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Abstract

Aspects of optimization with increasing concave stochastic order constraints

by

William B. Haskell

Doctor of Philosophy in Industrial Engineering and Operations Research

University of California, Berkeley

Professor Zuo-Jun Max Shen, Chair

This dissertation applies convex optimization techniques to a class of stochastic
optimization problems. This class of problems is distinguished by a multivariate
increasing concave stochastic order constraint on a random-variable-valued
mapping. The analysis is divided into four chapters to address four different
aspects of optimization with increasing concave stochastic order constraints.

In Chapter 3, we describe this class of stochastic optimization problems in detail.
This class of problems does not satisfy the Slater condition, and we must
overcome this technical difficulty to apply convex optimization. We introduce a
perturbation of the original problem for this purpose and we discuss semi-infinite
programming and nonlinear programming relaxations of this perturbation. It is
shown that increasing concave functions act as the Lagrange multipliers of
increasing concave stochastic order constraints. We conclude this chapter with a
discussion about a transformation of these problems via coupling on finite
probability spaces.

In Chapter 4, we consider sample average approximation for increasing concave
stochastic order constrained programs. We verify consistency of sample average
approximation. We also study sample average approximation for the semi-infinite
programming and nonlinear programming relaxations presented in Chapter 3.
Again, we verify consistency of sample average approximation for these
relaxations. The solution method in this chapter is based on the coupling
transformation from Chapter 3. This transformation necessarily requires a
large-scale implementation. We comment on aggregation, column generation, and
row generation techniques as a possible large-scale approach.

In Chapter 5 we introduce a robust version of the increasing concave stochastic
order. Specifically, we consider model misspecification for the underlying
probability distribution. Robust versions of the semi-infinite programming and



2

nonlinear programming relaxations from Chapter 3 are also presented and
analyzed. The case of polyhedral uncertainty is emphasized for finite probability
spaces. There is a large-scale implementation issue here as well, and aggregation
is suggested again as a possible solution approach.

In Chapter 6 we consider multi-period stochastic optimization problems with
increasing concave stochastic order constraints. We put a multivariate increasing
concave stochastic order constraint on a vector of performance measures across all
time periods. We derive optimality conditions similar to those in Chapter 3. We
also show that there is a companion auxiliary control problem for this class of
multi-period problems that can be solved with dynamic programming. We
comment on using duality decomposition to solve instances of this problem on
finite probability spaces, such as those obtained via conditional sampling.



Contents

Chapter 1. Introduction 1
1.1. Motivation 1
1.2. Contribution 2

Chapter 2. Literature review 4
2.1. Stochastic optimization 4
2.2. Stochastic order constrained optimization 7

Chapter 3. Optimization with increasing concave stochastic order constraints 14
3.1. Optimization problem 14
3.2. Optimality conditions 22
3.3. Duality 29
3.4. Finite probability spaces 34

Chapter 4. Sample average approximation of a class of multivariate integral
stochastic order constrained programs 39

4.1. Sample average approximation 39
4.2. Convergence analysis of sample average approximation 44
4.3. Upper bounds 47
4.4. Aggregation, column generation, and row generation 48

Chapter 5. Robust optimization with a class of multivariate integral stochastic
order constraints 54

5.1. Robust optimization problem 54
5.2. Optimality conditions 57
5.3. Duality 61
5.4. Aggregation, column generation, and row generation 62

Chapter 6. Multi-period optimization with increasing concave stochastic
order constraints 74

6.1. Multi-period optimization problem 74
6.2. Optimality conditions 77
6.3. Duality 80
6.4. Finite probability spaces 82

Chapter 7. Conclusion 86
7.1. Remarks 86
7.2. Future research 87

Bibliography 89

i



CHAPTER 1

Introduction

1.1. Motivation

1.1.1. Optimization under uncertainty. Decision making with incomplete
information is called optimization under uncertainty. Many approaches for mod-
eling uncertainty and incorporating uncertainty into optimization problems have
been taken. The minimax approach has been studied extensively (see [5]). This
paradigm finds the decision with the best worse-case scenario. Info-gap decision
theory (see [3]) finds the decision which meets a pre-specified goal under the great-
est range of uncertainty. Stochastic optimization is a third popular paradigm for
dealing with uncertainty, and is also perhaps the oldest.

In stochastic optimization, a probability distribution is assigned to the uncer-
tainty. A probability distribution captures the important idea of some events being
more likely than others. A probabilistic model of uncertainty also introduces the
idea of risk. The idea of risk is intrinsic to stochastic optimization, and many
methods for modeling and managing risk are available.

1.1.2. Risk management. This dissertation is built around using multivari-
ate increasing concave stochastic order constraints to manage risk. The family
of increasing concave functions is closely related to the idea of risk-aversion and
this relationship is well understood in the univariate case. This intuition can be
extended to the multivariate case. In particular, there are many problems where
a risk-averse decision maker would like to manage multiple random prospects si-
multaneously. A multivariate increasing concave function is a natural model for
the utility of a risk-averse decision maker in this situation, since there may be
inter-dependencies among the random prospects.

The multivariate increasing concave stochastic order is built from the spec-
trum of all such utility functions. Instead of trying to maximize the expectation of
a given utility function, we choose a benchmark random variable to make pairwise
comparisons. The expectation of the utility of a random-variable-valued mapping is
compared to the expectation of the utility of the benchmark for all increasing con-
cave functions. This methodology restricts the set of admissible random variables
to those that are acceptable in some sense, rather than those that are maximal with
respect to a scalar objective. The multivariate increasing concave stochastic order
fits naturally into convex optimization and its powerful set of analytical tools.

There are many applications for this class of problems, particularly in net-
work management and design problems. For example, communication, electric,
and transportation networks all have an inherent idea of flow and a correspond-
ing capacity for flow. In real networks, there is variation in the capacity for flow
and the demand for capacity utilization. Real networks also face the possibility of

1



1.2. CONTRIBUTION 2

catastrophic disruption. We can model capacity, demand, and disruption stochasti-
cally. The increasing concave stochastic order then naturally constrains the vector
of unmet demand across the network.

1.1.3. Benchmark. We now make some intuitive remarks about the value
and implementation of stochastic order constraints. Any time a stochastic order
constraint is used in optimization, a benchmark must be chosen. The idea of a
benchmark is very intuitive. Throughout this dissertation, a benchmark refers
to an exogenously chosen random variable that is desirable in some sense. We
emphasize that the benchmark is itself a random variable. The overall strategy of
stochastic order constrained optimization is to set a benchmark, and then choose
from the alternatives that are larger than the benchmark in a specific stochastic
order.

1.1.4. Effective comparison. There is intuitive justification for the use of
stochastic order constraints. Stochastic order constraints compare random variables
to similar objects, other random variables. Approaches like chance constraints and
risk measures turn information about random variables into scalars, and then opti-
mize over the scalars. There are two inherent difficulties with this approach. First,
a choice needs to be made about how to scalarize risk. There are no general guide-
lines for this choice. Second, information about random variables is lost through
any scalarization. Stochastic order constraints bypass these deficiencies by using
more of the distributional information. Stochastic orders can also be thought of as
comparing a continuum of risk measures between two random variables.

1.1.5. Convex integral stochastic order constraints. We will derive opti-
mality conditions and a corresponding duality theory by using convex optimization
techniques. This procedure will show that the Lagrange multipliers of increas-
ing concave stochastic order constraints are increasing concave functions. We will
emphasize this fact throughout this dissertation. This observation makes the inter-
pretation of the optimality conditions and duality theory more transparent.

One can imagine constructing the Lagrange multiplier of an integral stochastic
order constraint by taking sums and non-negative scalar multiples of functions from
the defining class. Naturally, any finite sum of non-negative multiples of increasing
concave functions is an increasing concave function. An analogous result holds for
all of the other integral stochastic orders mentioned in this dissertation. However,
the defining classes of these other integral stochastic orders are smaller, so the
domain of the corresponding Lagrange multipliers is smaller.

1.2. Contribution

1.2.1. Scope. This dissertation has a wide scope. First, we consider mul-
tivariate increasing concave order constraints directly. The paper [1] is the only
other work that uses multivariate increasing concave order constraints directly,
rather than through an approximation. However, this paper does not emphasize
the increasing concave order and only affine random-variable-valued mappings are
studied.

Second, we allow a general underlying probability space via sampling. The
recent paper [16] pioneers the study of sample average approximation for stochastic
order constrained optimization. This paper focuses on a specific relaxation of the
increasing concave order that is built from the univariate increasing concave order
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and linear combinations of the components of random vectors. This dissertation
extends the results of [16] to the increasing concave stochastic order. With a firm
theoretical foundation for sample average approximation, we can handle general
underlying probability spaces in applications.

1.2.2. Optimality conditions and duality theory. Three main problem
classes are presented in this dissertation. Optimality conditions are developed for
each of these problem classes. All three sets of optimality conditions follow from the
necessary and sufficient conditions for optimality in Banach spaces (see [4, Chap-
ter 3]). We contribute a transformation of these conditions that shows increasing
concave functions are the Lagrange multipliers of increasing concave stochastic or-
der constraints. This transformation is applied in Chapters 3 and 6. Because the
increasing concave functions are the Lagrange multipliers of increasing concave sto-
chastic order constraints, the duals of the problems in Chapters 3 and 6 can be
defined in terms of these functions.

1.2.3. Sample average approximation. Most probability spaces encoun-
tered in practice have an enormous number of scenarios. Sample average approxi-
mation is a common methodology for estimating an underlying probability distri-
bution. We verify that sample average approximation is consistent for the three
problem classes of Chapter 3.

We also set an important convention for sampling for stochastic order con-
strained problems. We suppose that sampling for the random-variable-valued map-
ping and sampling for the benchmark are conducted separately. This assumption
generalizes earlier work without much difficulty. Finally, we make some initial ob-
servations about a possible large-scale implementation scheme for sample average
approximation. As will be shown, sample average approximation is only part of a
practical implementation strategy.

1.2.4. Robust optimization. It is possible to combine increasing concave
stochastic order constraints with robust optimization. We consider uncertainty
about the underlying probability distribution. We study the properties of this
problem class and provide optimality conditions.

We emphasize this problem class for finite probability spaces. The large-scale
implementation strategies for sample average approximation are extended to handle
these robust optimization problems as well.

1.2.5. Multi-period optimization. We are able to extend the increasing
concave stochastic order for use in multi-period optimization. We define an in-
creasing concave stochastic order constraint on a vector of performance measures
across time in a finite horizon control problem. We derive conditions for an optimal
policy. Increasing concave functions appear again as the Lagrange multipliers of
the increasing concave stochastic constraint in the multi-period case. This discov-
ery lets us define an auxiliary control problem that can be solved with dynamic
programming methods.

We also make some recommendations about solving this problem class for finite
probability spaces. We can apply the coupling transformation used in Chapter 3
to the multi-period problem and use duality decomposition.



CHAPTER 2

Literature review

2.1. Stochastic optimization

This section is devoted to reviewing fundamental material from analysis and
probability that will be used throughout this dissertation.

2.1.1. Analysis. Let RN be the space of real N−dimensional vectors, and let
RM×N be the space of real M ×N−dimensional matrices. Let en be the nth unit
vector in RN and 1 be the vector of all ones.

For x = (x1, . . . , xN ) ∈ RN , define the norm

‖x‖p ,

(
N∑
n=1

|xn|p
)1/p

for 1 ≤ p <∞ and the supremum norm

‖x‖∞ , sup
n=1,...,N

{|xn|} .

Let
Bx (ε) ,

{
y ∈ RN : ‖x− y‖2 < ε

}
⊂ RN

be the open ball of radius ε > 0 (with respect to the ‖·‖2 norm) centered at x ∈ RN .
We define C

(
RM ,RN

)
to be the space of all continuous functions from RM to

RN , and use the shorthand C
(
RM

)
for C

(
RM ,R

)
. The norm on C

(
RM

)
is

‖f‖C(RM ) = sup
z∈RM

|f (z) |.

For a general compact set Z ⊂ RM , we let C
(
Z; RN

)
denote the space of continuous

functions f : Z → RN . Similarly, C (Z) indicates C (Z; R). Let C+ (Z) denote the
space of nonnegative continuous functions f : Z → R. The norm on C (Z) is

‖f‖C(Z) = sup
z∈Z
|f (z) |.

LetM (Z) denote the space of finite regular Borel measures on Z, and define the
duality pairing between f ∈ C (Z) and Λ ∈M (Z) as

〈Λ, f〉 =

ˆ
Z

f (z) dΛ (z) .

Define the dual cone to C+ (Z) as:

M+ (Z) , {Λ ∈M (Z) : 〈Λ, f〉 ≥ 0, ∀f ∈ C+ (Z)} .

4



2.1. STOCHASTIC OPTIMIZATION 5

A set Z ⊂ RM is convex if α z1+(1− α) z2 ∈ Z for all z1, z2 ∈ Z and 0 ≤ α ≤ 1.
Suppose Z is convex, then f ∈ C (Z) is convex if

f (α z1 + (1− α) z2) ≤ α f (z1) + (1− α) f (z2)

and f ∈ C (Z) is concave if

f (α z1 + (1− α) z2) ≥ α f (z1) + (1− α) f (z2)

for all z1, z2 ∈ Z and 0 ≤ α ≤ 1.
Let ≤RN denote the usual component-wise order on RN . We say f ∈ C

(
Z, RN

)
is convex if

f (α z1 + (1− α) z2) ≤RN α f (z1) + (1− α) f (z2)

and f ∈ C (Z) is concave if

f (α z1 + (1− α) z2) ≥RN α f (z1) + (1− α) f (z2)

for all z1, z2 ∈ Z and 0 ≤ α ≤ 1.
For a convex function f ∈ C (Z), the subdifferential of f at z0 ∈ Z is

∂ f (z0) ,
{
s ∈ RM : f (z) ≥ f (z0) + 〈s, z − z0〉, ∀z ∈ Z0

}
.

We define the subdifferential of a concave function f ∈ C (Z) to be

∂ f (z0) , −∂ [−f (z0)] .

For a set A ⊂ RM , we use intA to denote the interior and clA to denote
the closure of A, respectively. Define convA to be the set of all finite convex
combinations

∑I
i=1 αizi for zi ∈ A and αi ≥ 0 for all i = 1, . . . , I, and

∑I
i=1 αi = 1.

Define coneA to be the set of all finite conic combinations
∑I
i=1 αizi for zi ∈ A

and αi ≥ 0 for all i = 1, . . . , I, and observe that coneA is a convex set.
The diameter of a set A ⊂ RM is

D (A) = sup
x, y∈A

‖x− y‖.

Using the definitions from [25, Chapter 7], for sets A and B in RM the deviation
of the set A from the set B is

D (A,B) = sup
x∈A

inf
y∈B
‖x− y‖

and the Hausdorff distance between A and B is

H (A,B) = min {D (A,B) ,D (B,A)} .

2.1.2. Probability. We denote a probability space as (Ω,F , P ) where Ω is a
sample space, F is a σ−algebra on Ω, and P is a probability measure on (Ω,F).
Elements ω ∈ Ω are often referred to as scenarios or sample paths. We define
L1
p (Ω,F , P ) , Lp (Ω,F , P ; R) for 1 ≤ p <∞ to be the space of all F−measurable

mappings X : Ω→ R with ‖X‖p = (E [|X|p])1/p
<∞. The set

L1
∞ (Ω,F , P ) , L∞ (Ω,F , P ; R)

is the space of all essentially bounded measurable mappings X : Ω→ R. The norm
on L1

∞ (Ω,F , P ) is
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‖X‖∞ = inf {α ≥ 0 : P (|X (ω) | > α) = 0} .
The symbol

L1
0 (Ω,F , P ) , L0 (Ω,F , P ; R)

represents the space of all measurable mappingsX : Ω→ R. The value of a random
variable X ∈ L1

0 (Ω,F , P ) at ω ∈ Ω is denoted X (ω).
The moment generating function of a random variable X ∈ L1

0 (Ω,F , P ) is

MX (s) = E
[
esX

]
.

For N ≥ 2, we define LNp (Ω,F , P ) , Lp
(
Ω,F , P ; RN

)
for 1 ≤ p <∞ to be the

space of all F−measurable mappings X : Ω→ RN with (E [(‖X (ω) ‖2)
p
])

1/p
<∞.

Vector-valued random variables are written as X = (X1, . . . , XN ). The set

LN∞ (Ω,F , P ) , L∞
(
Ω,F , P ; RN

)
is the space of all essentially bounded measurable mappings X : Ω → RN . The
norm on LN∞ (Ω,F , P ) is

‖X‖∞ = inf {α ≥ 0 : P (‖X (ω) ‖2 > α) = 0} .
The symbol

LN0 (Ω,F , P ) = L0

(
Ω,F , P ; RN

)
represents the space of all measurable mappings X : Ω → RN . The value of a
vector-valued random variable X ∈ LN0 (Ω,F , P ) at ω ∈ Ω is denoted X (ω).

For vector-valued random variables X and Y, the notation X = Y means
X (ω) = Y (ω) for P−almost all ω ∈ Ω and the notation X ≤ Y means X (ω) ≤ Y (ω)
for P−almost all ω ∈ Ω.

Each random variable X ∈ LNp induces a measure on
(
RN ,BN

)
where BN is

the Borel σ−algebra on RN . For the mapping X−1 :
(
RN ,BN

)
→ (Ω,F), define

the measure P ◦ X−1 (A) = P
(
X−1 (A)

)
for A ∈ BN . We denote this measure

as P ◦ X−1 :
(
RN ,BN

)
→ R where ◦ denotes composition. The support of the

measure P ◦X−1 is:

supp
(
P ◦X−1

)
=
{
x ∈ RN : P ◦X−1 (Bx (ε)) > 0, ∀ε > 0

}
.

2.1.3. Random-variable-valued mappings. Stochastic optimization is
built around the idea of random-variable-valued mappings. Let Z0 ⊂ RM be the
compact convex decision set of a stochastic optimization problem for the rest of
this dissertation.

We introduce the random-variable-valued mapping G (z) : Z0 → LN1 (Ω,F , P )
to represent a random variable that is conditioned by a decision z ∈ Z0 within an
optimization problem. The value of the random variable G (z) at ω ∈ Ω is denoted
[G (z)] (ω). The random-variable-valued mapping G (z) is continuous and concave
if [G (z)] (ω) is continuous and concave in z ∈ Z0 for P−almost all ω ∈ Ω (this
definition is conceived in [8]).

Risk measures, mappings from the space of random variables to the scalars,
have received significant attention as a means to manage risk in G (z) ([23, 22]).
A general stochastic optimization problem with a risk measure looks like
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(1) max {f (z) + ρ (G (z)) : z ∈ Z0} ,
where f (z) ∈ C (Z0) is concave and

ρ : LN1 (Ω,F , P )→ R

is increasing and concave. For increasing, we mean ρ (X1) ≤ ρ (X2) for X1,X2 ∈
LN1 (Ω,F , P ) if X1 (ω) ≤ X2 (ω) for P−almost all ω ∈ Ω. Concavity is defined
similarly, for X1,X2 ∈ LN1 (Ω,F , P ) and 0 ≤ α ≤ 1,

ρ (αX1 + (1− α) X2) ≤ αρ (X1) + (1− α) ρ (X2) .

Problem (1) is a convex optimization problem under these assumptions.

2.2. Stochastic order constrained optimization

In this section we will present an extension of risk measures that motivates this
dissertation.

2.2.1. Family of convex integral stochastic order constraints. Stochas-
tic orders, including many of the ones we study in this dissertation, are examined
at length in [24]. We should comment that the increasing concave order is just one
of a huge family of multivariate stochastic orders. However, the choice of stochastic
orders that can be used directly as constraints in convex optimization problems is
limited when compared to the whole family of stochastic orders.

All of the stochastic orders discussed in this dissertation are integral stochastic
orders (see [17]).

Definition 2.2.1. Let F be a collection of measurable functions f : RN → R. For
X,Y ∈ LN1 (Ω,F , P ), the relation X ≥F Y on LN1 (Ω,F , P ) is defined as

ˆ
Ω

f (X (ω))P (dω) ≥
ˆ

Ω

f (Y (ω))P (dω) , ∀f ∈ F.

Alternatively, integral stochastic orders can be defined on probability measures.

Definition 2.2.2. Let F be a collection of measurable functions f : RN → R. For
probability measures P and Q on

(
RN , BN

)
, the relation P ≥F Q is defined as

ˆ
RN

f (x)P (dx) ≥
ˆ
RN

f (x)Q (dx) , ∀f ∈ F.

Introduce a fixed benchmark random variable Y ∈ LN1 (Ω,F , P ). Integral sto-
chastic order constrained optimization problems are of the form:

max
z∈Z0

f (z)(2)

s.t. G (z) ≥F Y.(3)

Now we review the choices of F that have been studied so far in problem (2)− (3).
We define U1 ⊂ C (R) to be the set of all increasing concave functions u : R → R
such that

sup {|s| : s ∈ ∂ u (x) , x ∈ R} ≤ 1.
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The choice of the constant 1 is arbitrary, we just need the entire set U1 to be
equicontinuous. There is no loss of generality here because the inequality

E [u (X)] ≤ E [u (Y)]

is equivalent to E [αu (X)] ≤ E [αu (Y)] for all α > 0.

Definition 2.2.3. For random variables X, Y ∈ L1
1 (Ω,F , P ), if

E [u (X)] ≥ E [u (Y )] , ∀u ∈ U1,

then X is larger than Y in the univariate increasing concave order.

The field of stochastic order constrained optimization is originally established
in [7] with univariate increasing concave stochastic order constraints. This work is
extended in [8] which introduces the idea of random-variable-valued mappings into
stochastic order constrained programs.

Using the techniques from [11], we can incorporate uncertainty about the un-
derlying probability distribution P . Let P0 be a fixed probability measure on (Ω,F).
The topological dual space of L1

1 (Ω,F , P0) is L1
∞ (Ω,F , P0). We adopt the follow-

ing convention from [11]. Any measure Q that is absolutely continuous with respect
to P0 with Radon-Nikodym derivative dQ

dP0
in L1

∞ (Ω,F , P0) can be considered as
element of L1

∞ (Ω,F , P0). For X ∈ L1
1 (Ω,F , P0) and Q ∈ L1

∞ (Ω,F , P0) we define

EQ [X] = 〈Q,X〉

=

ˆ
Ω

X (ω)Q (dω)

=

ˆ
Ω

X (ω)
dQ

dP0
(ω)P0 (dω) .

We let Q represent a set of probability measures and we assume that Q is convex,
closed, and bounded in L1

∞ (Ω,F , P0). Set

B = sup
P∈Q
‖ dP
dP0
‖∞ <∞.

Definition 2.2.4. For random variables X, Y ∈ L1
1 (Ω,F , P0), if

EP [u (X)] ≥ EP [u (Y )] , ∀u ∈ U1, ∀P ∈ Q,

then X is larger than Y in the robust increasing concave order with respect to Q.

Multivariate stochastic orders have also been embedded into problem (2) −
(3). The following three stochastic orders share the same essence. Each defines a
multivariate stochastic order by applying the univariate increasing concave order to
weighted sums of the components of random vectors. In the following definitions,
we will use ≥icv as shorthand for the univariate increasing concave stochastic order.
This choice is also an abuse of notation, because after this subsection we will always
use ≥icv to denote the multivariate increasing concave stochastic order.

In [10], a multivariate extension of definition 2.2.3 is proposed and embedded
into stochastic optimization problems.
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Definition 2.2.5. For random vectors X, Y ∈ LN1 (Ω,F , P ), if

〈α,X〉 ≥icv 〈α,Y〉, ∀α ∈ RN+ ,
then X is larger than Y in the multivariate linear increasing concave order.

In [6] a more general version of the preceding definition is proposed.

Definition 2.2.6. For random vectors X, Y ∈ LN1 (Ω,F , P ), for a polyhedral con-
vex set V ⊂ RN if

〈v,X〉 ≥icv 〈v,Y〉, ∀v ∈ V,
then X is larger than Y in the multivariate polyhedral linear increasing concave
order.

This work is further extended in [16], where the linear weights are allowed to
range over general convex sets in RN .

Definition 2.2.7. For random vectors X, Y ∈ LN1 (Ω,F , P ), for a convex set C ⊂
RN if

〈c,X〉 ≥icv 〈c,Y〉, ∀c ∈ C,
then X is larger than Y in the multivariate convex linear increasing concave order.

