True state

Estimated state (Hybrid)

0 20 40 60 80 100 120 140 160 180 200
0

50

T
 -

 T
s
 (

K
)

True state

Estimated state (Hybrid)

0 20 40 60 80 100 120 140 160 180 200

Time (sec)

-4

-2

0

Q
-

Q
s
(C

a
l/
s
e

c
) 10

4

Figure 2.7: True state (red line) and estimated state (blue line) trajectories for the closed-loop
CSTR under LMPC using hybrid-model-based estimator with the initial condition IC1 (top three
plots). The bottom plot displays the manipulated input profile.

35

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

C
A

 -
 C

A
s
 (

m
o

l/
L

)

True state

Estimated state (Hybrid)

0 20 40 60 80 100 120 140 160 180 200
-0.15

-0.1

-0.05

0

C
B

 -
 C

B
s
 (

m
o

l/
L

)

True state

Estimated state (Hybrid)

0 20 40 60 80 100 120 140 160 180 200
-40

-20

0

T
 -

 T
s
 (

K
)

True state

Estimated state (Hybrid)

0 20 40 60 80 100 120 140 160 180 200

Time (sec)

0

2

4

Q
-

Q
s
(C

a
l/
s
e

c
) 10

4

Figure 2.8: True state (red line) and estimated state (blue line) trajectories for the closed-loop
CSTR under LMPC using hybrid-model-based estimator with the initial condition IC2 (top three
plots). The bottom plot displays the manipulated input profile.

36

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

C
A

 -
 C

A
s
 (

m
o

l/
L

)

True state

Estimated state (Hybrid)

0 20 40 60 80 100 120 140 160 180 200

-0.2

-0.1

0

C
B

 -
 C

B
s
 (

m
o

l/
L

)

True state

Estimated state (Hybrid)

0 20 40 60 80 100 120 140 160 180 200
-40

-20

0

T
 -

 T
s
 (

K
)

True state

Estimated state (Hybrid)

0 20 40 60 80 100 120 140 160 180 200

Time (sec)

0

2

4

Q
-

Q
s
(C

a
l/
s
e

c
) 10

4

Figure 2.9: True state (red line) and estimated state (blue line) trajectories for the closed-loop
CSTR under LMPC using hybrid-model-based estimator with the initial condition IC3 (top three
plots). The bottom plot displays the manipulated input profile.

37

0 20 40 60 80 100 120 140 160 180 200
-0.2

-0.1

0

C
A

 -
 C

A
s
 (

m
o

l/
L

)

True state

Estimated state (Hybrid)

0 20 40 60 80 100 120 140 160 180 200

0

0.1

0.2

C
B

 -
 C

B
s
 (

m
o

l/
L

)

True state

Estimated state (Hybrid)

0 20 40 60 80 100 120 140 160 180 200
0

50

T
 -

 T
s
 (

K
)

True state

Estimated state (Hybrid)

0 20 40 60 80 100 120 140 160 180 200

Time (sec)

-4

-2

0

Q
-

Q
s
(C

a
l/
s
e

c
) 10

4

Figure 2.10: True state (red line) and estimated state (blue line) trajectories for the closed-loop
CSTR under LMPC using hybrid-model-based estimator with the initial condition IC4 (top three
plots). The bottom plot displays the manipulated input profile.

38

Table 2.2: Estimation mean squared error of the closed-loop CSTR under LMPC using RNN-based
and hybrid-model-based state estimators

Model Simulation No. MSE o f x1 MSE o f x2

RNN model 1 1.3699×10−5 9.9753×10−6

2 1.9458×10−5 5.606×10−5

3 6.0499×10−4 5.3197×10−4

4 3.24×10−4 7.41×10−4

Hybrid model 1 1.6198×10−5 1.409×10−5

2 1.5112×10−5 1.266×10−5

3 5.8035×10−4 4.5938×10−4

4 3.6534×10−4 3.9027×10−4

39

Chapter 3

Process structure-based recurrent neural

network modeling for predictive control: A

comparative study

3.1 Introduction

Building model-based control systems for industrial applications requires mathematical models

that explain the connection between the manipulated inputs and the process outputs. Depending

on the process of interest, the construction of a process model is currently founded either on

first-principles theory or process data under various assumptions. However, there are some

restrictions on model performance. For instance, linearized representations of nonlinear processes

are only valid in a restricted region of the linearization’s operational point. Finding an appropriate

first-principles model is typically not an easy endeavor due to the dynamical nature, inbuilt

nonlinear behavior, and high complexity of the majority of chemical processes.

To address this problem, the investigation of utilizing artificial intelligence (AI) techniques

in chemical engineering has been carried out continuously. The AI technology has provided

classic and powerful modeling tools such as fuzzy logic in the 1960s [125], expert systems in the

40

1980s [57, 59], and machine learning (ML) in the 1990s [101]. Moreover, the implementation

of ML techniques in the modeling of complex systems comes with a successful history in

different chemical processes applications [12, 27, 89, 109]. For example in [12], an artificial

neural network (ANN) model is developed for a bio-diesel production process. The ANN model

provided an approximation of the percentage of fatty acid methyl ester yield within ±8% deviation

from the experimental data. Additionally, among various ML modeling techniques, recurrent

neural networks (RNN) have been broadly employed for modelling a general class of dynamical

systems for control and state estimation purposes [73]. In [89], a RNN model of a continuous

binary distillation column (BDC) was trained and validated using experimental data, and the

study demonstrated that the RNN model prediction can outperform a first-principles model for

large-sacle, complex, nonlinear process, due to its high degree of freedom to solve the complex

non-linear regression problem with the process dataset.

With the continuous improvement of data availability and accessibility, machine learning (ML)

based model predictive control (MPC) methods receive increasing attention as the next generation

of control systems. Conceptually, an MPC contains three major components: a predictive

model, an objective function and constraints, and a process optimizer [15]. By using the neural

network as the predictive model, the MPC can capture the process dynamics and accordingly

make smart decisions: approaching the target states efficiently, automatically, and economically.

Furthermore, recent works have demonstrated that ML-based MPC can be utilized to deal with

various challenging tasks to improve manufacturing processes such as suppressing measurement

noise and searching optimum economic benefits , for which classical control techniques are

incapable to accomplish [30, 113].

Fully-connected RNN model (i.e., densely relate all the inputs to all the outputs) is the typical

candidate to analyze time-series data in a black-box manner. However, such an approach is not

always optimal, especially for complex chemical processes. For instance, in an integrated chemical

plant the upstream units affect the downstream units but not the other way around. Therefore,

to further improve the RNN model accuracy, various works [26, 48, 92]) have investigated the

41

gray-box modeling, also known as hybrid modeling, by introducing a priori physical knowledge

into the development of neural network models of chemical processes. For example, [75] proposed

a method which encode that the dynamics between a specific inputs and specific outputs are zero.

Recently, the work of [62], formulated a partially-connected RNN model, where the outputs were

connected to the impacting inputs only. The resulting RNN model was demonstrated to outperform

a fully-connected model. Additionally, [114] used a partially-connected RNN in the framework of

ML-based MPC. It was demonstrated that the partially-connected RNN model was able to improve

the MPC performance compared to a fully-connected RNN model.

Taking the aforementioned considerations into account, the present work evaluates the

performance of a partially-connected RNN-based MPC using a large-scale process simulator

of a nonlinear chemical process. First, we construct a simulation model for a chemical plant

used to produce Ethylbenzene with two continuous stirred tank reactors (CSTR) in series via

the Aspen Plus and Aspen Plus Dynamics simulators. Subsequently, we train a fully-connected

and a partially-connected RNN model, respectively, to capture the dynamics of the process

using the same datasets obtained from extensive open-loop simulations. Finally, we compare

each model’s open-loop and closed-loop performance and demonstrate the advantages of using

a partially-connected neural network in MPC.

The rest of this manuscript is organized as follow: In Section 3.2, the class of process systems,

mathematics notations, and assumption of stabilizing control law are discussed. In Sections

3.3 and 3.4, the concepts methods used to construct fully-connected and partially-connected

RNN models respectively are presented. A Lyapunov-based model predictive controller (LMPC)

integrated with a RNN model is developed and discussed in Section 3.5. In the last section,

the open-loop and closed-loop performances of MPCs using different RNN model structures are

evaluated using the chemical process application.

42

3.2 Preliminaries

3.2.1 Notations

Through this manuscript the notation |κ| represents the Euclidean norm of a vector κ . The

notation L f h(x) = ∂h(x)
∂x f (x) denotes the standard Lie derivative. For set subtraction “− ” is used,

i.e., A−B= {x∈Rn|x∈A,x /∈B}. A function f (x) is of class C1 if it is continuously differentiable.

3.2.2 Class of Systems

We consider a class of multi-input multi-output (MIMO) nonlinear continuous-time systems

represented by the following state-space form:

ẋ = F(x,u) := f (x)+g(x)u (3.1)

where the state vector of the system is x = [x1, ...,xn]
T ∈ Rn, y = [y1, ...,yq]

T ∈ Rq is the output

vector, and the manipulated input vector is u = [u1, ...,um]
T ∈ Rm. F(x,u) represents a nonlinear

vector function of x and u which is assumed to be sufficiently smooth functions of its arguments.

The constraints on control inputs are given by u ∈U := {ui
min ≤ ui ≤ ui

max}. The functions f (·),

and g(·) are nonlinear vector and matrix functions of n×1 and n×m dimensions, respectively.

3.2.3 Stabilizability assumption

We assume that there exists a control law u = Φ(x) ∈U based on state feedback that can make

the origin of the system of Eq. 3.1 exponentially stable. This stabilizability assumption implies the

existence of a C1 control Lyapunov function denoted as V (x), such that the following inequalities

hold for all x in an open neighborhood D around the origin:

c1|x|2 ≤V (x)≤ c2|x|2, (3.2a)

43

∂V (x)
∂x

F(x,Φ(x))≤−c3|x|2, (3.2b)∣∣∣∣∂V (x)
∂x

∣∣∣∣≤ c4|x| (3.2c)

where ci , i = 1,2,3,4, are positive constants. A candidate controller Φ(x) may be constructed via

Sontag’s control law formula [61]. Then, following [118], we characterize the closed-loop stability

region Ωρ to be a level set of the Lyapunov function in the region D in which the time-derivative

V̇ (x) is negative under the controller u = Φ(x) ∈ U such that Ωρ := {x ∈ D | V (x) ≤ ρ}, where

ρ > 0. Furthermore, based on the Lipschitz property of F(x,u) and the boundedness of u, there

exists positive constants M, Lx,L
′
x such that the following inequalities hold for all x,x′ ∈ D and

u ∈U :

|F(x,u)| ≤ M (3.3a)

|F(x,u)−F(x′,u)| ≤ Lx|x− x′| (3.3b)∣∣∣∣∂V (x)
∂x

F(x,u)− ∂V (x′)
∂x

F(x′,u)
∣∣∣∣≤ L

′
x|x− x′| (3.3c)

3.3 Recurrent Neural Networks (RNN) Models

As mentioned in the introduction, RNN models are suitable for modeling time-series data. The

recursive action in the hidden layer neurons allows the RNN to hold the memory of the previous

states, such that it can adequately approximate a time-series dataset. In this work, the RNN model

used to approximate the nonlinear system of Eq. 3.1 using the process operational data can be

represented as:

˙̄x = Frnn(x̄,u) := Ax̄+Θ
T y (3.4)

where x̄ = [x̄1, ..., x̄n] is the state vector of the RNN, and the manipulated input vector

is u = [u1, ...,um]. As a vector of both x̄ and u, the vector y is defined as

[y1, ...,yn,yn+1, ...,ym+n]=[σ(x̄1), ...,

44

σ(x̄n),u1, ...,um] ∈ Rn+m. The notation σ(·) represents the nonlinear activation function (e.g.,

a hyperbolic tangent function) used in the hidden layers. A = diag[−a1, ...,−an] is a diagonal

negative coefficient matrix where ai > 0 such that each state x̄ is stable in the sense of

bounded-input bounded-state stability. The notation Θ = [θ1, ...,θn] ∈ R(n+m)×n is a matrix

containing associated weights to be optimized during the neural network training process.

Therefore, the vector θi = bi[wi1, ...,wi(n+m)] is an element of Θ where bi is a constant, and

wi j stands for the weight on the connection between the jth input to the ith neuron where

j = 1, ...,(n+m) and i = 1, ...,n.

O Ot-1 Ot Ot+1

Figure 3.1: A schematic of a recurrent neural network.

Subsequently, the RNN is trained following a standard learning procedure as discussed in

[8]. The datasets for training, validation and testing are generated from extensive open-loop

simulations of the process model under sufficient variation of initial conditions and control actions.

In particular, the continuous-time system of Eq. 3.1 is numerically integrated using the explicit

Euler’s method with an appropriately small integration time step hc, and the control actions u are

implemented in a sample-and-hold fashion, i.e., u(t) = u(tk), ∀t ∈ [tk, tk+1), where tk+1 := tk +∆

45

and ∆ denotes sampling period. Since the RNN is known for its ability to capture nonlinear process

dynamic behavior from time-series data [22,74], the RNN model can be trained using all or some of

the integration step data points (i.e., data at each integration time step hc) within each sampling time

to be able to capture the state evolution. Furthermore, the RNN model needs to satisfy a sufficiently

small modeling error ν (i.e., |ν | = |F(x,u)−Frnn(x̄,u)| ≤ γ|x| ≤ νmin, where γ,νmin > 0) during

the model training process, and thus it can well represent process dynamics within the considered

operating region.

Remark 3.1. The modeling error ν is not a constant under different inputs and states. However, by

limiting the operation to be within the stability region Ωρ , the inputs and states are both bounded.

Therefore by training the RNN model using the datasets generated within Ωρ , the modeling error

can be upper bounded by a sufficiently small positive value νmin for all the states within the stability

region.

3.4 Partially-connected RNN Model

A neural network model which takes all accessible process inputs to provide prediction of the

outputs of interest is favored in developing a dynamic model for a nonlinear process. Developing a

dynamic model for such processes can be easily implemented using open-source machine learning

packages, and this model would be capable to account for all possible relationships between every

input and every output of the underling process. In Fig. 5.3, the illustration on the left side

represents the general structure of a fully-connected RNN with an input layer, hidden layers, and

an output layer. Hence, fully-connected RNN models are usually the prime candidate for processes

with no priori knowledge.

The expression process structure knowledge refers to a physical understanding of the

underlying process that exists in advance to the development of first-principles model process

model. It includes but not limited to the model’s intended purpose, soft or hard physical

constraints imposed on the process by design considerations, and process structure. In this work,

46

we focus on process structure knowledge in terms of relationships between the process input

and output variables. Particularly, in chemical process industry, the physical relations among

the process variables can be straightforward. For instance, the upstream processes affect the

downstream stage processes, while such an effect dose not exist in the opposite direction. This

connection between upstream and downstream stages is often reflected in a mathematical model

obtained via first-principles. Therefore, incorporating process knowledge that describes physical

relations among the underlying process inputs and outputs into the neural network structural

modeling will improve its performance as discussed in [94]. This modeling methodology is called

partially-connected neural network [114].

In this study, a partially-connected RNN model, as illustrated in Fig. 5.3 on the right side,

is developed for the nonlinear system of Eq. 3.1. We consider that u = [u1 ∈ Rm1 ,u2 ∈ Rm2] and

x= [x1 ∈Rn1,x2 ∈Rn2] where m=m1+m2 and n= n1+n2, and that only the input vector u1 affects

the state vector x1, while x2 is affected by the two input vectors u1 and u2. By adjusting the RNN

structure to explicitly exclude the connection between x1 and u2, physical knowledge is integrated

into the RNN modeling of the nominal system. As a result, an improved approximation is achieved.

For example, as discussed in [114], the partially-connected RNN models can remarkably reduce

the required number of hidden neurons, and weight parameters to achieve the desired performance

compared to fully-connected RNN model. Moreover, partially-connected RNNs may be able to

capture the process dynamics using a smaller training dataset, since the use of process knowledge

may simplify the optimization process of an RNN model by revealing the correct search direction.

The development of partially-connected RNN models follows the development framework of

fully-connected RNN models, but with more specifications. A dataset for training/validation can be

constructed either from experimental and industrial sources, or by extensive open-loop simulation

as discussed in the second paragraph of the previous section. The rule of thumb of splitting the

collected dataset to 70% training and 30% validating can be employed, or more sophisticated

methods such as cross validation may be used. The input vectors u1, u2 and the output vectors x1,

x2 should be specified before RNN models training. This step is also known as data pre-processing.

47

In this work, we used the open-source library ‘Keras’ in Python to construct and train the

RNN models. Specifically, our models are constructed with an input layer, an output layer, and

two hidden layers activated by the nonlinear functions: hyperbolic tangent and sigmoid functions.

To generate a partially-connected RNN model, rather than taking the input vector u as in the

fully-connected model, the input vectors u1 and u2 are fed separately using different input layers

with respect to the process structure as illusteated in Fig 5.3. The first hidden layer takes the input

vector u1 and predicts the output vector x1. Subsequently u2 and x1 are merged and sent to the

second hidden layer to predict x2. Eventually, the constructed model can provide prediction for

both output vectors x1 and x2. The Pseudocodes 1 and 2 summarize the construction procedure

of the partially-connected RNN models, and may be useful to colleagues who may pursue the

approach.

Remark 3.2. Both the fully-connected and the partially-connected RNN models structures are

developed for the nominal system described in Eq. 3.1 assuming no disturbances. In the presence

of time-varying disturbances, the prediction of RNN models may under-perform due to model

mismatch. To resolve this issue, the RNN models can be updated online using recent process

measurements to capture the process-model mismatch caused by the disturbances.

Remark 3.3. Note that partially-connected RNN models only reflect process structure on its

internal network connection without explicit expression. Therefore this model is still a “black-box”

model which is different from the hybrid models. For discussion on hybrid modeling of chemical

processes, the interested readers may refer to [8, 39, 129].

Remark 3.4. The classes and features of layers in Pseudocodes are named in the Keras manner.

The naming could be different for other machine learning application programming interface

(API), such as Tensorflow and Pytorch. The number of input and output features, and the number

of data points in the data sequence should be specified in the data prepossessing step as mentioned

in this section and the previous section, respectively.

48

u

RNN

x

u1 u2

 x1

Decoupled

 x2

RNN

RNN

Input

Layer

Hidden

Layer

Output

 Layer

 x1

Figure 3.2: Fully-connected and Partially-connected RNN structure, where u = [u1,u2] and x =
[x1,x2].

49

Pseudocode 1: Partially-connected RNN Construction
input layer-1:
{

layer class: Input

units: (number of input features in vector u1)

input shape: (number of data points in the input data sequence, number

of input features in vector u1)

connected to: hidden layer-1

}

hidden layer-1:
{

layer class: Long Short-term Memory

units: (Number of inputs) × (Number of outputs)

return sequences: true

activation function: tanh

recurrent activation function: sigmoid

recurrent initializer: orthogonal

use bias: true

connected to: output layer-1

}

output layer-1:
{

layer class: Dense

units: number of outputs

activation function: linear

output shape: (number of data points in the output data sequence , number

of outputs in vector x1)

connected to: merge layer

}

50

Pseudocode 1: Partially-connected RNN Construction (continued)
input layer-2
{

layer class: Input
units: (number of input features in vector u2)
input shape: (number of data points in the input data sequence , number of input

features in vector u2)
connected to: merge layer

}

merge layer:
{

layer class: Concatenate
connected to: hidden layer-2

}

hidden layer-2
{

layer class: Long Short-term Memory
units: (Number of inputs) × (Number of outputs)
return sequence: true
activation function: tanh
recurrent activation function: sigmoid
recurrent initializer: orthogonal
use bias: true
connected to: output layer-2

}

output layer-2
{

layer class: Dense
units: number of output
activation function: linear
output shape: (number of data points in the output data sequence , number of outputs in

vector x2)
}

51

Pseudocode 2: Partially-connected RNN Training
model compile
{

optimizer: adam (candidate optimizer: RMSprop, SGD, etc.)
loss function: mean squared error

}

early stop
{

monitor: validation loss
early stop condition: 1×10−8

}

model fit
{

training (xt ,yt) :
xt: python list (input training set for input layer 1, input training set for

input layer 2)
yt: python list (output training set for output layer 1, output training set

for output layer 2)
batch size: 32 (defaults value)
epochs: 50 (user choice, other numbers can be used)
validation (xv,yv) :

xv: python list (input validation set for input layer 1, input validation
set for input layer 2)

yv: python list (output validation set for output layer 1, output
validation set for output layer 2)

callbacks: early stop
}

52

3.5 RNN-Based Model Predictive Control

In this section, we incorporate an RNN model in a Lyapunov-based model predictive control

(LMPC) strategy. Specifically, the RNN model (with partially-connected or fully-connected

structure) provides state predictions to solve the MPC optimization problem, which is formulated

as follows:

J = min
u∈S(∆)

∫ tk+P

tk
L(x̃(t),u(t))dt (3.5a)

s.t. ˙̃x(t) = Frnn(x̃(t),u(t)) (3.5b)

x̃(tk) = x(tk) (3.5c)

u(t) ∈U, ∀ t ∈ [tk, tk+P) (3.5d)

V̇ (x(tk),u)≤ V̇ (x(tk),Φ(x(tk)), if x(tk) ∈ Ωρ −Ωρnn (3.5e)

V (x̃(t))≤ ρnn, ∀ t ∈ [tk, tk+P), if x(tk) ∈ Ωρnn (3.5f)

where predicted state trajectory is x̃. S(∆) denotes the set of constant piecewise functions with

period ∆, and the prediction horizon is P. The function V̇ (x,u) in Eq. 3.5e is the time-derivative

of Lyapunov function V (i.e., ∂V (x)
∂x (Frnn(x,u))). The LMPC computes the optimal inputs series

u∗(t) over the specified prediction horizon t ∈ [tk, tk+P). The first optimal inputs u∗(t) of the each

prediction horizon is sent to the system to be implemented for the next sampling period. Then, the

new state measurements are fed back to the LMPC and the control optimization problem is resolved

again with the new state measurements at the next sampling period. Moreover, the objective of the

MPC optimization problem is to minimize the time integral cost function L(x̃,u) as represented

in Eq. 3.5a over the prediction horizon while satisfying the constraints of Eq. 3.5b-3.5f. The first

constraint of Eq. 3.5b is the RNN model from Eq. 3.4 that is utilized to predict the evolution of the

closed-loop state. In Eq. 3.5b, x(tk) is used to update the initial condition of the prediction x̃(tk).

