
UCLA
UCLA Electronic Theses and Dissertations

Title
Models and Methods for Sensor-Based Environment Exploration

Permalink
https://escholarship.org/uc/item/7841370h

Author
Hernandez, Joshua Anthony

Publication Date
2015
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7841370h
https://escholarship.org
http://www.cdlib.org/


University of California

Los Angeles

Models and Methods for Sensor-Based Environment

Exploration

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Mathematics

by

Joshua Anthony Hernandez

2015



c© Copyright by

Joshua Anthony Hernandez

2015



Abstract of the Dissertation

Models and Methods for Sensor-Based Environment

Exploration

by

Joshua Anthony Hernandez

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2015

Professor Stefano Soatto, Co-Chair

Professor Luminita Aura Vese, Co-Chair

To interact with the environment, first we need to know where we are relative to it. Ob-

servability of the underlying dynamical model is a necessary condition for ANY algorithm

to work, in the sense of yielding a unique point estimate. Our contribution is to show

that all existing analysis of observability was flawed, and propose new analysis that shows

that, contrary to popular belief, pose is not observable from visual and inertial sensors.

However, we show that the ambiguous set is bounded, and compute it analytically. Once

we know where we are, We need to know what is around us. This is a problem called

mapping. Building geometric maps (point clouds) well explored problem. However, to

interact intelligently need more than point cloud, we need some understanding of topol-

ogy. How is the world around us divided into objects? Chapter 4 talks about a way of

organizing points into surfaces and then connected components of surfaces, that can be

considered objects for the purpose of interaction, from video. Once we know where we

are and have a model of the (Visible) environment, with respect to which we know the

location of an object of interest (point A), we need to know how to get to point A, which

may not be visible. This requires exploration. Chapter 1 deals with this problem. The

contribution is an efficient algorithm with provable bounds on the exploration time and

amenable to be extended to non-compact domains (relevant in vision because one can

see to infinity). To explore the boundaries of this problem set, we also ask whether a

representation is needed at all, at least for simple problems like going to point To this

end, we explore the possibility of directly encoding/representing/optimizing the map from
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sensory data to control action, designed so as to achieve the goal (of getting to point A).
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CHAPTER 1

Representations of the Environment for Robotics

Applications

The work in the following chapters addresses different aspects of the problem of au-

tonomous interaction of a robot with physical environment. The need for such au-

tonomous capabilities is evident - autonomous vehicles, drones, and robots, ar safer than

humans to drive, can replace humans where tasks are dangerous, boring, etc. There are

great difficulties in this work, however. We know how to build robots, sensors, control

etc., but we do not know how to endow a robot with a “sense” of the surrounding envi-

ronment. This sense could be a sense of geometry (where is point A? relative to which

reference frame? what is a path to A, are there “obstacles”? what are “obstacles”), local-

ization (where are you in relation to obstacles?), topology (what paths are traversable?),

photometry (what is an “object”? How do I find it? ). Instead of tackling the problem

of autonomous interaction head-on, we have focused on a few subproblems.

1.1 Summary of core results

1. To interact with the environment, first we need to know where we are relative to it.

Observability of the underlying dynamical model is a necessary condition for ANY

algorithm to work, in the sense of yielding a unique point estimate. Our contribution

is to show that all existing analysis of observability was flawed, and propose new

analysis that shows that, contrary to popular belief, pose is not observable from

visual and inertial sensors. However, we show that the ambiguous set is bounded,

and compute it analytically.

2. Once we know where we are, We need to know what is around us. This is a problem

called “mapping”. Building geometric maps (point clouds) well explored problem.
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However, to interact intelligently need more than point cloud, we need some under-

standing of topology. How is the world around us divided into “objects”? Chapter

4 talks about a way of organizing points into surfaces and then connected compo-

nents of surfaces, that can be considered “objects” for the purpose of interaction,

from video.

3. Once we know where we are and have a model of the (Visible) environment, with

respect to which we know the location of an object of interest (point A), we need to

know how to get to point A, which may not be visible. This requires exploration.

Chapter 1 deals with this problem. The contribution is an efficient algorithm with

provable bounds on the exploration time and amenable to be extended to non-

compact domains (relevant in vision because one can see to infinity).