2.2.2. Increasing concave stochastic order constraints. We now present
the central integral stochastic order of this dissertation. Define UN ⊂ C

(
RN
)
to be

the set of all increasing concave functions u : RN → R such that

sup
{
‖s‖2 : s ∈ ∂xu (x) , x ∈ RN

}
≤ 1.

Recall that on RN all norms are equivalent. We have

C1‖s‖p1‖ ≤ ‖s‖p2 ≤ C2‖s‖p1

for constants 0 < C1, C2 <∞ for any 1 ≤ p1, p2 ≤ ∞. Thus, if

sup
{
‖s‖p : s ∈ ∂xu (x) , x ∈ RN

}
≤ 1,

for any 1 ≤ p ≤ ∞, it follows

sup
{
‖s‖q : s ∈ ∂xu (x) , x ∈ RN

}
≤ C <∞,

for any 1 ≤ q ≤ ∞ for some C <∞.
We define the multivariate increasing concave order as follows:

Definition 2.2.8. For random vectors X, Y ∈ LN1 (Ω,F , P ), if

E [u (X)] ≥ E [u (Y)] , ∀u ∈ UN ,

then X is larger than Y in the increasing concave order (denoted X ≥icv Y).

The relation X ≥icv Y can be defined in terms of coupling. Recall that for
random variables X,Y ∈ LN1 (Ω,F , P ), X =d Y denotes equality in distribution.
The relation X =d Y is defined as P ({X ≤ η}) = P ({Y ≤ η}) for all η ∈ RN .
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Theorem 2.2.9. [24, Theorem 7.A.2] Two random vectors X, Y ∈ LN1 (Ω,F , P )
satisfy X ≥icv Y if, and only if, there exist two random vectors X′, Y′ ∈ LN1 (Ω,F , P ),
such that

X′ =d X,(4)

Y′ =d Y,(5)

X′ ≥ E
[
Y′ |X′

]
, P − almost surely.(6)

The following corollary is a powerful application of theorem 2.2.9 for finite
probability spaces.

Corollary 2.2.10. [1, Corollary 2] Let Ω1 = (ω11, . . . , ω1J) and
Ω2 = (ω21, . . . , ω2K) and let F1 and F2 make all atoms on Ω1 and Ω2 measurable,
respectively. Then for X ∈ LN1 (Ω1,F1, P1) and Y ∈ LN1 (Ω2,F2, P2), the constraint
X ≥icv Y is equivalent to the existence of πjk ≥ 0 for j = 1, . . . , J and k = 1, . . . ,K
such that

X (ω1j) ≥
∑K
k=1 πjkY (ω2k)

P1 ({ω1j})
, j = 1, . . . , J,(7)

K∑
k=1

πjk = P1 ({ω1j}) , j = 1, . . . , J,(8)

J∑
j=1

πjk = P2 ({ω2k}) , k = 1, . . . ,K,(9)

π ≥ 0.(10)

2.2.3. Relaxations of increasing concave stochastic order constraints.
We now review work from [14] that serves as a prelude to this dissertation. In [14],
a family of relaxations of the increasing concave order is presented based on semi-
infinite programming and nonlinear programming.

Choose a compact convex set W ⊂ RN with a nonempty interior. Define

‖u‖W = sup
x∈W

|u (x) |

and

‖∂u‖W = sup {‖s‖2 : s ∈ ∂u (x) , x ∈W} ,
for all u ∈ UN .

Define UN (W ) to be the set of all u ∈ UN restricted to the domain W such
that:

• u (w0) = 0 where w0 is the least upper bound of W .
• ‖∂u‖W ≤ 1 for all u ∈ UN (W ).

SinceW is a convex and compact set in RN , its least upper bound exists and is finite.
Under these two assumptions UN (W ) is uniformly bounded and equicontinuous.
It is also compact in C (W ).

For a compact set Ξ ⊂ RA with A < ∞, we define UΞ ⊂ UN (W ) to be a
family of increasing concave functions parametrized by ξ ∈ Ξ. The dependence of
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UΞ on W is left implicit from now on for cleaner notation. It is understood that
all functions in UΞ are drawn from UN (W ) and are restricted to the domain W .
All u ∈ UΞ are written as u (·; ξ) : RN → R to indicate the dependence on the
parameters.

The function-valued mapping u : Ξ→ UΞ maps the parameter space Ξ to the
function space UΞ. In particular, [u (ξ)] (x) = u (x; ξ). We assume the following
technical conditions are satisfied by UΞ and the associated mapping u.

• u is a bijection.
• u and u−1 are continuous.
• UΞ is equicontinuous and uniformly bounded.

The mapping u is a homeomorphism under these assumptions. Further, u (x; ξ) is
continuous in ξ for all x ∈W .

Consider the problem

max
z∈Z0

f (z)(SIP)

s.t. E [u (G (z))] ≥ E [u (Y)] , ∀u ∈ UΞ.(11)

The notation (SIP) stands for semi-infinite program, since problem (SIP) is equiv-
alent to:

max
z∈Z0

f (z)

s.t. E [u (G (z) ; ξ)] ≥ E [u (Y; ξ)] , ∀ξ ∈ Ξ,

using the definitions of UΞ and u. We define the feasible region, set of optimal
solutions, and optimal value of problem (SIP) as

Z (UΞ) , {z ∈ Z0 : E [u (G (z))] ≥ E [u (Y)] , ∀u ∈ UΞ} ,

S (UΞ) , argmax {f (z) : z ∈ Z (UΞ)} ,

ν (UΞ) , max {f (z) : z ∈ Z (UΞ)} ,
to emphasize the dependence on UΞ. The constraint (11) is an integral stochastic
order, but it is a relaxation of the increasing concave stochastic order since UΞ ⊂
UN (W ).

Optimality conditions for problem (SIP) follow from the usual optimality con-
ditions for convex optimization. We introduce the Lagrangian

L (z, u) = f (z) + E [u (G (z))− u (Y)] ,

where utility functions u ∈ cl coneUN (W ) act as Lagrange multipliers for the ≥icv
constraint. We use the following Slater condition for problem (SIP).

Assumption 2.2.11. There exists z̃ ∈ Z0 such that

E [u (G (z̃))] > E [u (Y)] , ∀u ∈ UΞ.

Assumption 2.2.11 depends on the choice of G (z), if G (z) �icv Y for all z ∈ Z0

then the Slater condition cannot be satisfied. However, even if G (z) ≥icv Y for all
z ∈ Z0, assumption 2.2.11 still depends on the choice of UΞ. If we want to include
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functions u ∈ UN (W ) with arbitrarily small ‖∂u‖W in UΞ, then we must also
include the zero function u = 0 by compactness. If UΞ contains the zero function,
then assumption 2.2.11 cannot be satisfied.

There are intuitive sufficient conditions for problem (SIP) to satisfy assumption
2.2.11. In [14], the existence of a family {UΞk

}∞k=0 is assumed such that UΞk
⊂

UΞk+1
for all k ≥ 0,

⋃∞
k=0 UΞk

= UN (W ), and problem (SIP) over UΞk
satisfies

the Slater condition for all k ≥ 0. There are actually many such sequences. For
example, we can construct such a sequence out of increasing polyhedral concave
functions. Increasing polyhedral concave functions on RN with L < ∞ faces look
like

fa,b (x) = min
l∈1,...,L

{〈al, x〉+ bl} ,

where al ∈ RN+ and bl ∈ R+. We restrict to ‖al‖2 ≤ 1 for all l = 1, . . . , L. To ensure
that the Slater condition holds, we can take a sequence εk ↓ 0 and L (k)→∞ and
define

UΞk
=

{
fa,b :

εk ≤ ‖al‖2 ≤ 1, l = 1, . . . , L (k) ,
|bl| ≤ 1, l = 1, . . . , L (k)

}
.

The resulting problems (SIP) over UΞk
can all satisfy the Slater condition because

UΞk
consists of only strictly increasing functions. Also, as εk → 0 and L (k)→∞,

it is known that UΞk
approximates UN (W ) arbitrarily closely.

The following two theorems are found in [14] and follow from semi-infinite
programming optimality conditions (see [4, Section 5.4]) and an application of
Fubini’s theorem.

Theorem 2.2.12. Suppose assumption 2.2.11 holds. If ẑ solves problem (SIP),
then there exists û ∈ cl coneUΞ such that

L (ẑ, û) = max {L (z, û) : z ∈ Z0} ,(12)
E [û (G (ẑ))− û (Y)] = 0,(13)

The dual functional for problem (SIP) is

d (u) , max {L (z, u) : z ∈ Z0}
and the corresponding dual to problem (SIP) is

(SIPD) min {d (u) : u ∈ cl coneUΞ} .
Strong duality holds between problem (SIP) and problem (SIPD).

Theorem 2.2.13. Suppose assumption 2.2.11 holds.
(a) If ẑ solves problem (SIP), then there is a solution to problem (SIPD) and

the optimal values are equal.
(b) If û is an optimal solution to problem (SIPD), then any ẑ satisfying the

optimality conditions (12)− (13) corresponding to û is optimal to problem (SIP).

We can consider the same development for finitely many constraint functions.
Let

{u1, . . . , uI}
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represent a finite set of functions ui ∈ UN (W ) for i = 1, . . . , I. We introduce the
problem:

max
z∈Z0

f (z)(NLP)

s.t. E [ui (G (z))] ≥ E [ui (Y)] , i = 1, . . . , I.(14)

The notation (NLP) stands for nonlinear program. We define the feasible region,
set of optimal solutions, and optimal value of problem (NLP) as

Z ({u1, . . . , uI}) , {z ∈ Z0 : (14)} ,

S ({u1, . . . , uI}) , argmax {f (z) : z ∈ Z ({u1, . . . , uI})} ,

ν ({u1, . . . , uI}) , max {f (z) : z ∈ Z ({u1, . . . , uI})} .
Optimality conditions and duality theory for problem (NLP) follow directly from
the nonlinear programming optimality conditions. The following theorem shows
that there is an instance of problem (NLP) with {u1, . . . , uI} ⊂ UΞ that gives an
optimal solution to problem (SIP) over UΞ.

Theorem 2.2.14. Suppose assumption 2.2.11 holds. If ẑ solves problem (SIP)
over UΞ , then there exists û ∈ cl coneUΞ of the form

û =

M∑
m=1

λmu (·; ξm)

for λm ≥ 0 and ξm ∈ Ξ for m = 1, . . . ,M , such that (12)− (13) hold. It follows
that ẑ ∈ S ({u1, . . . , uM}).



CHAPTER 3

Optimization with increasing concave stochastic
order constraints

3.1. Optimization problem

This chapter develops increasing concave stochastic order constrained programs
in detail. First, we present a perturbation of increasing concave stochastic order
constraints that lets us obtain optimality conditions and duality results. Second,
this chapter motivates the idea that the Lagrange multipliers of increasing concave
stochastic order constraints are increasing concave functions.

We will work with two distinct probability spaces (Ω1,F1, P1) and (Ω2,F2, P2),
one for the random-variable-valued mapping G (z) and the other for the benchmark
Y. There is no loss of generality in assuming two separate probability spaces be-
cause the relation X ≥icv Y only depends on the marginal distributions of X and Y.
Further, it is easier to describe our upcoming coupling and sample average approx-
imation schemes when the random-variable-valued mapping and the benchmark
exist on two separate probability spaces. We let

(Ω,F , P ) = (Ω1 × Ω2,F1 ×F2, P1 × P2)

be the probability space determined by the cross product of

(Ω1,F1, P1) and (Ω2,F2, P2) .

In particular, P is chosen so that the sigma-fields F1 and F2 are independent. This
distinction is important because later we will construct measures on
(Ω1 × Ω2,F1 ×F2) such that F1 and F2 are not independent.

We formally define the random-variable-valued mapping

G (z) : Z0 → LN1 (Ω1,F1, P1) .

This mapping can be written explicitly as [G (z)] (ω) : Z0×Ω1 → RN . Recall that
[G (z)] (ω) is continuous and concave in z ∈ Z0 for P−almost all ω ∈ Ω. We now
make some common technical assumptions on G (z) as described in [25, 16]. The
following assumption holds throughout Chapters 3, 4, and 5.

Assumption 3.1.1. (a) [G (z)] (ω) is Lipschitz continuous on Z0 for P1−almost all
ω ∈ Ω1. There exists Π ∈ L1

1 (Ω1,F1, P1) such that ‖ [G (z1)] (ω)− [G (z2)] (ω) ‖2 ≤
Π (ω) ‖z1 − z2‖2 for P1−almost all ω ∈ Ω1. Set π , E [Π].

(b) The MGF of Π, denoted MΠ (s), is finite for s in a neighborhood of zero.

We will use ≥icv to define a constraint on the random vector G (z). To complete
the ≥icv constraint, we introduce a benchmark random vector

Y = (Y1, . . . , YN ) ∈ LN1 (Ω2,F2, P2) .

14
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If supp
(
P2 ◦Y−1

)
is contained in W , then

E [u (Y)] = E [u (Y) 1 {Y ∈W}] = E
[
u (Y) 1

{
Y ∈ supp

(
P2 ◦Y−1

)}]
.

Thus, to characterize G (z) ≥icv Y we only need to pay attention to functions u de-
fined onW whenW contains both supp

(
P1 ◦ [G (z)]

−1
)
and supp

(
P2 ◦Y−1

)
. The

expression E [u (G (z))− u (Y)] is not altered by changing u outside of W . In line
with this reasoning, we assumeW contains supp

(
P2 ◦Y−1

)
and supp

(
P1 ◦ [G (z)]

−1
)

for all z ∈ Z0. For clarity, [G (z)]
−1 : RN → Ω is the inverse of the random

variable G (z) ∈ LN1 (Ω1,F1, P1), not the inverse of the mapping G (z) : Z0 →
LN1 (Ω1,F1, P1).

The main optimization problem in this dissertation is:

max
z∈Z0

f (z)(MP)

s.t. E [u (G (z))] ≥ E [u (Y)] , ∀u ∈ UN (W ) .(1)

The notation (MP) stands for main problem. Problem (MP) is a semi-infinite pro-
gramming problem, where the semi-infinite constraints are indexed by the compact
set UN (W ) (see [4, Section 5.4]). We denote the feasible region, set of optimal
solutions, and optimal value of problem (MP) as:

Z , {z ∈ Z0 : (1)} ,

S , argmax {f (z) : z ∈ Z} ,

ν , max {f (z) : z ∈ Z} .

Under our assumptions about supp
(
P1 ◦ [G (z)]

−1
)
and supp

(
P2 ◦Y−1

)
, if

E [u (G (z))] ≥ E [u (Y)] , ∀u ∈ UN (W ) ,

then

G (z) ≥icv Y.

3.1.1. Constraint perturbation. Problem (MP) does not satisfy the Slater
condition because u = 0 is included in UN (W ). In [14], the relaxed problem
(SIP) was designed to satisfy the Slater condition by construction. We take a
different approach in this dissertation and perturb the constraints. For notational
convenience define the function

g (z, u) , E [u (G (z))]− E [u (Y)] .

Introduce the perturbed problem:

max
z∈Z0

f (z)(ε−MP)

s.t. g (z, u) ≥ ε, ∀u ∈ UN (W ) ,(2)

and its feasible region, set of optimal solutions, and optimal value:
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Zε , {z ∈ Z0 : (2)} ,

Sε , argmax {f (z) : z ∈ Zε} ,

νε , max {f (z) : z ∈ Zε} .

Problem (ε−MP) is able to satisfy the Slater condition for ε < 0, cannot satisfy
the Slater condition for ε = 0, and is infeasible for ε > 0 because UN (W ) includes
the zero function.

Proposition 3.1.2. Problem (ε-MP) is convex for ε ≤ 0.

Proof. The objective f (z) is concave by assumption.
Suppose Zε is nonempty. The mapping [Gn (z)] (ω) is concave in z for P1−almost

all ω ∈ Ω1 for n = 1, . . . , N . Further, all u ∈ UN (W ) are component-wise increas-
ing. Thus

u ([G1 (z)] (ω) , . . . , [GN (z)] (ω))

is concave in z ∈ Z0 for P1−almost all ω ∈ Ω because it is the composition
of the increasing concave function u with the component-wise concave function
([G1 (z)] (ω) , . . . , [GN (z)] (ω)). The function

E [u (G (z))] =

ˆ
Ω

u ([G (z)] (ω))P1 (dω)

is concave in z as the integral of the concave functions u ([G (z)] (ω)) with respect to
P1. Each set Aεu = {z : E [u (G (z))] ≥ E [u (Y)] + ε} is convex, and the intersection
of the convex sets

{⋂
u∈UN (W )A

ε
u

}⋂
Z0 is convex. Problem (ε−MP) thus has a

convex feasible region and is a convex optimization problem. �

We define a similar perturbation of problem (SIP):

max
z∈Z0

f (z)(ε-SIP)

s.t. g (z, u) ≥ ε, ∀u ∈ UΞ.(3)

Denote the feasible region, set of optimal solutions, and optimal value of problem
(ε−SIP) as:

Zε (UΞ) , {z ∈ Z0 : (3)} ,

Sε (UΞ) , argmax {f (z) : z ∈ Zε (UΞ)} ,

νε (UΞ) , max {f (z) : z ∈ Zε (UΞ)} .

The perturbation of problem (NLP) is defined similarly:

max
z∈Z0

f (z)(ε-NLP)

s.t. g (z, ui) ≥ ε, i = 1, . . . , I,(4)

and its feasible region, set of optimal solutions, and optimal value are:
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Zε ({u1, . . . , uI}) , {z ∈ Z0 : (4)} ,

Sε ({u1, . . . , uI}) , argmax {f (z) : z ∈ Zε ({u1, . . . , uI})} ,

νε ({u1, . . . , uI}) , max {f (z) : z ∈ Zε ({u1, . . . , uI})} .

3.1.2. Analytical properties. Define the new random variable:

Φ ([G (z)] (ω) ,Y (ω)) , ‖ [G (z)] (ω) ‖2 + ‖Y (ω) ‖2.

The function Φ (·) is significant because it dominates the random variable u (G (z))−
u (Y) for all u ∈ UN (W ).

Assumption 3.1.3. For all z ∈ Z0, the MGF of Φ (G (z) ,Y), denoted

MΦ(G(z),Y) (s) ,

is finite in a neighborhood of zero.

Also define the function

φ (G (z) ,Y) , E [Φ ([G (z)] (ω) ,Y (ω))] .

Proposition 3.1.4. (a) For all u ∈ UN (W ),

|u ([G (z)] (ω))− u (Y (ω)) | ≤ Φ ([G (z)] (ω) ,Y (ω))

for P−almost all ω ∈ Ω.
(b) φ (·) is uniformly bounded on Z0.
(c) The MGF of u (G (z)) − u (Y) is finite in a neighborhood of zero for all

(z, u) ∈ Z0 × UN (W ).

Proof. (a) Recall the subdifferential mean value inequality [2, Theorem 2.1]
to see that

|u ([G (z)] (ω))− u (Y (ω)) | ≤ ‖∂u‖W ‖ [G (z)] (ω)−Y (ω) ‖2
for all u ∈ UN (W ), since all such u are subdifferentiable. Compute

sup
u∈UN (W )

|u ([G (z)] (ω))− u (Y (ω)) |

≤ sup
u∈UN (W )

‖∂u‖W ‖ [G (z)] (ω)−Y (ω) ‖2

≤

(
sup

u∈UN (W )

‖∂u (·) ‖W

)
(‖ [G (z)] (ω) ‖2 + ‖Y (ω) ‖2)

= Φ ([G (z)] (ω) ,Y) ,

using the assumption that

sup
u∈UN (W )

‖∂u (·) ‖W ≤ 1.

(b) Fix z0 ∈ Z0. Under assumption 3.1.1, for all z ∈ Z0 we have
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‖ [G (z)] (ω) ‖2 ≤ ‖ [G (z0)] (ω) ‖2 + Π (ω) ‖z − z0‖2
≤ ‖ [G (z0)] (ω) ‖2 + Π (ω) max

z,z0∈Z0

‖z − z0‖2

< ∞,

using the fact that

D (Z0) = max
z,z0∈Z0

‖z − z0‖2 <∞

by compactness of Z0. Then

Φ ([G (z)] (ω) ,Y (ω)) ≤ ‖ [G (z0)] (ω) ‖2 + Π (ω)D (Z0) + ‖Y (ω) ‖2
= Φ ([G (z0)] (ω) ,Y (ω)) + Π (ω)D (Z0) .

Set [G (z)] (ω1, ω2) = [G (z)] (ω1), Π (ω1, ω2) = Π (ω1), and Y (ω1, ω2) = Y (ω1)
so that G (z), Π, and Y are all defined on (Ω,F , P ). We have Φ (G (z) ,Y) ∈
L1

1 (Ω,F , P ) for all z ∈ Z0 since G (z) ∈ LN1 (Ω,F , P ) for all z ∈ Z0, Π ∈
L1

1 (Ω,F , P ), and Y ∈ LN1 (Ω,F , P ). Then

0 ≤ φ (G (z) ,Y)

≤ E [Φ ([G (z0)] ,Y)] + D (Z0)E [Π]

< ∞

for all z ∈ Z0.
(c) Compute

E
[
es(u(G(z))−u(Y))

]
≤ E

[
e|s(u(G(z))−u(Y))|

]
≤ E

[
e|s| |u(G(z))−u(Y)|

]
≤ E

[
e|s|Φ(G(z),Y)

]
≤ MΦ(G(z),Y) (|s|) .

The MGF MΦ(G(z),Y) (|s|) is finite in a neighborhood of zero by assumption. �

It follows that

max
z∈Z0

φ (z) <∞.

The function g (z, u) is also bounded.

Proposition 3.1.5. Suppose that assumption 3.1.1 holds. The function g (z, u) is
bounded over z ∈ Z0 for u ∈ UN (W ).

Proof. Observe |g (z, u) | ≤ φ (z) for all (z, u) ∈ Z0 × UN (W ). The previous
proposition shows that φ (z) is bounded. �

Now we address some continuity properties.
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Proposition 3.1.6. (a) The random variable u (G (z))−u (Y) is Lipschitz contin-
uous in u ∈ UN (W ) for all z ∈ Z0.

(b) Under assumption 3.1.1, u (G (z))− u (Y) is Lipschitz continuous in Z0 ×
UN (W ).

Proof. (a) Fix z ∈ Z0 and choose u1, u2 ∈ UN (W ). Then

|u1 ([G (z)] (ω))− u1 (Y (ω))− u2 ([G (z)] (ω)) + u2 (Y (ω)) |
≤ |u1 ([G (z)] (ω))− u2 ([G (z)] (ω)) |+ |u1 (Y (ω))− u2 (Y (ω)) |
≤ ‖ [G (z)] (ω) ‖2 ‖u1 − u2‖W + ‖Y (ω) ‖2 ‖u1 − u2‖W
≤ Φ ([G (z)] (ω) ,Y (ω)) ‖u1 − u2‖W .

Thus

‖u1 (G (z))− u1 (Y)− u2 (G (z)) + u2 (Y) ‖1
≤ E [Φ ([G (z)] (ω) ,Y (ω))] ‖u1 − u2‖W
= φ (z) ‖u1 − u2‖W

and φ (z) has already been shown to be uniformly bounded in z ∈ Z0.
(b) For z1, z2 ∈ Z0 and u1, u2 ∈ UN (W ) compute

|u1 ([G (z1)] (ω))− u2 ([G (z2)] (ω)) |
≤ |u1 ([G (z1)] (ω))− u2 ([G (z1)] (ω)) |+ |u2 ([G (z1)] (ω))− u2 ([G (z2)] (ω)) |
≤ ‖ [G (z1)] (ω) ‖2‖u1 − u2‖W + ‖∂u2‖WΠ (ω) ‖z1 − z2‖2
≤ ‖ [G (z1)] (ω) ‖2‖u1 − u2‖W + Π (ω) ‖z1 − z2‖2.

Combine with the previous part to obtain

|u1 ([G (z1)] (ω))− u1 (Y (ω)) + u2 ([G (z2)] (ω)) + u2 (Y (ω)) |
≤ Φ ([G (z1)] (ω) ,Y (ω)) ‖u1 − u2‖W + ‖∂u2‖WΠ (ω) ‖z1 − z2‖2
≤ Φ ([G (z1)] (ω) ,Y (ω)) ‖u1 − u2‖W + Π (ω) ‖z1 − z2‖2.