As for the inputs, the constraints are represented by Eq. 3.5d, which are applied throughout the

entire prediction horizon.

53

To maintain the closed loop stability, the contractive constraint of Eq. 3.5e is activated when

x(tk) ∈ Ωρ − Ωρrnn . This constraint forces the Lyapunov function of the closed-loop states to

decrease, and as a result, the actual state will approach the steady-state in finite time. Furthermore,

if the last state x(tk) enters the desired region Ωρrnn , then the predicted closed-loop state will be

maintained within this region for the entire prediction horizon. The work of [118] demonstrated

that when using RNN-based LMPC as in Eq. 3.5 to control a nonliner system as given in Eq. 3.1,

the closed-loop state is guaranteed to be bounded within the stability region Ωρ for all times, and

ultimately it will converge to a very small neighborhood around the origin under the assumption

that the modeling error ν is sufficiently small.

Remark 3.5. In the case where x(tk) are not fully available online, a state observer may be used

to estimate the unmeasured states form the measured ones. The previous work [8] developed

two different machine learning based state estimators in the framework of ML based LMPC for

nonlinear processes. It was demonstrated that both the ML-based and the hybrid-model based

estimators achieved accurate state estimation, and that all state trajectories initiating from various

initial conditions converged to the steady-state under the LMPC.

3.6 Application to a Chemical Process Modeled in Aspen Plus

In this section, we use a large-scale chemical process to evaluate the proposed

partially-connected RNN-based LMPC. Firstly, we develop dynamic simulations of two models

for the chemical process using the Aspen Plus Dynamics V11 and first-principles modeling

principles, respectively. Subsequently, a process time-series dataset is collected to train and test the

RNN models via extensive open-loop simulation. Finally, open-loop simulations and closed-loop

simulations under RNN-model based MPC are carried out and discussed.

54

3.6.1 Dynamic Model in Aspen Plus Dynamics

The Ethylbenzene (EB) production process using Ethylene (E) and Benzene (B) as raw

materials is considered. The main reaction for this process is a second-order, exothermic, and

irreversible reaction, and it is taking place along with two other side reactions as described in

Eq. 3.6 below in two non-isothermal, well mixed continuous stirred tank reactors (CSTR). The

chemical reactions are as follows:

C2H4 +C6H6 →C8H10 (3.6a)

C2H4 +C8H10 →C10H14 (3.6b)

C6H6 +C10H14 → 2 C8H10 (3.6c)

In this work, the two CSTRs are placed in series, and the process model is developed using Aspen

Plus and Aspen Plus Dynamics V11, known as a high-fidelity software for complex chemical

processes. Initially, the process model is constructed in Aspen Plus where a steady-state simulation

is performed and checked based on material and energy balances. Subsequently, we carry out

dynamic simulation of this process in Aspen Plus Dynamics to analyse and control its dynamic

performance. We construct the steady-state and the dynamical models through the following

procedure:

(1) Inlet Streams Specification: The raw materials are fed to each reactor as Hexane solutions

by the flow rates F1 and F2. Hexane solution is used to ensure that the inlet flows remain

in liquid phase under the feeding temperature. The concentration of Ethylene, Benzene,

Ethylbenzene, and Di-Ethylbenzene are denoted by CE , CB, CEB, and CDEB, respectively.

Ti, ρi, and Vi are the temperature, mass density, and the liquid volume of CSTRi, i = 1,2.

The mass heat capacity of the liquid mixture is denoted by Cp, and it is assumed to be

constant. The values of process parameters used are listed in Table 4.1, where the subscript

“o” indicates the initial state, and “s” represents the steady-state.

55

(2) Pressure Drop Selection: To establish a dynamic model for Aspen Plus Dynamics, valves

are essential as connectors of parts and fluid flow by manipulating pressure drop throughout

the process. With a proper pressure drop, the simulation runs smoothly and the model is

able to specify the flow direction, and if inadequate pressure drop is selected, it will return a

simulation error. In our model, the pressure drop in valves v1, v2, v3, and v4 are chosen to be

5, 5, 2, and 14 bars, respectively.

(3) Reactor Setting: Each CSTRi is associated with a heating/cooling jacket which

supplies/removes heat at rate Qi, i = 1,2. The initial pressure of both CSTRs are set to

be 15 bar, and the initial temperature of the first and second CSTR are 400K and 450K,

respectively, to keep the reactants and products in liquid phase during the process. Those

values will be automatically adjusted by performing build-in steady-state simulations. After

setting up the reactions in the two CSTRs, steady-state simulation is executed for the purpose

of analysing the plant behavior.

(4) Thermodynamic Parameters & Reactor Geometric: Before exporting the steady-state model

from Aspen Plus to Aspen Plus Dynamics, the thermodynamic parameters and the reactor

geometry need to be specified. For our model, the vessels type is vertical, the head type is

flat, and the length of each CSTR is ten meters. The thermodynamics parameters are listed

in Table 4.1.

(5) Pressure Checking: To make sure that the dynamic model is set properly, we run the

steady-state simulation again and perform pressure checking via the built-in Aspen Plus

pressure checker without encountering errors. Subsequently, the steady-state model is

exported to Aspen Plus Dynamics.

(6) Dynamic Model Initialization: A direct-acting level controller is added to each reactor to

maintain the reactors at half capacity. The level controller can be designed and added

following the default setting in Aspen Plus before exporting the steady-state model, or

it can be developed manually in Aspen Plus Dynamics. Following the level controllers

56

configuration, we apply a steady-state simulation to obtain the steady-state values of the

dynamical model, which gives Q1s =−911.455kW and Q2s =−6835.270kW .

(7) Data Type Configuration: In order to allow the outside control of the manipulated variables

(i.e., Q1 and Q2) during the dynamic simulation, the heating type of the two reactors are

changed to constant duty. Also, the volumetric flow rates F1 and F2 are set as fixed constants,

and a steady-state simulation is performed again to ensure that the dynamic model remains at

steady-state after the data type configuration. Hence, building the process dynamical model

is completed, and the model’s flow sheet is illustrated in Fig. 4.5.

Figure 3.3: Aspen Plus model flow sheet of two reactors in series.

Open-loop simulation is performed using the constructed dynamical model with pseudorandom

input signals generated by a MATLAB script. To link Aspen Plus Dynamics with MATLAB, a local

message passing interface (MPI) is created, such that the dynamical model is able to automatically

read the input signals from MATLAB and then implement them in the dynamic simulations. In

particular, the MATLAB script generates the manipulated variables in deviation form against their

steady-state values (u1 = Q1 −Q1s and u2 = Q2 −Q2s). The two manipulated variables randomly

vary within the range of [−1× 104kW,1× 103kW], and [−1.5× 104kW,5× 103kW] respectively,

and are implemented to the dynamic simulation in a sample-and-hold manner that the values are

updated every five minutes (simulated time). All input values and output states (e.g., CE , CB, and

T) are recorded in time-series to establish the training/validating dataset.

57

Table 3.1: Parameter and steady-state values of the Aspen Plus model.

T1o = 350 K T1s = 310.523 K

T2o = 350 K T2s = 430.542 K

F1 = 43.2 m3/hr F2 = 91.079 m3/hr

CE1 = 4.2455 kmol/m3 CE2 = 0.3254 kmol/m3

CB1 = 5.3532 kmol/m3 CB2 = 1.3841 kmol/m3

CEB1 = 0.1854 kmol/m3 CEB2 = 3.8744 kmol/m3

CDEB1 = 9.1426×10−7 kmol/m3 CDEB2 = 0.0058 kmol/m3

Heat transfer option Dynamics

Medium temperature 298 K

Temperature approach 77.33 K

Heat capacity of coolant 4200 J/kgK

Medium holdup 1000 kg

Cp = 2.411 kJ/kgK ρ1 = 639.1530 kg/m3

V1 =V2 = 60 m3 ρ2 = 607.5040 kg/m3

3.6.2 First-principles Model Development

Aspen Plus Dynamics is a highly efficient software that allows chemical engineers to simulate,

and to optimize chemical process performance and profitability. However, due to their long

computational time, typically the Aspen Plus models are not the optimal option to generate data for

deep-learning models which require comparatively large amount of data. To overcome this issue,

first-principles models with simplifying assumptions are well-established candidates to generate

data for machine learning [24, 93]. By applying the concepts of mass and energy balances, the

first-principles models for the CSTRs are developed. Specifically, the dynamic model of the first

CSTR is represented by the following ODEs:

58

dCE1

dt
=

F1CEo1 −Fout1CE1

V1
− r1 − r2 (3.7a)

dCB1

dt
=

F1CBo1 −Fout1CB1

V1
− r1 − r3 (3.7b)

dCEB1

dt
=
−Fout1CEB1

V1
+ r1 − r2 +2r3 (3.7c)

dCDEB1

dt
=
−Fout1CDEB1

V1
+ r2 − r3 (3.7d)

dT1

dt
=
(T01F1 −T1Fout1)

V1
+

3

∑
j=1

−∆H j

ρ1Cp
r j +

Q1

ρ1CpV1
(3.7e)

The dynamic model of the second CSTR is comprised of the following ODES:

dCE2

dt
=

F2CEo2 +Fout1CE1 −Fout2CE1

V2
− r1 − r2 (3.8a)

dCB2

dt
=

F2CBo2 +Fout1CB1 −Fout2CB1

V2
− r1 − r3 (3.8b)

dCEB2

dt
=

Fout1CEB1 −Fout2CEB2

V2
+ r1 − r2 +2r3 (3.8c)

dCDEB2

dt
=

Fout1CDEB1 −Fout2CDEB2

V2
+ r2 − r3 (3.8d)

dT2

dt
=
(T02F2 +T1Fout1 −T2Fout2)

V2
+

3

∑
j=1

−∆H j

ρ2Cp
r j +

Q2

ρ2CpV2
(3.8e)

where the reaction rates are calculated by the following expressions:

r1 =k1e
−E1
RTi CEiCBi (3.9a)

r2 =k2e
−E2
RTi CEBiCEi (3.9b)

r3 =k3e
−E3
RTi CDEBiCBi , i = 1,2 (3.9c)

The parameters used in the first-principles models are listed in Table 4.1. Figs. 3.4 - 3.5 show

open-loop simulations of the first-principles model and of the Aspen Plus model under the same

time-varying inputs and initial conditions. This simulation illustrate the good agreement between

the two models within the operating region.

59

0 10 20 30 40 50 60
-1

-0.5

0

0 10 20 30 40 50 60
-1

-0.5

0

0 10 20 30 40 50 60
0

10

20

30

First-principles model

Aspen model

0 10 20 30 40 50 60

0

200

400

600

Figure 3.4: Open-loop state and manipulated input profiles for CST R1.

0 10 20 30 40 50 60
-0.5

0

0.5

0 10 20 30 40 50 60
-0.5

0

0.5

0 10 20 30 40 50 60

-20

0

20

First-principles model

Aspen model

0 10 20 30 40 50 60

0

2000

4000

Figure 3.5: Open-loop state and manipulated input profiles for CST R2.

3.6.3 Data Generation and RNN Models Development

In this work, we create a dataset that contains open-loop simulation data from both the Aspen

Plus and the first-principles models to develop the two RNN models. Using Keras library, the two

RNN models are constructed following the diagram shown in Fig. 3.6. The fully-connected and

partially-connected RNN models are designed as follows: they have two long short term memory

60

(LSTM) layers with fifty neurons in each, and they are activated by hyperbolic tangent functions

(i.e., tanh(x) = ex−e−x

ex+e−x). For the training part, the fully-connected and partially-connected RNN

models are both developed based on the same dataset and via using Keras library with the same

neural network parameters as follows: two hidden layers with fifty neurons in every layer, and

hyperbolic tangent as the activation function. The output layer is activated by a linear activation

function, which gives estimation for ten states, and there are twelve inputs for both neural network

models. The input and output variables are listed in Table. 4.1. We use the input data that covers

the five minute sampling period to predict the states evolution for the next five minutes. Rather than

using the conventional gradient decent optimization algorithm, we use Adam optimizer which is a

combination of two algorithms, the gradient descent with momentum and the RMSprop. Moreover,

to produce more robust models, we apply five-fold cross validation, and select the model with the

least mean squared error (MSE) for each RNN structure.

We train the two models starting with 50 epochs, and the partially-connected RNN model

reaches the early stopping criteria (i.e., validation loss = 1× 10−8) at the 20th epoch. Thus, we

use 20 epochs to train the fully-connected RNN model for comparison consistency. The training

and validating summary for the two models is illustrated in the Fig. 3.7, and the Fig. 3.8. We can see

that the two developed models yield high accuracy in both training and validating processes, where

the accuracy is demonstrated in terms of MSE between the model prediction and the reference

value.

For the open-loop simulation, we designate a message passing interface (MPI) for files

exchanging to adopt random control actions from a Python script to the Aspen Plus simulation.

The control actions are simultaneously applied to the RNN models. Therefore, this simulation

fulfills two objectives: a) checking the connection between Python and Aspen Plus, and b) testing

for the open-loop prediction of the two RNN models.

Table 3.3 summarizes the simulation results, and presents the MSE between the predicted

states from each RNN model and the corresponding Aspen Plus Dynamics model outputs as

reference. Furthermore, the open-loop responses predicted by the partially-connected and the

61

Figure 3.6: RNN modeling structures for Ethylbenzene production in two CSTRs in series, where
xi and xi

+ are defined at t = tk and t = tk +∆, respectively.

fully-connected RNN models under a step change in u2 are displayed in Fig.3.9. The Figure

demonstrates that the partially-connected RNN model has an improved model identification of the

process dynamics. These results indicate that both RNN models provide accurate prediction, yet,

the partially-connected RNN model approximates the Aspen process model more accurately.

3.6.4 Closed-loop Simulation: First-principles Process Model

Subsequently, we develop LMPCs based on the fully-connected RNN model and the

partially-connected RNN model respectively, to perform the closed-loop simulation with the

62

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
epoch

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

Lo
ss

Model loss
Train
Validation

Figure 3.7: Partially-connected RNN model training and validation loss functions.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
epoch

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

Lo
ss

Model loss
Train
Validation

Figure 3.8: Fully-connected RNN model training and validation loss functions.

confidence that both RNN models provide high accuracy approximation for the process outputs.

In order to develop the LMPCs, we use the Python version of the interior point optimizer (IPOPT)

package to solve the nonlinear optimization problem of the LMPC for each sampling time ∆.

This optimizer is an open source package which can be used for solving large-scale nonlinear

optimization problems. It employs an interior point line search filter technique which intends to

63

Table 3.2: Input and output states of the RNN models.

Notation State (in deviation form)
x1 Concentration of Ethane for CST R1
x2 Concentration of Benzene for CST R1
x3 Concentration of Ethylbenzene for CST R1
x4 Concentration of Butylbenzene for CST R1
x5 Temperature of the reactor for CST R1
x6 Concentration of Ethane for CST R2
x7 Concentration of Benzene for CST R2
x8 Concentration of Ethylbenzene for CST R2
x9 Concentration of Butylbenzene for CST R2
x10 Temperature of the reactor for CST R2
u1 Heating/cooling duty of the reactor for CST R1
u2 Heating/cooling duty of the reactor for CST R2

RNN
Inputs Outputs
x1(tk) x1(tk +∆)
x2(tk) x2(tk +∆)
x3(tk) x3(tk +∆)
x4(tk) x4(tk +∆)
x5(tk) x5(tk +∆)
x6(tk) x6(tk +∆)
x7(tk) x7(tk +∆)
x8(tk) x8(tk +∆)
x9(tk) x9(tk +∆)
x10(tk) x10(tk +∆)
u1(tk)
u2(tk)

find a local solution of nonlinear programming problems. The LMPC objective function is defined

as L(x,u) = xT Q x+ uT R u, where Q and R are diagonal penalty matrices for the setpoint error

and control actions, respectively. The two matrices are critically impacting the performance of the

LMPC and require proper tuning, hence, the tuning guidelines discussed in [6] is followed. Lastly,

we choose V (x) = xT Px as the Lyapunov function, where P is a positive definite matrix obtained

by applying grid search.

Under the LMPC, we first perform the closed-loop simulation using the first-principles process

model of Eq. 3.7 - 3.8 integrated by explicit Euler method with times step hc = 0.05min, and the

64

0 5 10 15 20 25 30 35 40 45 50
0

5

10
PC-RNN

FC-RNN

0 5 10 15 20 25 30 35 40 45 50

0

50

100

0 5 10 15 20 25 30 35 40 45 50
-1

0

1

0 5 10 15 20 25 30 35 40 45 50
0

5000

Figure 3.9: Open-loop simulation under step change in (Q2 − Q2s) of the two RNN models:
partially-connected RNN (denoted by PC-RNN in dashed line), and the fully-connected RNN
(denoted by FC-RNN in dash-dotted line).

Table 3.3: MSE comparison of the open-loop prediction results between the RNN models and the
Aspen Plus simulation model.

Partially-connected RNN Fully-connected RNN

T1 2.52×10−3 6.93×10−1

CE1 6.626×10−7 5.51×10−5

T2 1.837×10−1 1.723
CE2 1.996×10−2 1.988×10−2

results are shown in Fig. 3.10 - 3.11. From those figures, both LMPCs, each based on its predictive

RNN model, are able to stabilize the process by driving the states close to the steady-state values.

However, state trajectories resulting from the partially-connected RNN based LMPC are smoother

and do not exhibit oscillation around the steady-state. This simulation is used to find the MPC

parameters, such as parameters in the cost function, that would deliver a desired closed-loop

performance. Furthermore, it is important to check the closed-loop state evolution before applying

the proposed LMPC to the high-fidelity Aspen Plus Dynamics model.

Remark 3.6. The MPI implements information exchange by defining a digital platform that allows

access from the python-based MPC and the Aspen dynamic software. Specifically, a python script

is developed to automatically upload the MPC output to the shared platform during the simulation.

65

0 20 40 60 80 100 120 140 160 180

-0.2

-0.1

0

FC-RNN

PC-RNN

FP

0 20 40 60 80 100 120 140 160 180

0

10

20

0 20 40 60 80 100 120 140 160 180

-0.3

-0.2

-0.1

0

0 20 40 60 80 100 120 140 160 180

0

50

100

Figure 3.10: State profiles of the closed-loop simulation of the first-principles process model under
the LMPC using three models: first-principles (denoted by FP in solid line), partially-connected
RNN (denoted by PC-RNN in dashed line), and fully-connected RNN (denoted by FC-RNN in
dash-dotted line).

0 20 40 60 80 100 120 140 160 180
-8000

-6000

-4000

-2000

0

2000

FC-RNN

PC-RNN

FP

0 20 40 60 80 100 120 140 160 180
-10000

-8000

-6000

-4000

-2000

0

Figure 3.11: Input profiles of the closed-loop simulation of the first-principles process model under
the LMPC using three models: first-principles (denoted by FP in solid line), partially-connected
RNN (denoted by PC-RNN in dashed line), and fully-connected RNN (denoted by FC-RNN in
dash-dotted line).

66

Simultaneously, the Aspen dynamic simulation can search and find the correct input data to update

its control states via the build-in script function. Subsequently, the Aspen dynamic simulation

can send the real-time measurement to the MPC using the same scripts and platform to carry on

the next iteration. Commercial platforms, such as Google Drive and Dropbox, can be efficient

candidates to adopt for data exchanging if it is not necessary to construct a specified database for

users’ projects.

3.6.5 Closed-loop Simulation: Aspen Plus Dynamic Model

Finally, we carry out closed-loop simulations of the Aspen Plus Dynamic model under the

proposed LMPCs, and the results are shown in Fig. 3.12 - 3.13. Both LMPCs stabilize the

process at the steady-state exhibiting similar dynamic performance. The responses under the

fully-connected RNN-based LMPC exhibits noticeable oscillation, while the ones under the

LMPC that utilizes partially-connected RNN model are smoother. This is expected since the

fully-connected RNN assumes that every input affects every possible output, which interferes with

the prediction accuracy. We note that an ensemble of RNN models may be developed from the

training date set and used to make average predictions of the future state evolution ([118,119]), but

this approach was not pursued in the present work as the MPCs implemented using the developed

RNN models produced desired closed-loop responses.