4. To explore the boundaries of this problem set, we also ask whether a representation

is needed at all, at least for simple problems like going to point A. To this end, we

explore the possibility of directly encoding/representing/optimizing the map from

sensory data to control action, designed so as to achieve the goal (of getting to

point A).

1.2 Overview of the thesis

This work is organized as follows: Chapter 2 analyzes the problem of localization using

monocular video and inertial sensors. Chapter 3 deals with the problem of segmenting

3D pointclouds into task-relevant “objects”. Chapter 4 explores the problem of efficient

autonomous mapping using range sensors. Chapter 5 looks into schemes for reducing the

computational overhead required to maintain an agent’s awareness relative to a task.

2



CHAPTER 2

Observability of Visual-Inertial Navigation

2.1 Introduction

Visually-aided navigation (bearing), and range-aided navigation (radar) can be framed

as a filtering problem. The model is non-linear, has unknown parameters, and un-

known inputs (e.g., accelerometer and gyrometer bias derivative), typically treated as

driving noise in a random walk model. Observability is a necessary condition for any

filter/observer to operate, hence a literature on observability analysis of visually-aided

navigation [38, 58, 35]. Relatively little on range-aided. Unknown parameters are typ-

ically included in the state, thus transforming an identification problem into a filtering

one, and their identifiability analysis lumped in the observability analysis of the result-

ing (augmented) model. Noise does not affect the observability of a model, so for the

purpose of observability analysis, they are set to zero. This is because, by assumption,

noise is “uninformative:” It is typically modeled as a realization of a white zero-mean,

homoscedastic process, independent of the state of the model. However, the driving in-

put to the random walk model of accelerometer and gyro bias is typically small but not

independent of the state. In fact, far from being uninformative, it is strongly correlated

with it, as it is its temporal derivative. Thus, it should be treated as an unknown input,

rather than a “noise.” As such, it should be included in the observability/identifiability

analysis. Our first contribution is to show that while (a prototypical model of) assisted

navigation and auto-calibration is observable in the absence of unknown input, it is not

observable when unknown inputs are taken into account. This exposes a methodological

flaw with the observability analysis of assisted navigation in the existing literature. Our

second contribution is to reframe observability as a sensitivity analysis, and to show that

while the set of indistinguishable trajectories is not a singleton (as it would be if the model

was observable), but it is nevertheless bounded to a set. We explicitly characterize this

3



set and show that, interestingly, it may not contain the “true” state trajectory. Finally,

we provide bounds on the volume of this subset as a function of the characteristics of

the unknown inputs. We do so for bearing-only augmentation, range-only augmentation,

and combined augmentation. Rather than study observability of linearized system, or

algebraically checking the rank conditions, that offers no insight on the structure of the in-

distinguishable states, we characterize observability directly in terms of indistinguishable

sets.

2.1.1 Notation

A reference frame is represented by an orthogonal 3× 3 positive-determinant (rotation)

matrix R ∈ SO(3)
.
= {R ∈ R3×3 | RTR = RRT = I, det(R) = +1} and a translation

vector T ∈ R3. They are collectively indicated by g = (R, T ) ∈ SE(3). When g represents

the change of coordinates from a reference frame “a” to another (“b”), it is indicated by

gba. Then the columns of Rba are the coordinate axes of a relative to the reference frame

b, and Tba is the origin of a in the reference frame b. If pa is a point relative to the

reference frame a, then its representation relative to b is pb = gbapa. In coordinates, if Xa

are the coordinates of pa, then Xb = RbaXa + Tba are the coordinates of pb.

A time-varying pose is indicated with g(t) = (R(t), T (t)) or gt = (Rt, Tt), and the

entire trajectory from an initial time ti and a final time tf {g(t)}tft=ti is indicated in short-

hand notation with g
tf
ti ; when the initial time is t0 = 0, we omit the subscript and call

gt the trajectory “up to time t”. The time-index is sometimes omitted for simplicity of

notation when it is clear from the context.