Thus

‖u1 (G (z1))− u1 (Y) + u2 (G (z2)) + u2 (Y) ‖1
≤ φ (z1) ‖u1 − u2‖W + π ‖z1 − z2‖2
≤ (φ (z1) + π) (‖u1 − u2‖W + ‖z1 − z2‖2) ,

and again φ (z) is uniformly bounded. �

Continuity of the function g (z, u) is established next.

Proposition 3.1.7. The function g (z, u) is Lipschitz continuous on Z0×UN (W ).

Proof. For any given (z1, u1) , (z2, u2) ∈ Z0 × UN (W ), we have
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|g (z1, u1)− g (z2, u2) | = |g (z1, u1)− g (z1, u2) + g (z1, u2)− g (z2, u2) |
≤ |g (z1, u1)− g (z1, u2) |+ |g (z1, u2)− g (z2, u2) |
= |E [u1 (G (z1))− u1 (Y)− u2 (G (z1)) + u2 (Y)] |

+|E [u2 (G (z1))− u2 (G (z2))] |.

By the earlier propositions,

|E [u1 (G (z1))− u1 (Y)− u2 (G (z1)) + u2 (Y)] |
≤ E [|u1 (G (z1))− u1 (Y)− u2 (G (z1)) + u2 (Y) |]
≤ E [Φ ([G (z1)] (ω) ,Y (ω)) ‖u1 − u2‖W ]

≤ max
z∈Z0

φ (z) ‖u1 − u2‖W ,

and

|E [u2 (G (z1))− u2 (G (z2))] |
≤ E [|u2 (G (z1))− u2 (G (z2)) |]
≤ E [‖∂u2‖w‖G (z1)−G (z2) ‖2]

≤ π ‖z1 − z2‖2.

In summary,

|g (z1, u1)− g (z2, u2) | ≤
(

max
z∈Z0

φ (z) + π

)
(‖u1 − u2‖W + ‖z1 − z2‖2) .

�

Introduce the functions

ψ (z) , inf
u∈UN (W )

{g (z; u)}

ψ (z; UΞ) , inf
u∈UΞ

{g (z; u)} .

In the following development, any finite subset {u1, . . . , uI} ⊂ UN (W ) can be used
in place of UΞ. Obviously ψ (z) and ψ (z; UΞ) are concave and increasing. Further,
ψ (z; UΞ) ≥ ψ (z) for z ∈ Z0 and

Zε ≡ {z ∈ Z0 : ψ (z) ≥ ε}
Zε (UΞ) ≡ {z ∈ Z0 : ψ (z; UΞ) ≥ ε} .

Next we establish boundedness and continuity properties of ψ (z) and ψ (z; UΞ).

Proposition 3.1.8. (a) ψ (z) is bounded on Z0.
(b) ψ (z) is Lipschitz continuous on Z0.
(c) ψ (z; UΞ) is bounded on Z0.
(d) ψ (z; UΞ) is Lipschitz continuous on Z0.
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Proof. (a) Compute:

|ψ (z) | ≤ sup
u∈UN (W )

|g (z, u) |

= sup
u∈UN (W )

|E [u (G (z))]− E [u (Y)] |

≤ φ (z) .

The proof for (c) is identical.
(b) First observe

|ψ (z1)− ψ (z2) | ≤ sup
u∈UN (W )

|g (z1, u)− g (z2, u) |.

To verify this statement, compute:

ψ (z2) = inf
u∈UN (W )

g (z2, u)

≤ inf
u∈UN (W )

{g (z1, u) + |g (z1, u)− g (z2, u) |}

≤ ψ (z1) + sup
u∈UN (W )

|g (z1, u)− g (z2, u) |.

By the same reasoning,

ψ (z1) = inf
u∈UN (W )

g (z1, u)

≤ inf
u∈UN (W )

{g (z2, u) + |g (z2, u)− g (z1, u) |}

≤ ψ (z2) + sup
u∈UN (W )

|g (z1, u)− g (z2, u) |.

Now compute:

|ψ (z1)− ψ (z2) | ≤ sup
u∈UN (W )

|g (z1, u)− g (z2, u) |

= sup
u∈UN (W )

|E [u (G (z1))− u (G (z2))] |

≤ E [‖G (z1)−G (z2) ‖2]

≤ E [Π (ω) ‖z1 − z2‖2]

= π ‖z1 − z2‖2.

The proof for (d) is identical. �

As the set UΞ is made larger and larger (in set containment), UΞ becomes
a progressively better approximation of UN (W ). In this subsection, we use the
notation UΞk

↑ UN (W ) to denote an increasing sequence {UΞk
}∞k=0 with UΞk

⊂
UΞk+1

for all k ≥ 0 and
⋃∞
k=0 UΞk

= UN (W ).

Proposition 3.1.9. For any UΞk
↑ UN (W ), ψ (z; UΞk

) converges to ψ (z) (from
above) uniformly on Z0.
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Proof. Certainly ψ (z; UΞk
)→ ψ (z) for any fixed z ∈ Z0 as k →∞. Since Z0

is compact and ψ (z; UΞ) and ψ (z) are continuous, this convergence is uniform. �

We reference an important fact that will be used to establish stability.

Proposition 3.1.10. [16, Proposition 3.1] Suppose Zε ≡ {z ∈ Z0 : ψ (z) ≥ ε} sat-
isfies the Slater condition. Then D (Zε, Zε−γ)→ 0 as γ ↓ 0.

We must assume that the Slater condition is satisfied in the following lemma.
If ε = 0, then the set {z ∈ Z0 : ψ (z) > 0} is empty.

Proposition 3.1.11. Suppose Zε satisfies the Slater condition (i.e. ε < 0).
(a) H (Zε (UΞk

) , Zε)→ 0 as UΞk
↑ UN (W ).

(b) D (Sε (UΞk
) , Sε)→ 0 as UΞk

↑ UN (W ).
(c) νε (UΞk

)→ νε as UΞk
↑ UN (W ).

Proof. (a) Since ψ (z; UΞ) converges to ψ (z) uniformly, it epi-converges and
hypo-converges to ψ (z) as well by [19, Proposition 7.15]. Then Zε (UΞk

) is upper
semiconvergent to Zε and D (Zε (UΞk

) , Zε) → 0 as k → ∞ by [26, Theorem 3.1].
Since Zε satisfies the Slater condition, we have Zε ⊆ cl intZε by the previous
proposition. Thus Zε (UΞk

) is lower semiconvergent to Zε and D (Zε, Zε (UΞk
))→ 0

as k →∞ by [26, Theorem 3.5].
(b) Apply [26, Theorem 4.1]. If Zε is empty, then Zε (UΞk

) must be empty for
all large k by part (a).

(c) Follows from part (b). �

3.2. Optimality conditions

3.2.1. Optimality conditions for problem (ε−MP). The space UN (W )
is a compact metric space in the topology induced by the supremum norm ‖ · ‖W
on C (W ). Thus, C (W ) is also a locally compact Hausdorff space. We define
C
(
UN (W )

)
to be the space of continuous functions on UN (W ), all such functions

necessarily have compact support because UN (W ) is compact.
To represent the constraints (2) as a single functional constraint in C

(
UN (W )

)
,

define the operator g : Z0 → C
(
UN (W )

)
via

[g (z)] (u) = g (z, u) .

We have already shown that g (z) is an element of C
(
UN (W )

)
by the Lipschitz

continuity of g (z, u) in (z, u) ∈ Z0 × UN (W ). Constraints (2) are then equivalent
to

g (z)− ε ∈ C+
(
UN (W )

)
,

where C+
(
UN (W )

)
is the set of non-negative continuous functions on UN (W ).

LetM
(
UN (W )

)
be the space of finite signed regular Borel measures on(

UN (W ) ,B
)
,

where B is the sigma-algebra generated by the open sets of C (W ). We denote a
measure inM

(
UN (W )

)
as Λ. Define the Lagrangian

L (z,Λ) = f (z) + 〈Λ, g (z)〉,
where
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〈Λ, g (z)〉 =

ˆ
UN (W )

[g (z)] (u) dΛ (u)

is the duality pairing between C
(
UN (W )

)
andM

(
UN (W )

)
.

The Slater condition for problem (ε−MP) is defined next.

Assumption 3.2.1. There exists z̃ ∈ Z0 such that

g (z̃, u) > ε, ∀u ∈ UN (W ) .

The dual to the cone C+
(
UN (W )

)
is

M+

(
UN (W )

)
,

{
Λ ∈M

(
UN (W )

)
: 〈Λ,f〉 ≥ 0, ∀f ∈ C+

(
UN (W )

)}
.

In the following theorem, for u ∈ UN (W ), δu is the Dirac delta function at u
on UN (W ).

Theorem 3.2.2. Suppose assumption 3.2.1 holds.
(a) If ẑ ∈ Z0 solves problem (ε −MP), then there exists Λ̂ ∈ M+

(
UN (W )

)
such that

L
(
ẑ, Λ̂

)
= max

{
L
(
z, Λ̂

)
: z ∈ Z0

}
,(5)

〈Λ̂, g (ẑ)〉 = ε Λ̂
(
UN (W )

)
.(6)

(b) If ẑ ∈ Z0 solves problem (ε − MP), then there exists Λ ∈ M+

(
UN (W )

)
satisfying (5)− (6) such that Λ =

∑M
m=1 λmδum for λm ≥ 0 and um ∈ UN (W ) for

all m = 1, . . . ,M .

Proof. (a) The operator g (·) is continuous. It is also concave: for z1, z2 ∈ Z0

and 0 ≤ α ≤ 1 we have

[g (α z1 + (1− α) z2)] (u)

= g (α z1 + (1− α) z2, u)

= E [u (G (α z1 + (1− α) z2))− u (Y)]

≥ E [u (αG (z1) + (1− α)G (z2))− u (Y)]

≥ E [αu (G (z1)) + (1− α)u (G (z2))− u (Y)]

= α [g (z1)] (u) + (1− α) [g (z2)] (u) ,

for all u ∈ UN (W ). Problem (ε−MP) can be written as

max
z∈Z0

f (z)

s.t. g (z)− ε ∈ C+
(
UN (W )

)
.

Under assumption 3.2.1, the above problem satisfies the Slater condition. The
Lagrangian for this problem is

Υ (z,Λ) = f (z) + 〈Λ, g (z)− ε〉.
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We can apply [4, Theorem 3.4] to obtain the existence of some Λ̂ ∈M+

(
UN (W )

)
such that

Υ
(
ẑ, Λ̂

)
= max

{
Υ
(
z, Λ̂

)
: z ∈ Z0

}
,

〈Λ̂, g (ẑ)− ε〉 = 0.

(b) Apply [4, Proposition 5.104]. �

Notice that the perturbation ε introduces the term ε Λ̂
(
UN (W )

)
into the com-

plementary slackness conditions. In fact, since Λ̂ ∈ M+

(
UN (W )

)
it is a non-

negative measure and Λ̂
(
UN (W )

)
= ‖Λ̂‖, where ‖Λ̂‖ is the total variation norm of

the measure Λ̂.
Given an optimal dual multiplier Λ̂, we ask if we can transform the expression

〈Λ̂, g (z)〉 using Fubini’s theorem to gain additional information.

Theorem 3.2.3. Define uΛ (·) =
´
UN (W )

u (·) dΛ (u) for Λ ∈M+

(
UN (W )

)
. Then

for X,Y ∈ LN∞ (Ω,F , P ) we have
ˆ
UN (W )

E [u (X)− u (Y)] dΛ (u) = E [uΛ (X)− uΛ (Y)] .

Proof. The function uΛ (·) =
´
UN (W )

u (·) dΛ (u) is increasing and concave
because each u (·) is increasing and concave, the measure Λ is non-negative, and
integration preserves monotonicity and concavity. Thus, uΛ is a well defined in-
creasing concave function.

Integration on Ω is with respect to the measure space (Ω,F , P ) and integra-
tion on UN (W ) is with respect to the measure space

(
UN (W ) ,B,Λ

)
. Product

integration is defined on the measure space(
Ω× UN (W ) ,F ×B, P × Λ

)
formed by the cross-product. First notice

|u (X (ω))− u (Y (ω)) | ≤ ‖∂u‖W ‖X (ω)−Y (ω) ‖2,
by [2, Theorem 2.1]. Further, ‖∂u‖W ≤ 1 for all u ∈ UN (W ) by assumption. Then

|
ˆ

Ω×UN (W )

[u (X (ω))− u (Y (ω))] d (P × Λ) |

≤
ˆ

Ω×UN (W )

‖X (ω)−Y (ω) ‖2d (P × Λ) .

By assumption X,Y ∈ LN∞ (Ω,F , P ), so both ‖X (ω) ‖2 and ‖Y (ω) ‖2 are bounded
by some C > 0 for P−almost all ω ∈ Ω. Thus

ˆ
Ω×UN (W )

‖X (ω)−Y (ω) ‖2 d (P × Λ) ≤ 2C

ˆ
Ω×UN (W )

d (P × Λ)

and ˆ
Ω×UN (W )

d (P × Λ) = P (Ω) Λ
(
UN (W )

)
<∞

since P (Ω) = 1 and Λ ∈M
(
UN (W )

)
is a finite measure by definition.
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It follows that the function u (X (ω))− u (Y (ω)) is integrable on(
Ω× UN (W ) ,F ×B, P × Λ

)
.

By assumption, (Ω,F , P ) and
(
UN (W ) ,B,Λ

)
are finite measure spaces. Fubini’s

theorem [13, Theorem 2.37] gives

ˆ
Ω×UN (W )

(u (X (ω))− u (Y (ω))) d (P × Λ)

=

ˆ
UN (W )

[ˆ
Ω

u (X (ω))− u (Y (ω))P (dω)

]
dΛ (u)

=

ˆ
Ω

[ˆ
UN (W )

u (X (ω))− u (Y (ω)) dΛ (u)

]
P (dω) .

Thus,

ˆ
UN (W )

E [u (X)− u (Y)] dΛ (u)

= E

[ˆ
UN (W )

u (X) dΛ (u)−
ˆ
UN (W )

u (Y) dΛ (u)

]
= E [uΛ (X)− uΛ (Y)] .

�

The preceding theorem shows that
ˆ
UN (W )

E [u (G (z))− u (Y)] dΛ (u) = E [uΛ (G (z))− uΛ (Y)] ,

for any z ∈ Z0 using the fact that G (z) ∈ LN∞ (Ω,F , P ) for any z ∈ Z0 and
Y ∈ LN∞ (Ω,F , P ).

In the next theorem, we show that all functions in cl convUN (W ) can be de-
scribed in terms of measures on

(
UN (W ) ,B

)
.

Theorem 3.2.4. The sets cl convUN (W ) and{ˆ
UN (W )

u (·) dΛ (u) : Λ ∈M+

(
UN (W )

)
, ‖Λ‖ = 1

}
are equal.

Proof. The set convUN (W ) is convex by definition. Any finite convex com-
bination of elements of UN (W ) is of the form

∑I
i=1 λiui (·) for where

∑I
i=1 λi = 1

and λ ≥ 0. Since W has nonempty interior, the relative interiors of the domains of
the functions ui (·) have a nonempty intersection. Then [20, Theorem 23.8] states
that

∂

[
I∑
i=1

λiui (·)

]
=

I∑
i=1

λi∂ ui (·) .

Thus
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‖
I∑
i=1

λiui (·) ‖W ≤
I∑
i=1

λi‖∂ ui (·) ‖W ≤ 1.

It follows that all u in convUN (W ) have uniformly bounded subdifferentials, so
convUN (W ) is equicontinuous. By construction UN (W ) is uniformly bounded, so
convUN (W ) is uniformly bounded as well. In summary, convUN (W ) is equicon-
tinuous and uniformly bounded (and thus point-wise bounded) on W . Then the
closure of convUN (W ), cl convUN (W ), is compact by Ascoli’s Theorem [21, The-
orem A5].

By Milman’s Theorem [21, Theorem 3.25], every extreme point of
cl convUN (W ) lies in UN (W ). Choquet’s Theorem [18, Chapter 3, Theorem (Cho-
quet)] then shows that every u ∈ cl convUN (W ) is of the form{ˆ

UN (W )

u (·) dΛ (u) : Λ ∈M+

(
UN (W )

)
, ‖Λ‖ = 1

}
.

We are able to apply to apply Choquet’s Theorem because cl convUN (W ) ⊂ C (W ),
and C (W ) is a locally convex topological vector space. In particular, for δ > 0 any
neighborhood

Bδ (0) = {f ∈ C (W ) : ‖f‖ < δ}
is a convex set and the set of neighborhoods of this form is a convex local base at
zero. �

We can scale the previous theorem.

Corollary 3.2.5. The sets cl coneUN (W ) and{ˆ
UN (W )

u (·) dΛ (u) : Λ ∈M+

(
UN (W )

)}
are equal.

Proof. By definition

coneUN (W ) =
⋃
α≥0

{
α convUN (W )

}
and

cl cone
(
UN (W )

)
=
⋃
α≥0

{
α cl conv

(
UN (W )

)}
.

For any α ≥ 0,

α

{ˆ
UN (W )

u (·) dΛ (u) : Λ ∈M+

(
UN (W )

)
, ‖Λ‖ = 1

}

=

{ˆ
UN (W )

u (·) d (αΛ) (u) : Λ ∈M+

(
UN (W )

)
, ‖Λ‖ = 1

}

=

{ˆ
UN (W )

u (·) dΛ (u) : Λ ∈M+

(
UN (W )

)
, ‖Λ‖ = α

}
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where the first inequality uses linearity of the integral

α

ˆ
UN (W )

u (·) dΛ (u) =

ˆ
UN (W )

u (·) d (αΛ) (u) .

By definition of the total variation norm, ‖αΛ‖ = α ‖Λ‖. We use the previous
theorem to show

cl coneUN (W )

=
⋃
α≥0

α
{
cl convUN (W )

}
=

⋃
α≥0

{
α

{ˆ
UN (W )

u (·) dΛ (u) : Λ ∈M+

(
UN (W )

)
, ‖Λ‖ = 1

}}

=
⋃
α≥0

{ˆ
UN (W )

u (·) dΛ (u) : Λ ∈M+

(
UN (W )

)
, ‖Λ‖ = α

}

=

{ˆ
UN (W )

u (·) dΛ (u) : Λ ∈M+

(
UN (W )

)}
.

�

In summary, the vector-valued integral
´
UN (W )

u (·) dΛ (u) lies in cl coneUN (W )

for any Λ ∈M+

(
UN (W )

)
.

3.2.2. Optimality conditions for problem (ε−SIP). For this subsection
the operator g (·) will be understood as g : Z0 → C (Ξ),

[g (z)] (ξ) = g (z, u (·; ξ)) .
For Λ ∈M (Ξ), the Lagrangian for problem (ε− SIP) is

L (z,Λ) = f (z) +

ˆ
Ξ

[g (z)] (u (·; ξ)) dΛ (ξ) .

The Slater condition for problem (ε− SIP) is defined next.

Assumption 3.2.6. There exists z̃ ∈ Z0 such that

g (z̃, u) > ε, ∀u ∈ UΞ.

For ξ ∈ Ξ, δξ indicates the Dirac delta function at ξ on Ξ.

Theorem 3.2.7. Suppose assumption 3.2.6 holds.
(a) If ẑ is optimal for problem (ε−SIP) then there exists Λ̂ ∈M+ (Ξ) such that

L
(
ẑ, Λ̂

)
= max

{
L
(
z, Λ̂

)
: z ∈ Z0

}
,(7)

〈Λ̂, g (ẑ)〉 = ε Λ̂ (Ξ) .(8)

(b) There exists Λ ∈ M+ (Ξ) satisfying (7) − (8) such that Λ =
∑M
m=1 λmδξm

for λm ≥ 0 and ξm ∈ Ξ for all m = 1, . . . ,M .
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Given an optimal dual multiplier Λ̂, we can again transform the expression
〈Λ, g (z)〉 using Fubini’s theorem. The next three results are in line with the previ-
ous subsection and have already been established in [14].

Corollary 3.2.8. Define uΛ (·) =
´

Ξ
u (·; ξ) dΛ (ξ). Then for X,Y ∈ LN∞ (Ω,F , P ),

ˆ
Ξ

E [u (X; ξ)− u (Y; ξ)] dΛ (ξ) = E [uΛ (X)− uΛ (Y)] .

Next we characterize cl convUΞ.

Corollary 3.2.9. The sets cl convUΞ and{ˆ
Ξ

u (·; ξ) dΛ (u) : Λ ∈M+ (Ξ) , ‖Λ‖ = 1

}
are equal.

We can scale the previous theorem.

Corollary 3.2.10. The sets cl coneUΞ and{ˆ
Ξ

u (·; ξ) dΛ (ξ) : Λ ∈M+ (Ξ)

}
are equal.

3.2.3. Optimality conditions for problem (ε−NLP). In this subsection
the operator g (·) will be understood as a vector-valued mapping g : Z0 → RI ,

g (z) =

 E [u1 (G (z))− u1 (Y)]
...

E [uI (G (z))− uI (Y)]

 .

For λ ∈ RI , define the Lagrangian for problem (ε−NLP) to be

L (z, λ) = f (z) + 〈λ, g (z)〉,
where

〈λ, g (z)〉 =

I∑
i=1

λiE [ui (G (z))− ui (Y)]

is the usual inner product on RI .

Assumption 3.2.11. There exists z̃ ∈ Z0 such that

g (z̃, ui) > ε, ∀i = 1, . . . , I.

The next theorem follows from the usual nonlinear programming optimality
conditions.

Theorem 3.2.12. Suppose assumption 3.2.11 holds. If ẑ is optimal for problem
(ε−NLP), then there exists λ̂ ∈ RI such that
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L
(
ẑ, λ̂
)

= max
{
L
(
z, λ̂
)

: z ∈ Z0

}
,(9)

〈λ̂, g (ẑ)〉 = ε

I∑
i=1

λi.(10)

Since we are only dealing with finite sums in this subsection, we immediately
obtain the equality

I∑
i=1

λig (z, ui) = E [uλ (G (z))− uλ (Y)] ,

for uλ (·) =
∑I
i=1 λiui (·).

3.3. Duality

3.3.1. Duality for problem (ε−MP). The dual functional for problem
(ε−MP) is

d (Λ) = max {L (z,Λ) : z ∈ Z0} .
The corresponding dual problem is

(ε−MPD) min
{
d (Λ)− εΛ

(
UN (W )

)
: Λ ∈M+

(
UN (W )

)}
.

By the optimality conditions and weak duality, strong duality holds between prob-
lem (ε−MP) and problem (ε−MPD).

Theorem 3.3.1. Suppose assumption 3.2.1 holds.
(a) If problem (ε−MP) has an optimal solution, then problem (ε−MPD) has

an optimal solution and the optimal values are equal.
(b) If problem (ε−MPD) has an optimal solution Λ̂ then any ẑ satisfying the

optimality conditions (5)− (6) with respect to Λ̂ is optimal to problem (ε−MP).
(c) Problem (ε−MPD) has an optimal solution with support on a finite set

{u1, . . . , uM} ⊂ UN (W ).

Proof. (a) Clearly,

f (z) ≤ L (z,Λ)− εΛ
(
UN (W )

)
for any Λ ∈M+

(
UN (W )

)
and any z ∈ Z0 satisfying (2), and thus

f (z) ≤ d (Λ)− εΛ
(
UN (W )

)
.

For ẑ and the corresponding Λ̂ satisfying the optimality conditions (5) − (6) we
have

f (ẑ) = d
(

Λ̂
)
− ε Λ̂

(
UN (W )

)
so Λ̂ is optimal for problem (ε−MPD).

(b) By weak duality, if Λ̂ is an optimal solution of problem (ε−MPD) then

f (z) ≤ d
(

Λ̂
)
− ε Λ̂

(
UN (W )

)
.
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However, if ẑ satisfies the optimality conditions (5)− (6) with respect to Λ̂, then

f (ẑ) = d
(

Λ̂
)
− ε Λ̂

(
UN (W )

)
by complementary slackness and ẑ is necessarily an optimal solution.

(c) This statement follows from the existence of an optimal multiplier Λ =∑M
m=1 λmδum

from the optimality conditions. �

Now define the alternative Lagrangian

L (z, u) = f (z) + E [u (G (z))− u (Y)] ,

and the alternative dual functional

d (u) = max {L (z, u) : z ∈ Z0} .