Another critical performance metric is the computational time needed to calculate the control

action, which impacts the feasibility of the controller in real-time operation. To evaluate this we

run closed-loop simulation, and record the computational time to solve for the optimum controller

actions in each sampling period for the two different RNN-based LMPCs. The computational

time ratio of the fully-connected RNN-LMPC to the partially-connected RNN-LMPC is presented

in Fig. 3.14. As illustrated in Fig. 3.14, the fully-connected RNN-LMPC requires longer

computational time to find the optimal solution in 32 out of the 39 calculations. On average, the

computational times for the fully-connected RNN-LMPC and the partially-connected RNN-LMPC

are 2.1161 and 1.65305 minutes, respectively. Furthermore, the computation times mean µ ,

67

Table 3.4: Statistical analysis of the computational times (in minutes) needed to calculate the
control actions using the two RNN structuers in LMPC.

Partially-connected RNN Fully-connected RNN

µ 1.65305 2.1161
σ 0.6185 0.87922
range (min−max) (0.38−3.77) (1.21−4.8)

standard deviation σ , and range using each RNN model are listed in Table 3.4. From the table,

the three parameters indicate that the computational times for the fully-connected RNN-LMPC are

larger than the partially-connected RNN-LMPC. In particular, using the partially-connected RNN

structure in the LMPC, the overall computational time has been reduced by approximately 22%.

Figure 3.12: State profiles of the closed-loop simulation of the Aspen Plus Dynamics model under
the LMPC using three models: first-principles (denoted by FP in solid line), partially-connected
RNN (denoted by PC-RNN in dashed line), and fully-connected RNN (denoted by FC-RNN in
dash-dotted line).

68

0 20 40 60 80 100 120 140 160 180
-6000

-4000

-2000

0

2000

PC-RNN

FC-RNN

FP

0 20 40 60 80 100 120 140 160 180
-10000

-8000

-6000

-4000

-2000

0

Figure 3.13: Input profiles of the closed-loop simulation of the Aspen Plus Dynamics model under
the LMPC using three models: first-principles (denoted by FP in solid line), partially-connected
RNN (denoted by PC-RNN in dashed line), and fully-connected RNN (denoted by FC-RNN in
dash-dotted line).

0 20 40 60 80 100 120 140 160 180

0

1

2

3

4

5

6

7

Figure 3.14: Ratio of computational time needed to calculate the control actions by LMPC using
fully-connected RNN and partially-connected RNN at each samplint time ∆.

69

Chapter 4

Physics-informed Machine Learning

Modeling for Predictive Control Using

Noisy Data

4.1 Introduction

To mitigate the effect of noise in data sets during modeling, several methods have been

proposed in the literature. For linear dynamical systems, the famous Kalman filtering is one

approach for dealing with noisy measurements. Furthermore, other approaches have been proposed

such as unscented Kalman filter and moving horizon estimation(e.g., [76]). An accurate explicit

model representation is generally required in the state estimation technique in order to achieve

a correct estimation, and also tuning of the co-variance matrices is required [60]. The result of

learning using raw vibration signals generated from water flow system in a laboratory-scale was

recently investigated by [87] using three different approaches; linear statistical learning approach,

LSTM neural networks, and feed-forward neural network (FNN). According to their analyses, both

the machine learning methods and the linear statistical model under-performed when utilizing raw

vibration signals, and additional data treatment was required to enhance the developed models

70

performance.

Since machine learning approaches were originally developed in the field of computer

science, they generally either presume the access to high-fidelity data, or refer to mislabeling in

classification tasks and numerical fallacies in regression tasks as “noisy data” [42]. As a result,

the accuracy and effectiveness of these methods are typically evaluated using noise-free data

sets. However, finding and collecting noise-free data in the domain of science and engineering,

especially chemical engineering, remains a long-standing challenge. Thus, numerous works in the

literature investigate machine learning methods with various types of noise. For instance, in the

work of [46], the robustness of an RNN model of Wiener type is evaluated by two types of noise:

white noise and sinusoidal noise. Furthermore, a study by [52] investigated the impact of Gaussian

noise on an RNN modeling of chaotic systems represented by short time-series. Moreover, data

quality can also be improved by using data preparation and smoothing techniques. For foaming

control implementation in bio-processes using ensemble-based machine learning method, noisy

and repetitive data are filtered in the work of [2]. In the same vein, [64] conducted a data smoothing

(i.e., pre-treatment) and dealt with incomplete data points by applying a third-order polynomial to

the experimental data and then combined it with an ANN to create a deep reinforcement learning

strategy to control a bio-reactor.

Many machine learning modeling algorithms can handle Gaussian noise. However,

non-Gaussian noise can cause a degraded modeling performance between the input and the

(noise-free) ground-truth output, and this is because of its over-fitting of the corrupted training data

set’s noisy behavior. In nonlinear processes modeling by machine learning algorithms exposed to

industrial data noise with a non-Gaussian distribution, the work of [116] utilized Monte Carlo

dropout and co-teaching. The Monte Carlo dropout strategy in the neural network training process

is an excellent way to minimize over-fitting to non-Gaussian noisy input without requiring any a

prior process knowledge. As for the co-teaching technique, it’s essentially using noise-free data

generated from a first-principles model to mitigate the impact of noise in the training phase of

machine learning models. [1] used a training data set where 20% of the data set was noise-free to

71

improve the overall modeling performance using co-teaching method.

Standard RNN models, also known as fully-connected RNN models, are a popular option

for analyzing time-series data within a black-box modeling framework. Such a modeling

methodology, however, may not always be preferable, particularly for large chemical processes

due to the complex interactions among process variables. Hence, to improve RNN performance,

several studies(e.g., [48, 92, 129]) have looked into gray-box modeling, also referred to as hybrid

modeling, which involves integration of a prior physical knowledge and expertise into the modeling

of neural networks. Another method is to reflect physical relation among the given process inputs

and outputs into the modeling of neural networks (i.e., known as partially-connected modeling)

which was proposed in [114]. In this direction, [5] examined the partially-connected method by

comparatively investigating open-loop and closed-loop simulation utilizing fully-connected RNN

model against partially-connected RNN model on a large-scale complex chemical process modeled

in Aspen Plus Dynamics. It was demonstrated that a partially-connected RNN model outperformed

a fully-connected RNN model in terms of smoother state trajectories and lower computational

burden under the MPC controller. Yet, to our knowledge, the performance of partially-connected

RNN has not been studied in the presence of industrial noise.

Taking into consideration the preceding factors, the current study takes noise into account

and attempts to evaluate the performance of a partially-connected RNN-based MPC through

application on a large-scale nonlinear chemical process. Initially, we use the process simulators

Aspen Plus and Aspen Plus Dynamics, to create a simulation model of a chemical plant that

produces Ethylbenzene via two continuous stirred tank reactors (CSTR) in series. Then, we carry

out extensive open-loop simulations using Aspen dynamical model to construct a base data set,

which will be corrupted with two types of noise (i.e., Gaussian and non-Gaussian) to obtain two

separate data sets based on the noise type. Subsequently, we train a standard partially-connected

RNN model as described in [5] using the noisy data. Then, two other models are developed

by employing the co-teaching and Monte Carlo dropout techniques, respectively. Eventually,

we evaluate both open-loop and closed-loop performance of each model, and show the benefits

72

of using the two proposed approaches to overcome noisy data presence in a partially-connected

RNN-based MPC framework.

The remainder of this manuscript is structured as follows: In Section 4.2, the class of

nonlinear chemical process systems, mathematical notation, and stabilizing feedback control law

assumptions are discussed. Next, the conceptualization and the development of partially-connected

RNN models, and LSTM models are introduced in Section 4.3. Subsequently, Sections 4.4

and 4.5 introduce the concepts of co-teaching and Monte Carlo dropout techniques, respectively.

The incorporation of a partially-connected RNN model into a model predictive controller with

Lyapunov stability assumption is proposed and discussed in Section 4.5. In Section 4.7, the

open-loop as well as the closed-loop performances of MPCs using different RNN models

that underwent different training procedures are assessed utilizing chemical process application

modeled in Aspen Plus Dynamics simulator.

4.2 Preliminaries

4.2.1 Notations

Throughout this work, the Euclidean norm of a vector κ is represented by the notation |κ|2.

The standard Lie derivative is notated by L f h(x) = ∂h(x)
∂x f (x). Set subtraction operator used in this

work is “− ”, as in A−B = {x ∈ Rn|x ∈ A,x /∈ B}. A function f (x) is regarded as of class C1 if it

is continuously differentiable in its domain.

73

4.2.2 Class of systems

We consider the class of nonlinear continuous-time multi-input multi-output (MIMO) systems

with the following state-space form:

ẋ = F(x,u) := f (x)+g(x)u, x(to) = xo (4.1a)

y = x+ν (4.1b)

where x = [x1, ...,xn]
T ∈ Rn denotes the state vector, and the vector of manipulated variables (i.e.,

inputs) is denoted by u = [u1, ...,ur]
T ∈ Rr. The term y = [y1, ...,yn]

T ∈ Rn represents the vector of

state measurements that are continuously sampled, and the measurements noise vector is denoted

by ν ∈ Rn. The input vector u is bounded by a lower bound umin and an upper bond umax and

both are ∈ Rr. f (·) is a vector function ∈ Rn×1 and g(·) is a matrix function ∈ Rn×r, and both

are assumed to be adequately smooth. We assume that the entire state vector is in deviation form

from the steady state of the considered system, such that when ν(t) = 0 and the function F(0,0) is

equal to zero then the origin is a steady-state of the nominal system in Eq. 4.1, i.e., (xs,us) = (0,0),

where the subscript “s” indicates the steady-state.

4.2.3 Stabilizability Assumption

For closed-loop stability considerations, a stabilizing feedback controller u = Φ(x) ∈U , where

U := {umin ≤ u ≤ umax} is assumed to exist. This controller is assumed to be able to enforce the

steady state (i.e., the origin) of the system of Eq. 4.1 to be exponentially stable in a neighborhood

around the origin. Such an assumption implies that a control Lyapunov function of class C1 exists

and is represented by V (x), such that for all x in an open neighborhood D around the origin, the

following inequalities hold:

c1|x|2 ≤V (x)≤ c2|x|2, (4.2a)

∂V (x)
∂x

F(x,Φ(x))≤−c3|x|2, (4.2b)

74

∣∣∣∣∂V (x)
∂x

∣∣∣∣≤ c4|x| (4.2c)

where ci are positive real numbers ∀ i ∈ {1, ...,4}. There are several methods to construct the

controller Φ(x); for instance, a possible method is the universal Sontag’s control law ([61]).

Other methods can also be applied, such as finding a well-tuned proportional control law (i.e.,

P-controller). Once the controller is chosen, subsequently, following [118] the closed-loop stability

region Ωρ is defined to be a level set of V (x) within the region D that is characterized under the

controller u = Φ(x) ∈U , i.e., Ωρ := {x ∈ D | V (x)≤ ρ ,ρ > 0}.

4.3 Recurrent neural networks model (RNN)

RNN models, as noted in the introduction, are an effective tool for modeling time-series data.

The hidden layer neurons’ recursive action enables the RNN to retain the memory of earlier states,

allowing it to adequately mimic a time-series dataset behaviour. RNN models are utilized to

estimate the nonlinear system of Eq. 4.1 using process operational data in this study is represented

as follows:

˙̄x = Frnn(x̄,u) := Ax̄+Θ
T

γ (4.3)

where the RNN state vector is x̄ = [x̄1, ..., x̄n] , and u = [u1, ...,ur] is the vector of the manipulated

inputs. The vector γ is based on x̄ and u, and is defined as [γ1, ...,γn,γn+1, ...,γn+r]=[α(x̄1), ...,

α(x̄n),u1, ...,ur] ∈ Rn+r. The notation α(·) denotes the nonlinear activation function utilized for

the activation of the hidden layers. Such activation functions include the sigmoid function and

the hyperbolic tangent function. The diagonal matrix A = diag[−a1, ...,−an] consists of negative

coefficients with each ai > 0 with the intention that the states are kept stable in the sense of

bounded-input-bounded-state stability. Regarding the matrix Θ= [θ1, ...,θn]∈R(n+r)×n, it consists

of a vector θi = bi[wi1, ...,wi(n+r)], where the elements of each θi are bi, which are constants,

and wi j, which is the weight on the interrelation that links the jth input to the ith neuron, where

j ∈ {1, ...,(n+ r)}, and i ∈ {1, ...,n}.

75

4.3.1 Partially-connected RNN

For constructing a dynamic model for a nonlinear process, a neural network model that takes all

available process inputs and predicts the desired outputs is usually preferred. Using open-source

machine learning software, a dynamic RNN model for such processes may be simply developed,

and this model will be able to account for all conceivable correlations between each input and

output of the underlying process. The general construction of such a fully-connected RNN with an

input layer, hidden layers, and an output layer is depicted on the left side of Fig. 5.3. As a result,

fully-connected RNN models are typically the best initial choice for modeling processes where no

prior knowledge is available.

The term “process prior knowledge” is defined as a physical understanding of the process

considered that exists before the derivation of the first-principles process model. It involves,

but is not restricted to, the model’s intended goal, each and every hard and soft physical

constraint imposed on the process as a result of design considerations, as well as the process

structure. We focus on process structure knowledge in the form of connections between process

input and output variables in this paper. Physical connections between process variables can

sometimes be straightforward, especially in the chemical process industry. Upstream processes,

for example, have an effect on downstream processes, whereas the opposite effect may not exist.

This relationship among upstream and downstream stages is frequently reflected explicitly in

a first-principles mathematical model. As a result, as discussed in [94], integrating process

knowledge that defines physical relationships among the considered system’s inputs and outputs

into neural network modeling enhance its performance. This modeling approach is referred to as

partially-connected neural network modeling.

We consider the system with x = [xa,xb] and u = [ua,ub], such that xa ∈ Rn1 , xb ∈ Rn2 ,

ua ∈ Rr1 , and ub ∈ Rr2 where r1 + r2 = r and n1 + n2 = n. It is assumed that the input vector ua

exclusively influences the state vector xa, whereas xb is influenced by both ua and ub. Physical

knowledge is incorporated into the RNN modeling of the nominal system by modifying the

RNN structure to explicitly disconnect the links between ub and xa. In due course, an enhanced

76

𝑢𝑎

𝑅𝑁𝑁

𝑥𝑎

𝑢𝑏

𝑅𝑁𝑁

𝑥𝑏

𝑢

𝑅𝑁𝑁

𝑥

(𝑎) (𝑏)

Input Layer

Hidden Layer

Output Layer

Figure 4.1: Schematic of (a) Standard and (b) Physics-informed RNN structures, with u = [ua,ub]
and x = [xa,xb].

model approximation is achieved as a result of implementing partially-connected RNN model as

discussed and demonstrated in [5] and [114].

The development framework for partially-connected RNN models is similar to that of

fully-connected RNN models, but with additional specifications. [5] discussed the construction

and training processes of partially-connected RNN models and provided the pseudocode of these

modeling methods. Basically, a training/validation dataset can be collected from experimental and

industrial sources, or through extensive open-loop simulations. The general principle of splitting

the collected data set into 70% training and 30% validating can be followed, or more advanced

techniques such as cross-validation may be employed. Prior to training RNN models, the input

vectors ua and ub, as well as the output vectors xa and xb, should be defined, which is also referred

to as data preprocessing.

To build and train the RNN models in this study, we used the Keras library, which is an open

source Python library. Our models are consist of four layers: an input layer, two hidden layers, and

an output layer, where the hidden neurons are activated by nonlinear functions: hyperbolic tangent

77

and sigmoid functions. Instead of feeding the full input vector u through one input layer, in partially

connected RNN models the input vectors ua and ub are fed independently through different input

layers according to the process structure, as illustrated in Fig. 5.3. The first hidden layer predicts

the output vector xa based on the input vector ua. Subsequently, ub and xa are concatenated and

then sent to the subsequent hidden layer to estimate xb. Ultimately, the developed model will be

able to estimate both the output vectors xa and xb given ua and ub.

4.3.2 Long short term memory (LSTM)

Long-short-term memory networks, or LSTMs in short, are a class of RNNs, and henceforth

will be referred to as RNN-LSTM. Due to the design of three gates in the network structure,

namely the input gate, the forget gate, and the output gate, RNN-LSTM networks are capable of

capturing long-term dependencies in problems involving sequential prediction. Figure 4.2 shows

a diagram of an LSTM network. In this study, RNN-LSTM based models are developed in the

framework of partially-connected modeling. When given control actions and previous noisy state

measurements, the generated RNN-LSTM models are used to predict the states of Eq. 4.1. In

particular, considering the input sequence m(k), where k = 1, ...,T and T denotes the number

of measured states of the nominal system in Eq. 4.1, the approximate output sequence x̄(k) is

computed using the following equation:

i(k) =σ(ωm
i m(k)+ω

h
i h(k−1)+bi) (4.4a)

f (k) =σ(ωm
f m(k)+ω

h
f h(k−1)+b f) (4.4b)

c(k) = f (k)c(k−1)+ i(k) tanh(ωm
c m(k)+ω

h
c h(k−1)+bc) (4.4c)

o(k) =σ(ωm
o m(k)+ω

h
o h(k−1)+bo) (4.4d)

h(k) =o(k) tanh(c(k)) (4.4e)

x̄(k) =ωyh(k)+by (4.4f)

where m(k) denotes the input sequence, while c(k) and h(k) are the cell state and the internal

78

𝜔𝐶 𝜔𝑂𝜔𝐼𝜔𝐹

Figure 4.2: RNN-LSTM network schematic.

state, respectively. Regarding the gates, f (k) is the forget gate, o(k) represents the output gate, and

the output of the input gate is denoted by i(k). The output sequences x̄ ∈ Rn×T is the RNN-LSTM

network output.

The weight matrices here are given by ω l
p, where p ∈ {i,c, f ,o} represents the gate or the

state, while l represents the associated vector (i.e., either m or h). Similarly, the bias term is

denoted by bp. Eventually, Eq. 4.4f is used to compute the predicted state of the RNN-LSTM,

which the terms by and ωy represent the bias vector and the output weight matrix, respectively.

Because the RNN-LSTM model predicts future states using control actions and previous state

measurements, the input sequence m ∈ R(n+r)×T consists of manipulated input u ∈ Rr along with

previous measured states x ∈ Rn during a given time period (i.e., T). The nonlinear activation

functions used in the LSTM model are σ(·) and tanh(·), which are sigmoid and hyperbolic tangent

functions, respectively.

79

4.4 Co-Teaching technique

Noisy data in classification problems could result in mislabelling (e.g., an image with a label

“A” is mislabeled as “B”), and for regression problems noise in the data might result in a deviation

from its ground truth value (i.e., the true value). In both cases, it is quite challenging for a machine

learning model to fulfill the desired model accuracy with a noisy data set following the standard

learning algorithms.

The co-teaching technique was originally proposed to improve the accuracy of ML-based

models in image classification problems when the training data set is corrupted with noise (

[42]). [1] utilized co-teaching in the context of regression to handle noisy data with an observed

enhancement in model accuracy. In the same vein, to reduce the effect of noisy data on

RNN-LSTM modeling, [116] employed the co-teaching method, and achieved better closed-loop

performance under MPC when applied to a reactor example in comparison with the standard

RNN-LSTM model. To our knowledge, little attention has been paid to the implementation of

the co-teaching method in solving regression problems. Hence, there is growing research into

extending the co-teaching technique to regression problems using RNN-LSTM networks.

The idea behind the co-teaching technique comes from the fact that earlier in the training

process, neural networks would employ a simple pattern to fit training data [42]. As a result,

when evaluating the loss function value under a simple pattern that approximates the relationship

between inputs and outputs of a neural network, noisy data typically have a large loss function

value, and noise-free data typically have a small value. Therefore, merging the two data

sets provides a possible way to train machine learning models in the presence of noisy data

by benefiting from noise-free data. Such clean data can be generated from simulation of

first-principles models. Therefore, mixing the two data sets in some ratio (i.e., noisy data set

and noise-free data set) can improve the robustness of the RNN-LSTM model training process

to over-fitting to noisy data. To apply this technique, after merging the two data sets (i.e., the

noisy and the clean data) into one data set, then the new data set is to be shuffled first and

then split into training and validating sets as a prerequisite for machine learning based model

80

…
…

Noisy data

Clean data

Training dataset

Model training ML model

Figure 4.3: Developing machine learning (ML) model via co-teaching method.

development. Subsequently, both partially-connected and fully-connected RNN models can be

developed following the procedure proposed in [114] and [5].

4.5 Dropout technique

Another candidate strategy to reduce over-fitting caused by noisy data, specifically

non-Gaussian type [116], without having any prior process knowledge is to utilize a dropout

technique in the neural network development process. In particular, as depicted in Fig. 4.4, a

dropout strategy arbitrarily drops the associations between units in neighboring layers during

training and provides an efficient method for combining various neural network structures to

improve prediction accuracy.

Consider the RNN-LSTM model in its general form as in Eq. 4.3. For all RNN-LSTM layers,

let W = {W1, ...WL} denote the set of weight matrices that incorporate both weights and bias terms,

where W1 denotes the weight matrix associated with the first layer in the RNN-LSTM structure and

L denotes the number of layers. The primary objective of the Monte Carlo (MC) dropout technique

81

is to acquire the posterior distribution (i.e., an integration of the prior distribution as well as the

likelihood function, which reveals what information the observed data contain) of the RNN-LSTM

weights W , denoted by p(W), from the training data (M,X) in which M and X are the input and

output data matrices, respectively. The weight matrix Wi is described as follows, following the

method in [35]:

Wi = Bi ·Zi (4.5a)

where Zi = diag(zi) and i = 1, ...,L. Each zi is a set of binary variables that follows the well-known

Bernoulli distribution and symbolizes the weights which are dropped out according to a particular

user-defined probability, and Bi denotes the variational variables that shall be optimized. The

RNN-LSTM predicted output distribution can be estimated by conducting Monte Carlo dropout

at testing time after the RNN-LSTM model has been trained using the Monte Carlo dropout

technique. Several realizations of the RNN-LSTM model are used to obtain the predicted

distribution by taking the mean of the distribution as follows:

p(x∗|m∗,M,X)≈ 1
Nt

Nt

∑
i=1

p(x∗|m∗,Wi) (4.6a)

where the RNN-LSTM input and output are m∗ and x∗ in the test set, respectively. The total number

of Monte Carlo realizations at the testing stage is Nt . Given the same input, the RNN-LSTM output

is no longer deterministic, because the RNN-LSTM model obtained utilizing the MC dropout

technique is a probabilistic model, which is approximated by its mean value in this work, as shown

in Eq. 4.6. As a result of using Eq. 4.6, a probabilistic distribution is obtained as an approximation

of the model predictions’ uncertainty. Furthermore, the ground-truth process dynamics can be

roughly evaluated via the sample mean of all the model estimations.