We indicate with V̂ = (ω̂, v) ∈ se(3) the (generalized) velocity or “twist”, where ω̂

is a skew-symmetric matrix ω̂ ∈ so(3)
.
= {S ∈ R3×3 | ST = −S} corresponding to the

cross product with the vector ω ∈ R3, so that ω̂v = ω × v for any vector v ∈ R3. We

indicate the generalized velocity with V = (ω, v). We indicate the group composition

g1 ◦ g2 simply as g1g2. In homogeneous coordinates, X̄b = GbaX̄a where X̄T = [XT 1] and

G
.
=

 R T

0 1

 ∈ R4×4 V̂
.
=

 ω̂ v

0 0

 . (2.1)

Composition of rigid motions is then represented by matrix product.
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2.1.2 Mechanization Equations

The motion of a sensor platform is represented as the time-varying pose gsb of the body

relative to the spatial frame. To relate this to measurements of an inertial measurement

unit (IMU) we compute the temporal derivatives of gsb, which yield the (generalized)

body velocity V b
sb, defined by ġsb(t) = gsb(t)V̂

b
sb(t), which can be broken down into the

rotational and translational components Ṙsb(t) = Rsb(t)ω̂
b
sb(t) and Ṫsb(t) = Rsb(t)v

b
sb(t).

An ideal gyrometer (gyro) would measure ωimu = ωbsb. The translational component of

body velocity, vbsb, can be obtained from the last column of the matrix d
dt
V̂ b
sb(t). That

is, v̇bsb = ṘT
sbṪsb + RT

sbT̈sb = −ω̂bsbvbsb + RT
sbT̈sb

.
= −ω̂bsbvbsb + αbsb, which serves to define

αbsb
.
= RT

sbT̈sb. These equations can be simplified by defining a new linear velocity, vsb,

which is neither the body velocity vbsb nor the spatial velocity vssb, but instead vsb
.
= Rsbv

b
sb.

Consequently, we have that Ṫsb(t) = vsb(t) and v̇sb(t) = Ṙsbv
b
sb + Rsbv̇

b
sb = T̈sb

.
= αsb(t)

where the last equation serves to define the new linear acceleration αsb; as one can easily

verify we have that αsb = Rsbα
b
sb. An ideal accelerometer (accel) would then measure

αimu = RT
sb(t)(αsb(t)− γ).

There are several reference frames to be considered in an aided navigation scenario.

The spatial frame s, typically attached to Earth and oriented so that gravity γ takes the

form γT = [0 0 1]T‖γ‖ where ‖γ‖ can be read from tabulates based on location and is

typically around 9.8m/s2. The body frame b is attached to the IMU.1 The camera frame

c, relative to which image measurements are captured, is also unknown, although we will

assume that intrinsic calibration has ben performed, so that measurements on the image

plane are provided in metric units. Finally, the radar frame, or range frame r, is that of

the antenna relative to which range measurements are provided.

The equations of motion (known as mechanization equations) are usually described

in terms of the body frame at time t relative to the spatial frame gsb(t). Since the spatial

frame is arbitrary (other than for being aligned to gravity), it is often chosen to be co-

1In practice, the IMU has several different frames due to the fact that the gyro and accel are not
co-located and aligned, and even each sensor (gyro or accel) is composed of multiple sensors, each of
which can have its own reference frame. Here we will assume that the IMU has ben pre-calibrated so
that accel and gyro yield measurements relative to a common reference frame, the body frame. In reality,
it may be necessary to calibrate the alignment between the multiple-axes sensors (non-orthogonality),
as well as the gains (scale factors) of each axis.
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located with the body frame at time t = 0. To simplify the notation, we indicate this

time-varying frame gsb(t) simply as g, and so for Rsb, Tsb, ωsb, vsb, thus effectively omitting

the subscript sb everywhere it appears. This yields

Ṫ = V

Ṙ = Rω̂

V̇ = α

ω̇ = w

α̇ = ξ

(2.2)

where w ∈ R3 is the rotational acceleration, and ξ ∈ R3 the translational jerk (derivative

of acceleration). Although α corresponds to neither body nor spatial acceleration, it can

be easily related to accel measurements:

αimu(t) = RT (t)(α(t)− γ) + αb(t) + nα(t)︸ ︷︷ ︸ (2.3)

where the measurement error in bracket includes a slowly-varying mean (“bias”) αb(t)

and a residual term nα that is commonly modeled as a zero-mean (its mean is captured

by the bias), white, homoscedastic and Gaussian noise process. In other words, it is

assumed that nα is independent of α, hence uninformative. Here γ is the gravity vector

expressed in the spatial frame.2 Measurements from a gyro can be similarly modeled as

ωimu(t) = ω(t) + ωb(t) + nω(t)︸ ︷︷ ︸ (2.4)

where the measurement error in bracket includes a slowly-varying bias ωb(t) and a residual

“noise” nω also assumed zero-mean, white, homoscedastic and Gaussian, independent of

ω.