As in [8, 14], problem (ε−MPD) can be transformed into an optimization problem
over the domain cl coneUN (W ). This transformation is of interest to us because the
≥icv constraint is defined in terms of UN (W ). We relate measures inM+

(
UN (W )

)
with functions in cl coneUN (W ) via the functional equality:

uΛ (·) =

ˆ
UN (W )

u (·) dΛ (u) .

For fixed u ∈ cl coneUN (W ), we define

M (u) =

{
Λ ∈M+

(
UN (W )

)
: u (·) =

ˆ
UN (W )

u (·) dΛ (u)

}
to be the set of all measures inM+

(
UN (W )

)
that induce the function u.

Lemma 3.3.2. (a) M (u) is convex for all u ∈ cl coneUN (W ).
(b) αM (u1) + (1− α)M (u2) ⊂M (αu1 + (1− α)u2) for 0 ≤ α ≤ 1.

Proof. (a) For Λ1,Λ2 ∈M (u) and 0 ≤ α ≤ 1, we have

u (·) =

ˆ
UN (W )

u (·) dΛ1 (u)

and

u (·) =

ˆ
UN (W )

u (·) dΛ2 (u) ,

and thus

u (·) =

ˆ
UN (W )

u (·) d [αΛ1 + (1− α) Λ2] (u) .

By the choice of 0 ≤ α ≤ 1, αΛ1 + (1− α) Λ2 ∈M+

(
UN (W )

)
.

(b) Choose u1, u2 ∈ cl coneUN (W ) and 0 ≤ α ≤ 1. Then for Λ1 ∈M (u1) and
Λ2 ∈M (u2), αΛ1 + (1− α) Λ2 ∈M (αu1 + (1− α)u2) since
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ˆ
UN (W )

u (·) d [αΛ1 + (1− α) Λ2] (u)

= α

ˆ
UN (W )

u (·) dΛ1 (u) + (1− α)

ˆ
UN (W )

u (·) dΛ2 (u)

by linearity of the integral. Thus

αM (u1) + (1− α)M (u2) ⊂M (αu1 + (1− α)u2) .

�

Define the new operator

PX (u) = arg inf {‖Λ‖ : Λ ∈M (u)} .
We use the notation PX (u) because this operator is analogous to the projection of
an element in cl coneUN (W ) ontoM+

(
UN (W )

)
.

Lemma 3.3.3. The infimum is attained in PX (u).

Proof. For any ũ ∈ cl coneUN (W ) with 0 ≤ ‖∂ũ‖W ≤ 1, we have ũ ∈
cl convUN (W ). For ũ ∈ cl coneUN (W ) with 1 < ‖∂ũ‖W , then

ũ

‖∂ũ‖W
∈ cl convUN (W )

since

‖∂
[

ũ

‖∂ũ‖W

]
‖W = 1.

Thus, for the measure

‖∂ũ‖W δũ/‖∂ũ‖W
we have

ũ (·) =

ˆ
UN (W )

u (·) d
[
‖∂ũ‖W δũ/‖∂ũ‖W

]
(u) .

It follows that
‖∂ũ‖W δũ/‖∂ũ‖W ∈ PX (ũ) .

If 0 < λ < ‖∂ũ‖W , then ũ/λ /∈ UN (W ) since

‖∂ [ũ/λ] ‖W = ‖∂ũ‖W /λ > 1.

If ‖∂ũ‖W < λ, then ‖PX (ũ) ‖ < λ since ũ/λ ∈ UN (W ) and ũ/‖∂ũ‖W ≥ u/λ on
W . �

The next theorem presents two equivalent forms for problem (ε−MPD).

Theorem 3.3.4. Problem (ε−MPD) has two equivalent forms:

min
{
d (Λ)− εΛ

(
UN (W )

)
: M+

(
UN (W )

)}
,

and

min
{
d (u)− ε ‖PX (u) ‖ : u ∈ cl coneUN (W )

}
.
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Proof. By the equivalence uΛ (·) =
´
UN (W )

u (·) dΛ (u), it follows that d (uΛ) =

d (Λ).
The functional ‖PX (u) ‖ is convex in u. For u1, u2 ∈ cl coneUN (W ) and

0 ≤ α ≤ 1, αu1 + (1− α)u2 ∈ cl coneUN (W ) and

‖PX (αu1 + (1− α)u2) ‖ ≤ ‖Λ‖
for all Λ ∈ M (αu1 + (1− α)u2). For any representation Λ1,Λ2 ∈ M+

(
UN (W )

)
with Λ = αΛ1 + (1− α) Λ2, we have

‖Λ‖ = ‖αΛ1 + (1− α) Λ2‖
≤ α ‖Λ1‖+ (1− α) ‖Λ2‖,

by the triangle inequality.
In particular, restrict to Λ1 ∈ M (u1) and Λ2 ∈ M (u2). Since αM (u1) +

(1− α)M (u2) ⊂M (αu1 + (1− α)u2),

‖Λ‖ ≤ α ‖Λ1‖+ (1− α) ‖Λ2‖
for all Λ1 ∈ M (u1) and Λ2 ∈ M (u2). Take the minimum over Λ1 ∈ M (u1) and
Λ2 ∈M (u2) to conclude

‖PX (αu1 + (1− α)u2) ‖
≤ α ‖PX (u1) ‖+ (1− α) ‖PX (u2) ‖.

Finally,

‖PX (u) ‖ = Λ
(
UN (W )

)
when PX (u) = Λ. �

Using the preceding result, we can recast the optimality conditions for problem
(ε−MP) in terms of u.

Theorem 3.3.5. Suppose assumption 3.2.1 holds. If ẑ ∈ Z0 solves problem (ε −
MP), then there exists û ∈ cl coneUN (W ) such that

L (ẑ, û) = max {L (z, û) : z ∈ Z0} ,
E [û (G (ẑ))− û (Y)] = ε ‖PX (û) ‖.

3.3.2. Duality for problem (ε−SIP). Define the dual functional

d (Λ) = max {L (z,Λ) : z ∈ Z0}
for problem (ε−SIP). The corresponding dual problem is

(ε−SIPD) min {d (Λ)− εΛ (Ξ) : Λ ∈M+ (Ξ)} .

By the optimality conditions and weak duality, strong duality holds between prob-
lem (ε−SIP) and problem (ε− SIPD).
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Theorem 3.3.6. Suppose assumption 3.2.6 holds.
(a) If problem (ε−SIP) has an optimal solution, then problem (ε− SIPD) has

an optimal solution and the optimal values are equal.
(b) If problem (ε− SIPD) has an optimal solution Λ̂ then any ẑ satisfying the

optimality conditions (7)− (8) with respect to Λ̂ is an optimal solution for problem
(ε−SIP).

(c) Problem (ε− SIPD) has an optimal solution with support on a finite set
{ξ1, . . . , ξM} ⊂ Ξ.

Using the same argument as in the previous section, we can identify utility
functions in cl coneUΞ and measures inM+ (Ξ) via the functional equality

uΛ (·) =

ˆ
Ξ

u (·; ξ) dΛ (ξ) .

For fixed u ∈ cl coneUΞ, we define

M (u; cl convUΞ)

=

{
Λ ∈M+ (Ξ) : u (·) =

ˆ
Ξ

u (·; ξ) dΛ (ξ)

}
to be the set of all measures that induce the function u. Define

PX (u; cl convUΞ)

= argmin {‖Λ‖ : Λ ∈M (u; cl convUΞ)}
to be the element of M (u) with minimum norm.

Theorem 3.3.7. Problem (ε−SIPD) has two equivalent forms:

min {d (Λ)− εΛ (Ξ) : Λ ∈M+ (Ξ)} ,
and

min {d (u)− ε ‖PX (u; cl convUΞ) ‖ : u ∈ cl coneUΞ} .

Next we recast the optimality conditions for problem (ε−SIP).

Theorem 3.3.8. Suppose assumption 3.2.1 holds. If ẑ ∈ Z0 solves problem (ε −
SIP), then there exists û ∈ cl coneUΞ such that

L (ẑ, û) = max {L (z, û) : z ∈ Z0} ,
E [û (G (ẑ))− û (Y)] = ε ‖PX (û; cl convUΞ) ‖.

3.3.3. Duality for problem (ε−NLP). The dual functional for problem
(ε−NLP) is defined as

d (λ) = max {L (z, λ) : z ∈ Z0}
and the corresponding dual problem is

(ε−NLPD) min

{
d (λ)− ε

I∑
i=1

λi : λ ≥ 0

}
.
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By the optimality conditions and weak duality, strong duality holds between prob-
lem (ε−NLP) and problem (ε−NLPD).

Theorem 3.3.9. Suppose assumption 3.2.11 holds.
(a) If problem (ε−NLP) has an optimal solution, then problem (ε−NLPD) has

an optimal solution and the optimal values are equal.
(b) If problem (ε−NLPD) has an optimal solution λ̂ then any ẑ satisfying the

optimality conditions (9)− (10) with respect to λ̂ is optimal to problem (ε−NLP).

We will now transform problem (ε−NLPD) so that its domain is

cone {u1, . . . , uI} .

We will use the equivalence d (λ) = d (uλ) for uλ (·) =
∑I
i=1 λiui (·). In this

subsection, we can suppose that {u1, . . . , uI} is a linearly independent set without
loss of generality. For any u ∈ cone {u1, . . . , uI}, there is a unique λ such that
u (·) =

∑I
i=1 λiui (·).

Let

PX (u; conv {u1, . . . , uI}) =

{
λ ∈ RI+ : u (·) =

I∑
i=1

λiui (·)

}
.

The set PX (u; conv {u1, . . . , uI}) is a singleton under the linear independence as-
sumption.

Theorem 3.3.10. Problem (ε−NLPD) has two equivalent forms:

min

{
d (λ)− ε

I∑
i=1

λi : λ ≥ 0

}
,

and

min {d (u)− ε ‖PX (u; conv {u1, . . . , uI}) ‖1 : λ ≥ 0} .

Next we recast the optimality conditions.

Theorem 3.3.11. Suppose assumption 3.2.1 holds. If ẑ ∈ Z0 solves problem (ε−
NLP), then there exists û ∈ cone {u1, . . . , uI} such that

L (ẑ, û) = max {L (z, û) : z ∈ Z0} ,
E [û (G (ẑ))− û (Y)] = ε ‖PX (û; conv {u1, . . . , uI}) ‖1.

3.4. Finite probability spaces

On finite probability spaces, theorem 2.2.9 furnishes another form of problem
(MP) as discussed in [1]. Suppose Ω1 = {ω11, . . . , ω1J} and Ω2 = {ω21, . . . , ω2K}
are both finite sample spaces and the collection Fi makes all scenarios on Ωi mea-
surable for i = 1, 2. We define sets J = {1, . . . , J} and K = {1, . . . ,K} to index
the samples. Our coupled problem is:
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max
z∈Z0

f (z)(CP)

s.t. [G (z)] (ω1j) ≥
∑K
k=1 πjkY (ω2k)

P1 ({ω1j})
, ∀j ∈ J ,(11)

K∑
k=1

πjk = P1 ({ω1j}) , ∀j ∈ J ,(12)

J∑
j=1

πjk = P2 ({ω2k}) , ∀k ∈ K.(13)

Problem (CP) is a standard convex programming problem with finitely many deci-
sion variables and finitely many constraints. Its perturbation is

max
z∈Z0

f (z)(ε−CP)

s.t. [G (z)] (ω1j) ∀j ∈ J ,(14)

≥
∑K
k=1 πjk (Y (ω2k) + ε 1)

P1 ({ω1j})
,

K∑
k=1

πjk = P1 ({ω1j}) , ∀j ∈ J ,(15)

J∑
j=1

πjk = P2 ({ω2k}) , ∀k ∈ K.(16)

The inequality

[G (z)] (ω1j) ≥
∑K
k=1 πjk (Y (ω2k) + ε 1)

P1 ({ω1j})
is equivalent to

[G (z)] (ω1j) ≥
∑K
k=1 πjk (Y (ω2k))

P1 ({ω1j})
+ ε 1

using the fact that
∑K
k=1 πjk = P1 ({ω1j}). The constraints (14) are then equivalent

to

[G (z)] (ω1j) ≥
∑K
k=1 πjk Y (ω2k)

P1 ({ω1j})
+ ε 1, ∀j ∈ J .

The following proposition describes the relationship between problem (ε−MP)
and problem (ε− CP).

Proposition 3.4.1. For ε < 0, problem (
√
N ε−MP) is a relaxation of problem

(ε−CP) on Ω1 = {ω11, . . . , ω1J} and Ω2 = {ω21, . . . , ω2K}.

Proof. Problem (ε− CP) is equivalent to
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max
z∈Z0

f (z)

s.t.
J∑
j=1

P1 ({ω1j})u ([G (z)] (ω1j)) ∀u ∈ UN (W ) ,

≥
K∑
k=1

P2 ({ω2k})u (Y (ω2k) + ε 1) ,

by construction. In this setting, problem (ε−MP) is

max
z∈Z0

f (z)

s.t.
J∑
j=1

P1 ({ω1j})u ([G (z)] (ω1j)) ∀u ∈ UN (W ) ,

≥
K∑
k=1

P2 ({ω2k})u (Y (ω2k)) + ε.

For any u ∈ UN (W ) we have

|E [u (Y + ε 1)]− E [u (Y)] | ≤ ‖ε 1‖2 =
√
N ε,

since ‖∂u‖W ≤ 1. Rearrange to obtain

E [u (Y + ε 1)] ≥ E [u (Y)] +
√
N ε.

For any z ∈ Z0 such that (14)− (16) we have

J∑
j=1

P1 ({ω1j})u ([G (z)] (ω1j)) ∀u ∈ UN (W ) ,

≥
K∑
k=1

P2 ({ω2k})u (Y (ω2k) + ε 1) ,

and thus

J∑
j=1

P1 ({ω1j})u ([G (z)] (ω1j)) ∀u ∈ UN (W ) ,

≥
K∑
k=1

P2 ({ω2k})u (Y (ω2k)) +
√
N ε.

�
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3.4.1. Optimality conditions for problem (ε−CP). We now derive opti-
mality conditions for problem (ε−CP). Introduce multipliers {λj}j∈J ⊂ R

N cor-
responding to the constraints (14). The partial Lagrangian for problem (ε−CP)
is

L (z, π, λ) = f (z) +

J∑
j=1

〈λj , [G (z)] (ω1j)−
∑K
k=1 πjkY (ω2k)

P1 ({ω1j})
− ε 1〉.

Since problem (ε−CP) is a standard convex programming problem with finitely
many constraints, we can appeal to the usual Slater condition.

Assumption 3.4.2. There exists z̃ ∈ Z0 and π̃ ≥ 0 such that

[G (z̃)] (ω1j) >

∑K
k=1 π̃jkY (ω2k)

P1 ({ω1j})
+ ε 1, ∀j ∈ J ,

K∑
k=1

π̃jk = P1 ({ω1j}) , ∀j ∈ J ,

J∑
j=1

π̃jk = P2 ({ω2k}) , ∀k ∈ K.

The usual optimality conditions for nonlinear programming follow.

Theorem 3.4.3. Suppose assumption 3.4.2 holds. If (ẑ, π̂) solves problem (ε−CP),
then there exists λ̂ ∈ RJ N+ such that

L
(
ẑ, π̂, λ̂

)
=(17)

max

L(z, π, λ̂) :

∑K
k=1 πjk = P1 ({ω1j}) , ∀j ∈ J ,∑J
j=1 πjk = P2 ({ω2k}) , ∀k ∈ K,
z ∈ Z0, π ≥ 0

 ,

J∑
j=1

〈λ̂j , [G (ẑ)] (ω1j)−
∑K
k=1 π̂jkY (ω2k)

P1 ({ω1j})
〉 = ε

J∑
j=1

〈1, λ̂j〉,(18)

λ̂ ≥ 0.(19)

3.4.2. Duality and decomposition for problem (ε−CP). The dual func-
tional for problem (ε−CP) is

d (λ) = max

L (z, π, λ) :

∑K
k=1 πjk = P1 ({ω1j}) , ∀j ∈ J ,∑J
j=1 πjk = P2 ({ω2k}) , ∀k ∈ K,
z ∈ Z0, π ≥ 0

 .

The dual to problem (ε−CP) is

(ε−CPD) min

d (λ)− ε
J∑
j=1

〈1, λj〉 : λ ≥ 0

 .
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We can show that strong duality holds between these two problems.

Theorem 3.4.4. Suppose assumption 3.4.2 holds.
(a) If problem (ε−CP) has an optimal solution, then problem (ε−CPD) has an

optimal solution and the optimal values are equal.
(b) If problem (ε−CPD) has an optimal solution λ̂, then any (ẑ, π̂) that satisfies

(17)− (19) corresponding to λ̂ is optimal to problem (ε−CP).

For a candidate dual solution λ ≥ 0, we solve d (λ) to obtain a candidate
primal solution (ẑ (λ) , π̂ (λ)). Next we use (ẑ (λ) , π̂ (λ)) to compute a subgradient
of d (λ). We can update λ by moving in the direction of this subgradient. The
following result holds by construction of the Lagrangian L (z, π, λ).

Proposition 3.4.5. For λ̃ ≥ 0,[G(ẑ (λ̃))] (ω1j)−

∑K
k=1 π̂jk

(
λ̃
)
Y (ω2k)

P1 ({ω1j})


j∈J

∈ RJ N

is a subgradient of d (λ) at λ = λ̃.

The dual functional d (λ) has decomposable structure by inspection.

Proposition 3.4.6. The dual functional d (λ) decomposes into

max

f (z) +

J∑
j=1

〈λj , [G (z)] (ωj)〉 : z ∈ Z0


and

max

−
J∑
j=1

K∑
k=1

πjk〈λj ,Y (ω2k)〉
P1 (ω1j)

:

∑K
k=1 πjk = P1 ({ω1j}) , ∀j ∈ J ,∑J
j=1 πjk = P2 ({ω2k}) , ∀k ∈ K,
z ∈ Z0, π ≥ 0

 .

The first layer of d (λ) is a standard convex optimization problem. The second
is a linear program.



CHAPTER 4

Sample average approximation of a class of
multivariate integral stochastic order constrained

programs

4.1. Sample average approximation

In this chapter we study sample average approximation for problem (ε−MP).
The structure of this chapter is based on the development in [16]. There are two
important extensions of [16] in this chapter. First, we explore SAA for prob-
lem (ε−MP) and problem (ε−SIP), both of which generalize the problem class in
[16]. Second, we sample for G (z) and Y separately, whereas it is assumed in [16]
that samples are taken from the jointly distributed random vector (G (z) , Y ). In
practice, the benchmark usually does not need to be sampled at all because it is
designed by the decision maker. Further, collecting unnecessary samples for either
the random-variable-valued mapping or the benchmark will lead to a significant
computational burden as this chapter shows.

This chapter establishes the significant fact that sample average approximation
is effective for problem (ε−MP) and problem (ε−SIP). If it were not, then there
would be no hope of solving this class of problems in practice.

4.1.1. Sample average approximation for problem (ε−MP). We sample
from (Ω1,F1, P1) for the random-variable-valued mapping G (z) and we sample from
(Ω2,F2, P2) for the benchmark Y. In some applications, the benchmark does not
need to be sampled at all. In that case K is fixed.

We add structure to (Ω1,F1) and (Ω2, F2) to continue.

Definition 4.1.1. [12, Section 1.4] A measurable space (Ω,F) is nice if there is
an injective map φ : (Ω,F) → (R,B), where B is the Borel σ−algebra on R, such
that both φ and φ−1 are measurable.

A nice measurable space (Ω,F) can be identified with R in this manner; that
is, a sample point ω ∈ Ω uniquely corresponds to a point in R. We will assume
(Ω1,F1) and (Ω2,F2) are nice for the rest of this chapter.

Define

RN = {ω = (ω1, ω2, . . .) : ωi ∈ R} = {functions ω : N→ R} ,
where N = {1, 2, . . .} is the set of natural numbers. We let BN be the σ−field on
RN generated by finite dimensional sets of the form {ω : ωi ∈ Bi, 1 ≤ i ≤ I} for
Bi ∈ B. The Kolmogorov extension theorem (see [12, Chapter 1, Theorem 4.11])
establishes probability measures P1 and P2 on

(
RN,BN

)
such that

P1 (ω : ωi ∈ (ai, bi], 1 ≤ i ≤ I) = ×Ii=1P1 (ω ∈ (ai, bi])

39
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and

P2 (ω : ωi ∈ (ai, bi], 1 ≤ i ≤ I) = ×Ii=1P2 (ω ∈ (ai, bi]) ,

for all rectangles ×Ii=1(ai, bi] with ai < bi. We use
(
RN,BN,P1

)
to denote the space

of random samples from (Ω1,F1, P1) and we use
(
RN,BN,P2

)
to denote the space

of random samples from (Ω2,F2, P2), For convenience, we also introduce(
RN,BN,P

)
=
(
RN,BN,P1

)
×
(
RN,BN,P2

)
to denote the joint probability space of random samples. The choice of P = P1×P2

indicates that samples for the random-variable-valued mapping and samples for the
benchmark are independent.

Let δω be the point-mass at ω ∈ Ω, let

P̂1J (ω) =
1

J

J∑
j=1

δω1j

be the empirical distribution from the first J sample points from
(
RN,BN,P1

)
, and

let

P̂2K (ω) =
1

K

K∑
k=1

δω2k

be the empirical distribution from the first K sample points from
(
RN,BN,P2

)
.

Equal probability is assigned to all points in P̂1J (ω) and P̂2K (ω). By the Glivenko-
Cantelli theorem, P̂1J (ω) → P1 in the topology of weak convergence. That is, for
P1−almost all ω ∈ RN we have

ˆ
Ω

f (ω) P̂1J (dω)→
ˆ

Ω

f (ω)P1 (dω)

as J → ∞ for all bounded functions f ∈ C (R). In the above integration, we are
technically abusing notation by writing P̂1J (dω) because P̂1J is a random variable
that depends on ω ∈ RN . When we write P̂1J (dω), it will be understood that we
are integrating over Ω with respect to the measure P̂1J and the dependence of P̂1J

on ω ∈ RN is suppressed.
The estimate of g (z, u) based on J sample points from (Ω1,F1, P1) and K

sample points from (Ω2,F2, P2) is

gJK (z, u) ,
1

J

J∑
j=1

u ([G (z)] (ω1j))−
1

K

K∑
k=1

u (Y (ω2k)) .

The sample average approximation of problem (ε−MP) based on J samples from
(Ω1,F1, P1) and K samples from (Ω2,F2, P2) is

max
z∈Z0

f (z)(ε− SMP)

s.t. gJK (z, u) ≥ ε, ∀u ∈ UN (W ) ,(1)

and its feasible region, set of optimal solutions, and optimal value are:
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ZεJK , {z ∈ Z0 : (1)} ,

SεJK , argmax {f (z) : z ∈ ZεJK} ,

νεJK , max {f (z) : z ∈ ZεJK} .

The corresponding perturbed sample average approximation of problem (ε−CP) is

max
z∈Z0, π≥0

f (z)(ε-SCP)

s.t.
1

J
[[G (z)] (ω1j)] ≥

K∑
k=1

πjk (Y (ω2k) + ε 1) , ∀j ∈ J ,(2)

K∑
k=1

πjk =
1

J
, ∀j ∈ J ,(3)

J∑
j=1

πjk =
1

K
, ∀k ∈ K.(4)

Define the feasible region, set of optimal solutions, and optimal value for problem
(ε−SCP):

ZεCP,JK , {(z, π) ∈ Z0 : (2)− (4)} ,

SεCP,JK , argmax
{
f (z) : (z, π) ∈ ZεCP,JK

}
,

νεCP,JK , max
{
f (z) : (z, π) ∈ ZεCP,JK

}
.

It is easier to study the properties of sample average approximation for problem
(ε−SMP), but it is easier to solve problem (ε−SCP).