The dropout rate (i.e., the likelihood of a neuron to be dropped out) plays a critical role

in the model’s performance, and is determined during model training to accomplish desired

training/validation results. In particular, a small dropout value (e.g., 0.2–0.5) is suggested to begin

82

with. Then, the user may increase the dropout rate value if over-fitting still occurs, or to decrease

the value if the network fails to capture (i.e., learn) the dynamics of the underlying process.

(a) (b)

Output

Layer

Hidden

layers

Input

layer

Active hidden node

Inactive hidden node

Figure 4.4: Fully-connected neural network layers (a) without dropout and (b) with dropout.

Remark 4.1. Since the considered training data is corrupted with noise, our perception of the

process dynamics via machine learning-based models utilizing the dropout strategy is expressed

in a probabilistic manner. The Monte Carlo dropout method is an effective tool for modeling

uncertain process dynamics and to estimate underlying nominal dynamics by a sequence of

probabilistic forward passes. In particular, the RNN-LSTM model, developed via the Monte Carlo

dropout technique, can be considered an uncertain process model, with the RNN-LSTM weights as

uncertain variables.

Remark 4.2. The Monte Carlo dropout technique can be used to address over-fitting issues for

different tasks with regards to chemical processes. For example, it can be employed to improve

the machine learning-based model accuracy for state estimation, fault diagnosis, and other tasks

in the presence of process noise, measurements noise, and other uncertainties associated with the

process of interest. Furthermore, this technique may not only be used for regression but can also

be applied to classification problems. The interested reader may refer to [35], [36], [91], [110],

and [56] for details.

83

4.6 RNN-LSTM based model predictive control

In this section, we integrate an RNN-LSTM model into a Lyapunov-based model predictive

controller (LMPC) formulation. In particular, the partially-connected modelling of RNN-LSTM is

executed as discussed in [5] and then utilized as a predictive model to provide state estimation to

solve the optimization problem of the LMPC, which is expressed in the following form:

J = min
u∈S(∆)

∫ tk+P

tk
L(x̃(t),u(t))dt (4.7a)

s.t. ˙̃x(t) = Frnn(x̃(t),u(t)) (4.7b)

u(t) ∈U, ∀ t ∈ [tk, tk +P) (4.7c)

x̃(tk) = x(tk) (4.7d)

V̇ (x(tk),u)≤ V̇ (x(tk),Φnn(x(tk)),

if x(tk) ∈ Ωρ −Ωρnn (4.7e)

V (x̃(t))≤ ρnn, ∀ t ∈ [tk, tk +P), if x(tk) ∈ Ωρnn (4.7f)

where S(∆) denotes a set of piecewise constant functions with period ∆, x̃ is the state trajectory

predicted by the RNN-LSTM model, and P is the prediction horizon expressed as a multiple of

the sampling period (i.e., P = N ×∆, N > 0). The time-derivative of the Lyapunov function V in

Eq. 4.7e is given as V̇ (x,u), i.e., ∂V (x)
∂x (Frnn(x,u)). During the prediction horizon t ∈ [tk, tk+P), the

LMPC computes the optimum input sequence u∗(t) and delivers the first control signal u∗(tk) to the

system to be implemented for the following sampling period. After that, at the following sampling

interval, the LMPC receives new data and is resolved with updated state estimations. Furthermore,

the MPC optimization problem’s goal is to minimize the integral of L(x̃(t),u(t)), given in Eq. 4.7a,

which represents the cost function over the prediction horizon while satisfying the constraints of

Eqs. 4.7b–4.7f. The RNN-LSTM model from Eq. 4.7b is used to forecast the evolution of the

closed-loop state trajectory x̃(tk) under the MPC, and its initial conditions are updated according to

Eq. 4.7d, where x(tk) is the last state measurement. The input constraints are expressed in Eq. 4.7c,

84

and they are imposed across the prediction horizon.

To ensure the stability of the closed-loop system, when x(tk) ∈ Ωρ −Ωρnn , where Ωρnn is the

target region, the condition of Eq. 4.7e is triggered. As a result of this constraint, the Lyapunov

function of the closed-loop states declines, and the state approaches the steady-state within a finite

period of time. Eventually, when the state x(tk) arrives to Ωρnn , the predicted closed-loop state

will be kept within this region for the duration of the prediction horizon. Following section 2.3,

the controller Φnn(x) was developed with the intent of ensuring that the origin of the RNN-LSTM

system of Eq. 4.3 exponentially stable.

When using noise-free data for training, a well-conditioned RNN-LSTM model can be

generated with adequate model accuracy. Therefore, by using the RNN-LSTM based LMPC

of Eq. 4.7 to control a nonlinear system as that of Eq. 4.1, the closed-loop state is assured to

be bounded within the stability region Ωρ throughout the simulation time and eventually will

converge to a small region around the origin under the condition that the modeling error, i.e.,

|ν |= |F(x,u)−Frnn(x̄,u)|, is sufficiently small [8, 118].

4.7 Application to a Chemical Process Using Aspen Plus

Simulator

In this section, we evaluate the proposed partially-connected RNN-based LMPC using a

large-scale chemical process in the presence of industrial noise. First, we use Aspen Plus Dynamics

V11 to create a dynamic model of a chemical process. Following that, a time-series data set of the

process states and input variables is generated in order to train and test the RNN-LSTM models

using extensive open-loop simulation. Subsequently, open-loop and closed-loop simulations using

an RNN-model-based MPC are performed and discussed. Henceforth, PCRNN-LSTM will stand

for partially-connected RNN-LSTM.

85

4.7.1 Process description

The process of producing Ethylbenzene (EB) from Ethylene (E) and Benzene (B) as reactive

raw materials is used to demonstrate the performance of the proposed control strategy. There are

three reactions in this process, which take place in two nonisothermal and well-mixed continuous

stirred tank reactors (CSTR). The reaction scheme is shown below:

C2H4 +C6H6 →C8H10 (primary) (4.8a)

C2H4 +C8H10 →C10H14 (4.8b)

C6H6 +C10H14 → 2 C8H10 (4.8c)

where the desired reaction is the second-order, exothermic, irreversible reaction labeled as

“primary”.

Table 4.1: Parameter values, steady-state values, and model configuration of the Aspen Plus model.

T1o = 350 K T1s = 310.523 K

T2o = 350 K T2s = 430.542 K

F1 = 43.2 m3/hr F2 = 91.079 m3/hr

CE1 = 4.2455 kmol/m3 CE2 = 0.3254 kmol/m3

CB1 = 5.3532 kmol/m3 CB2 = 1.3841 kmol/m3

CEB1 = 0.1854 kmol/m3 CEB2 = 3.8744 kmol/m3

CDEB1 = 9.1426×10−7 kmol/m3 CDEB2 = 0.0058 kmol/m3

Heat transfer option Dynamics

Medium temperature 298 K

Temperature approach 77.33 K

Heat capacity of coolant 4200 J/kgK

Medium holdup 1000 kg

Cp = 2.411 kJ/kgK ρ1 = 639.1530 kg/m3

V1 =V2 = 60 m3 ρ2 = 607.5040 kg/m3

The first-principles model for the two CSTRs is derived using mass and energy balances.

Particularly, the dynamic model of the two reactors is given by the following system of ordinary

86

differential equations (ODEs):

dCE1

dt
=

F1CEo1 −Fout1CE1

V1
− r1,1 − r1,2 (4.9a)

dCB1

dt
=

F1CBo1 −Fout1CB1

V1
− r1,1 − r1,3 (4.9b)

dCEB1

dt
=
−Fout1CEB1

V1
+ r1,1 − r1,2 +2r1,3 (4.9c)

dCDEB1

dt
=
−Fout1CDEB1

V1
+ r1,2 − r1,3 (4.9d)

dT1

dt
=
(T01F1 −T1Fout1)

V1
+

3

∑
j=1

−∆H j

ρ1Cp
r1, j +

Q1

ρ1CpV1
(4.9e)

dCE2

dt
=

F2CEo2 +Fout1CE1 −Fout2CE1

V2
− r2,1 − r2,2 (4.9f)

dCB2

dt
=

F2CBo2 +Fout1CB1 −Fout2CB1

V2
− r2,1 − r2,3 (4.9g)

dCEB2

dt
=

Fout1CEB1 −Fout2CEB2

V2
+ r2,1 − r2,2 +2r2,3 (4.9h)

dCDEB2

dt
=

Fout1CDEB1 −Fout2CDEB2

V2
+ r2,2 − r2,3 (4.9i)

dT2

dt
=
(T02F2 +T1Fout1 −T2Fout2)

V2
+

3

∑
j=1

−∆H j

ρ2Cp
r2, j +

Q2

ρ2CpV2
(4.9j)

where the reaction rates are calculated by the following expressions:

ri,1 =k1e
−E1
RTi CEiCBi (4.10a)

ri,2 =k2e
−E2
RTi CEBiCEi, i = 1,2 (reactor index) (4.10b)

ri,3 =k3e
−E3
RTi CDEBiCBi (4.10c)

In this work, the two CSTRs are connected in series, so that the output of the first reactor affects

the output of the second one, but not vice versa. Furthermore, the model of this process is created

with Aspen Plus and Aspen Plus Dynamics V11, which are high-fidelity simulators that are used

for steady-state and/or dynamics of complex chemical processes modeling. The process model is

initially built in Aspen Plus, where steady-state simulation is carried out and solved using material

and energy balances. Following that, we use Aspen Plus Dynamics to run a dynamic simulation

87

of the underlying process to analyze and control its dynamical performance. The dynamic model

is developed following the procedure described in [5], and the resulting flow sheet is shown in

Fig. 4.5.

Figure 4.5: Aspen Plus model flow sheet of two chemical reactors in series.

The flow rates F1 and F2 are the raw material feed to the first and second reactors, respectively.

The concentrations of the species considered in this process are given as: CE , CB, CEB, and

CDEB and they represent Ethylene, Benzene, Ethylbenzene, and Di-Ethylbenzene, respectively.

Process parameters such as reactor temperature, mass density, and liquid volume of each CSTR

are denoted, in the same order, by Ti, ρi, Vi where i refers to the CSTR index ∈ {1,2}. The

values of these parameters are listed in Table 4.1, which also includes the steady-state values and

the liquid mixture’s mass heat capacity, denoted as Cp which is considered constant in this work.

The subscript “s” refers to steady-state value, and “o” represents the value at t = to. To control

the reactors temperature, we added a cooling/heating jacket to each reactor that removes/provides

heat to the reactor at a rate Qi. The pressure is set to 15 bar initially for both reactors, while

the temperatures of the first and second reactors at t = to are set to T1o = 400K and T2o = 450K,

respectively. This choice of initial temperature, is made to keep both the reactants and products as

liquids during the operation (i.e., simulation of the process). These values will be automatically

adjusted by running Aspen Plus built-in steady-state simulations. After configuring the reactions

in the two reactors, the steady-state simulation is carried on in order to analyze the behavior of the

process. Moreover, the reactor geometry as well as thermodynamic parameters must be specified

88

before exporting the steady-state model to Aspen Plus Dynamics. In this study, the vessels in the

Aspen model are all vertical, the heads are flat, and each CSTR is ten meters long. Table 4.1

contains a list of the thermodynamic parameters that were used in the Aspen model. Finally,

after running a pressure check, the steady-state model is exported to Aspen Plus Dynamics to

generate and initiate the dynamic model. Moreover, to prepare the model for both open-loop and

closed-loop simulation the flow rates F1 and F2 are fixed, and the two reactors’ heating modes are

switched to constant duty to enable external control over the manipulated variables (i.e., Q1 and

Q2). By following the procedure outlined above, the dynamical model of the considered process is

completed.

4.7.2 Data generation and model training

Data are required for the development of data-driven models and, generally given that the

data are independent and identically distributed, the larger the data set size, the more accurate the

model can be [111]. However, excessive use of corrupted data (e.g., noisy, repeated, etc.) in the

training data-set may lead to a less accurate RNN model, especially if the training is not carried

out with potential pitfalls in mind. Therefore, this trade-off between data generation/collection

and model accuracy should always be taken into account. In addition, large data sets are available

from several sources, including industries, pilot plants, and computer-based simulations. However,

in general, industrial data is not publicly accessible, and collecting data from pilot plants and

laboratory experiments are expensive and time intensive. Therefore, in this work, we build our

data set via extensive open-loop simulations utilizing an alternative approach

The constructed dynamical model in Aspen Plus Dynamics is used in open-loop simulations

with the input signals randomly generated via MATLAB and then implemented in a

sample-and-hold fashion, such that the input remains fixed throughout each sampling time ∆. A

local message passing interface (MPI) is created to connect Aspen Plus Dynamics and MATLAB,

so that the Aspen dynamical model can automatically read the input signals from MATLAB. The

MATLAB code, in particular, generates the manipulated variables in deviation form in relation

89

to their steady-state values (i.e., u1 = Q1 − Q1s and u2 = Q2 − Q2s). The two manipulated

variables randomly vary within the lower bounds [umin
1 ,umin

2] = [−1×104kW,−1.5×104kW] and

the upper bounds [umax
1 ,umax

2] = [1×103kW,5×103kW]. Both inputs are employed to the dynamic

simulation in which the values are updated every five minutes (i.e., the sampling time). According

to Aspen’s manual, the default numerical integration method of the Aspen process dynamic model

is the Implicit Euler scheme with an adaptive integration time step. In this study, we used a

sampling time ∆ = 5 min i.e., the integration scheme records the process state values every 5

minutes in process operation time. Note that the numerical integration time step while adaptive is

always several orders of magnitude smaller that the sampling time. Other integration techniques in

Aspen that are available for users to choose from include the 4th-order Runge-Kutta method, the

explicit Euler scheme, and Gear methods.

We employ Aspen dynamic simulations to generate data sets for neural network training, since

the Aspen dynamic model can be regarded as a high-fidelity process model for various complex

chemical processes such as a system of CSTRs. To simulate typical sensor variability in chemical

plants, industrial noise is incorporated into the state measurements. The normalized data noise

obtained from Aspen public domain is shown in Fig. 4.6. The probability distribution of the

normalized industrial noise in Fig. 4.6 is shown in Fig. 4.7, from which we confirm that the

industrial noise has a non-Gaussian distribution. With the random inputs generated from Matlab as

discussed in the previous paragraph, and the normalized noise are amplified by six times and then

added to the reactors temperature measurements. To create the training/validating data set, all input

values and output states (such as T , CA, and CB) are recorded as sequential time series data. For the

Gaussian noise case, we generated normalized white noise with zero mean and standard deviation

of 0.1, which was amplified six times and added to the temperature measurements. The dataset

generated via this procedure for the Gaussian and non-Gaussian cases are denoted as Snoisy(G)(x,u)

and Snoisy(NG)(x,u), respectively.

For the co-teaching method, noise-free data is required for the ML-based model development.

This noise-free data set is non-trivial to collect in practice (i.e., not readily available from the

90

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.6: Normalized industrial noise from Aspen public domain data.

laboratory/plant). First-principles (FP) models with simplifying assumptions are developed as

candidates for generating such clean data for training/validating processes to solve this challenge.

Therefore, in this work, we numerically solved the FP model developed in the previous section to

generate noise-free data SFP(x,u) to train the PCRNN-LSTM model using the co-teaching method.

The noise-free open-loop trajectories of the Aspen dynamical model and the first-principles model

denoted by FP under time-varying inputs are shown in Fig. 4.8. Although the first-principles model

may not fully capture the dynamics of the Aspen model under the different operating conditions, we

will show that the co-teaching method using noisy data from the Aspen model and noise-free data

from solving the first-principles model can still improve the LSTM model’s prediction accuracy.

The generated data sets are used in the development of three different RNN-LSTM models,

as illustrated in Fig. 4.9. Both the standard RNN-LSTM model and the dropout RNN-LSTM

model use either Snoisy(G) or Snoisy(NG) according to the noise type, yet we use the dropout rate

while training the dropout RNN model. Basically, we perform a grid search for the dropout

91

Figure 4.7: Probability density plot of normalized industrial noise introduced to the Aspen model.

rate in the range 0.2–0.5 that achieves the lowest training/validation loss (i.e., mean squared error

(MSE)), and the results are summarized in Table 4.3. From the table, for the case of non-Gaussian

noise and Gaussian noise, dropout rates of 0.2 and 0.4 are selected, respectively. As for the

co-teaching model, it was trained typically as the standard model. Using the Keras library, the

three RNN-LSTM models are constructed following the strategy discussed in section 4.3.1. The

models are designed as follows: each neural network has two LSTM layers with thirty neurons

in each, where we select the hyperbolic tangent functions (i.e., tanh(x) = ex−e−x

ex+e−x) as the activation

function. In addition, the output layer is to be activated by a linear activation function, and this

layer will provide the estimated ten states, while the input layer will receive twelve inputs. The

inputs to RNN-LSTM models are the states and the manipulated variables at tk, where the model

outputs are the states at t = tk +∆, and all are defined in Table 4.2. Specifically, we predict the

evolution of the states for the next five minutes (the equivalent of one sampling time) using input

92

data from the previous five-minute sampling period. Rather than the traditional gradient descent

optimization algorithm, we employ the Adam optimizer, which is a hybrid of two algorithms:

gradient descent with momentum and RMSprop. Furthermore, to generate more robust models,

we perform a five-fold cross-validation on the RNN-LSTM models and choose the models with

the lowest validation MSE.

Table 4.2: Input and output states of the RNN-LSTM models.

Notation State (in deviation form)

x1 Concentration of Ethane

1st CSTR

x2 Concentration of Benzene
x3 Concentration of Ethylbenzene
x4 Concentration of Diethylbenzene
x5 Reactor’s Temperature
u1 Heating/cooling duty

x6 Concentration of Ethane

2nd CSTR

x7 Concentration of Benzene
x8 Concentration of Ethylbenzene
x9 Concentration of Diethylbenzene
x10 Reactor’s Temperature
u2 Heating/cooling duty

After the development of the three RNN-LSTM models, we run two open-loop simulations

considering the existence of Gaussian and non-Gaussian noise independently. Figures 4.10 and

4.11 illustrate the open-loop prediction of the three models, with the process output (i.e., the Aspen

dynamical model output) denoted as the “True state”, in response to time varying inputs generated

randomly from MATLAB, and starting from the exact same initial conditions. Both figures

demonstrate the improvement in the prediction accuracy of the RNN-LSTM models utilizing the

two proposed methods; the dropout and the co-teaching methods. The open-loop prediction MSEs

of the two scenarios are listed in Table 5.2, with noticeable improvements in the approximation of

the process outputs, since both the dropout and the co-teaching RNN-LSTM provided relatively

lower MSE values compared to the standard RNN-LSTM model.

93

0 10 20 30 40 50 60
0

50

First-principles model

Aspen model

0 10 20 30 40 50 60

0

200

400

600

0 10 20 30 40 50 60

-40
-20

0
20
40

0 10 20 30 40 50 60

0

2000

4000

Figure 4.8: Open-loop state and manipulated inputs profiles for the process (noise-free).

Noisy
Process

First-principles
process model

Extensive open-loop
simulation 𝑆𝐹𝑃(𝑥, 𝑢)

Noisy sensor data

𝑆𝐶𝑜−𝑇𝑒𝑎𝑐ℎ𝑖𝑛𝑔(𝑥, 𝑢)

80%

20%

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑅𝑁𝑁

𝐷𝑟𝑜𝑝𝑜𝑢𝑡 𝑅𝑁𝑁

(Trained regularly)

(Trained with dropout rate)

𝐶𝑜 − 𝑇𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑅𝑁𝑁 (Trained regularly)

𝑆𝑛𝑜𝑖𝑠𝑦(𝐺)(𝑥, 𝑢)/ 𝑆𝑛𝑜𝑖𝑠𝑦(𝑁𝐺)(𝑥, 𝑢)

Figure 4.9: Partially-connected RNN model development methods.

94

0 5 10 15 20 25
6

6.5

7

7.5

8

8.5

9
Dropout

Co-Teaching

Standard

True state

0 5 10 15 20 25
45

50

55

60

65

70

75

0 5 10 15 20 25
-600

-400

-200

0

200

400

0 5 10 15 20 25
-3000

-2000

-1000

0

1000

2000

3000

4000

Figure 4.10: Open-loop state trajectory predicted by dropout LSTM, co-teaching LSTM, and
standard LSTM, respectively, under the same time varying inputs in the presence of non-Gaussian
noise.

Table 4.3: Open-loop prediction MSE results under Gaussian and non-Gaussian noise.