Other than the fact that the biases αb, ωb change slowly, they can change arbitrarily.

One can therefore consider them an unknown input to the model, or a state in the model,

in which case one has to hypothesize a dynamical model for them. For instance instance

ω̇b(t) = vb(t), α̇b(t) = vα(t) (2.5)

2The orientation of the body frame relative to gravity, R0, is unknown, but can be approximated by
keeping the IMU still (so RT (t) = R0) and averaging the accel measurements, so that 1

T

∑T
t=0 αimu(t) '

−RT
0 γ + αb. Assuming the bias to be small (zero), this equation defines R0 up to a rotation around

gravity, which is arbitrary. Note that if αb 6= 0, the initial bias will affect the initial orientation estimate.

6



for some unknown input vb, vα. While it is safe to assume that vb, vα are small, they

certainly are not (white, zero-mean and, most importantly) uninformative. Nevertheless,

it is common to consider vb, vα, to be realizations of a Brownian motion that is independent

of ωb, αb. This is done for convenience as one can then consider all unknown inputs as

“noise.” Unfortunately, however, this has repercussion on the analysis of the observability

and identifiability of the resulting model (Sect. 2.2).

2.1.3 Standard and reduced models

The mechanization equations above define a dynamical model having as output the IMU

measurements. Including the initial conditions and biases, we have

Ṫ = V T (0) = 0

Ṙ= Rω̂ R(0) = R0

V̇ = α

ω̇= w

α̇= ξ

ω̇b = nωb

α̇b = nαb

γ̇= 0

ωimu(t) = ω(t) + ωb(t) + nω(t)

αimu(t) = RT (t)(α(t)− γ) + αb(t) + nα(t)

(2.6)

In this standard model, data from the IMU are considered as (output) measurements.

However, it is customary to treat them as (known) input to the system, by writing ω in

terms of ωimu and α in terms of αimu:

ω = ωimu − ωb + nR︸︷︷︸
−nω

α = R(αimu − αb) + γ + nV︸︷︷︸
−Rnα

(2.7)

This equality is valid for samples (realizations) of the stochastic processes involved, but

it can be misleading as, if considered as stochastic processes, the noises above are not

independent of the states. Such a dependency, is nevertheless typically neglected. The
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resulting mechanization model is

Ṫ = V T (0) = 0

Ṙ= R(ω̂imu − ω̂b) + nR R(0) = R0

V̇ = R(αimu − αb) + γ + nV

ω̇b = nωb

α̇b = nαb .

(2.8)

Next we will consider augmenting the models above with measurement equations coming

either from range or bearing measurements for a finite set N of isolated points with

coordinates X i ∈ R3, i = 1, . . . , N .

2.1.4 Bearing augmentation (vision)

Initially we assume there is a collection of points X i, i = 1, . . . , N , visible from time

t = 0 to the current time t. If π : R3 → R2;X 7→ [X1/X3, X2/X3] is a canonical central

(perspective) projection, assuming that the camera is calibrated,3 aligned,4 and that the

spatial frame coincides with the body frame at time 0, we have

yi(t) =
RT

1:2(t)(X i − T1:2(t))

RT
3 (t)(X i − T3(t))

.
= π(g−1(t)X i) + ni(t), t ≥ 0. (2.9)

If the feature first appears at time t = 0 and if the camera reference frame is chosen to

be the origin the world reference frame so that T (0) = 0;R(0) = I, then we have that

yi(0) = π(X i) + ni(0), and therefore

X i = ȳi(0)Zi + ñi (2.10)

where ȳ is the homogeneous coordinate of y, ȳ = [yT 1]T , and ñi = [ni
T

(0)Zi 0]T . Here

Zi is the (unknown, scalar) depth of the point at time t = 0. With an abuse of notation,

we write the map that collectively projects all points to their corresponding locations on

3Intrinsic calibration parameters are known and compensated for.