In Chapter 3, we perturbed problem (MP) so that it could satisfy the Slater
condition. This same perturbation serves a new purpose in this chapter. For ε = 0,
there is no guarantee that problem (ε−SMP) is feasible even when J andK are large
and the original problem (ε−MP) is feasible. For example, suppose the constraint

E [u ([G (z)] (ω1j))]− E [u (Y)] ≥ 0

is binding for some nontrivial (i.e. non-constant) u ∈ UN (W ) at all z ∈ Z0 (with a
possibly different u for each z ∈ Z0). We can choose ε̃ > 0 and J∗ and K∗ so that

|
ˆ
u ([G (z)] (ω))P (dω)−

ˆ
u ([G (z)] (ω)) P̂1J (dω) | < ε̃

and

|
ˆ
u (Y (ω))P (dω)−

ˆ
u (Y (ω)) P̂2K (dω) | < ε̃

for all J ≥ J∗ and K ≥ K∗ for each of these z and u. However, these bounds do
not guarantee that the inequality

ˆ
u ([G (z)] (ω)) P̂1J (dω)−

ˆ
u (Y (ω)) P̂2K (dω) ≥ 0



4.1. SAMPLE AVERAGE APPROXIMATION 42

will hold when originally E [u (G (z, ω))] − E [u (Y)] = 0, no matter how small ε̃
becomes. The perturbations in problems (ε− SMP) and (ε− SCP) provide the
necessary slack in the stochastic order constraint to overcome this feasibility issue.

We estimate problem (ε−SIP) with

max
z∈Z0

f (z)(ε−SSIP)

s.t. gJK (z, u) ≥ ε, ∀u ∈ UΞ.(5)

The feasible region, set of optimal solutions, and optimal value of problem (ε−SSIP)
are:

ZεJK (UΞ) , {z ∈ Z0 : (5)} ,

SεJK (UΞ) , argmax {f (z) : z ∈ ZεJK (UΞ)} ,

νεJK (UΞ) , max {f (z) : z ∈ ZεJK (UΞ)} .

The sample average approximation of problem (ε−NLP) is

max
z∈Z0

f (z)(ε-SNLP)

s.t. gJK (z, ui) ≥ ε, i = 1, . . . , I,(6)

with corresponding feasible region, set of optimal solutions, and optimal value:

ZεJK ({u1, . . . , uI}) , {z ∈ Z0 : (6)} ,

SεJK ({u1, . . . , uI}) , argmax {f (z) : z ∈ Zε ({u1, . . . , uI})} ,

νεJK ({u1, . . . , uI}) , max {f (z) : z ∈ Zε ({u1, . . . , uI})} .

4.1.2. Analytical properties. Set πJ , 1
J

∑J
j=1 Π (ω1j), which only de-

pends on the sample from (Ω1,F1, P1). Also define

φJK (G (z) ,Y) ,
1

J

J∑
j=1

‖ [G (z)] (ω1j) ‖2 +
1

K

K∑
k=1

‖Y (ω2k) ‖2.

Proposition 4.1.2. Under assumption 3.1.1, φJK (·) is uniformly bounded on Z0

for P−almost all ω ∈ RN.

Proof. It has already been shown that the inequality

Φ ([G (z)] (ω) ,Y (ω)) ≤ ‖ [G (z0)] (ω) ‖2 + Π (ω)D (Z0) + ‖Y (ω) ‖2
= Φ ([G (z0)] (ω) ,Y (ω)) + D (Z0) Π (ω)

holds for any fixed z0 ∈ Z0.
Let P̂JK = P̂1J × P̂2K be the probability measure on (Ω,F) determined by the

first J samples from (Ω1,F1, P1) and the first K samples from (Ω2,F2, P2). We
have assumed that G (z) for all z ∈ Z0, Π, and Y are all integrable with respect to
P . It follows that G (z) for all z ∈ Z0, Π, and Y are all integrable with respect to
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P̂JK . The random variable Φ ([G (z0)] ,Y) is then integrable with respect to P̂JK
and

φJK (G (z) ,Y)

≤ EP̂JK
[Φ ([G (z0)] ,Y)] + D (Z0)EP̂JK

[Π]

< ∞
for all z ∈ Z0. �

The next proposition shows that the estimate gJK (z, u) is a bounded function.

Proposition 4.1.3. Suppose that assumption 3.1.1 holds, gJK (z, u) is bounded for
u ∈ UN (W ) for P−almost all ω ∈ RN.

Proof. We have |gJK (z, u) | ≤ φJK (z) and that φJK (z) is uniformly bounded
in z ∈ Z0 for P−almost all ω ∈ RN. �

Now we establish continuity of gJK (z, u).

Proposition 4.1.4. gJK (z, u) is Lipschitz continuous on Z0 × UN (W ) for
P−almost all ω ∈ RN.

Proof. Recall the definition of P̂JK from earlier. For any given (z1, u1) , (z2, u2) ∈
Z0 × UN (W ), we have

|gJK (z1, u1)− gJK (z2, u2) |
= |gJK (z1, u1)− gJK (z1, u2) + gJK (z1, u2)− gJK (z2, u2) |
≤ |gJK (z1, u1)− gJK (z1, u2) |+ |gJK (z1, u2)− gJK (z2, u2) |
= |EP̂JK

[u1 (G (z1))− u1 (Y)− u2 (G (z1)) + u2 (Y)] |
+ |EP̂JK

[u2 (G (z1))− u2 (G (z2))] |.
By the earlier propositions,

|EP̂JK
[u1 (G (z1))− u1 (Y)− u2 (G (z1)) + u2 (Y)] |

≤ EP̂JK
[|u1 (G (z1))− u1 (Y)− u2 (G (z1)) + u2 (Y) |]

≤ EP̂JK
[Φ ([G (z1)] (ω) ,Y (ω)) ‖u1 − u2‖W ]

≤ ΓJK ‖u1 − u2‖W ,
where

ΓJK = max
z∈Z0

φJK (z) <∞.

Further,

|EP̂JK
[u1 (G (z1))− u2 (G (z2))] |

≤ EP̂JK
[|u2 (G (z1))− u2 (G (z2)) |]

≤ EP̂JK
[Π (ω) ‖G (z1)−G (z2) ‖2]

≤ πJ ‖z1 − z2‖2,
where
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πJ =
1

J

J∑
j=1

Π (ω1j) <∞.

In summary,

|gJK (z1, u1)− gJK (z2, u2) | ≤ (ΓJK + πJ) (‖u1 − u2‖W + ‖z1 − z2‖2) .

�

4.2. Convergence analysis of sample average approximation

In this section, we verify consistency of SAA for problem (ε−MP) and problem
(ε−SIP).

4.2.1. Convergence analysis for problem (ε−MP). The next proposition
verifies that gJK (·) converges to g (·) uniformly on Z0 × UN (W ).

Proposition 4.2.1. For P−almost all ω ∈ RN,

sup
{
|g (z, u)− gJK (z, u) | : (z, u) ∈ Z0 × UN (W )

}
→ 0

as J,K →∞.

Proof. For fixed (z, u) ∈ Z0 ×UN (W ), gJK (z, u)→ g (z, u) as J,K →∞ by
the Glivenko-Cantelli theorem. The space Z0 × UN (W ) is compact, and g (z, u)
and all gJK (z, u) are continuous, so this convergence is uniform.

To formalize this argument, choose ε > 0. For any fixed (z, u) ∈ Z0 × UN (W )
it is true that gJK (z, u) → g (z, u) as J,K → ∞ for P−almost all ω ∈ RN. In
particular, there are J∗ and K∗ (that depend on (z, u) and ω) such that

|gJK (z, u)− g (z, u) | < ε/3

for J ≥ J∗ (z, u) and K ≥ K∗ (z, u). It is also true that gJK (z, u) are Lipschitz
continuous on Z0×UN (W ) for P−almost all ω ∈ RN. Thus, there is a δ1 > 0 (that
depends on ω, but not on (z, u) by Lipschitz continuity) such that

‖ (z, u)− (z′, u′) ‖ < δ1

where

‖ (z, u)− (z′, u′) ‖ = ‖z − z′‖2 + ‖u− u′‖W
implies

|gJK (z, u)− gJK (z′, u′) | < ε/3.

Similarly, there is a δ2 > 0 such that

‖ (z, u)− (z′, u′) ‖ < δ2

implies

|g (z, u)− g (z′, u′) | < ε/3.

Let δ = min {δ1, δ2} and let the set
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{Bδ (z, u)}(z,u)∈Z0×UN (W )

be an open cover of Z0 ×UN (W ) determined by the open balls of radius δ at each
(z, u). By compactness, there is a finite subcover

{Bδ (zi, ui)}Ii=1

of Z0 × UN (W ) determined by {(z1, u1) , . . . , (zI , uI)}. Let

(J∗,K∗) ≥ max {(J∗ (zi, ui) ,K
∗ (zi, ui))}Ii=1 ,

where this maximization is with respect to the usual order on R2. Suppose that
(J,K) ≥ (J∗,K∗). For any (z, u) ∈ Z0×UN (W ), let (zi∗ , ui∗) be chosen such that
(z, u) ∈ Bδ (zi∗ , ui∗). It follows that

|gJK (z, u)− g (z, u) |
≤ |gJK (z, u)− gJK (zi∗ , ui∗) + gJK (zi∗ , ui∗)

− g (zi∗ , ui∗) + g (zi∗ , ui∗)− g (z, u) |
≤ |gJK (z, u)− gJK (zi∗ , ui∗) |+ |gJK (zi∗ , ui∗)− g (zi∗ , ui∗) |

+ |g (zi∗ , ui∗)− g (z, u) |
< ε/3 + ε/3 + ε/3 = ε.

In the preceding inequality, we use that |gJK (z, u) − gJK (zi∗ , ui∗) | < ε/3 and
|g (zi∗ , ui∗)− g (z, u) | < ε/3 by Lipschitz continuity, and
|gJK (zi∗ , ui∗)− g (zi∗ , ui∗) | < ε/3 by choice of (J∗,K∗). �

Introduce the function

ψJK (z) , inf
{
gJK (z, u) : u ∈ UN (W )

}
and note the equivalence

ZεJK ≡ {z ∈ Z0 : ψJK (z) ≥ ε} .

Lemma 4.2.2. ψJK (·) is Lipschitz continuous on Z0 for P−almost all ω ∈ RN.

Proof. For z1, z2 ∈ Z0, we have

|ψJK (z1)− ψJK (z2) |

≤ sup
u∈UN (W )

| 1
J

J∑
j=1

[u ([G (z1)] (ω1j))− u ([G (z2)] (ω1j))] |

≤ 1

J

J∑
j=1

Π (ω1j) ‖ [G (z1)] (ω1j)− [G (z2)] (ω1j) ‖2

≤ πJ ‖z1 − z2‖2.

�

Next we verify uniform convergence.
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Lemma 4.2.3. ψJK (·) converges to ψ (·) uniformly on Z0 for P−almost all ω ∈
RN.

Proof. Compute

|ψJK (z)− ψ (z) |
= | inf

{
gJK (z, u) : u ∈ UN (W )

}
− inf

{
g (z, u) : u ∈ UN (W )

}
|

≤ sup
{
|gJK (z, u)− g (z, u) | : u ∈ UN (W )

}
→ 0,

as J,K →∞. �

The main convergence result is next.

Theorem 4.2.4. Suppose Zε ≡ {z ∈ Z0 : ψ (z) ≥ ε} satisfies the Slater condition.
(a) H (ZεJK , Z

ε)→ 0 as J,K →∞ for P−almost all ω ∈ RN.
(b) D (SεJK , S

ε)→ 0 as J,K →∞ for P−almost all ω ∈ RN.
(c) νεJK → νε as J,K →∞ for P−almost all ω ∈ RN.

Proof. (a) ψJK (·) converges to ψ (·) uniformly on Z0. Thus, by [19, Proposi-
tion 7.15] ψJK (·) epi-converges and hypo-converges to ψ (·) on Z0. By [26, Theorem
3.1], the set ZεJK upper semi-converges to Zε for P−almost all ω ∈ RN. It follows
that D (ZεJK , Z

ε) → 0. Since Zε satisfies the Slater condition, it follows from [26,
Theorem 3.5] that D (Zε, ZεJK)→ 0 as J,K →∞ for P−almost all ω ∈ RN.

(b) By the preceding reasoning, ZεJK semi-converges to Zε for P−almost all
ω ∈ RN. By [26, Theorem 4.1], D (SεJK , S

ε) → 0 as J,K → ∞ for P−almost all
ω ∈ RN. If Sε is empty, then SεJK is empty for all sufficiently large J and K.

(c) Follows from part (b). �

4.2.2. Convergence analysis for problem (ε−SIP). Using the fact that
UΞ is a compact subset of UN (W ), we obtain the following corollary of the conver-
gence result in the previous subsection.

Corollary 4.2.5. For P−almost all ω ∈ RN,

sup {|g (z, u)− gJK (z, u) | : (z, u) ∈ Z0 × UΞ} → 0

as J,K →∞.

Define

ψJK (z; UΞ) , inf
u∈UΞ

{gJK (z; u)}

and notice
ZεJK (UΞ) ≡ {z ∈ Z0 : ψJK (z; UΞ) ≥ ε} .

Lemma 4.2.6. ψJK (·; UΞ) is Lipschitz continuous on Z0 for P−almost all ω ∈
RN.

Uniform convergence of ψJK (·; UΞ) to ψ (·; UΞ) is established next.

Lemma 4.2.7. ψJK (·; UΞ) converges to ψ (·; UΞ) uniformly on Z0 for P−almost
all ω ∈ RN.

The main convergence result for problem (ε−SIP) now follows.
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Corollary 4.2.8. Suppose problem (ε− SIP) satisfies the Slater condition.
(a) H (ZεJK (UΞ) , Zε (UΞ))→ 0 as J,K →∞ for P−almost all ω ∈ RN.
(b) D (SεJK (UΞ) , Sε (UΞ))→ 0 as J,K →∞ for P−almost all ω ∈ RN.
(c) νεJK (UΞ)→ νε (UΞ) as J,K →∞ for P−almost all ω ∈ RN.

We know that there exists a sequence {UΞk
}∞k=0 with UΞk

⊂ UΞk+1
and

∞⋃
k=0

UΞk
= UN (W ) .

Since this sequence is countable, we obtain the following corollary.

Corollary 4.2.9. Suppose problem (ε−SIP) over UΞk
satisfies the Slater condition

for all k ≥ 0. Then H (ZJK (UΞk
) , ZJK (UΞk

)) → 0, D (SJK (UΞk
) , S (UΞk

)) → 0,
and νεJK (UΞk

)→ νε (UΞk
) as J,K →∞ for P−almost all ω ∈ RN.

Proof. For each fixed k, this conclusion does not hold on a set of P−measure
zero. The countable union of sets with measure zero has measure zero. �

4.3. Upper bounds

In this section we adapt the methodology in [16, Section 6] to produce upper
bounds for problem (ε−SMP) and problem (ε−SSIP). It is possible to use duality to
construct an upper bound for ν and ν (UΞ). The Lagrange multiplier of constraint
(1) is u ∈ cl coneUN (W ). By weak duality,

ν ≤ max
z∈Z0

L (z, u)− ε ‖PX
(
u; cl convUN (W )

)
‖.

Analogously, the Lagrange multiplier of constraint (5) is u ∈ cl coneUΞ. By weak
duality,

ν (UΞ) ≤ max
z∈Z0

L (z, u)− ε ‖PX (u; cl convUΞ) ‖.

Let

LJK (z, u) , f (z) +
1

J

J∑
j=1

u (G (z, ω1j))−
1

K

K∑
k=1

u (Y (ω2k))

be the sample average approximation of L (z, u). At any time, our best guess for
an upper bound for ν is

min

{
max
z∈Z0

LJK (z, u)− ε‖PX
(
u; cl convUN (W )

)
: u ∈ cl coneUN (W )

}
and for ν (UΞ) is

min

{
max
z∈Z0

LJK (z, u)− ε ‖PX (u; cl convUΞ) ‖ : u ∈ cl coneUΞ

}
.
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4.4. Aggregation, column generation, and row generation

Problem (ε−SCP) is difficult to solve directly for large J and K. In this section
we discuss a large scale implementation strategy for this problem that combines
variable and constraint aggregation with column and row generation.

The Lagrangian of problem (ε−SCP) is

L (z, π, λ, δ, γ) = f (z) +

J∑
j=1

〈λj ,
1

J
[G (z)] (ω1j)−

K∑
k=1

πjk (Y (ω2k) + ε 1)〉

+

J∑
j=1

δj

(
K∑
k=1

πjk −
1

J

)
+

K∑
k=1

γk

 J∑
j=1

πjk −
1

K

 ,

and problem (ε−SCP) can be written as

max {min {L (z, π, λ, δ, γ) : λ ≥ 0} : z ∈ Z0, π ≥ 0} .
The dual of problem (ε−SCP) is then

min {max {L (z, π, λ, δ, γ) : z ∈ Z0, π ≥ 0} : λ ≥ 0} .
For the dual functional

d (λ) = max

f (z) +

J∑
j=1

〈λj ,
1

J
[G (z)] (ω1j)〉 : z ∈ Z0

 ,

we explicitly obtain the dual of problem (ε−SCP):

min d (λ)− 1

J

J∑
j=1

δj −
1

K

K∑
k=1

γk(ε−SCPD)

s.t. − 〈λj ,Y (ω2k) + ε 1〉+ δj + γk ≤ 0, ∀j ∈ J , ∀k ∈ K.

4.4.1. Aggregation. We are really only interested in the decision variables
z in problem (ε−SCP), rather than (z, π). With this understanding, we would be
willing to accept a possibly sub-optimal but feasible solution to problem (ε−SCP)
in return for a gain in computational tractability. Problem (ε−SCP) can be made
more tractable via aggregation.

There is a natural aggregation scheme for problem (ε−SCP). Choose a partition
of J , denoted {Ji1}

I1
i1=1, where

⋃I1
i1=1 Ji1 = J and Ji1

⋂
Ji2 = ∅ for i1 6= i2.

We can aggregate all of the scenarios in each set Ji into a single scenario with
probability mass

∑
j∈Ji1

1/J = |Ji1 |/J . Similarly, choose a partition of K, denoted
{Ki2}

I2
i2=1, where

⋃I2
i2=1Ki = K and Ki1

⋂
Ki2 = ∅ for i1 6= i2. We can aggregate

all of the scenarios in each set Ki into a single scenario with probability mass∑
k∈Ki2

1/K = |Ki2 |/K. Let

π̂ (Ji1 ,Ki2) : {Ji1}
I1
i1=1 × {Ki2}

I2
i2=1 → R+

be the joint probability measure on the cross product of the modified sample
spaces {Ji1}

I1
i1=1 and {Ki2}

I2
i2=1. We recover the original joint probability measure
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{πjk}j∈J , k∈K from the aggregated measure π̂ (Ji1 ,Ki2) via the following conven-
tion. Set

πjk =
π̂ (Ji1 ,Ki2)

|Ji1 | |Ki2 |
for Ji1 3 j and Ki2 3 k.

We define (abusing notation by using Ji1 and Ki2 to indicate scenarios)

[G (z)] (Ji1) ,
1

|Ji1 |
∑
j∈Ji1

[G (z)] (ω1j)

and

Y (Ki2) ,
1

|Ki2 |
∑
k∈Ki2

Y (ω2k) .

In this new setup, the constraints (2) are recast as

|Ji1 |
|J |

[G (z)] (Ji1) ≥
I2∑
i2=1

π̂ (Ji1 ,Ki2) (Y (Ki2) + ε 1) , i1 = 1, . . . , I1,

or

1

J

∑
j∈Ji1

[G (z)] (ω1j)

 ≥ I2∑
i2=1

π̂ (Ji1 ,Ki2)

 1

|Ki2 |
∑
k∈Ki2

(Y (ω2k) + ε 1)

 ,
i1 = 1, . . . , I1,

since

|Ji1 |
J

[G (z)] (Ji1) =
1

J

∑
j∈Ji1

[G (z)] (ω1j)

 .
The constraints (3) become

I2∑
i2=1

π̂ (Ji1 ,Ki2) =
|Ji1 |
J

, i1 = 1, . . . , I1.

Finally, the constraints (4) become

I1∑
i1=1

π̂ (Ji1 ,Ki2) =
|Ki2 |
K

, i2 = 1, . . . , I2.

The aggregate form of any instance of problem (ε−SCP) looks exactly like the
general form of problem (ε−SCP), with appropriate modifications based on this
discussion. We obtain the problem
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max
z∈Z0, π̂≥0

f (z)(ε-AggSCP)

s.t.
|Ji1 |
|J |

[G (z)] (Ji1) ≥
I2∑
i2=1

π̂ (Ji1 ,Ki2) (Y (Ki2) + ε 1) ,(7)

i1 = 1, . . . , I1,

I2∑
i2=1

π̂ (Ji1 ,Ki2) =
|Ji1 |
J

,(8)

i1 = 1, . . . , I1,

I1∑
i1=1

π̂ (Ji1 ,Ki2) =
|Ki2 |
K

,(9)

i2 = 1, . . . , I2,

and we denote its feasible region, set of optimal solutions, and optimal value as:

ZεJK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)
, {z ∈ Z0, π̂ ≥ 0 : (7)− (9)} ,

SεJK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)
, argmax

{
f (z) : (z, π̂) ∈ ZεJK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)}
,

νεJK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)
, max

{
f (z) : (z, π̂) ∈ ZεJK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)}
.

4.4.2. Row generation. We can use the transformation

πjk =
π̂ (Ji1 ,Ki2)

|Ji1 | |Ki2 |

for Ji1 3 j and Ki2 3 k to generate the full set of constraints of problem (ε−SCP).
The constraints (2) expand to become:

1

J
G (z, ω1j) ≥

I2∑
i2=1

∑
k∈Ki2

(
π̂ (Ji1 ,Ki2)

|Ji1 | |Ki2 |

)
(Y (ω2k) + ε 1) , ∀j ∈ J ,

for Ji1 3 j. Equivalently, we have

|Ji1 |
J

G (z, ω1j) ≥
I2∑
i2=1

π̂ (Ji1 ,Ki2)

 ∑
k∈Ki2

Y (ω2k)

|Ki2 |
+ ε 1

 , ∀j ∈ J .

The equality in distribution constraints (3)− (4) are automatically satisfied in this
situation. Suppose that π̂ satisfies (8)− (9), then
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K∑
k=1

πjk =

I2∑
i2=1

∑
k∈Ki2

πjk

=

I2∑
i2=1

∑
k∈Ki2

π̂ (Ji1 ,Ki2)

|Ji1 | |Ki2 |

=
1

|Ji1 |

I2∑
i2=1

π̂ (Ji1 ,Ki2)

=
1

|Ji1 |

(
|Ji1 |
J

)
= 1/J,

for all j ∈ J . A similar calculation establishes that

J∑
j=1

πjk =

I1∑
i1=1

∑
j∈Ji1

πjk

=
1

|Ki2 |

I1∑
i1=1

π̂ (Ji1 ,Ki2)

=
1

|Ki2 |

(
|Ki2 |
K

)
= 1/K,

for all k ∈ K.
We now obtain the problem

max
z∈Z0, π̂≥0

f (z)

(ε-RowSCP)

s.t.
|Ji1 |
J

G (z, ω1j) ≥
I2∑
i2=1

π̂ (Ji1 ,Ki2)

|Ji1 |

 1

|Ki2 |
∑
k∈Ki2

Y (ω2k) + ε 1

 ,(10)

∀j ∈ J ,
I2∑
i2=1

π̂ (Ji1 ,Ki2) =
|Ji1 |
J

,(11)

i1 = 1, . . . , I1,

I1∑
i1=1

π̂ (Ji1 ,Ki2) =
|Ki2 |
K

,(12)

i2 = 1, . . . , I2,

and we denote its feasible region, set of optimal solutions, and optimal value as:
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ZεRow,JK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)
, {z ∈ Z0, π̂ ≥ 0 : (10)− (12)} ,

SεRow,JK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)
, argmax

(z,π̂)

{
f (z) : (z, π̂) ∈ ZεRow,JK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)}
,

, νεRow,JK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)
max

{
f (z) : (z, π̂) ∈ ZεRow,JK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)}
.

Problem (ε−RowSCP) has many constraints and few variables, and it can be solved
via row (cut) generation techniques.

Problem (ε−RowSCP) is clearly a restricted version of problem (ε−SCP). Thus

ZεRow,JK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)
⊂ ZεCP,JK ,

when measures π̂ on the partitioned space in problem (ε−RowSCP) are identified
with measures π on Ω1 × Ω2. Necessarily

νεRow,JK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)
≤ νεCP,JK .

Problem (ε−RowSCP) is also clearly a restricted version of problem (ε−AggSCP)
because it is a disaggregation of the constraints in problem (ε−AggSCP). Then

ZεRow,JK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)
⊂ ZεAgg,JK ,

when measures π̂ on the partitioned space in problem (ε−RowSCP) are identified
with measures π on Ω1 × Ω2. Necessarily

νεRow,JK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)
≤ νεAgg,JK .