Dropout rate Non-Gaussian Gaussian
0.2 7.487×10−6 2.02×10−6

0.3 8.66×10−6 2.87×10−6

0.4 7.428×10−6 5.08×10−6

0.5 1.144×10−5 6.75×10−6

Table 4.4: Open-loop prediction results (MSE) by the three different models under non-Gaussian
and Gaussian industrial noise.

Model Non-Gaussian Gaussian
x5 x10 x5 x10

Dropout 0.2445 24.197 0.27385 10.5538
Co-teaching 0.28458 35.56 0.265 19.255

Standard 0.9088 47.564 0.4485 21.968

95

0 5 10 15 20 25
4

5

6

7

8

9

Dropout

Co-Teaching

Standard

True state

0 5 10 15 20 25
45

50

55

60

65

70

0 5 10 15 20 25
-600

-400

-200

0

200

400

0 5 10 15 20 25
-3000

-2000

-1000

0

1000

2000

3000

4000

Figure 4.11: Open-loop state trajectory predicted by dropout LSTM, co-teaching LSTM, and
standard LSTM, respectively, under the same time varying inputs in the presence of Gaussian
noise.

4.7.3 Closed-loop simulation: Gaussian noise

Following the open-loop simulations, we performed closed-loop simulations in the case of

existence of Gaussian noise in the measurement of the two reactor temperatures under an LMPC

controller utilizing each of the three different PCRNN-LSTM models separately. The process

dynamics corresponding to the PCRNN-LSTM model developed by the co-teaching method versus

the standard PCRNN-LSTM model is presented in Fig. 4.12. Both LMPCs were able to derive

the process to the desired steady-state and to stabilize the system around the origin even in the

presence of Gaussian industrial noise. However, the improvement of the closed-loop performance

when utilizing the co-teaching method is noticeable throughout the figure, as the temperatures

trajectories are smoother and show less oscillation in comparison to the standard model.

Concurrently, a closed-loop simulation is performed using the dropout trained PCRNN-LSTM

model. The results are plotted in Fig. 4.13. From the state trajectories and control actions in

96

Fig. 4.13, similarly to the co-teaching strategy, the dropout method has observably enhanced the

performance of the LMPC.

0 10 20 30 40 50 60 70 80 90 100 110

0

10

20
Standard

Co-Teaching

0 10 20 30 40 50 60 70 80 90 100 110

0

50

100

0 10 20 30 40 50 60 70 80 90 100 110

-4000

-2000

0

0 10 20 30 40 50 60 70 80 90 100 110
-1

0

1
10

4

Figure 4.12: State and input profiles of the closed-loop simulation in the presence of Gaussian
noise under the LMPC using PCRNN-LSTM models developed by: standard method (dashed line)
and co-teaching method (dash-dotted line).

4.7.4 Closed-loop simulation: non-Gaussian noise

In this subsection, we discuss the results of closed-loop simulation in the existence of

non-Gaussian type of noise. Figure 4.14 shows the closed-loop inputs and state trajectories under

the LMPC when using the PCRNN-LSTM model trained according to the standard strategy and

the co-teaching strategy. It is notable that the standard PCRNN-LSTM model shows significant

variation when the closed-loop state reaches the steady-state. This stems from the fact that the

states predicted using the standard LSTM model are not sufficiently close to the true state values;

hence, the LMPC is deceived to provide a solution that drives the process states in the wrong

direction. In the same figure, the co-teaching based PCRNN-LSTM demonstrated enhanced model

accuracy, and that the LMPC using the co-teaching method was successfully able to derive the state

97

0 10 20 30 40 50 60 70 80 90 100 110

0

10

20
Standard

Dropout

0 10 20 30 40 50 60 70 80 90 100 110

0

50

100

0 10 20 30 40 50 60 70 80 90 100 110

-4000

-2000

0

0 10 20 30 40 50 60 70 80 90 100 110
-1

0

1
10

4

Figure 4.13: State and input profiles of the closed-loop simulation in the presence of Gaussian
noise under the LMPC using PCRNN-LSTM models developed by: standard method (dashed line)
and MC dropout method (dash-dotted line).

to the steady-state. As for the stability, the co-teaching method enabled the LMPC to maintain

the state in a small neighborhood around the steady-state more smoothly in comparison with

the PCRNN-LSTM model built following the standard training algorithm. Note that the MPC

will not be able to stabilize the system exactly at the steady state due to the sample-and-hold

implementation of control actions and the model mismatch between the LSTM model and the

actual nonlinear process. Therefore, if the state trajectory of the closed-loop system starting from

the stability region Ωρ remains bounded in Ωρ and converges to a small compact set around the

origin where it will be maintained thereafter, then the system is considered practically stable under

the sample-and-hold implementation of MPC.

Similarly, the dropout strategy in training the PCRNN-LSTM model, referred to as the “dropout

model”, is used as the predictive model for LMPC. The closed-loop simulation results of using the

dropout model for the LMPC prediction is illustrated in Fig. 4.15. The figure demonstrates the

superiority of the dropout model over the standard PCRNN-LSTM model in both metrics: (i)

smoothness of the trajectories, and (ii) the ability to stabilize the underlying process within the

98

stability region Ωρ as discussed previously.

In the same vein, we carried out a closed-loop simulation in the presence of non-Gaussian

noise using fully-connected RNN-LSTM models (FCRNN-LSTM) trained according to the three

strategies considered in this work. Figs. 4.16 and 4.17 show the process state under the

FCRNN-LSTM-based LMPC. Specifically, Fig. 4.16 depicts the states and inputs trajectories by

models trained by co-teaching and standard strategies. Once more, the co-teaching improved

the LMPC performance more observably in the T2 − T2s trajectory. Similarly, in Fig. 4.17, the

trained FCRNN-LSTM model based on the dropout strategy provided a more favorable closed-loop

dynamics in relation to the standard FCRNN-LSTM. The three FCRNN-LSTM model based

LMPCs were also able to derive the system to steady-state values, but took longer time and

experienced more oscillatory behaviour than the PCRNN-LSTM models.

0 20 40 60 80 100 120

-10

0

10

20

0 20 40 60 80 100 120

-50

0

50

0 20 40 60 80 100 120
-10000

-5000

0

0 20 40 60 80 100 120

0

10000

20000
Standard

Co-Teaching

Figure 4.14: State and input profiles of the closed-loop simulation in the presence of non-Gaussian
noise under the LMPC using PCRNN-LSTM models developed by: standard method (dashed line)
and co-teaching method (dash-dotted line).

In both fully-connected and partially-connected architectures, using co-teaching and dropout

approaches lead to changes in the value of the integration of the cost function over the complete

simulation duration against the standard method. In the partially-connected scenario, the cost

99

0 20 40 60 80 100 120

0

10

20
Standard

Dropout

0 20 40 60 80 100 120

-50

0

50

0 20 40 60 80 100 120

-6000

-4000

-2000

0

0 20 40 60 80 100 120

0

10000

20000

Figure 4.15: State and input profiles of the closed-loop simulation in the presence of non-Gaussian
noise under the LMPC using PCRNN-LSTM models developed by: standard method (dashed line)
and MC dropout method (dash-dotted line).

function values for co-teaching and dropout approaches fell by 40.6% and 45.05%, respectively,

when compared to the standard method, as shown in Table 4.5. Moreover, by using the

partially-connected modeling over the fully-connected modeling the value of the integrated cost

function associated with the controllers using the standard, co-teaching, and dropout based models

are reduced by 37.5%, 12%, and 4%, respectively.

Table 4.5: The value of the time integral of the cost function using different models under two
modeling architectures.

Model Partially-connected Fully-connected
Standard RNN-LSTM 1.01×109 1.6×109

Co-Teaching RNN-LSTM 6.01×108 6.8×108

Dropout RNN-LSTM 5.54×108 5.77×108

100

0 20 40 60 80 100

0

10

20 Standard

Co-Teaching

0 20 40 60 80 100
-100

0

100

0 20 40 60 80 100

-6000

-4000

-2000

0

0 20 40 60 80 100

0

10000

20000

Figure 4.16: State and input profiles of the closed-loop simulation in the presence of non-Gaussian
noise under the LMPC using FCRNN-LSTM models developed by: standard method (dashed line)
and co-teaching method (dash-dotted line).

101

0 20 40 60 80 100

0

10

20 Standard

Dropout

0 20 40 60 80 100
-100

0

100

0 20 40 60 80 100

-4000

-2000

0

0 20 40 60 80 100

0

10000

20000

Figure 4.17: State and input profiles of the closed-loop simulation in the presence of non-Gaussian
noise under the LMPC using FCRNN-LSTM models developed by: standard method (dashed line)
and MC dropout method (dotted line).

102

Chapter 5

On Generalization Error of Neural Network

Models and its Application to Predictive

Control of Nonlinear Processes

5.1 Introduction

An ongoing research issue in process systems engineering is the modeling of large-scale,

complicated nonlinear processes. Traditional methods for modeling nonlinear systems include

first-principles modeling, which is based on a fundamental comprehension of the core

physico-chemical phenomena, and data-driven modeling, which identifies parameters from

simulation or industry data (e.g., [25, 108]). Although the classic first-principles modeling

approach has been widely utilized in the control, monitoring, and optimization of different

chemical processes, applying first-principles computational methods to represent complicated

nonlinear systems can be time-consuming and inaccurate. Given their ability to successfully

handle large data sets from processes and to model a diverse range of nonlinear functions, machine

learning techniques are being used more and more to approximate complicated nonlinear systems

(e.g., [10,43,88,109]). Among various machine learning modeling tools, when modeling nonlinear

103

dynamic systems utilizing time-series data, recurrent neural networks (RNN) are frequently

employed [34, 120]. Although machine learning techniques have been used in chemical process

control since the nighties [101], they have recently gained popularity again due to a variety

of factors, including more affordable computation (thanks to mature and effective libraries and

hardware), the accessibility of large data sets, and sophisticated learning algorithms. The upcoming

generation of industrial control systems will surly be impacted by the developments of MPC

systems that make use of machine learning models with well-characterized fidelity.

The traditional choice to analyze time-series data in a black-box fashion is a fully-connected

RNN model, which densely relates all the available inputs to all the outputs. However, this

method may not always be the finest, particularly for intricate chemical processes. For instance,

in an integrated chemical plant, the downstream units do not have an impact on the upstream

ones. Therefore, in order to further increase a RNN model’s accuracy, numerous studies (e.g.,

[26, 48, 92]) have studied gray-box modeling, also referred to in literatuer as hybrid modeling,

which involves incorporating prior knowledge into the design of neural network models of

various chemical processes. A strategy for combining data-driven modeling with first-principles

knowledge was recently developed by [75], and it explicitly permits the inclusion of data on known

gains among particular inputs and outcomes. With prior knowledge of relations, this suggested

strategy can be used in large-scale processes. Also, other approaches to improve the RNN

model’s prediction accuracy were proposed, for example a weight-constrained RNN modeling was

investigated in [114] with chemical process example and yield improvements in both open-loop

and closed-loop simulations under ML based MPC.

Another modeling strategy to follow is the partially-connected RNN which as the name

indicates it partially connects layers based on pre-existed knowledge in terms of physical

relations among the underlying system inputs and outputs, and it was proposed in several works

[5, 62, 114]. Specifically, On a large and complex chemical process modeled in Aspen Plus

Dynamics simulator, [5] investigated this approach by evaluating open-loop and closed-loop

simulations using a fully-connected RNN model against a partially-connected RNN model. A

104

partially-connected RNN model was shown to outperform the fully-connected RNN model under

MPC, with smoother state trajectories and less computing work. Furthermore, in [7] they

considered the case of industrial noise (i.e., non-Gaussian noise), where they used the Monte Carlo

dropout and the co-teaching strategies to train partially-connected RNN models to overcome the

over-fitting issue. Subsequently, open-loop and closed-loop simulations were performed on Aspen

dynamics process model to illustrate the superiority of partially-connected RNN based MPC over

fully-connected RNN models trained in the same manner and a stander partially-connected RNN

model. Additionally, one can consider an LSTM to model nonlinear systems, it is a machine

learning technique that stands for Long Short-Term Memory Recurrent Neural Network. It is

considered one of RNN variants, that was introduced in three decades ago. LSTMs have a unique

structure in which it enables them to enhance the system’s performance when dealing with data

that requires long time dependencies. Such data may occur when modeling nonlinear time-delay

systems or even nonlinear systems with disturbances and noise. For instance, in [7], a nonlinear

system was modeled using an LSTM network through noisy data, and closed loop stability was

achieved and analyzed. Moreover, LSTMs have been shown to overcome the vanishing gradient

phenomena that usually occurs when using RNNs (interested readers are referred to [20]). Hence,

LSTMs are widely used in many recent chemical engineering applications, and have proven to be

an efficient and powerful machine learning tool.

The adaptation of machine-learning-based MPC to actual chemical processes is still

constrained by basic challenges, despite the effectiveness of machine learning approaches in

simulating nonlinear chemical processes within the context of MPC. Furthermore, characterizing

the generalization capability for machine learning models learned using finite training samples

on new data is a significant challenge. The work of [115] has fill in the gap with constructing

a theoretical upper bound for fully-connected RNN models generalization error. However, the

fundamental question regarding the generalization accuracy of partially-connected RNN models

in MPC has not been addressed. Specifically, how the structure of an RNN model affects its

generalization accuracy.

105

Due to the aforementioned considerations, in this work, we develop, from machine learning

theory, a conceptual framework to quantify generalization error bounds for partially-connected

RNN models. Also, we integrate these models into model predictive control systems to be

implemented in nonlinear chemical processes. This manuscript is divided into 5 sections.

Section 5.2 presents the class of nonlinear systems considered and assumptions regarding system

stability. In Section 5.3, the representation and the construction of RNNs both fully-connected

and partially-connected is presented. Section 5.4 starts with key definitions and lemmas, and then

develop probabilistic generalization error upper bounds for partially-connected RNN models. The

integrating of a partially-connected RNN model model into a MPC while accounting for Lyapunov

stability considerations is proposed and discussed in Section 5.5. Lastly, the improvements

associated with incorporating prior physical knowledge into RNN modeling is illustrated in Section

5.6 via both open-loop and closed-loop simulations using a two reactors in series chemical process

under Lyapunov-based MPC (LMPC).

5.2 Preliminaries

5.2.1 Notation

Given a vector b ∈ Rn, its Euclidean norm is denoted by the operator ∥b∥, and the weighted

Euclidean norm of a vector is denoted by the operator ∥b∥Q where Q is a positive definite matrix.

Moreover, the infinity norm of b is given by ∥b∥∞. Generally, for b ∈ Rn, and γ ≥ 1 ∥b∥γ =

(∑n
i=1 |bi|γ)

1
γ . Given a matrix W ∈ Rm×n, its Frobenius and spectral norms are denoted by ∥W∥F ,

∥W∥∞, respectively. For simplicity, we will drop the subscript ∞ when dealing with the spectral

norm and write it as ∥W∥. Given real values γ,κ , the γ-norm ,κ-norms of the columns of W is

denoted by, ∥W∥γ,κ =
(

∑
m
i ∑

n
j
(
|Wj,i|γ

)) 1
κ . R+ denotes non-negative real numbers. xT denotes the

transpose of x. The notation L fV (x) denotes the standard Lie derivative L fV (x) := ∂V (x)
x f (x). Set

subtraction is denoted by ’\’, i.e., A\B := {x ∈ Rn|x ∈ A,x /∈ B}. A function f (.) is of class C 1 if

it is continuously differentiable. A continuous function α : [0,a)→ [0,∞) belongs to class K if

106

it is strictly increasing and is zero only when evaluated at zero. A function f : Rn → Rm is said to

be L-Lipschitz, L ⩾ 0, if | f (a)− f (b)| ≤ |a−b| for all a,b ∈ Rn. P(A) denotes the probability that

the event A will occur. E[X] denotes the expected value of a random variable X .

5.2.2 Class of Systems

We consider a class of multi-input multi-output (MIMO) nonlinear continuous-time systems

represented by the following state-space form:

ẋ = F(x,u) := F(x)+G(x)u (5.1)

where the state vector of the system is x = [x1, ...,xnx]
T ∈ Rnx , y = [y1, ...,yny]

T ∈ Rny is the output

vector, and the manipulated input vector is u = [u1, ...,unu]
T ∈ Rnu . F(x,u) represents a nonlinear

vector function of x and, u which is assumed to be sufficiently smooth functions of its arguments.

The constraints on control inputs are given by u ∈U := {ui
min ≤ ui ≤ ui

max}. The functions F(·),

and G(·) are nonlinear vector and matrix functions of nx ×1 and nx ×nu dimensions, respectively.

5.2.3 Stabilizability assumption

We assume that there exists a control law u = Φ(x) ∈U based on state feedback that can make

the origin of the system of Eq. 5.1 exponentially stable. This stabilizability assumption implies the

existence of a C 1 control Lyapunov function denoted as V (x), such that the following inequalities

hold for all x in an open neighborhood D around the origin:

c1∥x∥2 ≤V (x)≤ c2∥x∥2 (5.2a)

∂V (x)
∂x

F(x,Φ(x))≤−c3∥x∥2 (5.2b)

∥∂V (x)
∂x

∥ ≤ c4∥x∥ (5.2c)

107

where ci , i = 1,2,3,4, are positive constants. A candidate controller Φ(x) may be constructed

via Sontag’s control law formula ([61]). Then, following [118], we characterize the closed-loop

stability region Ωρ to be a level set of the Lyapunov function in the region D in which the

time-derivative V̇ (x) is negative under the controller u=Φ(x)∈U such that Ωρ := {x∈D |V (x)≤

ρ}, where ρ > 0. Furthermore, based on the Lipschitz property of F(x,u) and the boundedness of

u, there exists positive constants M, Lx,L
′
x such that the following inequalities hold for all x,x′ ∈ D

and u ∈U :

∥F(x,u)∥ ≤ M (5.3a)

∥F(x,u)−F(x′,u)∥ ≤ Lx∥x− x′∥ (5.3b)

∥∂V (x)
∂x

F(x,u)− ∂V (x′)
∂x

F(x′,u)∥ ≤ L
′
x∥x− x′∥ (5.3c)

5.3 Recurrent neural networks (RNNs)

The investigation of utilizing artificial intelligence (AI) techniques in chemical engineering

has been carried out continuously. The AI technology has provided classic and powerful modeling

tools such as fuzzy logic in the 1960s [125], expert systems in the 1980s [57, 59], and machine

learning (ML) in the 1990s ([101]). Moreover, the implementation of ML techniques in the

modeling of complex systems comes with a successful history in different chemical processes

applications [12, 27, 89, 109]. For example, in [12], an artificial neural network (ANN) model

is developed for a bio-diesel production process. The ANN model provided an approximation of

the percentage of fatty acid methyl ester yield within ±8% deviation from the experimental data.

Similarly, recurrent neural networks (RNN) have been broadly employed for modelling a general

class of dynamical systems for control and state estimation purposes [73]. In [89], a RNN model

of a continuous binary distillation column (BDC) was trained and validated using experimental

data, and the study demonstrated that the RNN model prediction can outperform a first-principles

model for large-scale, complex, nonlinear process, due to its high degree of freedom to solve the

108

complex non-linear regression problem with the process dataset.

RNN models are a powerful tool for modeling dynamic systems Considering an RNN model

that resembles the nonlinear dynamics of the system of Eq. 5.1 using m sequences of T-time-length

data points (xi,t ,yi,t), with xi,t ∈ Rdx serving as the RNN input and yi,t ∈ Rdy serving as the RNN

output and that i = 1, ...,m and t = 1, ...,T . It is important to emphasize that the nonlinear system

inputs, states, and outputs in Eq. 5.1 are not always represented by the RNN inputs and outputs.

Hence, all the vectors for RNN models are represented in boldface to identify them from the

notations for the nonlinear system of Eq. 5.1.

Moreover, to make the discussion simpler, the RNN model of Eqs. 5.4-5.5 is created to forecast

states over a single sampling period with overall time steps T = ∆/hc (i.e., Within one sampling

period ∆, the RNN model aims to predict states evolution for each integration time step hc). Thus,

the present manipulated inputs and state measurements that will be employed over t = 1 → T make

up the RNN input xi,t , while the predicted states over t = 1 → T make up the RNN output yi,t .

Owing to the sample-and-hold execution of manipulated inputs, xi,t does not change over t = 1 →

T . The dataset is created of m data sequences that were individually selected from an underlying

distribution over Rdx×T ×Rdy×T . To simplify the discussion, we consider a single-hidden-layer

RNN model with the following form to approximate the nonlinear dynamics of Eq. 5.1.

ht = σh(Uht−1 +Wxt) (5.4)

yt = σy(V ht) (5.5)

where ht denotes the hidden state, and W , U , and V are the weight matrices connecting different

layers. The nonlinear activation functions used are denoted by σh and σy. Specifically, σh is often

chosen to be a nonlinear activation function that may take different forms (e.g, tanh or ReLU),

while σy typically uses a linear element-wise activation function for regression problems. Without

loss of generality, we have the following assumptions for the development of RNN models:

Assumption 5.1. Input data are bounded. i.e., ∥xi,t∥ ≤ Bx for all i = 1, ...,m and t = 1, ...,T

109

Assumption 5.2. the Frobenius norms of the weight matrices are bounded, i.e., ∥W∥F ≤

BW,F ,∥Q∥F ≤ BV,F ,∥U∥F ≤ BU,F

Assumption 5.3. Training, validation, and testing datasets are drawn from the same distribution.