4The pose of the camera relative to the IMU is known and compensated for.
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the image plane as:

y(t)
.
=


y1

y2

...

yN

 (t) =


π(RT (X1 − T ))

π(RT (X2 − T ))
...

π(RT (XN − T ))

+


n1(t)

n2(t)
...

nN(t)

 (2.11)

2.1.5 Alignment (calibration)

Consider the model (2.8) with measurements yi(t) can representing either the range of a

number of sparse reflectors or the position on the image plane of a sparse collection of

point features. In the former case, the range is measured in the reference frame of the

radar, and therefore we have

yi(t) = π
(
grbg

−1(t)X i
s

)
+ ni(t) ∈ R (2.12)

where π(X) = ‖X‖ and grb is the transformation from the body frame to the radar. In

the latter we have

yi(t) = π
(
gcbg

−1(t)X i
s

)
+ ni(t) ∈ R2 (2.13)

where π(X) = [X1/X3, X2/X3]T , and gcb is the transformation from the body frame to

the camera. The “alignment” transformations gcb, grb are typically not known and should

be inferred. We can then, as done for the points X i, add them to the state with trivial

dynamics ġcb = ġrb = 0.

2.1.6 Groups (occlusions)

It may convenient in some cases to represent the points X i
s in the reference frame where

they first appear, say at time ti, rather than in the spatial frame. This is because

the uncertainty is highly structured in the frame where they first appear. Consider

X i(ti) = ȳi(ti)Z
i(ti), then yi(ti) has the same uncertainty of the feature detector (small

and isotropic on the image plane) and Zi has a large uncertainty, but it is constrained to

be positive.

However, to relate X i(ti) to the state, we must bring it to the spatial frame, via

g(ti), which is unknown. Although we may have a good approximation of it, the current

9



estimate of the state ĝ(ti), the pose when the point first appears should be estimated

along with the coordinates of the points. Therefore, we can represent X i using yi(ti),

Zi(ti) and g(ti):

X i
s = X i

s(gti , yti , Zti) = gti ȳtiZti (2.14)

Clearly this is an over-parametrization, since each point is now represented by 3 + 6

parameters instead of 3. However, the pose gti can be pooled among all points that

appear at time ti, considered therefore as a group. At each time, there may be a number

j = 1, . . . , K(t) groups, each of which has a number i = 1, . . . , Nj(t) points. We indicate

the group index with j and the point index with i = i(j), omitting the dependency on j

for simplicity. The representation of X i
s then evolves according to

ẏiti = 0, i = 1, . . . , N(j)

Żi
ti

= 0

ġj = 0, j = 1, . . . , K(t).

(2.15)

For the case of range, this is not relevant as there is no reference frame that offers a

preferential treatment of uncertainty.

2.1.7 Compact notation

If we call the “state” x = {T,R, V, αb, ωb, X} = {x1, x2, x3, x4, x5, x6} the “known input”

u = {ωimu, αimu} = {u1, u2}, the unknown input v = {nωb , nαb} = {v1, v2}, we can write

the mechanization equations (2.8) as

ẋ = f(x) + c(x)u+Dv (2.16)

where

f(x)
.
=



x3

−x2x4

−x2x5 + γ

0

0

0


, c(x)

.
=



0

R

R

0

0

0


, D

.
=



0 0

0 0

0 0

I 0

0 I

0 0


(2.17)

and the measurement equation (2.11) as

y = h(x) + n (2.18)
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where

h(x)
.
=


...

π(x′2(xi6 − x1))
...

 (2.19)

Putting together (2.8)-(2.11) we have a model of the form
ẋ = f(x) + c(x)u+Dv

y = h(x) + n.

(2.20)

2.1.8 Definitions

We call yt = {y(τ)}tτ=0, a collection of output measurements, and xt = {x(τ)}tτ=0 a state

trajectory. Given output measurements yt and known inputs ut, we call

I(yt|ut; x̃0)
.
= {x̃t | yt = h(x̃t) s. t. ˙̃x(t) = f(x̃) + c(x̃)u(t), x̃(0) = x̃0 ∀ t} (2.21)

the indistinguishable set, or set of indistinguishable trajectories, for a given input ut. If

the initial condition x̃0 = x0 equals the “true” one, the indistinguishable set contains at

least one element, the “true” trajectory xt. However, if x̃0 6= x0, the true trajectory may

not even be part of this set.