4.4.3. Column generation. We can also use the partitions {Ji1}
I1
i1=1 and

{Ki2}
I2
i2=1 to generate the full set of variables for problem (ε−SCP). We will take the

average of the constraints over each partition to keep the problem size manageable.
The coupling constraints (2) expand to become:

|Ji1 |
J

G (z, Ji1) ≥
∑
j∈Ji1

K∑
k=1

πjk (Y (ω2k) + ε 1) , i1 = 1, . . . , I1.

The equality in distribution constraints (3)− (4) expand to become

∑
j∈Ji1

K∑
k=1

πjk =
|Ji1 |
J

, i1 = 1, . . . , I1,

and
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∑
k∈Ki2

J∑
j=1

πjk =
|Ki2 |
K

, i2 = 1, . . . , I2.

We obtain the optimization problem

max
z∈Z0, π̂≥0

f (z)

(ε-ColSCP)

s.t.
|Ji1 |
J

[G (z)] (Ji1) ≥
K∑
k=1

∑
j∈Ji1

πjk (Y (ω2k) + ε 1) , i1 = 1, . . . , I1,(13)

∑
j∈Ji1

K∑
k=1

πjk =
|Ji1 |
J

, i1 = 1, . . . , I1,(14)

∑
k∈Ki2

J∑
j=1

πjk =
|Ki2 |
K

, i2 = 1, . . . , I2,(15)

and we denote its feasible region, set of optimal solutions, and optimal value as:

ZεCol,JK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)
, {z ∈ Z0, π ≥ 0 : (13)− (15)} ,

SεCol,JK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)
, argmax

(z,π̂)

{
f (z) : (z, π) ∈ ZεCol,JK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)}
,

νεCol,JK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)
, max

{
f (z) : (z, π) ∈ ZεCol,JK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)}
.

Problem (ε−ColSCP) has few constraints and many variables, and it can be solved
via column generation (pricing) techniques. By construction, problem (ε−ColSCP)
is a relaxation of problem (ε−SCP). We see

ZεCol,JK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)
⊃ ZεCP,JK

and

νεCol,JK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)
≥ νεCP,JK .

Problem (ε−ColSCP) is also relaxation of problem (ε−AggSCP)

ZεCol,JK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)
⊃ ZεAgg,JK

and

νεCol,JK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)
≥ νεAgg,JK .



CHAPTER 5

Robust optimization with a class of multivariate
integral stochastic order constraints

5.1. Robust optimization problem

In this chapter we combine the approach from [11] with our present devel-
opment. In [11], uncertainty about the underlying probability distribution in a
stochastic order constrained program is studied for the first time. This paper con-
siders underlying uncertainty for univariate increasing concave stochastic order con-
straints. In this chapter we seek to make a similar contribution for multivariate
increasing concave stochastic order constraints. This chapter is especially important
for applications, since there is usually uncertainty about the underlying probability
distribution in practice.

We start by described our model of uncertainty for P . We formalize a base
probability space (Ω,F , P0) to be used throughout this chapter. The probability
measure P0 is fixed and known to formalize the concept of a probability uncertainty
set. We are given a set of probability measures Q ⊂ L1

∞ (Ω,F , P0). We assume Q
is convex and closed, and

B = sup
P∈Q
‖ dP
dP0
‖∞ <∞.

We adopt the following convention. Any measure Q that is absolutely continues
with respect to P0 with Radon-Nikodym derivative dQ/dP0 in L1

∞ (Ω,F , P0) can
be considered as element of L1

∞ (Ω,F , P0). We propose the following robust version
of ≥icv. For X,Y ∈ LN1 (Ω,F , P0), if

EP [u (X)] ≥ EP [u (Y)] , ∀u ∈ UN (W ) , ∀P ∈ Q,
then X is larger than Y in the robust increasing concave order with respect to Q.

We will use this order to define a constraint on G (z),

EP [u (G (z))] ≥ EP [u (Y)] , ∀u ∈ UN (W ) , ∀P ∈ Q.
We present a robust version of problem (MP):

max
z∈Z0

f (z)(RobMP)

s.t. EP [u (G (z))] ≥ EP [u (Y)] ,(1)

∀u ∈ UN (W ) , ∀P ∈ Q.
Like problem (MP), problem (RobMP) cannot satisfy the Slater condition because
u = 0 is included in UN (W ). We perturb problem (RobMP) to obtain:

54
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max
z∈Z0

f (z)(ε−RobMP)

s.t. EP [u (G (z))] ≥ EP [u (Y)] + ε,(2)

∀u ∈ UN (W ) , ∀P ∈ Q.
We define its feasible region, set of solutions, and optimal value:

ZQ,ε , {z ∈ Z0 : (2)} ,

SQ,ε , argmax
{
f (z) : z ∈ ZQ,ε

}
,

νQ,ε , max
{
f (z) : z ∈ ZQ,ε

}
.

We will use semi-infinite programming and nonlinear programming to construct
relaxations of problem (ε−RobMP), as was done for problem (ε−MP). These re-
laxations will be more computationally tractable but can be studied with the same
methods. When we use UΞ to approximate UN (W ) we obtain the robust version
of problem (ε−SIP):

max
z∈Z0

f (z)(ε−RobSIP)

s.t. EP [u (G (z))] ≥ EP [u (Y)] + ε,(3)
∀u ∈ UΞ, ∀P ∈ Q.

We adopt the following notation for the feasible region, set of optimal solutions,
and optimal value of problem (ε−RobSIP)

ZQ,ε (UΞ) , {z ∈ Z0 : (3)} ,

SQ,ε (UΞ) , argmax
{
f (z) : z ∈ ZQ,ε (UΞ)

}
,

νQ,ε (UΞ) , max
{
f (z) : z ∈ ZQ,ε (UΞ)

}
.

When UN (W ) is approximated with a finite set {u1, . . . , uI}, the robust version of
problem (ε−NLP) emerges:

max
z∈Z0

f (z)(ε−RobNLP)

s.t. EP [ui (G (z))] ≥ EP [ui (Y)] + ε,(4)
i = 1, . . . , I, ∀P ∈ Q.

Its feasible region, set of solutions, and optimal value are:

ZQ,ε ({u1, . . . , uI}) , {z ∈ Z0 : (4)} ,

SQ,ε ({u1, . . . , uI}) , argmax
{
f (z) : z ∈ ZQ,ε ({u1, . . . , uI})

}
,

νQ,ε ({u1, . . . , uI}) , max
{
f (z) : z ∈ ZQ,ε ({u1, . . . , uI})

}
.

Now define the support functional σ : L1
1 (Ω,F , P0)→ R of the set Q

σ (V ) = inf
P∈Q

EP [V ] .
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Proposition 5.1.1. [11, Proposition 2] Suppose Q is convex, closed, and bounded.
(a) σ (·) is convex.
(b) σ (·) is Lipschitz continuous on L1

1 (Ω,F , P0) with modulus B.

For a fixed benchmark Y, we define the functional

ρu (X) = σ [u (X)− u (Y)]

on LN1 (Ω,F , P0). The functional ρu (X) aids the study of the robust constraints in
this chapter.

Notice u (X) − u (Y) is a univariate random variable. Under our assumption
that u ∈ UN (W ) and X, Y ∈ LN1 (Ω,F , P0), we have u (X)− u (Y) ∈ L1

1 (Ω,F , P0).
The following proposition is the multi-dimensional analog of [11, Proposition 3].

Proposition 5.1.2. (a) For every u ∈ UN (W ) the functional ρu (·) is concave.
(b) ρu (·) is increasing.
(c) ρu (·) is Lipschitz continuous with modulus B.

Proof. (a) The functional V → infP∈Q EP (V ) is concave. Further, each
EP (V ) is increasing so V → infP∈Q EP (V ) is increasing.

The function X → u (X) is concave. Since ρu (·) is the composition of an
increasing concave function with a concave function, it is concave.

(b) V → infP∈Q EP (V ) and X → u (X) are both increasing, thus ρu (·) is
increasing as the composition of increasing functions.

(c) σ (·) is Lipschitz continuous with modulus B. Any mapping X → u (X)
has Lipschitz constant bounded by 1. Thus, the composition of these mappings is
Lipschitz continuous with modulus B. �

Define the functions

ψQ (z) , inf
u∈UN (W )

{ρu (G (z))} ,

ψQ (z; UΞ) , inf
u∈UΞ

{ρu (G (z))} .

Proposition 5.1.3. (a) ψQ (z) is increasing, concave on Z0, and Lipschitz con-
tinuous.

(b) ψQ (z; UΞ) is increasing, concave on Z0, and Lipschitz continuous.

Proof. (a) ψQ (z) is increasing since the infimum of increasing functions is an
increasing function. ψQ (z) is concave as the infimum of concave functions.

For z1, z2 ∈ Z0 we have

ψQ (z1) = inf
u∈UN (W )

ρu (G (z1))

≤ inf
u∈UN (W )

{ρu (G (z2)) + |ρu (G (z1))− ρu (G (z2)) |}

≤ ψQ (z2) + sup
u∈UN (W )

|ρu (G (z1))− ρu (G (z2)) |.

Analogously,
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ψQ (z2) = inf
u∈UN (W )

ρu (G (z2))

≤ inf
u∈UN (W )

{ρu (G (z1)) + |ρu (G (z2))− ρu (G (z1)) |}

≤ ψQ (z1) + sup
u∈UN (W )

|ρu (G (z1))− ρu (G (z2)) |.

Now compute:

|ψQ (z1)− ψQ (z2) | ≤ sup
u∈UN (W )

|ρu (G (z1))− ρu (G (z2)) |

≤ B ‖G (z1)−G (z2) ‖2
≤ B π ‖z1 − z2‖2.

(b) Similar to part (a). �

We next present a convergence result about the quality of the approximation.

Proposition 5.1.4. Suppose Zε ≡
{
z ∈ Z0 : ψQ (z) ≥ ε

}
satisfies the Slater con-

dition. As UΞk
↑ UN (W ):

(a) H
(
ZQ,ε (UΞk

) , ZQ,ε
)
→ 0 as k →∞.

(b) D
(
SQ,ε (UΞk

) , SQ,ε
)
→ 0 as k →∞.

(c) νQ,ε (UΞk
)→ νQ,ε as k →∞.

Proof. (a) The functions ψQ (z; UΞk
) converge to ψQ (z) uniformly on the

compact set Z0. Thus, ψQ (z; UΞk
) epi-converges and hypo-converges to ψQ (z) as

well. Then D
(
ZQ,ε (UΞk

) , ZQ,ε
)
→ 0 as k → ∞. Since ZQ,ε satisfies the Slater

condition, ZQ,ε = cl intZQ,ε and D
(
ZQ,ε, ZQ,ε (UΞk

)
)
→ 0.

(b) Apply [26, Theorem 4.1].
(c) Follows from part (b). �

5.2. Optimality conditions

5.2.1. Optimality conditions for problem (ε−RobMP). Introduce the
operator ρ : LN1 (Ω,F , P0)→ C

(
UN (W )

)
, defined as

[ρ (X)] (u) = ρu (X) .

For a multiplier Λ ∈M
(
UN (W )

)
, the Lagrangian for problem (ε−RobMP) is

L (z,Λ) = f (z) +

ˆ
UN (W )

[ρ (G (z))] (u) dΛ (u) .

The Slater condition is

Assumption 5.2.1. There exists z̃ ∈ Z0 such that

ρu (G (z̃)) > ε, ∀u ∈ UN (W ) .

Standard optimality conditions are presented in the next theorem.
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Theorem 5.2.2. Suppose assumption 5.2.1 is satisfied.
(a) If ẑ is optimal for problem (ε−RobMP), then there exists a measure Λ̂ ∈

M+

(
UN (W )

)
such that

L
(
ẑ, Λ̂

)
= max

{
L
(
z, Λ̂

)
: z ∈ Z0

}
,(5) ˆ

UN (W )

[ρ (G (ẑ))] (u) dΛ̂ (u) = ε Λ̂
(
UN (W )

)
.(6)

(b) There exists a measure Λ ∈ M+

(
UN (W )

)
satisfying (5) − (6) such that

Λ =
∑M
m=1 λmδum

for λm ≥ 0 and um ∈ UN (W ) for all m = 1, . . . ,M .

Proof. (a) The operator ρ (G (·)) : Z0 → C
(
UN (W )

)
is continuous and con-

cave. First notice that for fixed z ∈ Z0,

inf
P∈Q

EP [u (G (z))− u (Y)]

is continuous in u ∈ UN (W ). To see this fact, compute:

| inf
P∈Q

EP [u1 (G (z))− u1 (Y)]

− inf
P∈Q

EP [u2 (G (z))− u2 (Y)] |

≤ sup
P∈Q
|EP [u1 (G (z))− u1 (Y)]

− EP [u2 (G (z))− u2 (Y)] |.

We have that

|EP [u1 (G (z))− u1 (Y)]− EP [u2 (G (z))− u2 (Y)] | → 0

as ‖u1−u2‖W → 0 for any P ∈ Q. By a compactness argument (using compactness
of Q), we obtain that

sup
P∈Q
|EP [u1 (G (z))− u1 (Y)]− EP [u2 (G (z))− u2 (Y)] | → 0

as ‖u1 − u2‖W → 0.
Now recall that

ρu (G (·)) : Z0 → R
is continuous in z ∈ Z0 for each u ∈ UN (W ). It follows that

sup
{
|ρu (G (z1))− ρu (G (z2)) | : u ∈ UN (W )

}
→ 0

as ‖z1 − z2‖2 → 0 by a compactness argument (using compactness of UN (W )).
Problem (ε−RobMP) can be rewritten as

max
z∈Z0

f (z)

s.t. ρ (G (z))− ε ∈ C+
(
UN (W )

)
.

The Lagrangian for this problem is
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Υ (z,Λ) = f (z) + 〈Λ,ρ (G (z))− ε〉
Under assumption 5.2.1, the Slater condition is satisfied for problem (ε−RobMP).
The necessary and sufficient conditions for optimality in Banach spaces, [4, Theo-
rem 3.4], then give the desired result:

Υ
(
ẑ, Λ̂

)
= max

{
Υ
(
z, Λ̂

)
: z ∈ Z0

}
,ˆ

UN (W )

[ρ (G (ẑ))− ε] (u) dΛ̂ (u) = 0.

(b) Apply [4, Proposition 5.104]. �

5.2.2. Optimality conditions for problem (ε−RobSIP). The operator

ρ : LN1 (Ω,F , P0)→ C (Ξ)

is understood in this subsection as

[ρ (X)] (ξ) = ρu(·; ξ) (X) .

For Λ ∈M+ (Ξ), we introduce the Lagrangian

L (z,Λ) = f (z) +

ˆ
Ξ

ρu(·; ξ) (G (z)) dΛ (ξ) .

The Slater condition for problem (ε−RobSIP) is

Assumption 5.2.3. There exists z̃ ∈ Z0 such that

ρu(·; ξ) (G (z̃)) > ε, ∀ξ ∈ Ξ.

Optimality conditions for problem (ε−RobSIP) are summarized in the next
theorem.

Theorem 5.2.4. Suppose assumption 5.2.3 is satisfied.
(a) If ẑ is optimal for problem (ε−RobSIP), then there exists Λ̂ ∈M+ (Ξ) such

that

L
(
ẑ, Λ̂

)
= max

{
L
(
z, Λ̂

)
: z ∈ Z0

}
,(7) ˆ

Ξ

ρu(·; ξ) (G (ẑ)) dΛ̂ (ξ) = ε Λ̂ (Ξ) .(8)

(b) There exists a measure Λ ∈M+ (Ξ) satisfying (7)− (8) such that
Λ =

∑M
m=1 λmδξm for λm ≥ 0 and ξm ∈ Ξ for all m = 1, . . . ,M .

5.2.3. Optimality conditions for problem (ε−RobNLP). For this sub-
section, we set the Lagrangian to be

L (z, λ) = f (z) +

I∑
i=1

λiρui (G (z)) .

The Slater condition for this problem is the usual nonlinear programming Slater
condition.
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Assumption 5.2.5. There exists z̃ ∈ Z0 such that

inf
P∈Q
{g (z̃, ui)} > ε, i = 1, . . . , I.

Optimality conditions for problem (ε−RobNLP) are next.

Theorem 5.2.6. Suppose assumption 5.2.5 is satisfied. If ẑ is optimal for problem
(ε−RobNLP), then there exists λ̂ ∈ RI+ such that

L
(
ẑ, λ̂
)

= max
{
L
(
z, λ̂
)

: z ∈ Z0

}
,(9)

I∑
i=1

λ̂iρui (G (ẑ)) = ε

I∑
i=1

λ̂i.(10)

The following result is based on weak duality and it streamlines implementation
of the robust ≥icv constraints on finite probability spaces.

Proposition 5.2.7. Suppose that Ω = {ω1, . . . , ωJ} is finite, F makes all atoms
measurable, and Q is polyhedral,

Q =

{
p ∈ RJ+ :

Ap ≥ b,∑J
j=1 pj = 1

}
,

for some A ∈ RJ0×J and b ∈ RJ0 . Then for X ∈ LN1 (Ω,F , P ), the constraints

inf
P∈Q

EP [u (X)− u (Y)] ≥ 0, i = 1, . . . , I

are equivalent to

−〈µ (i) , b〉 − γ (i) ≥ 0, i = 1, . . . , I,

ui (X (ωj))− ui (Y (ωj)) +
(
µ (i)

T
A
)
j

+ γ (i) ≥ 0, j ∈ J , i = 1, . . . , I.

Proof. In this case, σ (X) is the optimization problem:

min
p∈RI

+

J∑
j=1

pjX (ωj)(11)

s.t. Ap ≥ b,(12)
J∑
j=1

pj = 1.(13)

The Lagrangian of problem (11)− (13) is

Υ (p, µ, γ) =

J∑
j=1

pjX (ωj) + 〈µ,A p− b〉+ γ

 J∑
j=1

pj − 1

 .

We can rewrite problem (11)− (13) as
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min
p

{
max
µ,γ
{Υ (p, µ, γ) : µ ≤ 0} : p ≥ 0

}
so the dual to problem (11)− (13) is

max
µ,γ

{
min
p
{Υ (p, µ, γ) : p ≥ 0} : µ ≤ 0

}
.

Rearrange Υ (p, µ, γ) to become

J∑
j=1

pj

[
X (ωj) +

(
µTA

)
j

+ γ
]
− 〈µ, b〉 − γ.

The dual of problem (11)− (13) is then

max
µ≤0

− 〈µ, b〉 − γ(14)

s.t. X (ωj) +
(
µTA

)
j

+ γ ≥ 0, ∀j ∈ J .(15)

By weak duality, we can replace the constraints

inf
P∈Q

EP [u (X)− u (Y )] ≥ 0, i = 1, . . . , I,

with the linear inequalities

−〈µ (i) , b〉 − γ (i) ≥ 0, i = 1, . . . , I,

ui (X (ωj))− ui (Y (ωj)) +
(
µ (i)

T
A
)
j

+ γ (i) ≥ 0, ∀j ∈ J , i = 1, . . . , I.

�

5.3. Duality

5.3.1. Duality for problem (ε−RobMP). Introduce the dual functional

d (Λ) = max {L (z,Λ) : z ∈ Z0}
and the corresponding dual problem,

(ε−RobMPD) min
{
d (Λ)− ε ‖Λ‖ : Λ ∈M+

(
UN (W )

)}
.

Strong duality holds between problem (ε−RobMP) and (ε−RobMPD) by the usual
arguments.

Theorem 5.3.1. Suppose assumption 5.2.1 holds.
(a) If problem (ε−RobMP) has an optimal solution, then problem (ε−RobMPD)

has an optimal solution and the optimal values are equal.
(b) If problem (ε−RobMPD) has an optimal solution Λ̂ then any ẑ satisfying the

optimality conditions (5)− (6) with respect to Λ̂ is optimal to problem (ε−RobMP).
(c) Problem (ε−RobMPD) has an optimal solution with support on a finite set

{u1, . . . , uM} ⊂ UN (W ).
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5.3.2. Duality for problem (ε−RobSIP). The dual functional for problem
(ε−RobSIP) is

d (Λ) = max {L (z,Λ) : z ∈ Z0}

and the dual problem is

(ε−RobSIPD) min {d (Λ)− ε ‖Λ‖ : Λ ∈M+ (Ξ)} .

The expected strong duality result is next.

Theorem 5.3.2. Suppose assumption 5.2.3 holds.
(a) Suppose problem (ε−RobSIP) has an optimal solution. Then problem

(ε−RobSIPD) has an optimal solution and the optimal values are equal.
(b) If problem (ε−RobSIPD) has an optimal solution Λ̂ then any ẑ satisfying the

optimality conditions (7)− (8) with respect to Λ̂ is optimal to problem (ε−RobSIP).
(c) Problem (ε−RobMPD) has an optimal solution with support on a finite set

{ξ1, . . . , ξM} ⊂ Ξ.

5.3.3. Duality for problem (ε−RobNLP). The dual functional for prob-
lem (ε−RobNLP) is

d (λ) = max {L (z, λ) : z ∈ Z0}

and the dual problem is

(ε−RobSIPD) min

{
d (λ)− ε

I∑
i=1

λi : λ ∈ RI+

}
.

Strong duality is established in the following theorem.

Theorem 5.3.3. Suppose assumption 5.2.5 holds.
(a) If problem (ε−RobNLP) has an optimal solution, then problem

(ε−RobNLPD) has an optimal solution and the optimal values are equal.
(b) If problem (ε−RobNLPD) has an optimal solution λ̂ then any ẑ satisfying the

optimality conditions (9)−(10) with respect to λ̂ is optimal to problem (ε−RobNLP).

5.4. Aggregation, column generation, and row generation

We can define a robust version of problem (CP) as follows. Introduce functions
πjk (P ) ∈ C (Q). In this section, Q is an uncertainty set on the joint distribution of
(G (z) ,Y) on (Ω1 × Ω2,F1 ×F2). Consider the problem
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max
z∈Z0, π(P )≥0

f (z)(RobCP)

s.t. [G (z)] (ω1j) ≥
∑K
k=1 πjk (P )Y (ω2k)

P ({ω1j})
,(16)

∀j ∈ J , ∀P ∈ Q,
K∑
k=1

πjk (P ) = P ({ω1j}) ,(17)

∀j ∈ J , ∀P ∈ Q,
J∑
j=1

πjk (P ) = P ({ω2k}) ,(18)

∀k ∈ K, ∀P ∈ Q.

Problem (RobCP) has infinitely many constraints and decision variables in the
infinite-dimensional space C (Q). We point out that if (ẑ, π̂ (P )) is a solution to
problem (RobCP), then G (ẑ) ≥Picv Y for all P ∈ Q. The perturbation of problem
(RobCP) is

max
z∈Z0, π(P )≥0

f (z)(ε−RobCP)

s.t. [G (z)] (ω1j) ≥
∑K
k=1 πjk (P ) (Y (ω2k) + ε 1)

P ({ω1j})
,(19)

∀j ∈ J , ∀P ∈ Q,
K∑
k=1

πjk (P ) = P ({ω1j}) ,(20)

∀j ∈ J , ∀P ∈ Q,
J∑
j=1

πjk (P ) = P ({ω2k}) ,(21)

∀k ∈ K, ∀P ∈ Q.

We describe the connection between problem (ε−RobMP) and problem (ε−RobCP)
in the next proposition.

Proposition 5.4.1. For ε < 0, problem (
√
N ε−RobMP) is a relaxation of problem

(ε−RobCP) on Ω1 = {ω11, . . . , ω1J} and Ω2 = {ω21, . . . , ω2K}.

Proof. Problem (ε− RobCP) is equivalent to
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max
z∈Z0

f (z)

s.t.
J∑
j=1

P1 ({ω1j})u ([G (z)] (ω1j)) ∀u ∈ UN (W ) ,∀P ∈ Q,

≥
K∑
k=1

P2 ({ω2k})u (Y (ω2k) + ε 1) ,

by construction. In this setting, problem (ε− RobMP) is

max
z∈Z0

f (z)

s.t.
J∑
j=1

P1 ({ω1j})u ([G (z)] (ω1j)) ∀u ∈ UN (W ) ,∀P ∈ Q,

≥
K∑
k=1

P2 ({ω2k})u (Y (ω2k)) + ε.

For any u ∈ UN (W ) we have

|E [u (Y + ε 1)]− E [u (Y)] | ≤ ‖ε 1‖2 =
√
N ε,

since ‖∂u‖W ≤ 1. Rearrange to obtain

E [u (Y + ε 1)] ≥ E [u (Y)] +
√
N ε.