Assumption 5.4. σh is a 1-Lipschitz continuous activation function, and is positive-homogeneous

in the sense that σh(αz) = ασh(z) holds for all α ≥ 0 and z ∈ R

Furthermore, consider a hypothesis class H of RNN models h(·) that map a dx-dimensional

input x ∈ Rdx to a dy-dimensional output y ∈ Rdy . The predicted output of the RNN model and

the loss function are denoted by yt = h(xt) and L(yt , ỹt), respectively, where L(y, ỹ) calculates the

squared difference between the predicted output y and the true output ỹ.

5.3.1 Physics-informed RNNs

Even the most cutting-edge black-box ML models, like dense fully-connected RNN models,

have had only limited success when used in scientific fields [49]. This is because such models

require a lot of data, may produce physically inconsistent results, and may exhibit reduced accuracy

when applied to samples that haven’t been seen before. Therefore, researchers have started to look

at the transition between mechanistic and ML models, where data and scientific knowledge are

combined in a beneficial way. This is due to the possibility that neither a pure ML algorithm

nor a purely scientific theory may be enough for complicated applications (e.g., [3, 11, 79]). In a

fundamentally different way from popular approaches in the ML field, a physics-based machine

learning modeling strategy makes use of pre-existing physical knowledge in supporting roles like

feature engineering or post-processing. Despite extensive research on this topic, the concept of

using ML in conjunction with scientific principles for modeling complex systems has just lately

become popular [49]. This investigation is being conducted in several fields in the realm of

science, where early findings in isolated and straightforward scenarios have been encouraging,

and expectations are growing that this paradigm will speed up scientific advancement.

110

Similarly, in process system engineering and chemical engineering core research areas, the

present paradigm of numerical approaches to get approximated solutions is based solely on

physics: numerical differentiation and integration algorithms are used to solve for systems

of differential equations that reflect established physical principles throughout space and time

[14, 45, 83]. A different approach is to look for simplified models that can roughly characterize

the dynamics of the underlying systems, such as the Euler equations for gas dynamics and for

turbulent flows one may utilize Reynolds-averaged Navier-Stokes equations [19, 96]. But creating

a simplified model that accurately captures a phenomenon is quite difficult. More crucially,

only a portion of the dynamics of many complicated real-world processes is recognized. The

equations could not accurately reflect the actual system states. On the other hand, numerous

recent studies, from turbulence and reaction modeling to state prediction, have demonstrated

that ML-based models can produce realistic predictions and greatly speed up the simulation of

complex dynamics compared to numerical solvers [50, 63]. However, ML-based models are

dense and purely data-driven by nature, which has many limitations. Without strict boundaries,

ML-based models are likely to provide predictions that defy the fundamental principles governing

physical systems. Furthermore, machine learning models frequently experience difficulties with

generalization, i.e., models trained on a single dataset cannot adequately adapt to unseen scenarios.

Hence, approximating complicated dynamical systems in scientific areas cannot be considered

sufficiently fulfilled by either machine-learning-based models alone or simply physics-based

methods. As there is a significant necessity to integrate machine learning models with conventional

physics-based methodologies, through which we can maximize the benefits of both techniques.

The investigation of more structured systems modeling is driven by a variety of factors.

In contrast to a system with structured local connectivity, fully-connected systems necessitate

long-range connections, and have slower communication times between neurons. Real-world

problems may have local correlations as well. It would be considerably easier and take up less

space to construct networks with organized neighborhoods than a fully-connected network [17].

Typically, when creating a dynamic model for a nonlinear process, a neural network model that

111

𝑥

RNN

𝑥1

RNN

𝑥2

RNN

𝑢1 𝑢2𝑢

(a) (b)

Figure 5.1: Structure of (a) standard fully-connected and (b) partially-connected RNN.

uses all available process inputs to predict the desired outputs evolution is preferred. Creating a

dynamic model for these processes is simple to do with open-source machine learning tools, and

the model would be able to take into account any connections that might exist between each input

and each output of the underlying process. As depicted in Fig. 5.1, three layers (i.e., an input layer,

hidden layers, and an output layer) make up the general structure of a fully-connected RNN. For

such reasons, fully-connected RNN models are frequently the best option for processes that lack

prior knowledge.

Although standard RNNs do not consider any domain-specific knowledge in model

development and generally use fully-connected layers to capture input-output relationship using

the given training dataset, it has been demonstrated in [114] that a priori process structural

knowledge can be utilized to improve RNN performance by developing a partially-connected

architecture. Fig. 5.1 shows the difference between fully-connected and partially-connected

RNNs, from which it can be observed that the connection between some neurons is removed in

112

a partially-connected structure to resemble the underlying input-output relationship from a priori

process structural knowledge. Partially-connected RNNs can be used to model a multiple-unit

process in which upstream units affect downstream units, but not in the opposite direction. For

example, consider the nonlinear system of Eq. 5.1 for which the input vector u1 affects the state

x1 only, and both u1 and u2 affect the state x2, where x = [x1 ∈ Rnx1 , x2 ∈ Rnx2] and u = [u1 ∈

Rnu1 , u2 ∈ Rnu2] ∈ Rnu , where nu1 +nu2 = nu and nx1 +nx2 = nx. [114] demonstrates that by using

a partially-connected architecture, the number of weight parameters can be significantly reduced

to achieve a desired model accuracy compared to a fully-connected RNN model. Additionally,

in [5], an Aspen simulation study of two CSTRs in series was carried out to demonstrate that

the MPC using partially-connected RNN models achieved better closed-loop performances with a

reduced computation time. To better understand the benefits of partially-connected RNNs in terms

of higher modeling accuracy, a theoretical analysis of generalization error needs to be developed.

5.4 Generalization error

5.4.1 General considerations

Generalizability or generalization accuracy is a metric that measures a machine learning

model’s ability to adapt properly to new, previously unseen data, which is drawn from the same

distribution as the one used to train the model. Several investigations were conducted for the

interpretation and improvement of generalization of different machine learning-based models (e.g.,

[32,82]). Furthermore, a theoretical analysis of generalization error is of significant importance as

it provides a fundamental understanding on how good the model performs on unseen data that will

be collected in real-world systems. This section will provide the derivations of the generalization

error for RNNs using statistical learning theory. Before we present the results on generalization

error bounds, we first introduce the necessary definitions of generalization error as follows.

Definition 5.1. A centered random variable x ∈ R is said to be sub-Gaussian with variance proxy

113

σ2, if E[x] = 0, and the moment generating function satisfies:

E[exp(aX)]≤ exp
(

a2σ2

2

)
,∀a ∈ R (5.6)

Definition 5.2. Given a data distribution D, and a function h that predicts y (output) based on x

(input), the generalization error is given by

E[L(h(x),y)] =
∫

X×Y
L(h(x),y) ρ(x,y) dxdy. (5.7)

where ρ(x,y) denotes the joint probability distribution for x and y, and Y and X represent the

vector space for all possible outputs and inputs, respectively.

Definition 5.3. L(·, ·) is the loss function, (e.g., mean squared error (MSE)) for regression

problems. Since the distribution may be unknown, the following empirical error is often used

as an approximation measure for the generalization error:

ÊS[L(h(x),y)] =
1
m

m

∑
i=1

L(h(xi),yi) (5.8)

where S = (s1, ...,sm), si = (xi,yi) includes m data samples drawn from the data distribution D.

Definition 5.4. Given a set of data samples S = {s1, ...,sm}, and a hypothesis class F of

real-valued functions, the definition of empirical Rademacher complexity of F is

RS(F) = Eε

[
sup
f∈F

1
m

m

∑
i=1

εi f (si)

]
(5.9)

where ε = (ε1, ...,εm)
T , and εi are Rademacher random variables that are independent and

identically distributed (i.i.d.) and satisfy P(εi =−1) = P(εi = 1) = 0.5.

The following lemma gives the generalization error bound for a general class of RNN models.

Lemma 5.1. Consider a hypothesis class H of vector-valued functions h ∈ Rdy ,and a set of data

114

samples S = {s1, ...,sm}. Let L(.) be a Lr -Lipschitz function mapping h ∈ Rdy to R, then we have:

Eε

[
sup
f∈F

m

∑
i=1

εiL(h(xi),yi)

]
≤
√

2LrEε

[
sup

h∈H

m

∑
i=1

dy

∑
k=1

εikh(xi)

]
(5.10)

where hk(.) is the k− th component in the vector-valued function h(.) ,and εik is an m×dy matrix

of independent Rademacher variables. In the following text, we will omit the subscript ε of

expectation for simplicity. Since the right-hand side of the previous inequality is generally difficult

to compute, we can reduce it to scalar classes, and derive the following bound:

E

[
sup

h∈H

m

∑
i=1

dy

∑
k=1

εikh(xi)

]
≤

dy

∑
k=1

E

[
sup

h∈H

m

∑
i=1

εih(xi)

]
(5.11)

where Hk,k = 1, ...,dy , are classes of scalar-valued functions that correspond to the components

of vector-valued functions in H .

Lemma 5.2 (c.f. Theorem 3.3 in [68]). Let H be the hypothesis class of ML models that map

{x1, ...,xt} ∈ Rdx×t (i.e., the first t-time-step inputs) to yt ∈ Rdy (i.e., the t-th output), and Gt be the

loss function set with H .

Gt = {gt : (x, ỹ)→ L(h(x), ỹ),h ∈ H } (5.12)

where ỹ and x are the true output vector and the input vector of ML model, respectively. Then,

given a dataset consisting of m i.i.d. data samples, the inequality below holds in probability for all

gt ∈ Gt over the data samples S = (xi,t ,yi,t)
T
t=1, i = 1, ...,m:

E[gt(x,y)]≤
1
m

m

∑
i=1

gt(xi,yi)+2RS(Gt)+3

√
log(2

δ
)

2m
(5.13)

Eq. 5.13 demonstrates that the upper bound for the generalization error depends on the training

error (first term), the Rademacher complexity of Gt (second term), and a function of the samples

size m and the confidence δ . Therefore, to derive a generalization error bound for RNN models,

115

an upper bound for the Rademacher complexity of RNN hypotheses needs to be developed.

Lemma 5.3. Given a hypothesis class Hk of real-valued functions corresponding to the k −

th component of vector-valued function class H , and a set of m i.i.d. data samples S =

(xi,t ,yi,t)
T
t=1, i = 1, ...,m, the following inequality holds for the scaled empirical Rademacher

complexity:

mRs(Hk) = E

[
sup

h∈Hk

m

∑
i=1

εih(xi)

]
.

=
1
λ

log exp

(
λE

[
sup

h∈Hk

m

∑
i=1

εih(xi)

])

≤ 1
λ

log E

[
sup

h∈Hk

exp

(
λ

m

∑
i=1

εih(xi)

)] (5.14)

where λ > 0 is an arbitrary parameter.

Lemma 5.4. Let Hk,t , k = 1, ...,dy, be the class of real-valued functions that corresponds to the

k-th component of the RNN output at t-th time step, with weight matrices and activation functions

satisfying Assumptions 1–4. Given a set of m i.i.d. data samples S = (xi,t ,yi,t)
T −t = 1, i = 1, ...,m,

the following equation holds for the Rademacher complexity

RS(Hk,t)≤
M(
√

2log(2)t +1)BX√
m

(5.15)

where, M = BV,FBW,F
Bt

U,F−1

B−1
U,F

, and BX is the upper bound for RNN inputs.

Lemma 5.5 (c.f. Theorem 1 in [115]). Given a dataset S = (xi,t ,yi,t)
T
t=1 with i.i.d. data samples,

i = 1, ...,m, and the Lr-Lipschitz loss function class Gt associated with the RNN function class Ht

that predicts outputs at the t-th time step, with probability at least 1− δ over S, the following

inequality holds for the RNN models:

E[gt(x,y)]≤
1
m

m

∑
i=1

gt(xi,yi)+3

√
log(2

δ
)

2m
+O

(
Lrdy

MBX(1+
√

2log(2)t)√
m

)
(5.16)

The above equation represent the theoretical generalization accuracy upper bound of RNN

116

models. This theory will be utilized to build a relation between a RNN model and its structure in

the subsection 5.4.2.

5.4.2 Physics-based RNNs generalization bound

In a partially-connected structure, the connections between inputs and outputs should be

carefully designed to reflect a priori physical knowledge. In particular, as illustrated in Fig. 5.2, x2

does not affect y1, so the weights corresponding to the linkages between x2 and y1 (dashed lines in

Fig. 5.2) are assigned a value of zero (i.e., wi, j = vl, j = 0). This structure superiority in accuracy

and model identification to dense fully-connected RNNs has been demonstrated through several

works. Hence, we develop the following theory to interpreter this observation.

⋯
⋯

𝑊

𝑥1

𝑥2

𝑉

ℎ1

ℎ𝑖

ℎ𝑑ℎ

𝑦1

𝑦2

⋯
⋯

𝑊

𝑥1

𝑥2

𝑉

ℎ1

ℎ𝑖

ℎ𝑑ℎ

𝑦1

𝑦2

(a) (b)

𝑤𝑖,𝑗 , 𝑣𝑙,𝑗 ≠ 0

𝑤𝑖,𝑗 , 𝑣𝑙,𝑗 = 0

𝑈 𝑈

Figure 5.2: Weights and connections in (a) standard fully-connected and (b) partially-connected
RNN structures, where zeroed weights for links between units are represented by dashed lines.

Theorem 5.1. Consider the following inequalities: Eν [gt(x,y)] ≤ ν and Eν̂ [gt(x,y)] ≤ ν̂ , where

ν and ν̂ represent the generalization error bound for a fully-connected RNN model and a

117

partially-connected model, respectively. Given that both models are constructed with the same

hyperparameters and trained over the same i.i.d data set with m samples, the following inequality

holds:

ν̂ < ν (5.17)

Proof. If we let ν denote the right-hand side of Eq. 5.16, ν can be represented as the sum of the

three terms in the right-hand side of Eq. 5.16 i.e., ν = νI +νII +νIII , where the subscripts I, II, and

III are the term indices, and the same applies for ν̂ i.e., Eν̂ [gt(x,y)]≤ ν̂ = ν̂I+ ν̂II+ ν̂III . Then, with

respect to the first terms, ν̂I and νI , they depend on the sizes of both the training data set and the

hypothesis class H . Due to the dense structure of FCRNN models, the size of the hypothesis class

H will be larger, which leads to a higher probability of convergence to the optimal hypothesis h∗.

On the contrary, by incorporating physical knowledge into the RNN modeling by assigning some

weight entries to be zero, the size of the hypothesis class H is reduced, yet the model can be closer

to the optimal hypothesis h∗ for the data distribution D. Thus, both models will have close values

for the first term (i.e., νI ≈ ν̂I). Additionally, since we are developing the two models using the

same data set with m samples, the second terms for both the PCRNN model and FCRNN model

are approximately equal (i.e., νII ≈ ν̂II). Therefore, we are left to investigate the third term, which

is given by:

νIII = O

(
Lrdy

MBX(1+
√

2log(2)t)√
m

)
(5.18a)

ν̂III = O

(
Lrdy

M̂BX(1+
√

2log(2)t)√
m

)
(5.18b)

where M = BV,FBW,F , and M̂ = BV̂ ,FBŴ ,F .

Note that M and M̂ are products of the RNN weight matrix bounds in Eq. 5.16, where we

symbolize the PCRNN model weight matrices with hat as V̂ and Ŵ , and their Frobenius norm

bounds are BV̂ ,F and BŴ ,F , respectively. After training both FCRNN and PCRNN models with the

same random initialization and optimization algorithm, the weight matrices in the PCRNN model

will have some zero entries, while the other entries (i.e., the nonzero ones) would be numerically

118

close for both models. Since the Frobenius norm of matrix A is expressed as the square root of

the matrix trace of AA(H), where A(H) is the conjugate transpose, more zero entries in the weight

matrices will yield lower bounds on their Frobenius norms i.e.,

BŴ ,F < BW,F (5.19a)

BV̂ ,F < BV,F (5.19b)

which yields

ν̂III < νIII (5.19c)

Hence, this proves that the partially-connected RNN modeling approach provides a lower

generalization error bound than the dense fully-connected RNN architecture.

Remark 5.1. By incorporating process structural knowledge into the development of

partially-connected RNN models, the complexity of RNN hypothesis class is reduced compared to

fully-connected RNNs, which leads to a tighter bound on the Rademacher complexity. Additionally,

by revealing the correct direction for RNNs to find the optimal weight parameters, the training

error (the first term in Eq. 5.16) is more likely to be minimized using the same hyperparameters

(i.e., the number of layers and neurons) and the same training set of m i.i.d. data samples.

5.5 RNN based model predictive control

In this section, we integrate an RNN model into a Lyapunov-based model predictive controller

(LMPC) formulation. In particular, the partially-connected modelling of RNN is executed as

discussed in [5] and then employed as a predictive model to provide state estimation to solve

119

the optimization problem of the LMPC, which is expressed in the following form:

J = min
u∈S(∆)

∫ tk+P

tk
L(x̃(t),u(t))dt (5.20a)

s.t. ˙̃x(t) = Fnn(x̃(t),u(t)) (5.20b)

u(t) ∈U, ∀ t ∈ [tk, tk +P) (5.20c)

x̃(tk) = x(tk) (5.20d)

V̇ (x(tk),u)≤ V̇ (x(tk),Φnn(x(tk)),

if x(tk) ∈ Ωρ −Ωρnn (5.20e)

V (x̃(t))≤ ρnn, ∀ t ∈ [tk, tk +P), if x(tk) ∈ Ωρnn (5.20f)

where S(∆) denotes a set of piecewise constant functions with period ∆, x̃ is the state trajectory

predicted by the RNN model, and P is the prediction horizon expressed as a multiple of the

sampling period (i.e., P = N ×∆, N > 0). The time-derivative of the Lyapunov function V in

Eq. 5.20e is given as V̇ (x,u), i.e., ∂V (x)
∂x (Fnn(x,u)). During the prediction horizon t ∈ [tk, tk +P),

the LMPC computes the optimum input sequence u∗(t) and delivers the first control signal u∗(tk)

to the system to be implemented for the following sampling period. After that, at the following

sampling interval, the LMPC receives new data and is resolved with updated state estimations.

Furthermore, the MPC optimization problem’s goal is to minimize the integral of L(x̃(t),u(t)),

given in Eq. 5.20a, which represents the cost function over the prediction horizon while satisfying

the constraints of Eqs. 5.20b–5.20f. The RNN model from Eq. 5.20b is used to forecast the

evolution of the closed-loop state trajectory x̃(tk) under the MPC, and its initial conditions are

updated according to Eq. 5.20d, where x(tk) is the last state measurement. The input constraints

are expressed in Eq. 5.20c, and they are imposed across the prediction horizon.

To ensure the stability of the closed-loop system, when x(tk) ∈ Ωρ −Ωρnn , where Ωρnn is the

target region, the condition of Eq. 5.20e is triggered. As a result of this constraint, the Lyapunov

function of the closed-loop states declines, and the state approaches the steady-state within a finite

120

period of time. Eventually, when the state x(tk) arrives to Ωρnn , the predicted closed-loop state will

be kept within this region for the duration of the prediction horizon. Following section 2.3, the

controller Φnn(x) was developed with the intent of ensuring that the origin of the RNN system is

exponentially stable.

A well-conditioned RNN model with appropriate model accuracy can be produced when

utilizing noise-free data for training.Therefore, the closed-loop state is guaranteed to be bound

inside the predefined stability region Ωρ during the simulation time and will finally converge to a

small region around the origin via applying the RNN based LMPC of Eq. 5.20 for the regulation

of the nonlinear system as that of Eq. 5.1. This is ture provided that the modeling error, which is

given by |υ |= |F(x,u)−Fnn(x,u)|, is sufficiently small [8, 118].

5.6 Application to a chemical process

A chemical process example is used for demonstrating the anticipated improvements associated

with physics-informed modelling of RNNs. Particularly, two non-isothermal continuous stirred

tank reactors (CSTR) in sequence with ideal mixing are taken into consideration, with each reactor

experiencing an irreversible second-order exothermic reaction, where a raw material A transforms

to a product B (i.e., A → B). The feed flow rate to each reactor Fio contains only chemical A with

initial concentration and temperature CA,io and Tio , where i = 1,2 is the reactor index. Each reactor

has a heating jacket that delivers or removes heat at a rate of Qi. The dynamical model he two

CSTRs represented by the following system of ODEs is derived from material and energy balance

equations:

121

dCA,1

dt
=

F1o

V1
(CA1o −CA,1)− koe

−E
RT1 C2

A,1 (5.21a)

dCB,1

dt
=

F1o

V1
CB,1 + koe

−E
RT1 C2

A,1 (5.21b)

dT1

dt
=

F1o

V1
(T1o −T1)+

−∆H
ρCp

koe
−E
RT1 C2

A,1 +
Q1

ρCpV1
(5.21c)

dCA,2

dt
=

F1

V2
CA,1 +

F2o

V2
CA,2o +

F1 +F2o

V2
CA,2 − koe

−E
RT2 C2

A,2 (5.21d)

dCB,2

dt
=

F1

V2
CB,1 −

F1 +F2o

V2
CB,2 + koe

−E
RT2 C2

A,2 (5.21e)

dT2

dt
=

F2o

V2
T2o +

F1

V2
T1 −

F1 +F2o

V2
T2 +

−∆H
ρCp

koe
−E
RT2 C2

A,2 +
Q2

ρCpV2
(5.21f)

𝑄1 𝑄2

𝐹1𝐹1𝑜 , 𝐶𝐴,1𝑜 , 𝑇1𝑜

𝐹2𝑜 , 𝐶𝐴,2𝑜 , 𝑇2𝑜

𝐹2

Figure 5.3: Two continuous-stirred tank reactors in series.

the notations CA,i, , Ti and Qi, represent the A reactant concentration, reactor temperature, and

the heat supply rate, respectively.Vi is the volume of the reacting liquid, which has a density of ρ

and a heat capacity of Cp that are constants for both reactors. ∆H, ko, R, and E denote the reaction’s

enthalpy, pre-exponential constant, ideal gas constant, and activation energy, in the same order, and

these parameters are unchanged for both reactors. Process parameter values are listed in Table 5.1.