If the indistinguishable set is a singleton (it contains only one element, x̃t, which is a

function of the initial condition x̃0), we say that the model is observable up to the initial

condition, or simply observable. 5 If {x̃t} is further independent of the initial condition,

we say that the model is strongly observable: I(yt|ut; x̃0) = {xt} ∀ x̃0, u
t.

If the state includes unknown parameters with a trivial dynamic, and there is no

unknown input, v = 0, then observability of the resulting model implies that the param-

eters are identifiable. That usually requires the input ut to be sufficiently exciting (SE),

in order to enable disambiguating the indistinguishable states, 6 as the definition does

not require that every input disambiguates states.

5We will assume that the solution of the differential equation ẋ = f(x) + c(x)u is unique and contin-
uously dependent on the initial condition, so if we impose x̃0 = x0, then x̃t = xt.

6Sufficient excitation means that the input is generic, and does not lie on a thin set. That is, even if
we could find a particular input ut that yields indistinguishable states, there will be another input that
is infinitesimally close to it that will disambiguate them.
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In the presence of unknown inputs v 6= 0, consider the following definition

Iv(yt|ut; x̃0)
.
= {x̃t | ∃ vt s. t. yt = h(x̃t), ˙̃x(t) = f(x̃) + c(x̃)u(t) +Dv(t) ∀ t; x̃(0) = x̃0}

(2.22)

which is the set of unknown-input indistinguishable states. The model {f, c,D} is said

to be unknown-input observable (up to initial conditions) if the unknown-input indis-

tinguishable set is a singleton. If such a singleton is further independent of the initial

conditions, the model is strongly observable. The two definitions coincide once the only

admissible unknown input is vt = 0 for all t.

It is possible for a model to be observable (the indistinguishable set is a singleton),

but not unknown-input observable (the unknown-input indistinguishable set is dense).

In that case, the notion of sensitivity arises naturally, as one would want to measure

the “size” of the unknown-input indistinguishable set as a function of the “size” of the

unknown input. For instance, it is possible that if the set of unknown inputs is small in

some sense, the resulting set of indistinguishable states is also small. If v ∈ V and for

any ε > 0 there exists a δ > 0 such that vol(V ) ≤ ε for some measure of volume implies

vol(Iv(yt|ut; x̃0)) < δ for any ut, x̃0, then we say that the model is bounded-unknown-

input/bounded-output observable (up to the initial condition). If the latter volume is

independent of x̃0 we say that model is strongly bounded-unknown-input/bounded-output

observable.

The set of indistinguishable trajectories I is an equivalence class, and when the model

is observable up to the initial condition, it is parametrized by x̃0. Choosing the “true”

initial condition x̃0 = x0 produces an indistinguishable set consisting of the sole “true”

trajectory, otherwise it is a singleton other than the true trajectory. In some cases, the

initial condition corresponds to an arbitrary choice of reference frame, and therefore the

equivalence class of indistinguishable trajectory are related by a gauge transformation

(a change of coordinates). As the equivalence class can be represented by any element,

enforcing a particular reference for the gauge transformation yields strong observability

(although the singleton may not correspond to the true trajectory).
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Related work

Unknown-input observability of linear time-invariant systems has ben addressed in [9,

29], for affine systems [30], and non-linear systems in [20, 54, 10]. The literature on

robust filtering and robust identification is relevant, if the unknown input is treated as a

disturbance. However, the form of the models involved in aided navigation do not fit in

the classes treated in the literature above, which motivates our analysis.

2.2 Analysis of Bearing-Augmented Navigation

2.2.1 Preliminary claims

Lemma 2.2.1. Given S ∈ SO(3) and Ṡ ∈ TSO(3)(S), and a ∈ R, the matrix (aS + Ṡ) is

nonsingular unless a = 0, in which case it has rank 2 or 0.

Proof. The tangent Ṡ has the form SM , where M is some skew-symmetric matrix. As

such, Mx ⊥ x for any x ∈ R3, so

‖(aS + Ṡ)x‖2
2 = ‖S(aI +M)x‖2

2 = ‖ax‖2
2 + ‖Mx‖2

2.

The above is zero only if ax = 0, so (aS + Ṡ) is nonsingular. For the remaining cases,

observe that a 3× 3 skew-symmetric matrix has rank 2 or 0.