For any z ∈ Z0 such that (19)− (21) we have

J∑
j=1

P1 ({ω1j})u ([G (z)] (ω1j)) ∀u ∈ UN (W ) , ∀P ∈ Q,

≥
K∑
k=1

P2 ({ω2k})u (Y (ω2k) + ε 1) ,

and thus

J∑
j=1

P1 ({ω1j})u ([G (z)] (ω1j)) ∀u ∈ UN (W ) , ∀P ∈ Q,

≥
K∑
k=1

P2 ({ω2k})u (Y (ω2k)) +
√
N ε.

�

Now suppose that the system (16)− (18) is satisfied for all P ∈ bd {Q} where
bd {Q} denotes the boundary of Q in RJ . By convexity of Q, the system (16)−(18)

is satisfied for all P ∈ Q. To see this fact, set Pλ =
∑L
l=1 λlPl with all Pl ∈ bd {Q}
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and
∑L
l=1 λl = 1 and λ ≥ 0. Then define πjk (Pλ) =

∑L
l=1 λlπjk (Pl). We see

immediately that

Pλ ({ω1j}) [G (z)] (ω1j) =

L∑
l=1

λlPl ({ω1j}) [G (z)] (ω1j)

≥
L∑
l=1

λl

(
K∑
k=1

πjk (Pl)Y (ω2k)

)

=

K∑
k=1

(
L∑
l=1

λlπjk (Pl)

)
Y (ω2k) =

K∑
k=1

πjk (Pλ)Y (ω2k) .

Further,

K∑
k=1

πjk (Pλ) =

K∑
k=1

(
L∑
l=1

λlπjk (Pl)

)

=

L∑
l=1

λl

(
K∑
k=1

πjk (Pl)

)

=

L∑
l=1

λlPl ({ω1j}) = Pλ ({ω1j}) ,

and

J∑
j=1

πjk (Pλ) =

J∑
j=1

(
L∑
l=1

λlπjk (Pl)

)

=

L∑
l=1

λl

 J∑
j=1

πjk (Pl)


=

L∑
l=1

λlP ({ω2k}) = P ({ω2k}) ,

so that πij (Pλ) as defined is a solution to (16)− (18) for Pλ =
∑L
l=1 λlPl.

When Q is polyhedral, then we can check G (z) ≥Qicv Y by checking all the
extreme points of Q. Suppose {P1, . . . , PT } are the extreme points of Q indexed
by T = {1, . . . , T}. Then we can define the problem



5.4. AGGREGATION, COLUMN GENERATION, AND ROW GENERATION 66

max
z∈Z0, π(P )≥0

f (z)

(ε−PolyRobCP)

s.t. [G (z)] (ω1j) ≥
∑K
k=1 πjk (Pt) (Y (ω2k) + ε 1)

Pt ({ω1j})
,(22)

j ∈ J , t ∈ T ,
K∑
k=1

πjk (Pt) = Pt ({ω1j}) ,(23)

j ∈ J , t ∈ T ,
J∑
j=1

πjk (Pt) = Pt ({ω2k}) ,(24)

k ∈ K, t ∈ T .

We introduce the Lagrangian for problem (ε−PolyRobCP),

L (z, π, λ, δ, γ)

= f (z)

+

T∑
t=1

J∑
j=1

〈λtj , [G (z)] (ω1j)−
∑K
k=1 πjk (Pt) (Y (ω2k) + ε 1)

Pt ({ω1j})
〉

+

T∑
t=1

J∑
j=1

δtj

(
K∑
k=1

πjk (Pt)− Pt ({ω1j})

)

+

T∑
t=1

K∑
k=1

γtk

 J∑
j=1

πjk (Pt)− Pt ({ω2k})

 .

Assumption 5.4.2. There exists z̃ ∈ Z0 and π̃ ≥ 0 such that

[G (z̃)] (ω1j) >

∑K
k=1 π̃jk (Pt) (Y (ω2k) + ε 1)

Pt ({ω1j})
, ∀j ∈ J , ∀t ∈ T ,

K∑
k=1

π̃jk (Pt) = Pt ({ω1j}) , ∀j ∈ J , ∀t ∈ T ,

J∑
j=1

π̃jk (Pt) = Pt ({ω2k}) , ∀k ∈ K, ∀t ∈ T .

We obtain the following optimality conditions.

Theorem 5.4.3. Suppose assumption 5.4.2 holds. If (ẑ, π̂) is optimal for problem
(ε−PolyRobCP), then there exists λ̂ ≥ 0 and

(
δ̂, γ̂
)
such that
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L
(
ẑ, π̂, λ̂, δ̂, γ̂

)
= max

{
L
(
z, π, λ̂, δ̂, γ̂

)
: (23)− (24)

}
,

0 =

T∑
t=1

J∑
j=1

〈λ̂tj , [G (ẑ)] (ω1j)−
∑K
k=1 π̂jk (Pt) (Y (ω2k) + ε 1)

Pt ({ω1j})
〉,

0 =

T∑
t=1

J∑
j=1

δ̂tj

(
K∑
k=1

π̂jk (Pt)− Pt ({ω1j})

)
,

0 =

T∑
t=1

K∑
k=1

γ̂tk

 J∑
j=1

π̂jk (Pt)− Pt ({ω2k})

 .

Now we consider the dual of the previous problem. For the dual functional

d (λ) = max

f (z) +

T∑
t=1

J∑
j=1

〈λtj , [G (z)] (ω1j)〉 : z ∈ Z0

 ,

the corresponding dual problem is

min d (λ)−
T∑
t=1

J∑
j=1

Pt ({ω1j}) δtj −
T∑
t=1

K∑
k=1

Pt ({ω2k}) γtk(ε−PolyRobCPD)

s.t. − 〈λtj ,
Y (ω2k) + ε 1
Pt ({ω1j})

〉+ δtj + γtk ≤ 0,

∀t ∈ T , ∀j ∈ J , ∀k ∈ K.

Under assumption 5.4.2 strong duality holds between problem (ε−PolyRobCP)
and problem (ε−PolyRobCPD). We are justified in solving the dual and recovering
the solution to the primal.

Theorem 5.4.4. Suppose assumption 5.4.2 holds.
(a) If (ẑ, π̂) is optimal for problem (ε−PolyRobCP), then problem

(ε−PolyRobCPD) has an optimal solution and the optimal values are equal.
(b) If problem (ε−PolyRobCPD) has an optimal solution then problem

(ε−PolyRobCP) has an optimal solution.

5.4.1. Aggregation. Again, we are really only interested in the decision vari-
ables z in problem (PolyRobCP), but not (z, π) in its totality. We use this observa-
tion to justify the expediency of finding a feasible but possibly sub-optimal solution
to problem (PolyRobCP).

There is a natural aggregation scheme for problem (PolyRobCP) as in Chapter
4. Let

π̂ (Ji1 ,Ki2 ; Pt) : {Ji1}
I1
i1=1 × {Ki2}

I2
i2=1 → R+

be the joint probability measure on the cross product of the modified sample spaces
{Ji1}

I1
i1=1 and {Ki2}

I2
i2=1 corresponding to the extremal probability distribution Pt.

Even though we are dealing with multiple extremal probability measures {Pt}t∈T
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and could introduce a separate partition of the state space for each Pt, we use a
single partition of the state space. We recover the original joint probability measure

{πjk (Pt)}j∈J , k∈K
from the aggregated measure π̂ (Ji1 ,Ki2 ; Pt) via the following convention. Set

πjk (Pt) =
Pt ({ω1j})Pt ({ω2j}) π̂ (Ji1 ,Ki2 ; Pt)(∑
j∈Ji1

Pt ({ω1j})
)(∑

k∈Ki2
Pt ({ω2k})

)
for Ji1 3 j and Ki2 3 k.

We adopt the notational conventions

Pt (Ji1) ,
∑
j∈Ji1

Pt ({ω1j})

and

Pt (Ki2) ,
∑
k∈Ki2

Pt ({ω2k}) .

We define (abusing notation by using Ji1 and Ki2 to indicate scenarios)

[G (z)] (Ji1) =

∑
j∈Ji1

Pt ({ω1j}) [G (z)] (ω1j)∑
j∈Ji1

Pt ({ω1j})
and

Y (Ki2) =

∑
k∈Ki2

Pt ({ω2k})Y (ω2k)∑
k∈Ki2

Pt ({ω2k})
.

In this new setup, the constraints (22) are recast as

Pt (Ji1) [G (z)] (Ji1) ≥
I2∑
i2=1

π̂ (Ji1 ,Ki2 ; Pt) (Y (Ki2) + ε 1) ,

∀t ∈ T , i1 = 1, . . . , I1.

The constraints (23) become

I2∑
i2=1

π̂ (Ji1 ,Ki2 ; Pt) = Pt (Ji1) ,

∀t ∈ T , i1 = 1, . . . , I1.

Finally, the constraints (24) become

I1∑
i1=1

π̂ (Ji1 ,Ki2 ; Pt) = Pt (Ki2) ,

∀t ∈ T , i2 = 1, . . . , I2.

The aggregate version of problem (ε−PolyRobCP) looks exactly like the general
form of problem (ε−PolyRobCP) with appropriate notational modifications based
on this discussion:
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max
z∈Z0, π(P )≥0

f (z)

(ε−AggPolyRobCP)

s.t. [G (z)] (Ji1) ≥
∑I2
i2=1 π̂ (Ji1 ,Ki2 ; Pt) (Y (Ki2) + ε 1)

Pt (Ji1)
,(25)

∀t ∈ T , i1 = 1, . . . , I1,

I2∑
i2=1

π̂ (Ji1 ,Ki2 ; Pt) = Pt (Ji1) ,(26)

∀t ∈ T , i1 = 1, . . . , I1,

I1∑
i1=1

π̂ (Ji1 ,Ki2 ; Pt) = Pt (Ki2)(27)

∀t ∈ T , i2 = 1, . . . , I2,

and the corresponding feasible region, set of optimal solutions, and optimal value
are:

ZQ,εJK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)
, {z ∈ Z0, π̂ ≥ 0 : (25)− (27)} ,

SQ,εJK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)
, argmax

(z,π̂)

{
f (z) : (z, π̂) ∈ ZQ,εJK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)}
,

νQ,εJK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)
, max

{
f (z) : (z, π̂) ∈ ZQ,εJK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)}
.

5.4.2. Row generation. We can use the transformation

πjk (Pt) =
Pt ({ω1j})Pt ({ω2k}) π̂ (Ji1 ,Ki2 ; Pt)(∑
j∈Ji1

Pt ({ω1j})
)(∑

k∈Ki2
Pt ({ω2k})

)
for Ji1 3 j and Ki2 3 k to generate constraints for problem (ε−PolyRobCP). The
coupling constraints (22) expand to become:

Pt (ω1j) [G (z)] (ω1j)

≥
I2∑
i2=1

∑
k∈Ki2

 Pt ({ω1j})Pt ({ω2k}) π̂ (Ji1 ,Ki2 ; Pt)(∑
j∈Ji1

Pt ({ω1j})
)(∑

k∈Ki2
Pt ({ω2k})

)
 (Y (ω2k) + ε 1) ,

∀j ∈ J .

These constraints can be further transformed to give



5.4. AGGREGATION, COLUMN GENERATION, AND ROW GENERATION 70

∑
j∈Ji1

Pt ({ω1j})

 [G (z)] (ω1j)

≥
I2∑
i2=1

π̂ (Ji1 ,Ki2 ; Pt)

 ∑
k∈Ki2

Pt ({ω2k})Y (ω2k)∑
k∈Ki2

Pt ({ω2k})
+ ε 1

 ,

∀j ∈ J .

The equality in distribution constraints (23) − (24) are automatically satisfied in
this situation. Suppose that π̂ satisfies (23)− (24), then

K∑
k=1

πjk (Pt) =

I2∑
i2=1

∑
k∈Ki2

πjk (Pt)

=

I2∑
i2=1

∑
k∈Ki2

Pt ({ω1j})Pt ({ω2k}) π̂ (Ji1 ,Ki2 ; Pt)(∑
j∈Ji1

Pt ({ω1j})
)(∑

k∈Ki2
Pt ({ω2k})

)
=

I2∑
i2=1

Pt ({ω1j}) π̂ (Ji1 ,Ki2 ; Pt)(∑
j∈Ji1

Pt ({ω1j})
)

= Pt (ω1j) ,

for all t ∈ T and j ∈ J . A similar calculation establishes that

J∑
j=1

πjk (Pt) =

I1∑
i1=1

∑
j∈Ji1

πjk (Pt)

=

I1∑
i1=1

Pt ({ω2k}) π̂ (Ji1 ,Ki2 ; Pt)(∑
k∈Ki2

Pt ({ω2k})
)

= Pt ({ω2k}) ,

for all t ∈ T and k ∈ K.
We now obtain the problem
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max
z∈Z0, π̂≥0

f (z)

(ε-RowPolyRobCP)

s.t.

∑
j∈Ji1

Pt ({ω1j})

 [G (z)] (ω1j)(28)

≥
I2∑
i2=1

π̂ (Ji1 ,Ki2 ; Pt)

 ∑
k∈Ki2

Pt ({ω2k})Y (ω2k)∑
k∈Ki2

Pt ({ω2k})
+ ε 1

 ,

∀t ∈ T , ∀j ∈ J ,
I2∑
i2=1

π̂ (Ji1 ,Ki2 ; Pt) = Pt (Ji1) ,(29)

∀t ∈ T , i1 = 1, . . . , I1,

I1∑
i1=1

π̂ (Ji1 ,Ki2) =
|Ki2 |
K

,(30)

∀t ∈ T , i2 = 1, . . . , I2,

and we denote its feasible region, set of optimal solutions, and optimal value as:

ZQ,εRow,JK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)
, {z ∈ Z0, π̂ ≥ 0 : (28)− (30)} ,

SQ,εRow,JK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)
, argmax

(z,π̂)

{
f (z) : (z, π̂) ∈ ZQ,εRow,JK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)}
,

νQ,εRow,JK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)
, max

{
f (z) : (z, π̂) ∈ ZQ,εRow,JK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)}
.

Problem (ε−RowPolyRobCP) has many constraints and few variables, and it can
be solved via row (cut) generation techniques. Since problem (ε−RowPolyRobCP)
is a restriction of problem (ε−RowPolyRobCP), we see immediately that

ZQ,εRow,JK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)
⊂ ZQ,εRow,JK

and

νQ,εRow,JK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)
≤ νQ,εRow,JK .

By the same reasoning,

ZQ,εRow,JK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)
⊂ ZQ,εAgg,JK

and
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νQ,εRow,JK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)
≤ νQ,εAgg,JK .

5.4.3. Column generation. We can also use the partitions {Ji1}
I1
i1=1 and

{Ki2}
I2
i2=1 to generate the full set of variables for problem (ε−PolyRobCP). The

coupling constraints (22) expand to become:

∑
j∈Ji1

Pt (ω1j) [G (z)] (ω1j)

≥
∑
j∈Ji1

K∑
k=1

πjk (Pt) (Y (ω2k) + ε 1) ,

∀t ∈ T , i1 = 1, . . . , I1.

The equality in distribution constraints (23)− (24) expand to become

∑
j∈Ji1

K∑
k=1

πjk (Pt) =
∑
j∈JI1

Pt (ω1j) , ∀t ∈ T , i1 = 1, . . . , I1,

and

∑
k∈Ki2

J∑
j=1

πjk (Pt) =
∑
k∈Ki2

Pt (ω2k) , ∀t ∈ T , i2 = 1, . . . , I2.

We obtain the optimization problem

max
z∈Z0, π̂≥0

f (z)(ε−ColPolyRobCP)

s.t.
∑
j∈Ji1

Pt (ω1j) [G (z)] (ω1j)(31)

≥
∑
j∈Ji1

K∑
k=1

πjk (Pt) (Y (ω2k) + ε 1) ,

∀t ∈ T , i1 = 1, . . . , I1,∑
j∈Ji1

K∑
k=1

πjk (Pt) =
∑
j∈JI1

Pt (ω1j) ,(32)

∀t ∈ T , i1 = 1, . . . , I1,∑
k∈Ki2

J∑
j=1

πjk (Pt) =
∑
k∈Ki2

Pt (ω2k) ,(33)

∀t ∈ T , i2 = 1, . . . , I2,

and we denote its feasible region, set of optimal solutions, and optimal value as:
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ZQ,εCol,JK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)
, {z ∈ Z0, π ≥ 0 : (31)− (33)} ,

SQ,εCol,JK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)
, argmax

(z,π̂)

{
f (z) : (z, π) ∈ ZQ,εCol,JK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)}
,

νQ,εCol,JK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)
, max

{
f (z) : (z, π) ∈ ZQ,εCol,JK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)}
.

Problem (ε−ColPolyRobCP) has few constraints and many variables, and it can be
solved via column generation (pricing) techniques. Since problem
(ε−ColPolyRobCP) is a relaxation of problem (ε−ColPolyRobCP), we see imme-
diately that

ZQ,εCol,JK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)
⊃ ZQ,εCol,JK

and

νQ,εCol,JK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)
≥ νQ,εCol,JK .

By the same reasoning,

ZQ,εCol,JK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)
⊃ ZQ,εAgg,JK

and

νQ,εCol,JK

(
{Ji1}

I1
i1=1 , {Ki2}

I2
i2=1

)
≥ νQ,εAgg,JK .



CHAPTER 6

Multi-period optimization with increasing concave
stochastic order constraints

6.1. Multi-period optimization problem

In [9], a novel class of multi-period stochastic programs is developed. This class
of problems is characterized by a stochastic order constraint on the vector of system
performance measures across all time periods. We will continue this work in this
chapter and study a different type of stochastic order constraint. Specifically, we use
the multivariate increasing concave stochastic order in line with the theme of this
dissertation. This choice of stochastic order constraint leads to easily implementable
sampling methods.

6.1.1. System dynamic and performance measures. Our time horizon
is t = 0, . . . , T . We introduce a filtration F0 ⊂ F1 ⊂ · · · ⊂ FT+1 on (Ω,F , P ) where
F0 = {∅,Ω} and FT+1 = F . The σ−field Ft represents the information available to
the decision maker at the beginning of period t. We have a discrete time dynamical
system

st+1 = Atst +Btvt + et, t = 0, . . . , T − 1,

where st ∈ LNs
1 (Ω,Ft, P ) is the state vector at time t, vt ∈ LNv

1 (Ω,Ft, P ) is the
control vector at time t, and et ∈ LNs

1 (Ω,Ft, P ) is the disturbance at time t. The
initial state s0 is given, and the random matrices satisfy At ∈ LNs×Ns

∞ (Ω,Ft, P )
and Bt ∈ LNs×Nv

∞ (Ω,Ft, P ) where LM×N∞ (Ω,F , P ) is the space of all essentially
bounded measurable mappings X : Ω→ RM×N .

This system has performance measures

Gt : LNs
1 (Ω,Ft, P )× LNv

1 (Ω,Ft, P )→ L1 (Ω,Ft, P )

for t = 0, . . . , T − 1, and

GT : LNs
1 (Ω,FT , P )→ L1 (Ω,FT , P ) ,

denoted as

[Gt (st, vt)] (ω) , t = 0, . . . , T − 1,

[GT (sT , vT )] (ω) .

We use the shorthand s = (s1, . . . , sT ), v = (v0, . . . , vT−1), and

G (s, v) = (G0 (s0, v0) , . . . , GT−1 (sT−1, vT−1) , GT (sT )) .

We assume [G (s, v)] (ω) is continuous and concave in (s, v) for P−almost all ω ∈ Ω.
Define the space of state trajectories (s1, . . . , sT ) to be

74
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S = Lnv
1 (Ω,F1, P )× . . .× Lnv

1 (Ω,FT , P ) ,

and the space of controls (v0, . . . , vT−1) to be

V = Lnv
1 (Ω,F0, P )× . . .× Lnv

1 (Ω,FT−1, P ) .

The sets S and V implicitly account for non-anticipativity.
We next modify assumption 3.1.1 to apply to the dynamic case.

Assumption 6.1.1. (a) G (s, v) is Lipschitz continuous on L2T
1 (Ω,F , P ) for

P−almost all ω ∈ Ω. There exists Π ∈ L1
1 (Ω,F , P ) such that

‖ [G (s1, v1)] (ω)− [G (s2, v2)] (ω) ‖2 ≤ Π (ω) ‖ (s1, v1)− (s2, v2) ‖2

for P−almost all ω ∈ Ω. Set π , E [Π].
(b) The MGF of Π, denoted MΠ (s), is finite for s in a neighborhood of zero.

6.1.2. Dynamic stochastic order constraint. We introduce the random
vector

Y = (Y0, . . . , YT ) ∈ LT+1
1 (Ω,F , P )

to act as a benchmark for G (s, v). For our main problem, we will enforce an
increasing concave stochastic order constraint on G (s, v),

G (s, v) ≥icv Y,

defined as

E [u (G (s, v))] ≥ E [u (Y)] , ∀u ∈ UN (W ) .

We will assume that G (s, v) and Y have support contained in W , so that UN (W )
is sufficient to characterize G (s, v) ≥icv Y.

We have additional constraints on admissible controls, vt ∈ Vt for P−almost
all ω ∈ Ω where Vt ⊂ RNv is a closed convex set for t = 0, . . . , T − 1. Our main
problem is

max
(s,v)∈S×V

E

[
T−1∑
t=0

Gt (st, vt) +GT (sT )

]
(DP)

s.t. st+1 = Atst +Btvt + et, t = 0, . . . , T − 1,(1)

E [u (G (s, v))] ≥ E [u (Y)] ∀u ∈ UN (W ) ,(2)
vt ∈ Vt a.s., t = 0, . . . , T − 1.(3)

The notation DP stands for dynamic problem. Also, the expression vt ∈ Vt a.s.
means vt (ω) ∈ Vt for P−almost all ω ∈ Ω.

Because of the issue with the Slater condition that we have encountered through-
out this dissertation, we introduce the perturbed problem
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max
(s,v)∈S×V

E

[
T−1∑
t=0

Gt (st, vt) +GT (sT )

]
(ε-DP)

s.t. st+1 = Atst +Btvt + et, t = 0, . . . , T − 1,(4)

E [u (G (s, v))] ≥ E [u (Y)] + ε, ∀u ∈ UN (W ) ,(5)
vt ∈ Vt a.s., t = 0, . . . , T − 1.(6)

Proposition 6.1.2. Problem (ε−DP) is a convex optimization problem for all t =
0, 1, . . . , T .

Proof. The objective function E
[∑T−1

t=0 Gt (st, vt) +GT (sT )
]
is concave in

(s, v) by construction. The set

E =

{
(s, v) : st+1 = Atst +Btvt + et, t = 0, . . . , T − 1,

vt ∈ Vt a.s., t = 0, . . . , T − 1

}
is clearly convex since the system dynamic is linear and all Vt are convex. Further
each set

Aεu = {(s, v) ∈ S × V : E [u (G (s, v))] ≥ E [u (Y)] + ε}

is convex since E [u (G (·))] is concave, and thus⋂
u∈UN (W )

Aεu

is convex. �

We also introduce the SIP relaxation of problem (ε−DP):

max
(s,v)∈S×V

E

[
T−1∑
t=0

Gt (st, vt) +GT (sT )

]
(ε-DSIP)

s.t. st+1 = Atst +Btvt + et, t = 0, . . . , T − 1,(7)
E [u (G (s, v))] ≥ E [u (Y)] + ε, ∀u ∈ UΞ,(8)
vt ∈ Vt a.s., t = 0, . . . , T − 1.(9)

The notation DSIP stands for dynamic problem with semi-infinite relaxations.

6.1.3. Nonlinear system dynamic. We can generalize the linear system
dynamic (1) to allow for a nonlinear system dynamic

st+1 = At (st, vt) , t = 0, . . . , T − 1,

where At : RNs × RNv → Rns is a random nonlinear operator with At (ω) ∈
C
(
RNs × RNv ; RNs

)
for P−almost all ω ∈ Ω, and At ∈ Ft+1 for all t = 0, . . . , T−1.