The manipulated inputs for this process are the heat supply rate to both reactors (i.e., Q1 and

Q2), which are represented by the deviation form from their steady-state values as u1 = Q1 −Q1s

122

Table 5.1: Parameter and steady-state values for the CSTR

CA,1s = 1.95 kmol/m3 T1s = 402 K

CA,1o = 4 kmol/m3 T2s = 402 K

CA,2s = 1.95 kmol/m3 Q1s = 0.0 kJ/h

CA,2o = 4 kmol/m3 Q2s = 0.0 kJ/h

T1o = 300 K T2o = 300 K

F1o = 5 m3/h F2o = 5 m3/h

V1 = 1 m3 V2 = 1 m3

ko = 8.46×106 m3/kmolh EA = 5×104 kJ/kmol

R = 8.314 kJ/(kmol K) ∆H =−1.15×104 kJ/kmol

ρ = 1000 kg/m3 Cp = 0.231 kJ/(kg K)

and u2 = Q2 −Q2s. The upper and the lower physical bounds on the inputs are [Umax,Umin] =

[5,−5]× 105 kJ/h, respectively. The state are also to be represented in deviation fashion from

their steady-state value as [x1,x2,x3,x4] = [CA,1 −CA,1s,T1 − T1s,CA,2 −CA,2s,T2 − T2s], such that

the origin is the equilibrium point of the state space representation of the underlying system.

5.6.1 Data generation and RNN models construction

Large data sets are necessary for the development of machine-learning-based models, and

generally speaking, the larger the data set size, the more accurate the model can be [111], providing

that the data are independent and identically distributed. Large data sets are also accessible

from a variety of sources, including industries, pilot plants and laboratories, and computer-based

simulations. Industrial data is typically not accessible to the general public, and collecting data

from pilot plants and laboratory studies is both expensive and time-consuming. Hence, we used

extensive open-loop simulations in our work to create our data set.

For the development of the RNN model, the following procedures are followed for data

generation, neural network training, and validation. The explicit Euler method with an integration

time step of hc = 5×10−4 h is used to numerically simulate the dynamic model of Eq. 5.21 for an

123

one sample time under various initial conditions (a total of 3000 different combinations of initial

conditions). Particularly, MATLAB was used to create a data set of size mdata. The data set was

then split into two matrices: an output matrix with x1, x2,x3, and x4 as outputs at t = tk +∆ and an

input matrix with u1, u2, x1, x2, x3, and x4 at t = tk.

subsequently of data generation and by using the Keras library, two RNN models are

constructed where each of the models has two hidden layers with 30 neurons at each, and

hyperbolic tangent (i.e., tanh(x) = ex−e−x

ex+e−x) as activation function, that beside to input and output

layers. The activation function in the output layer is set to be linear. The links between the layers

is untouched in the fully-connected RNN modeling, while on the other hand, the inputs are fed to

different layers in the partially connected RNN modelling in a manner that reflects the physical

structure of the underlying process. Specifically, the partially-connected RNN model is developed

following the algorithm discussed in [5].

Using input information from the previous sampling interval, we forecast the evolution of

the states for the subsequent 0.01 hr (the equivalent of one sampling time ∆). We use the

Adam optimizer, a combination of RMSprop and gradient descent with momentum optimization

techniques, as opposed to the conventional gradient descent optimization process. Additionally, we

performed five-fold cross-validation on the RNN models in order to produce more reliable models,

and select the models with the lowest validation MSE. In addition, we use five different (i.e., no

repetition) as shown in Fig. 5.4 testing data sets to test the developed models. The generalization

error for each testing data set is illustrated in Fig. 5.5, where the partially-connected RNN model

yielded higher generalization accuracy (i.e., less error). These results aligned with Theorem 1.

5.6.2 Open-loop simulation

Before incorporating the generated models into closed-loop tests, open-loop simulations are

essential to check that the predictive models can estimate the future trajectory adequately. Hence,

we carried out an open-loop simulation as illustrated in Fig. 5.6, where the time-varying inputs

are randomly chosen. Furthermore, from the figure, it can be noticed that the state trajectories

124

-5 0 5

10
5

-2

-1

0

1

2

-5 0 5

10
5

-50

0

50

-5 0 5

10
5

-2

-1

0

1

2

-5 0 5

10
5

-100

-50

0

50

100

Figure 5.4: Five different testing data sets, where each marker indicates a single set.

predicted by the partially-connected RNN model are all closer to the true state trajectories (denoted

by FP) than the states predicted by the fully-connected RNN model.

Table 5.2 presents the open loop simulation MSEs between the predicted states from each RNN

model architecture and the corresponding fist-principle model outputs as the ground-truth process

output value. Based on the table, the ratios of fully-connected RNN MSE to the partially-connected

RNN MSE for x1,x2,x3, and x4 are 6.05, 2.3991, 4.3018, and 10.3013, receptively. All the ratios are

grater than one, which implies the higher accuracy associated with employing partially-connected

RNN architecture for state estimation. Furthermore, the open-loop responses initiated close to the

steady state and predicted by the partially-connected and the fully-connected RNN models under a

step change only in u2 are depicted in Fig. 5.7. The figure demonstrates that the partially-connected

RNN model has an improved model identification of the process dynamics, as the trajectory of the

first reactor temperature was not altered by this change. All these results indicate that both RNN

models provide reasonable prediction, yet, the partially-connected RNN model approximates the

underlying process model more accurately.

125

Testin
g set #

1

Testin
g set #

2

Testin
g set #

3

Testin
g set #

4

Testin
g set #

5
0

1

2

3

4

5

6

7
10

-4

FCRNN

PCRNN

Figure 5.5: Generalization error for five different testing data sets, where PCRNN and FCRNN
stands for partially-connected RNNs (orange bars) and fully-connected RNNs (blue bars),
respectively.

Table 5.2: Open-loop prediction results (MSE)

State Modeling architecture

FCRNN PCRNN
x1 0.0065 0.0011
x2 125.4551 52.2929
x3 0.0134 0.0031
x4 156.3076 15.1736

5.6.3 Closed-loop simulation

Next, in order to run the closed-loop simulation with the certainty that both RNN models

give high accuracy approximation for the process outputs, we design LMPCs based on the

fully-connected RNN model and the partially-connected RNN model, respectively. For each

126

0 0.05 0.1 0.15 0.2 0.25 0.3
-1.2

-1

-0.8
FCRNN

PCRNN

FP

0 0.05 0.1 0.15 0.2 0.25 0.3

40

60

80

0 0.05 0.1 0.15 0.2 0.25 0.3
-5

0

5
10

5

0 0.05 0.1 0.15 0.2 0.25 0.3
0.6

0.8

1

1.2

0 0.05 0.1 0.15 0.2 0.25 0.3
-60

-40

-20

0 0.05 0.1 0.15 0.2 0.25 0.3
-5

0

5
10

5

Figure 5.6: Time-varying profiles of the states and inputs for the second open-loop simulation
under random time varying inputs using the first-principles process model (red line), the
partially-connected RNN model (blue line), and the fully-connected RNN (black line).

sample period, the nonlinear minimization problem of the LMPC is solved using the Python

version of the interior point optimizer (IPOPT) software. For the purpose of resolving complex

nonlinear optimization issues, this optimizer is an open source program. It uses an interior point

line search filter technique to try to locate a local solution to a nonlinear programming problems.

The LMPC objective function is defined as L(x,u) = xT Q x+uT R u, where Q and R are diagonal

penalty matrices for the setpoint error and control actions, respectively. The two matrices are

critically impacting the performance of the LMPC and require proper tuning, hence, the MPC

tuning guidelines discussed in [6] is followed. Lastly, we choose V (x) = xT Px as the Lyapunov

function, where P is a positive definite matrix obtained by applying grid search.

Under the LMPC, we perform two closed-loop simulations and the results are shown in Fig. 5.8

and 5.9 initiating from two different initial conditions. From the figures, both LMPCs, each based

on its predictive RNN model, were able to drive the states to the steady-state values and to stabilize

the system within small neighborhood around the origin. However, partially-connected RNN based

127

0 0.05 0.1 0.15 0.2 0.25 0.3
-0.1

0

0.1

0.2
FCRNN

PCRNN

FP

0 0.05 0.1 0.15 0.2 0.25 0.3

0

5

10

15

0 0.05 0.1 0.15 0.2 0.25 0.3
-1

0

1

0 0.05 0.1 0.15 0.2 0.25 0.3

-1

-0.5

0

0 0.05 0.1 0.15 0.2 0.25 0.3
0

50

100

0 0.05 0.1 0.15 0.2 0.25 0.3
0

1

2

3
10

5

Figure 5.7: Time-varying profiles of the states and inputs for the open-loop simulation under a
step change in u2 using the first-principles process model (red line), the partially-connected RNN
model (blue line), and the fully-connected RNN (black line).

LMPC yielded better performance in terms of state trajectories being smoother and not exhibiting

fluctuation around the steady state. Moreover, the MSE of each state corresponding to the two

RNN modeling techniques are calculated for the two closed-loop simulations and presented in

Table 5.3. As it can be noted from the tables, the partially-connected RNN model yielded more

reliable controller performance with smaller MSE values by an order of magnitude compared to

fully-connected RNN model.Due to the fully-connected RNN’s interference with the prediction

accuracy caused by the assumption that every input influences every potential output, this results

are expected.

128

0 0.1 0.2 0.3 0.4 0.5

-1

-0.5

0

FCRNN

PCRNN

FP

0 0.1 0.2 0.3 0.4 0.5

0

50

100

0 0.1 0.2 0.3 0.4 0.5
-5

0

5
10

5

0 0.1 0.2 0.3 0.4 0.5

0

1

2

0 0.1 0.2 0.3 0.4 0.5
-60

-40

-20

0

0 0.1 0.2 0.3 0.4 0.5

-2

0

2

4

10
5

Figure 5.8: Sate and input profiles of the first closed-loop simulation under the LMPC using three
models: first-principles (red line), partially-connected RNN (blue line), and fully-connected RNN
(black line).

Table 5.3: Closed-loop prediction results (MSE)

State 1st Closed-loop Simulation 2nd Closed-loop Simulation

FCRNN PCRNN FCRNN PCRNN
x1 0.020705316 0.002051591 0.2411215725 0.025175541
x2 170.280344 39.13188574 596.3087136 88.72292971
x3 0.001812249 0.000111788 0.015817003 0.001061295
x4 3.788903947 0.511854559 20.3473683 0.400205264

129

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1
FCRNN

PCRNN

FP

0 0.1 0.2 0.3 0.4 0.5

-40

-20

0

0 0.1 0.2 0.3 0.4 0.5
-5

0

5
10

5

0 0.1 0.2 0.3 0.4 0.5

-1

-0.5

0

0 0.1 0.2 0.3 0.4 0.5

0

20

40

0 0.1 0.2 0.3 0.4 0.5
-5

0

5
10

5

Figure 5.9: State and input profiles of the second closed-loop simulation under the LMPC using
three models: first-principles (red line), partially-connected RNN (blue line), and fully-connected
RNN (black line).

130

Chapter 6

Conclusions

This dissertation discusses prior-knowledge-based designs of machine-learning-based MPC

systems to improve closed-loop performance and process operation of nonlinear chemical

processes. Firstly, machine-learning-based state estimation schemes were proposed and

incorporated in Lyapunov-based MPC controllers to overcome the challenge of incomplete state

measurements. Next, physical process structure knowledge was incorporated into the development

of data-driven-based models for large, highly nonlinear, and complex chemical processes. The

performance enhancement associated with these models was investigated through prediction

accuracy and model identification testing, and in closed-loop dynamics under Lyapunov-based

MPC. Lastly, a theoretical framework that interprets the higher generalization accuracy of

physics-based RNN models compared to typical dense RNN models was presented.

In Chapter 2, we proposed machine-learning-based state estimation approaches for nonlinear

processes. The RNN model was first developed to represent process dynamics in the operating

region, and then it was incorporated in an extended Luenberger observer. Then, the RNN-based

estimator was used to provide state estimates for the optimization problem of the LMPC.

Subsequently, a hybrid model was developed to represent process dynamics and used in the state

estimator. From closed-loop simulations, it was demonstrated that both the RNN-based estimator

and the hybrid-model-based estimator achieved the desired accuracy in state estimation, and all the

131

state trajectories initiating from different initial conditions converged to the steady-state under the

LMPC using machine-learning-based estimators.

In Chapter 3, a partially-connected RNN model, which integrates a priori process-structure

knowledge into the RNN modeling, was developed and utilized as a predictive model in an

LMPC scheme, and evaluated in a dynamic simulation of a chemical process using Aspen Plus

Dynamics. It was then compared with a fully-connected RNN-based LMPC. The open-loop

simulations demonstrated the superiority of the partially-connected RNN by yielding smaller

prediction errors. Furthermore, the closed-loop simulations demonstrated that the chemical process

under the partially-connected RNN-based LMPC had smoother state trajectories, and the optimal

control action calculations required a smaller computational time. Finally, the partially-connected

RNN-based LMPC gave a steady control signal after the process reached steady-state, which

eliminated the states variance when under a fully-connected RNN-based LMPC.

In Chapter 4, we used the Monte Carlo dropout and the co-teaching strategies to train

PCRNN-LSTM models for predicting underlying process dynamics (ground truth) from noisy

data. The Ethylbenzene production process conducted in two CSTRs in series was considered,

and modeled via the Aspen Plus Dynamics simulator. The co-teaching and dropout strategies were

applied to create PCRNN-LSTM models with two type of noise independently (i.e., Gaussian and

non-Gaussian), where noisy and noise-free data were generated by extensive open-loop simulations

of the Aspen dynamical model and the first-principles model, respectively. Subsequently,

open-loop as well as closed-loop simulations were performed to illustrate the superiority of

PCRNN-LSTM based models trained via co-teaching and dropout techniques over the standard

PCRNN-LSTM modeling technique in terms of enhancing the accuracy of open-loop predictions

as well as improving the closed-loop performance. In comparison to the standard approach, both

co-teaching and dropout techniques obtained lower values of the time integral of the cost function

in the two modeling methodologies (i.e., partially-connected and fully-connected), indicating faster

convergence and lower energy consumption.

In Chapter 5, we used the Rademacher complexity approach for vector-valued functions

132

to create an upper generalization error bound for partially-connected RNN models. The

theoretical base connecting a RNN model’s accuracy to its architecture was proposed and proved.

Open-loop simulations utilizing a complex two-reactors-in-series process example were performed

to demonstrate the superior model accuracy achieved by the partially-connected RNN when

compared to the fully-connected RNN across various testing data sets. Additionally, the developed

partially-connected RNN model was then utilized in the design of a Lyapunov-based MPC.

Through several closed-loop simulations, adopting the partially-connected RNN model was shown

to yield smoother state trajectories with less loss function values (i.e., smaller mean squared error

values), and the applied inputs produced less oscillatory behavior.

133

Bibliography

[1] F. Abdullah, Z. Wu, and P. D. Christofides. Handling noisy data in sparse model
identification using subsampling and co-teaching. Computers & Chemical Engineering,
157:107628, 2022.

[2] A. Agarwal, Y.A. Liu, and C. McDowell. 110th anniversary: ensemble-based machine
learning for industrial fermenter classification and foaming control. Industrial &
Engineering Chemistry Research, 58:16719–16729, 2019.

[3] M. Alber, A. Buganza Tepole, W. R. Cannon, S. De, S. Dura-Bernal, K. Garikipati,
G. Karniadakis, W. W. Lytton, P. Perdikaris, L. Petzold, et al. Integrating machine learning
and multiscale modeling—perspectives, challenges, and opportunities in the biological,
biomedical, and behavioral sciences. NPJ Digital Medicine, 2:1–11, 2019.

[4] R. Alexander, G. Campani, S. Dinh, and F.V. Lima. Challenges and opportunities on
nonlinear state estimation of chemical and biochemical processes. Processes, 8:1462, 2020.

[5] M. Alhajeri, J. Luo, Z. Wu, F. Albalawi, and P. D. Christofides. Process structure-based
recurrent neural network modeling for predictive control: A comparative study. Chemical
Engineering Research and Design, 179:77–89, 2022.

[6] M. Alhajeri and M. Soroush. Tuning guidelines for model-predictive control. Industrial &
Engineering Chemistry Research, 59:4177–4191, 2020.

[7] M. S. Alhajeri, F. Abdullah, Z. Wu, and P. D. Christofides. Physics-informed machine
learning modeling for predictive control using noisy data. Chemical Engineering Research
and Design, 186:34–49, 2022.

[8] M. S. Alhajeri, Z. Wu, D. Rincon, F. Albalawi, and P. D. Christofides.
Machine-learning-based state estimation and predictive control of nonlinear processes.
Chemical Engineering Research and Design, 167:268–280, 2021.

[9] J. M. Ali, N. H. Hoang, M. A. Hussain, and D. Dochain. Review and classification of
recent observers applied in chemical process systems. Computers & Chemical Engineering,
76:27–41, 2015.

[10] J. M. Ali, M. A. Hussain, M. O. Tade, and J. Zhang. Artificial intelligence techniques
applied as estimator in chemical process systems–a literature survey. Expert Systems with
Applications, 42:5915–5931, 2015.

134

[11] N. Baker, F. Alexander, T. Bremer, A. Hagberg, Y. Kevrekidis, H. Najm, M. Parashar,
A. Patra, J. Sethian, S. Wild, et al. Workshop report on basic research needs for scientific
machine learning: Core technologies for artificial intelligence. Technical report, USDOE
Office of Science (SC), Washington, DC (United States), 2019.

[12] A. Banerjee, D. Varshney, S. Kumar, P. Chaudhary, and V. K. Gupta. Biodiesel production
from castor oil: Ann modeling and kinetic parameter estimation. International Journal of
Industrial Chemistry, 8:253–262, 2017.

[13] M. S. F. Bangi and J. S. Kwon. Deep hybrid modeling of chemical process: Application to
hydraulic fracturing. Computers & Chemical Engineering, 134:106696, 2020.

[14] J. C. Butcher. A history of runge-kutta methods. Applied Numerical Mathematics,
20:247–260, 1996.

[15] E. F. Camacho and C. B. Alba. Model Predictive Control. Springer Science & Business
Media, 2013.

[16] R. Cang, H. Li, H. Yao, Y. Jiao, and Y. Ren. Improving direct physical properties prediction
of heterogeneous materials from imaging data via convolutional neural network and a
morphology-aware generative model. Computational Materials Science, 150:212–221,
2018.

[17] A. Canning and E. Gardner. Partially connected models of neural networks. Journal of
Physics A: Mathematical and General, 21:3275, 1988.

[18] I. Chakraborty, K. J. Bodurtha, N. J. Heeder, M. P. Godfrin, A. Tripathi, R. H. Hurt,
A. Shukla, and A. Bose. Massive electrical conductivity enhancement of multilayer
graphene/polystyrene composites using a nonconductive filler. ACS Applied Materials &
Interfaces, 6:16472–16475, 2014.

[19] B. Chaouat. The state of the art of hybrid rans/les modeling for the simulation of turbulent
flows. Flow, Turbulence and Combustion, 99:279–327, 2017.

[20] S. Chen, Z. Wu, and P. D. Christofides. Decentralized machine-learning-based predictive
control of nonlinear processes. Chemical Engineering Research and Design, 162:45–60,
2020.

[21] S. Chen, Z. Wu, D. Rincon, and P. D. Christofides. Machine learning-based distributed
model predictive control of nonlinear processes. AIChE Journal, 66:e17013, 2020.

[22] T. Chen and H. Chen. Universal approximation to nonlinear operators by neural networks
with arbitrary activation functions and its application to dynamical systems. IEEE
Transactions on Neural Networks, 6:911–917, 1995.

[23] T. WS Chow and Y. Fang. A recurrent neural-network-based real-time learning control
strategy applying to nonlinear systems with unknown dynamics. IEEE Transactions on
Industrial Electronics, 45:151–161, 1998.

135

[24] H. Chun, E. Lee, K. Nam, J. Jang, W. Kyoung, S. Noh, and B. Han.
First-principle-data-integrated machine-learning approach for high-throughput searching of
ternary electrocatalyst toward oxygen reduction reaction. Chem Catalysis, 1:855–869, 2021.

[25] A. Cozad, N. V. Sahinidis, and D. C. Miller. A combined first-principles and data-driven
approach to model building. Computers & Chemical Engineering, 73:116–127, 2015.

[26] S. F. De Azevedo, B. Dahm, and F. R. Oliveira. Hybrid modelling of biochemical processes:
A comparison with the conventional approach. Computers & Chemical Engineering,
21:S751–S756, 1997.

[27] A. C. S. R. Dias, W. B. da Silva, and J. C. S. Dutra. Propylene polymerization reactor
control and estimation using a particle filter and neural network. Macromolecular Reaction
Engineering, 11:1700010, 2017.

[28] D. Dochain. State and parameter estimation in chemical and biochemical processes: a
tutorial. Journal of Process Control, 13:801–818, 2003.

[29] Picard D. Drgoňa, J., M. Kvasnica, and L. Helsen. Approximate model predictive building
control via machine learning. Applied Energy, 218:199–216, 2018.