Lemma 2.2.2. Let (R(t), T (t)) and (R̃(t), T̃ (t)) be differentiable trajectories in SE(3).

For each time t′ ∈ [0, T ], there exists an open, full-measure subset At′ ⊂ R3 such that:

For any two static point-clouds {X i}Ni=1 ⊂ At′ and {X̃ i}Ni=1 ⊂ R3 that satisfy

π
(
R−1(t)(X i − T (t)

)
= π

(
R̃−1(t)(X̃ i − T̃ (t))

)
for all i and t (2.23)

there exist constant scalings σit′ > 0 and a constant rotation St′ = R̃(t′)R−1(t′)

such that

σit′St′(X
i − T (t)) = (X̃ i − T̃ (t)) +O((t− t′)2) for all i and t.

Furthermore, if T (t′) 6= 0, then σit′ = σt′ for all i.
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Proof. Write S(t) = R̃(t)R−1(t). Equality under the projection π implies that there

exists a scaling σi(t) (possibly varying with X i and t) such that

σiS
(
X i − T ) = X̃ i − T̃ . (2.24)

For a given time t′, we wish to find a suitably large set At′ such that σ̇i(t
′) = Ṡ(t′) = 0

and σi(t
′) is independent of X i, when X i ∈ At′ Taking time derivatives,

(
σ̇iS + σiṠ

)
(X i − T )− σiSṪ = − ˙̃T

or, dividing by σi,

(
σ̇i
σi
S + Ṡ

)
(X i − T )− SṪ = − 1

σi

˙̃T. (2.25)

Differentiating both sides with respect to X i,

(
σ̇i
σi
S + Ṡ

)
δX i +

(
d
dXi

(
σ̇i
σi

)
δX i

)
S(X i − T ) = −

(
d
dXi

(
1
σi

)
δX i

) ˙̃T. (2.26)

Observe that d
dXi

(
σ̇i
σi

)
δX i and d

dXi

(
1
σi

)
δX i are scalars. By Lemma 2.2.1, the LHS has

rank 2 or greater (as a linear map on δX i), unless σ̇i(t
′) = 0. The RHS, however, has

rank at most 1. Thus, (2.25) is invalid for almost all X i, unless σ̇i(t
′) = 0 (two maps of

different ranks can only agree on a submanifold). Plugging σ̇i = 0 into (2.26), we are left

with

ṠδX i = −
(

d
dXi

(
1
σi

)
δX i

) ˙̃T. (2.27)

Now, the LHS has rank 2 or 0, while the RHS has rank 1 or 0. Again, (2.25) is invalid

for almost all X i, unless Ṡ(t′) = 0. Let At′ ⊂ R3 be the open, full-measure subset (being

the complement of two submanifolds) on which the latter must hold. If, in addition,

˙T (t′) 6= 0, then ˙̃T (t′) 6= 0 and dσi
dXi (t

′) = 0, we can finally write

σt′St′(X
i − T ) = X̃ i − T̃ +O((t− t′)2).

Claim 1 (Indistinguishable Trajectories from Bearing Data Sequences). Let g(t) and g̃(t)

be differentiable trajectories in SO(3). There exists an open, full-measure subset A ⊂ R3

such that
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Given two static, generic (non-coplanar) point clouds {X i}Ni=1 ⊂ A and

{X̃ i}Ni=1 ⊂ R3, satisfying

π(g−1(t)X i) = π(g̃−1(t) X̃ i) for all i and t,

there exist constant scalings σi > 0 and a constant transformation ḡ ∈ SE(3)

such that 
X̃ i = σi(ḡX

i)

g̃(t) = σi(ḡg(t))

for all i and t. (2.28)

Furthermore, if g(t) has a non-constant translational component, then σi = σ

for all i.

Proof. Write g(t) = (R(t), T (t)) and g̃(t) = (R̃(t), T̃ (t)). Let A = {X ∈ R3 : X ∈

At′ for almost all t′}, with At′ defined as in Lemma 2.2.2. By Fubini’s theorem, this has

full measure in R3. If {X i} ⊂ A, then the conditions for Lemma 2.2.2 are satisfied for

almost all t, and thus there exist constant (being stationary for almost all t) scalings σi

and rotation S = R̃(t)R(t)−1 ∈ SO(3) such that X̃ i = σiS(X i − Tt) + T̃t.