We can consider
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max
(s,v)∈S×V

E

[
T−1∑
t=0

Gt (st, vt) +GT (sT )

]
(10)

s.t. At (st, vt) ≥ st+1, t = 0, . . . , T − 1,(11)

E [u (G (s, v))] ≥ E [u (Y)] + ε, ∀u ∈ UN (W ) ,(12)
vt ∈ Vt a.s., t = 0, . . . , T − 1.(13)

Proposition 6.1.3. Suppose all Gt (st, vt) are increasing in st for t = 0, . . . , T − 1
and GT (sT ) is increasing in sT . Also suppose that all At are concave for t =
0, . . . , T − 1.

(a) Problem (10)− (13) is a convex optimization problem.
(b) At an optimal solution (ŝ, v̂) of problem (10) − (13), At (ŝt, v̂t) = ŝt+1 for

all t = 0, . . . , T − 1.

Proof. (a) The operators At are all concave in (st, vt), so the modified con-
straints At (st, vt) ≥ st+1 for t = 0, . . . , T − 1 still induce convex feasible regions in
(s, v).

(b) The objective E
[∑T−1

t=0 Gt (st, vt) +GT (sT )
]
is increasing in s by assump-

tion, and if G (s, v) ≥icv Y then G (s′, v) ≥icv Y for any s′ ≥ s by the same
monotonicity assumption. Since both st+1 ∈ Ft+1 and At (st, vt) ∈ Ft+1, we must
have At (st, vt) = st+1 at optimality. �

We will restrict to linear system dynamics for the rest of this chapter, the
extension to a concave nonlinear system dynamic is usually immediate.

6.2. Optimality conditions

6.2.1. Optimality conditions for problem (ε−DP). We now derive opti-
mality conditions for problem (ε−DP). We introduce a multiplier u ∈ cl coneUN (W )
corresponding to the increasing concave stochastic order constraint. The Lagrangian
L : S × V × cl coneUN (W )→ R for problem (ε−DP) is:

L (s, v, u) = E

[
T−1∑
t=0

Gt (st, vt) +GT (sT ) + u (G (s, v))

]
.

The Slater condition for problem (ε−DP) follows.

Assumption 6.2.1. There exists (s̃, ṽ) ∈ S × V such that (4) and (6) hold, and

E [u (G (s̃, ṽ))] > E [u (Y)] + ε ∀u ∈ UN (W ) .

We obtain the following optimality conditions for problem problem (ε−DP) .

Theorem 6.2.2. Suppose assumption 6.2.1 holds. If (ŝ, v̂) is an optimal solution
of problem (ε−DP), then there exists û ∈ cl coneUN (W ) such that

L (ŝ, v̂, û) = max
(s,v)∈S×V

{L (s, v, û) : (4) , (6)} ,

E [û (G (ŝ, v̂))] = ε ‖PX
(
û; cl convUN (W )

)
‖.
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Proof. Define

E =

{
(s, v) : st+1 = Atst +Btvt + et, t = 0, . . . , T − 1,

vt ∈ Vt a.s., t = 0, . . . , T − 1

}
.

Also define the operator g (s, v) : L2T
1 (Ω,F , P ) → C

(
UN (W )

)
by [g (s, v)] (u) =

E [u (G (s, v))]− E [u (Y)], and rewrite problem (ε−DP) as

max
(s,v)∈S×V

E

[
T−1∑
t=0

Gt (st, vt) +GT (sT )

]
s.t. g (s, v)− ε ∈ C+

(
UN (W )

)
,

(s, v) ∈ E.

The mapping g (·, ·) is a continuous operator on S × V. Using equicontinuity of
UN (W ) and Lipschitz continuity of G (s, v),

‖g (s1, v1)− g (s2, v2) ‖C(UN (W ))

≤ max
u∈UN (W )

E [|u (G (s1, v1))− u (G (s2, v2)) |]

≤ E [‖G (s1, v1)−G (s2, v2) ‖2]

≤ π‖ (s1, v1)− (s2, v2) ‖2.

Further, g (·, ·) is concave. For (s1, v1), (s2, v2), 0 ≤ α ≤ 1, and u ∈ UN (W ) we
have

[g (α s1 + (1− α) s2, α v1 + (1− α) v2)] (u)

= E [u (G (α s1 + (1− α) s1, α v1 + (1− α) v2))− u (Y)]

≥ E [u (αG (s1, v1) + (1− α)G (s2, v2))− u (Y)]

≥ E [αu (G (s1, v1)) + (1− α)u (G (s2, v2))]

− E [αu (Y) + (1− α)u (Y)]

= α [g (s1, v1)] (u) + (1− α) [g (s2, v2)] (u) ,

using the fact that u is increasing.
For multipliers Λ ∈M+

(
UN (W )

)
, the Lagrangian of this problem is

Υ (s, v,Λ) = E

[
T−1∑
t=0

Gt (st, vt) +GT (sT )

]
+

ˆ
UN (W )

[g (s, v)] (u) dΛ (u) .

Under assumption 6.2.1, the Slater condition is satisfied and we obtain the opti-
mality conditions

Ψ
(
ŝ, v̂, Λ̂

)
= max

{
Ψ
(
s, v, Λ̂

)
: (s, v) ∈ S × V

}
,

〈Λ, g (ŝ, v̂)〉 = εΛ
(
UN (W )

)
.

The results in Chapter 3 allow these conditions to be transformed into the desired
ones in terms of increasing concave functions. �
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We obtain the following optimality conditions for problem (ε−DSIP) using the
same argument as for problem (ε−DP).

Corollary 6.2.3. Suppose assumption 6.2.1 holds. If (ŝ, v̂) is an optimal solution
of problem (ε−DSIP), then there exists û ∈ cl coneUΞ such that

L (ŝ, v̂, û) = max
(s,v)∈S×V

{L (s, v, û) : (7) , (9)} ,

E [û (G (ŝ, v̂))− û (Y)] = ε ‖PX (û; cl convUΞ) ‖.

6.2.2. Auxiliary control problem. The preceding optimality conditions in-
duce an auxiliary control problem. This problem is explicitly:

max
(s,v)∈S×V

E

[
T−1∑
t=0

Gt (st, vt) +GT (sT ) + u (G (s, v))

]
s.t. st+1 = Atst +Btvt + et, t = 0, . . . , T − 1,

vt ∈ Vt a.s., t = 0, . . . , T − 1.

The above problem can be solved with dynamic programming, unlike the original
forms of problems (ε−DP) and (ε−DSIP). In problems (ε−DP) and (ε−DSIP), the
stochastic order constraint cannot be checked from a cost-to-go perspective because
it requires knowledge of activity on all other sample paths ω ∈ Ω.

Define

STt = ×Tυ=tL1
1 (Ω,Fυ, P )

and

VT−1
t = ×T−1

υ=t L1
1 (Ω,Fυ, P ) .

At time t = 0, . . . , T − 1, given history Ft the cost-to-go problem is:

max
(s,v)∈ST

t+1×V
T−1
t

E

[
T−1∑
υ=t

Gυ (sυ, vυ) +GT (sT ) + u (G (s, v)) | Ft

]
(DPt (Ft))

s.t. sυ+1 = Aυsυ +Bυvυ + eυ,

υ = t, . . . , T − 1,

vυ ∈ Vυ a.s.,
υ = t, . . . , T − 1.

In the function E [u (G (s, v)) | Ft], the first t− 1 arguments

(G0 (s0, v0) , . . . , Gt−1 (st−1, vt−1))

are constant since (s0, . . . , st−1, v0, . . . , vt−1) ∈ Ft.

Proposition 6.2.4. Problem (DPt (Ft)) is a convex optimization problem for Ft
for all t = 0, 1, . . . , T

Proof. The function E
[∑T−1

υ=t Gυ (sυ, vυ) +GT (sT )
]
is concave by construc-

tion. The function E [u (G (s, v))] is concave in (st, . . . , sT , vt, . . . , vt−1) for any fixed
(s0, . . . , st−1, v0, . . . , vt−1) since u is concave. Additionally, the set
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E =

{
(s, v) ∈ STt+1 × VT−1

t : st+1 = Atst +Btvt + et, t = υ, . . . , T − 1,
vt ∈ Vt a.s., t = υ, . . . , T − 1

}
is convex. �

6.3. Duality

In this section, we will focus on dynamic programming duality for problem
(ε−DP) and for our auxiliary control problem. Define the dual functional

d (u) = max
(s,v)∈S×V

{L (s, v, u) : (4) , (6)} .

Notice that the dual functional d (u) is equivalent to the auxiliary control problem
in the previous section, and it does not depend on ε. Using the results from Chapter
3, the dual to problem (ε−DP) is

(ε−DPD) min
{
d (u)− ε ‖PX

(
u; cl convUN (W )

)
‖ : u ∈ cl coneUN (W )

}
.

Similarly, the dual to problem (ε−DSIP) is

(ε−DSIPD) min {d (u)− ε ‖PX (u; cl conv (UΞ)) ‖ : u ∈ cl coneUΞ} .

The non-anticipativity constraints will be modeled explicitly in this section. The
usual mean-vector constraints are:

vt − E [vt | Ft] = 0 a.s., t = 0, . . . , T − 1.

However, we will use state-vector constraints (see [15]) for greater ease. On sample
path ω ∈ Ω, the history of observations at time t is denoted by the history operator

Htω = (A0 (ω) , B0 (ω) , e0 (ω) , . . . , At−1 (ω) , Bt−1 (ω) , et−1 (ω)) ,

for t = 1, . . . , T . At time t = 0 there are no observations. The inverse of the history
operator Ht is denoted as

H−1
t ω = {ω̃ ∈ Ω : Htω̃ = Htω} .

The set H−1
t ω ⊂ Ω is the set of all scenarios ω̃ ∈ Ω that share the same history

as scenario ω up to time t. We let HtΩ denote the set of all possible histories
of observations up to time t. Introduce random variables v̄t : HtΩ → RNv for
t = 1, . . . , T − 1 (no state vector is needed for time t = 0, since the initial state
is assumed to be given). Each v̄t is automatically Ft−measurable by construction.
The non-anticipativity constraints can then be expressed as

vt (ω)− v̄t (Htω) = 0 a.s., t = 1, . . . , T − 1.

Make the non-anticipativity constraints explicit in d (u) to obtain
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max
s,v

E

[
T−1∑
t=0

Gt (st, vt) +GT (sT ) + u (G (s, v))

]
s.t. st+1 = Atst +Btvt + et, t = 0, . . . , T − 1,

st (ω)− st (Htω) = 0 a.s., t = 0, . . . , T,

vt (ω)− vt (Htω) = 0 a.s., t = 0, . . . , T − 1,

vt ∈ Vt a.s., t = 0, . . . , T − 1.

Define the random set

E (ω) =

(s, v) :

st+1 = At (ω) st +Bt (ω) vt + et (ω) ,
t = 0, . . . , T − 1,
vt ∈ Vt (ω) ,

t = 0, . . . , T − 1


to represent the system dynamic and control constraints on a particular sample
path. The set E (ω) as defined satisfies relatively complete recourse: it can be
written as

E (ω) = E0 (ω)× · · · × ET (ω)

where each Et (ω) is Ft−measurable, and the constraint

(s (ω) , v (ω)) ∈ E (ω)

can be written as

vt (ω) ∈ Et (ω)

for t = 0, . . . , T − 1 and

st (ω) ∈ Et (ω)

for t = 0, . . . , T .
Introduce the function

φ (s (ω) , v (ω) , ω) =



[∑T−1
t=0 Gt (st, vt) +GT (sT ) + u (G (s, v))

]
(ω) ,

(s, v) ∈ E (ω) ,

−∞,
otherwise.

The function φ (·, ω) is concave on its effective domain:

{(s, v) : φ (s, v, ω) > −∞}
by construction. Further, the effective domain of φ (·; ω) is closed and convex. The
function φ (·, ω) is a normal integrand in the sense that its hypograph is closed and
measurable (see [19, Example 14.32]).

The functional d (u) is then equivalent to the optimization problem:
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max
s,v

E [φ (s (ω) , v (ω) , ω)]

s.t. st (ω)− st (Htω) = 0 a.s., t = 0, . . . , T,

vt (ω)− vt (Htω) = 0 a.s., t = 0, . . . , T − 1.

Even though s0 is given and v0 (ω) − v0 (H0ω) = 0 is a tautology under our as-
sumptions, we still introduce the time index t = 0 above for synchronicity with
[15]. We will introduce multipliers Θs = (Θs0, . . . ,ΘsT ) ∈ L(T+1)Ns

1 (Ω,F , P ) and
Θv =

(
Θv0, . . . ,Θv(T−1)

)
∈ LT Nv

1 (Ω,F , P ) for the non-anticipativity constraints.
Let Θ = (Θs,Θv). We introduce the conjugate function

φ∗ (Θ (ω) , ω)

= sup
s(ω),v(ω)

{φ (s (ω) , v (ω) , ω)− 〈Θs (ω) , s (ω)〉 − 〈Θv (ω) , v (ω)〉} .

The following result establishes duality from the perspective of the non-anticipativity
constraints. Let Θt = (Θst,Θvt) for t = 0, . . . , T − 1 and ΘT = ΘST .

Theorem 6.3.1. [15, Theorem 1] (a) The dual of d (u) is

min
Θ

− E [φ∗ (Θ (ω) , ω)]

s.t. E
[
Θt (ω̃) | ω̃ ∈ H−1

t (Htω)
]

= 0 a.s., t = 0, . . . , T.

(b) Suppose (ŝ, v̂) is optimal for d (u) and that ∂φ (ŝ (ω) , v̂ (ω) , ω) is non-
empty for P−almost all ω ∈ Ω. Then there exists Θ̂ (ω) ∈ ∂ φ (ŝ (ω) , v̂ (ω) , ω)
for P−almost all ω ∈ Ω such that

E
[
Θt (ω̃) | ω̃ ∈ H−1

t (Htω)
]

= 0 a.s., t = 0, . . . , T.

(c) −E
[
φ∗
(

Θ̂ (ω) , ω
)]

is the optimal value of d (u) and its dual.

6.4. Finite probability spaces

In this section, we will consider problem (DP) on a finite probability space.
The dependence on ε > 0 is dropped in this section for notational succinctness.
We will work with the coupling transformation in this section so we do not have
to rely on the ε perturbation to satisfy the Slater condition. For this section, we
suppose that the performance measure G (s, v) (and the corresponding discrete time
dynamic system that it evaluates) and Y are constructed on separate probability
spaces (Ω1,F1, P1) and (Ω2,F2, P2).

The decision variables (s, v) are now finite dimensional {(s (ωj) , v (ωj))}j∈J .
We denote st (ωj) and vt (ωj) as the state and control on scenario ωj at time t. We
obtain the problem:
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max

J∑
j=1

P1 ({ω1j})

[
T−1∑
t=0

[Gt (st, vt)] (ω1j) + [GT (sT )] (ω1j)

](DCP)

s.t. [G (s, v)] (ω1j) ≥
∑K
k=1 πjkY (ω2k)

P1 ({ω1j})
, ∀j ∈ J ,(14)

K∑
k=1

πjk = P1 ({ω1j}) , ∀j ∈ J ,(15)

J∑
j=1

πjk = P2 ({ω2k}) , ∀k ∈ K.(16)

st+1 (ω1j) = At (ω1j) st (ω1j) +Bt (ω1j) vt (ω1j) + et (ω1j) ,(17)
t = 0, . . . , T − 1, ∀j ∈ J ,
vt (ω1j)− v̄t (Ht (ω1j)) = 0,(18)
t = 0, . . . , T − 1,∀j ∈ J ,
vt (ω1j) ∈ Vt (ω1j) ,(19)
t = 0, . . . , T − 1,∀j ∈ J .

There is no need to introduce state vector constraints for s, since (17) automatically
ensures that st ∈ Ft will hold for all t = 1, . . . , T .

We will decompose around the constraints (14) and (18). The Lagrangian for
problem (DCP) is:

L (s, v, v̄, π, λ,Θ) =

J∑
j=1

P1 ({ω1j})

[
T−1∑
t=0

[Gt (st, vt)] (ω1j) + [GT (sT )] (ω1j)

]

+

J∑
j=1

〈λj , [G (s, v)] (ω1j)−
∑K
k=1 πjkY (ω2k)

P1 ({ω1j})
〉

+

J∑
j=1

P ({ω1j})
T−1∑
t=1

〈Θt (ω1j) , vt (ω1j)− v̄t (Ht (ω1j))〉.

The Slater condition for problem (DCP) follows.

Assumption 6.4.1. There exists (s̃, ṽ, ˜̄v, π̃) satisfying (15) − (17) and (19) such
that

[G (s̃, ṽ)] (ω1j) >

∑K
k=1 π̃jkY (ω2k)

P1 ({ω1j})
, ∀j ∈ J .

Optimality conditions for problem (DCP) are next and follow from the nonlin-
ear programming optimality conditions.

Theorem 6.4.2. Suppose assumption 6.4.1 holds. If
(
ŝ, v̂, ˆ̄v, π̂

)
is optimal for

problem (DCP) then there exists λ̂ ∈ RJ(T+1) and Θ̂ ∈ LT−1
∞ (Ω1,F1, P1) such that
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L
(
ŝ, v̂, ˆ̄v, π̂, λ̂, Θ̂

)
= max

{
L
(
s, v, v̄, π̂, λ̂, Θ̂

)
: (15)− (17) , (19)

}(20)

0 =

J∑
j=1

〈λ̂j , [G (ŝ, v̂)] (ω1j)−
∑K
k=1 π̂jkY (ω2k)

P1 ({ω1j})
〉,(21)

0 =

J∑
j=1

P1 ({ω1j})
T−1∑
t=1

〈Θ̂t (ω1j) , v̂t (ω1j)− ˆ̄vt (Ht (ω1j))〉.(22)

The dual functional for problem (DCP) is:

d (λ,Θ) = max {L (s, v, v̄, π, λ,Θ) : (15)− (17) , (19)} .

The dual to problem (DCP) is:

(DCPD) min
λ,Θ
{d (λ,Θ) : λ ≥ 0} .

Strong duality holds between problem (DCP) and problem (DCPD).

Theorem 6.4.3. Suppose assumption 6.4.1 holds.
(a) If problem (DCP) has an optimal solution then problem (DCPD) has an

optimal solution and the optimal values are equal.
(b) If problem (DCPD) has an optimal solution

(
λ̂, Θ̂

)
, then any feasible solu-

tion to the optimality conditions (20)− (22).

The following decomposition result is by inspection.

Proposition 6.4.4. The dual functional d (λ,Θ) decomposes to J deterministic
layers

max
T−1∑
t=0

[Gt (st, vt)] (ω1j) + [GT (sT )] (ω1j)

+ 〈λj , [G (s, v)] (ω1j)〉+

T−1∑
t=1

〈Θt (ω1j) , vt (ω1j)〉

s.t. st+1 (ω1j) = At (ω1j) st (ω1j) +Bt (ω1j) vt (ω1j) + et (ω1j) ,

t = 0, . . . , T − 1,

vt (ω1j) ∈ Vt,
t = 0, . . . , T − 1,

and a non-anticipativity layer

max

−
J∑
j=1

P1 ({ω1j})
T−1∑
t=1

〈Θt (ω1j) , v̄t (Ht (ω1j))〉

 .
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The non-anticipativity layer induces linear constraints on problem (DCPD):∑
ω̃1k∈H−1

t (ω1j)

P1 ({ω̃1k}) Θt (ω̃1k) = 0, t = 0, . . . , T − 1, ∀j ∈ J .



CHAPTER 7

Conclusion

7.1. Remarks

This section highlights the uniting themes and summarizes the impact of this
dissertation.

7.1.1. Uniting themes. We have emphasized three themes throughout this
dissertation. The first is the necessary perturbation for problem (MP) that over-
comes the inherent difficulty with the Slater condition. The second theme is the
interpretation of the optimality conditions in terms of increasing concave functions.
The third is the importance of sample average approximation for problem (MP).

In problem (SIP), it is possible to satisfy the Slater condition without a pertur-
bation by suitably choosing UΞ as discussed in [14]. However, to satisfy the Slater
condition for problem (MP) and to satisfy the Slater condition for problem (SIP) for
general choices of UΞ, we are forced to introduce a perturbation. This perturbation
turns out to be essential in Chapters 3, 5, and 6 to derive optimality conditions.
The central difficulty with problem (MP), problem (RobMP), and problem (DP)
is that the zero function is contained in UN (W ). We cannot exclude just the zero
function because then we lose compactness of the constraint index set. In [14], the
zero function is excluded along with a set of functions so that the resulting subset
UΞ of UN (W ) is still compact. The choice of the constant perturbation function ε
for all of the constraints can be adjusted. The perturbation can in principle be any
continuous function on C

(
UN (W )

)
that is strictly positive at u = 0.

The optimality conditions and duality results in this dissertation are in line
with earlier work in [7, 8, 14]. Increasing concave functions show up as the La-
grange multipliers of the increasing concave stochastic order constraints. Due to
the perturbation function ε, there is a slight modification to the optimality condi-
tions when compared to [7, 8, 14]. A new term appears that penalizes increasing
concave functions with large rates of change.

The importance of sample average approximation for the problem class pre-
sented in this dissertation cannot be overestimated. Most probability distributions
in practice are too large to deal with exhaustively. Further, it is necessary to use
SAA to apply the transformation for problem (MP) developed in [1].

7.1.2. Impact. This dissertation makes several fundamental contributions.
In Chapter 3, we introduce a perturbation of problem (MP) and derive conditions
optimality conditions and duality results. It is shown that the increasing concave
functions play the role of Lagrange multipliers for the perturbed problems with
a suitable modification. In Chapter 4, we take up the issue of sample average
approximation for problem (MP). We establish consistency of sample average ap-
proximation. This chapter argues for sampling from the random-variable-valued
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mapping and the benchmark separately. In Chapter 5 we consider the related is-
sue of robustness against uncertainty in the underlying probability distribution.
Our development in this chapter parallels [11]. Finally, in Chapter 6 we show
that increasing concave stochastic order constraints can be used in multi-period
optimization.

7.2. Future research

This section discusses future directions for this work.

7.2.1. Estimation. There is an implicit connection between Chapter 4 and
Chapter 5. In Chapter 4 we used sample average approximation to estimate P based
on sample data. Statistical estimators are associated with a degree of confidence,
and an implied confidence interval. Instead of just using a point estimate of P
in optimization, we would like to use all of the information from the confidence
interval. Confidence intervals are closely related to the uncertainty sets Q that
were considered in Chapter 5. The robust problem (RobMP) can possibly help
mitigate the uncertainty in estimation. We would like to quantify this mitigation.

7.2.2. Learning. We want to combine the development in this dissertation
with statistical learning strategies. Many real world systems are feedback based
and must be able to incorporate new data in real time. We distinguish between
learning and estimation in this way because estimation implies a single round of
estimation and optimization, while learning implies alternating rounds of estimation
and optimization in perpetuity.

Benchmark design also falls under the heading of learning. Instead of using a
static benchmark that does not depend on data, the decision maker can select and
update his benchmark over time. For many problems, it is necessary to redesign
the benchmark online for realistic goal setting.

7.2.3. Network applications. There are many applications for this class of
stochastic optimization problems. Our future work will emphasize design and man-
agement problems in transportation and supply networks, communication networks,
and energy networks. Our objective for this array of problems will be two-fold.
First, we want to design resilient networks that recover from disruption quickly.
Second, we want to manage networks to ensure consistent reliability given the
presence of stochastic noise. Increasing concave stochastic order constraints are
an effective tool for both of these purposes and allow these goals to be addressed
simultaneously.

7.2.4. Large-scale implementation. Chapter 4 and Chapter 5 mention the
issue of large-scale implementation for problems (SCP) and (RobCP). This issue is
also implied in Chapter 6 for Problem (DCP). Large-scale implementation for these
problems is challenging in two respects. First, these problems are all nonlinear
programming problems while column and row generation techniques have mainly
been developed for linear programs. Second, we cannot use constraint and variable
sampling as in other large-scale approaches. In semi-infinite programming, for
example, it is common to sample a finite set of the constraints and only enforce
these constraints. Problem (NLP) can be constructed from problem (MP) and
problem (SIP) in this way. However, in problems (SCP) and (RobCP) we do not
want to discard any distributional information because these problems are designed
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to use all available distributional information about G (z) and Y. Problem (SCP)
in particular would become somewhat redundant if we used constraint sampling
after the fact, this problem was constructed by random sampling in the first place.

We turn to aggregation since we must use all of the information in problems
(SCP) and (RobCP). To solve the aggregate versions of problems (ε−SCP) and
(ε−RobCP), we must determine how to construct the partitions described in Chap-
ters 4 and 5, and how to update them as new problem data become available.
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