[30] M. Ellis, J. Liu, and P. Christofides. Economic model predictive control, volume 5. Springer,
Switzerland, 2017.

[31] M. J. Ellis and V. Chinde. An encoder–decoder lstm-based empc framework applied to a
building hvac system. Chemical Engineering Research and Design, 160:508–520, 2020.

[32] F. Emmert-Streib and M. Dehmer. Evaluation of regression models: Model assessment,
model selection and generalization error. Machine Learning and Knowledge Extraction,
1:521–551, 2019.

[33] J. H. Faghmous and V. Kumar. A big data guide to understanding climate change: The case
for theory-guided data science. Big Data, 2:155–163, 2014.

[34] J. Fan and M. Han. Nonliear model predictive control of ball-plate system based on gaussian
particle swarm optimization. In IEEE Congress on Evolutionary Computation, pages 1–6.
Brisbane, Australia, 2012.

[35] Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: representing model
uncertainty in deep learning. In Proceedings of the 33rd International Conference on
Machine Learning, pages 1050–1059, New York, USA, 2016.

[36] Y. Gal and Z. Ghahramani. A theoretically grounded application of dropout in recurrent
neural networks. In Proceedings of the Advances in Neural Information Processing Systems,
pages 1019–1027, Barcelona, Spain, 2016.

[37] H. Ge, Y. Liang, and M. Marchese. A modified particle swarm optimization-based dynamic
recurrent neural network for identifying and controlling nonlinear systems. Computers &
structures, 85:1611–1622, 2007.

136

[38] S. Sam Ge and C. Wang. Adaptive neural control of uncertain mimo nonlinear systems.
IEEE Transactions on Neural Networks, 15:674–692, 2004.

[39] D. Ghosh, E. Hermonat, P. Mhaskar, S. Snowling, and R. Goel. Hybrid modeling approach
integrating first-principles models with subspace identification. Industrial & Engineering
Chemistry Research, 58:13533–13543, 2019.

[40] K. Gurney. An Introduction to Neural Networks. CRC press, 2018.

[41] M. P. R. Haaker and Peter J. T. Verheijen. Local and global sensitivity analysis for a
reactor design with parameter uncertainty. Chemical Engineering Research and Design,
82:591–598, 2004.

[42] B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. Tsang, and M. Sugiyama. Co-teaching:
Robust training of deep neural networks with extremely noisy labels. Advances in Neural
Information Processing Systems, 31:8527–8537, 2018.

[43] H. Han, X. Wu, and J. Qiao. Real-time model predictive control using a self-organizing
neural network. IEEE transactions on Neural Networks and Learning Systems,
24:1425–1436, 2013.

[44] H. Hassanpour, B. Corbett, and P. Mhaskar. Integrating dynamic neural network models
with principal component analysis for adaptive model predictive control. Chemical
Engineering Research and Design, 161:26–37, 2020.

[45] B. Houska, F. Logist, M. Diehl, and J. V. Impe. A tutorial on numerical methods for state and
parameter estimation in nonlinear dynamic systems. Identification for Automotive Systems,
pages 67–88, 2012.

[46] Y. Hsu and J. Wang. A wiener-type recurrent neural network and its control strategy for
nonlinear dynamic applications. Journal of Process Control, 19:942–953, 2009.

[47] X. Jia, A. Khandelwal, D. J. Mulla, P. G. Pardey, and V. Kumar. Bringing automated,
remote-sensed, machine learning methods to monitoring crop landscapes at scale.
Agricultural Economics, 50:41–50, 2019.

[48] O. Kahrs and W. Marquardt. The validity domain of hybrid models and its application
in process optimization. Chemical Engineering and Processing: Process Intensification,
46:1054–1066, 2007.

[49] A. Karpatne, G. Atluri, J. H. Faghmous, M. Steinbach, A. Banerjee, A. Ganguly,
S. Shekhar, N. Samatova, and V. Kumar. Theory-guided data science: A new paradigm for
scientific discovery from data. IEEE Transactions on Knowledge and Data Engineering,
29:2318–2331, 2017.

[50] D. Kochkov, J. A. Smith, A. Alieva, Q. Wang, M. P. Brenner, and S. Hoyer. Machine
learning–accelerated computational fluid dynamics. Proceedings of the National Academy
of Sciences, 118:e2101784118, 2021.

137

[51] V. M. Krasnopolsky and M. S. Fox-Rabinovitz. Complex hybrid models combining
deterministic and machine learning components for numerical climate modeling and
weather prediction. Neural Networks, 19:122–134, 2006.

[52] J. Krishnaiah, C.S. Kumar, and M.A. Faruqi. Modelling and control of chaotic processes
through their bifurcation diagrams generated with the help of recurrent neural network
models: Part 1—simulation studies. Journal of Process Control, 16:53–66, 2006.

[53] S. N. Kumpati, P. Kannan, et al. Identification and control of dynamical systems using
neural networks. IEEE Transactions on Neural Networks, 1:4–27, 1990.

[54] M. J. Kurtz and M. A. Henson. State and disturbance estimation for nonlinear systems affine
in the unmeasured variables. Computers & Chemical Engineering, 22:1441–1459, 1998.

[55] J. N. Kutz, S. L. Brunton, B. W. Brunton, and J. L. Proctor. Dynamic mode decomposition:
data-driven modeling of complex systems. SIAM, 2016.

[56] Y. Kwon, D. Lee, Y. Choi, and S. Kang. Uncertainty-aware prediction of chemical reaction
yields with graph neural networks. Journal of Cheminformatics, 14:1–10, 2022.

[57] C. Lee. Fuzzy logic in control systems: fuzzy logic controller. I. IEEE Transactions on
Systems, Man, and Cybernetics, 20:404–418, 1990.

[58] D. Lee, A. Jayaraman, and J. S. Kwon. Development of a hybrid model for a partially known
intracellular signaling pathway through correction term estimation and neural network
modeling. PLOS Computational Biology, 16:e1008472, 2020.

[59] S. Liao. Expert system methodologies and applications—a decade review from 1995 to
2004. Expert Systems with Applications, 28:93–103, 2005.

[60] F. V. Lima and J. B. Rawlings. Nonlinear stochastic modeling to improve state estimation
in process monitoring and control. AIChE Journal, 57:996–1007, 2011.

[61] Y. Lin and E. D. Sontag. A universal formula for stabilization with bounded controls.
Systems & Control Letters, 16:393–397, 1991.

[62] Y. Lu, M. Rajora, P. Zou, and S. Liang. Physics-embedded machine learning: case study
with electrochemical micro-machining. Machines, 5:4, 2017.

[63] J. Luo, V. Canuso, J. B. Jang, Z. Wu, C. G. Morales-Guio, and P. D. Christofides.
Machine learning-based operational modeling of an electrochemical reactor: Handling data
variability and improving empirical models. Industrial & Engineering Chemistry Research,
61:8399–8410, 2022.

[64] Y. Ma, D. A. Noreña-Caro, A. J. Adams, T. B. Brentzel, J. A. Romagnoli, and M. G. Benton.
Machine-learning-based simulation and fed-batch control of cyanobacterial-phycocyanin
production in plectonema by artificial neural network and deep reinforcement learning.
Computers & Chemical Engineering, 142:107016, 2020.

138

[65] J. Madar, J. Abonyi, and F. Szeifert. Feedback linearizing control using hybrid neural
networks identified by sensitivity approach. Engineering Applications of Artificial
Intelligence, 18:343–351, 2005.

[66] T. F. McKenna, S. Othman, G. Fevotte, A. M. Santos, and H. Hammouri. An integrated
approach to polymer reaction engineering: a review of calorimetry and state estimation.
Polymer Reaction Engineering, 8:1–38, 2000.

[67] A. Mesbah, A EM Huesman, H JM Kramer, and P MJ Van den Hof. A comparison of
nonlinear observers for output feedback model-based control of seeded batch crystallization
processes. Journal of Process Control, 21:652–666, 2011.

[68] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of Machine Learning. MIT
press, 2018.

[69] A. Narasingam and J. S. Kwon. Koopman lyapunov-based model predictive control of
nonlinear chemical process systems. AIChE Journal, 65:e16743, 2019.

[70] P. A. O’Gorman and J. G. Dwyer. Using machine learning to parameterize moist convection:
Potential for modeling of climate, climate change, and extreme events. Journal of Advances
in Modeling Earth Systems, 10:2548–2563, 2018.

[71] R Oliveira. Combining first principles modelling and artificial neural networks: a general
framework. Computers & Chemical Engineering, 28:755–766, 2004.

[72] J. Paduart, L. Lauwers, J. Swevers, K. Smolders, J. Schoukens, and R. Pintelon.
Identification of nonlinear systems using polynomial nonlinear state space models.
Automatica, 46:647–656, 2010.

[73] Y. Pan and J. Wang. Model predictive control of unknown nonlinear dynamical systems
based on recurrent neural networks. IEEE Transactions on Industrial Electronics,
59:3089–3101, 2011.

[74] J. Park and I. W. Sandberg. Universal approximation using radial-basis-function networks.
Neural Computation, 3:246–257, 1991.

[75] N. Patel, J. Nease, S. Aumi, C. Ewaschuk, J. Luo, and P. Mhaskar. Integrating data-driven
modeling with first-principles knowledge. Industrial & Engineering Chemistry Research,
59:5103–5113, 2020.

[76] S. C. Patwardhan, S. Narasimhan, P. Jagadeesan, B. Gopaluni, and S. L. Shah. Nonlinear
bayesian state estimation: A review of recent developments. Control Engineering Practice,
20:933–953, 2012.

[77] G. Porru, C. Aragonese, R. Baratti, and A. Servida. Monitoring of a CO oxidation reactor
through a grey model-based EKF observer. Chemical Engineering Science, 55:331–338,
2000.

139

[78] A. Radke and Z. Gao. A survey of state and disturbance observers for practitioners.
In Proceedings of the American Control Conference, pages 5183–5188, Minneapolis,
Minnesota, 2006.

[79] R. Rai and C. K. Sahu. Driven by data or derived through physics? A review of hybrid
physics guided machine learning techniques with cyber-physical system (CPS) focus. IEEE
Access, 8:71050–71073, 2020.

[80] J. B. Rawlings and C. T. Maravelias. Bringing new technologies and approaches to the
operation and control of chemical process systems. AIChE Journal, 65:e16615, 2019.

[81] M. Reichstein, G. Camps-Valls, B. Stevens, M. Jung, J. Denzler, N. Carvalhais, et al.
Deep learning and process understanding for data-driven earth system science. Nature,
566:195–204, 2019.

[82] R. Roelofs. Measuring Generalization and Overfitting in Machine learning. Doctoral
Dissertation, University of California, Berkeley, 2019.

[83] P. Sagaut, M. Terracol, and S. Deck. Multiscale and multiresolution approaches in
turbulence-LES, DES and Hybrid RANS/LES Methods: Applications and Guidelines. World
Scientific, 2013.

[84] G. R. Schleder, A. C. Padilha, C. M. Acosta, M. Costa, and A. Fazzio. From DFT to machine
learning: recent approaches to materials science–a review. Journal of Physics: Materials,
2:032001, 2019.

[85] J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks,
61:85–117, 2015.

[86] K. Schütt, P. Kindermans, H. E. Sauceda Felix, S. Chmiela, A. Tkatchenko, and
K. Müller. Schnet: A continuous-filter convolutional neural network for modeling quantum
interactions. Advances in Neural Information Processing Systems, 30:992–1002, 2017.

[87] D. Shah, J. Wang, and Q. P. He. Feature engineering in big data analytics for iot-enabled
smart manufacturing–comparison between deep learning and statistical learning. Computers
& Chemical Engineering, 141:106970, 2020.

[88] H. Shahnazari, P. Mhaskar, J. M. House, and T. I. Salsbury. Modeling and fault
diagnosis design for hvac systems using recurrent neural networks. Computers & Chemical
Engineering, 126:189–203, 2019.

[89] A. K. Singh and H. P.and S. Mishra Singh. Validation of ANN-based model for
binary distillation column. In Proceeding of International Conference on Intelligent
Communication, Control and Devices, pages 235–242, Singapore, 2017.

[90] E. D. Sontag. A ‘universal’ construction of Artstein’s theorem on nonlinear stabilization.
Systems & Control Letters, 13:117–123, 1989.

140

[91] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: a
simple way to prevent neural networks from overfitting. The Journal of Machine Learning
Research, 15:1929–1958, 2014.

[92] G. Stephanopoulos and C. Han. Intelligent systems in process engineering: A review.
Computers & Chemical Engineering, 20:743–791, 1996.

[93] K. Takahashi and Y. Tanaka. Material synthesis and design from first principle calculations
and machine learning. Computational Materials Science, 112:364–367, 2016.

[94] M. L. Thompson and M. A. Kramer. Modeling chemical processes using prior knowledge
and neural networks. AIChE Journal, 40:1328–1340, 1994.

[95] Y. Tian, J. Zhang, and J. Morris. Modeling and optimal control of a batch polymerization
reactor using a hybrid stacked recurrent neural network model. Industrial & Engineering
Chemistry Research, 40:4525–4535, 2001.

[96] J. Tompson, K. Schlachter, P. Sprechmann, and K. Perlin. Accelerating eulerian fluid
simulation with convolutional networks. In International Conference on Machine Learning,
pages 3424–3433, Sydney, Australia, 2017.

[97] A. P. Trischler and G. M. T. D’Eleuterio. Synthesis of recurrent neural networks for
dynamical system simulation. Neural Networks, 80:67–78, 2016.

[98] A. Y. Tsen, S. S. Jang, D. S. H. Wong, and B. Joseph. Predictive control of quality in batch
polymerization using hybrid ann models. AIChE Journal, 42:455–465, 1996.

[99] A. Van Mulders, J. Schoukens, M. Volckaert, and M. Diehl. Two nonlinear optimization
methods for black box identification compared. Automatica, 46:1675–1681, 2010.

[100] V. Venkatasubramanian. The promise of artificial intelligence in chemical engineering: Is it
here, finally? AIChE Journal, 65:466–478, 2019.

[101] R. Vepa. A review of techniques for machine learning of real-time control strategies.
Intelligent Systems Engineering, 2:77–90, 1993.

[102] M. Viberg. Subspace-based methods for the identification of linear time-invariant systems.
Automatica, 31:1835–1851, 1995.

[103] M. Von Stosch, R. Oliveira, J. Peres, and S. F. de Azevedo. Hybrid semi-parametric
modeling in process systems engineering: Past, present and future. Computers & Chemical
Engineering, 60:86–101, 2014.

[104] A. Wächter and L. T. Biegler. On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming. Mathematical Programming, 106:25–57,
2006.

[105] L. Wang, J. Chen, and M. Marathe. TDEFSI: Theory-guided deep learning-based epidemic
forecasting with synthetic information. ACM Transactions on Spatial Algorithms and
Systems, 6:1–39, 2020.

141

[106] N. C. Wei, M. A. Hussain, and A. K. A. Wahab. Control of a batch polymerization system
using hybrid neural network-first principle model. The Canadian Journal of Chemical
Engineering, 85:936–945, 2007.

[107] J. A. Wilson and L. F. M. Zorzetto. A generalised approach to process state estimation using
hybrid artificial neural network/mechanistic models. Computers & Chemical Engineering,
21:951–963, 1997.

[108] Z. T. Wilson and N. V. Sahinidis. The alamo approach to machine learning. Computers &
Chemical Engineering, 106:785–795, 2017.

[109] W. Wong, E. Chee, J. Li, and X. Wang. Recurrent neural network-based model predictive
control for continuous pharmaceutical manufacturing. Mathematics, 6:242, 2018.

[110] H. Wu and J. Zhao. Deep convolutional neural network model based chemical process fault
diagnosis. Computers & Chemical Engineering, 115:185–197, 2018.

[111] Z. Wu, A. Alnajdi, Q. Gu, and P. D. Christofides. Statistical machine-learning–based
predictive control of uncertain nonlinear processes. AIChE Journal, 68:e17642, 2022.

[112] Z. Wu and P. D. Christofides. Economic machine-learning-based predictive control of
nonlinear systems. Mathematics, 7:494, 2019.

[113] Z. Wu, J. Luo, D. Rincon, and P. Christofides. Machine learning-based predictive control
using noisy data: evaluating performance and robustness via a large-scale process simulator.
Chemical Engineering Research and Design, 168:275–287, 2021.

[114] Z. Wu, D. Rincon, and P. D. Christofides. Process structure-based recurrent neural network
modeling for model predictive control of nonlinear processes. Journal of Process Control,
89:74–84, 2020.

[115] Z. Wu, D. Rincon, Q. Gu, and P. D. Christofides. Statistical machine learning in model
predictive control of nonlinear processes. Mathematics, 9:1912, 2021.

[116] Z. Wu, D. Rincon, J. Luo, and P. D. Christofides. Machine learning modeling and predictive
control of nonlinear processes using noisy data. AIChE Journal, 67:e17164, 2021.

[117] Z. Wu, A. Tran, Y. M. Ren, C. S. Barnes, S. Chen, and P. D. Christofides. Model predictive
control of phthalic anhydride synthesis in a fixed-bed catalytic reactor via machine learning
modeling. Chemical Engineering Research and Design, 145:173–183, 2019.

[118] Z. Wu, A. Tran, D. Rincon, and P. D. Christofides. Machine learning-based predictive
control of nonlinear processes. part I: Theory. AIChE Journal, 65:e16729, 2019.

[119] Z. Wu, A. Tran, D. Rincon, and P. D. Christofides. Machine learning-based predictive
control of nonlinear processes. part II: Computational implementation. AIChE Journal,
65:e16734, 2019.

142

[120] J. Xu, C. Li, X. He, and T. Huang. Recurrent neural network for solving model predictive
control problem in application of four-tank benchmark. Neurocomputing, 190:172–178,
2016.

[121] T. Xu and A. J. Valocchi. Data-driven methods to improve baseflow prediction of a regional
groundwater model. Computers & Geosciences, 85:124–136, 2015.

[122] S. Yang, P. Navarathna, S. Ghosh, and B. W. Bequette. Hybrid modeling in the era of smart
manufacturing. Computers & Chemical Engineering, 140:106874, 2020.

[123] A. Yazdani, L. Lu, M. Raissi, and G. E. Karniadakis. Systems biology informed deep
learning for inferring parameters and hidden dynamics. PLoS Computational Biology,
16:e1007575, 2020.

[124] S. Yin and O. Kaynak. Big data for modern industry: challenges and trends [point of view].
Proceedings of the IEEE, 103:143–146, 2015.

[125] L. A. Zadeh. Probability measures of fuzzy events. Journal of Mathematical Analysis and
Applications, 23:421–427, 1968.

[126] N. J. Zambare, M. Soroush, and M. C. Grady. Real-time multirate state estimation in a
pilot-scale polymerization reactor. AIChE Journal, 48:1022–1033, 2002.

[127] M. Zeitz. The extended Luenberger observer for nonlinear systems. Systems & Control
Letters, 9:149–156, 1987.

[128] S. Zendehboudi, N. Rezaei, and A. Lohi. Applications of hybrid models in chemical,
petroleum, and energy systems: A systematic review. Applied Energy, 228:2539–2566,
2018.

[129] Z. Zhang, Z. Wu, D. Rincon, and P. D. Christofides. Real-time optimization and control of
nonlinear processes using machine learning. Mathematics, 7:890, 2019.

143

	Introduction
	Motivation
	Background
	Dissertation Objectives and Structure

	Machine Learning-Based State Estimation and Predictive Control of Nonlinear Processes
	Introduction
	Preliminaries
	Notations
	Class of Systems
	Extended Luenberger Observer
	Stabilization via Control Lyapunov Function

	Machine Learning Based State Estimation
	RNN-based State Estimator
	Hybrid-Model-Based State Estimator

	Output Feedback Model Predictive Control
	Application to a Chemical Reactor Example
	Simulation Settings
	Neural Networks Model Training
	Closed-loop Simulation Results

	 Process structure-based recurrent neural network modeling for predictive control: A comparative study
	Introduction
	Preliminaries
	Notations
	Class of Systems
	Stabilizability assumption

	Recurrent Neural Networks (RNN) Models
	Partially-connected RNN Model
	RNN-Based Model Predictive Control
	Application to a Chemical Process Modeled in Aspen Plus
	Dynamic Model in Aspen Plus Dynamics
	First-principles Model Development
	Data Generation and RNN Models Development
	Closed-loop Simulation: First-principles Process Model
	Closed-loop Simulation: Aspen Plus Dynamic Model

	Physics-informed Machine Learning Modeling for Predictive Control Using Noisy Data
	Introduction
	Preliminaries
	Notations
	Class of systems
	Stabilizability Assumption

	Recurrent neural networks model (RNN)
	Partially-connected RNN
	Long short term memory (LSTM)

	Co-Teaching technique
	Dropout technique
	RNN-LSTM based model predictive control
	Application to a Chemical Process Using Aspen Plus Simulator
	Process description
	Data generation and model training
	Closed-loop simulation: Gaussian noise
	Closed-loop simulation: non-Gaussian noise

	On Generalization Error of Neural Network Models and its Application to Predictive Control of Nonlinear Processes
	Introduction
	Preliminaries
	Notation
	Class of Systems
	Stabilizability assumption

	Recurrent neural networks (RNNs)
	Physics-informed RNNs

	Generalization error
	General considerations
	Physics-based RNNs generalization bound

	RNN based model predictive control
	Application to a chemical process
	Data generation and RNN models construction
	Open-loop simulation
	Closed-loop simulation

	Conclusions
	Bibliography