Define ḡ(t) = (σ−1
i g̃(t)) g(t)−1, and observe that

X̃ i = σiS(X i − Tt) + T̃t = σi(R̃t(g
−1X i) + σ−1

i T̃t) = σi
(
(σ−1

i g̃(t)) g(t)−1X i
)

= σi(ḡ(t)X i).

If this affine relation holds for the generic set {X i}, then ḡ(t) must be constant. Next,

σi(ḡg(t)) = σi((σ
−1
i g̃(t)) g(t)−1g(t)) = σi(σ

−1
i g̃(t)) = g̃(t).

Finally, if T (t′) = 0 for some t′, then σi = σi(t
′) = σ(t′) = σ for all i.

In what follows, we will avoid the cumbersome discussion of sets such as A ⊂ R3,

defined by a given trajectory, and will instead speak of sufficiently exciting trajectories,

for which a given point cloud is suitable for tracking.

Definition 1 (Sufficiently Exciting Motion). A trajectory g(t) is sufficiently exciting

relative to a point-cloud {X i}Ni=1 ⊂ R3 if, for all {X̃ i}Ni=1 ⊂ R3 and g̃(t) in SE(3),

π(g(t)−1(t)X i) = π(g̃(t)−1X̃ i) for all i and t ⇐⇒ (2.29) X̃ i = σ(ḡX i)

g̃(t) = σ(ḡg(t))
for all i and t

 for some constant σ > 0 and ḡ ∈ SE(3).
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That is, if the projection map π(g(t)X i) defines g(t) and {X i} up to a constant

rotation and mapping.

Observe that the right-to-left implication is always true: if the RHS holds, then

π(g̃(t)−1X̃ i) = π((σḡg(t))−1σ(ḡX i))π(g(t)−1ḡ−1σ−1σḡX i) = π(g(t)−1X i).

We will see that the sufficient excitation condition is very easily satisfied.

Claim 2. Given trajectories g(t) and g̃(t) in SE(3) with non-constant translation, and a

set {X i}Ni=1 of N ≥ 4 points sampled i.i.d. from a non-singular distribution over R3, the

trajectory g(t) is a.s. sufficiently exciting relative to {X i}.

Proof. Fix g(t). By Claim 1, there exists a full-measure A ⊂ R3 such that (2.29) holds

for any static, generic point clouds {X i}Ni=1 ⊂ A and {X̃ i}Ni=1 ⊂ R3. If {X i} is sampled

i.i.d. from a non-singular distribution over R3, then {X i} ⊂ A almost surely.

Equation (2.28) establishes the fact that the indistinguishable trajectories are an

equivalence class parameterized by a group σ(ḡ), called a gauge transformation. We now

include a constant reference frame ga. We then have the following claim.

Claim 3 (Indistinguishable Alignments). For a point cloud {X i}N(t)
i=1 , N(t) > 3, in general

position (non-coplanar), and sufficiently exciting motion,

π(gag
−1(t)X i) = π(g̃ag̃

−1(t)X̃ i) (2.30)

if and only if there exist constants σ > 0, gA and gB ∈ SE(3) such that
X̃ i = σ(gBX

i)

g̃(t) = σ(gBg(t)gA)

g̃a = σ(gagA).

(2.31)

Proof. From Claim 1 we get constant gB ∈ SE(3) and σ > 0 such that X̃ i = σ(gBX
i)

and

g̃(t)g̃−1
a = σ(gBg(t)g−1

a ) (2.32)
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Let gA = g−1
a σ−1(g̃a). Then g̃a = σ(gagA) and

g̃(t) = σ(gBg(t)gA).

We now include groups of points, each with its own reference frame.

Claim 4 (Indistinguishable Groups). For a number i = 1, . . . , K of groups each with a

number j = 1, . . . , Ni ≥ 3 of points in general position (non-coplanar), and sufficiently

exciting motion,

π(gag
−1(t)gig

−1
a Xj) = π(g̃ag̃

−1(t)g̃ig̃
−1
a X̃j) (2.33)

if and only if there exist constants σ > 0, gA, gB, ḡi ∈ SE(3) such that

X̃j = σ(gaḡ
−1
i gig

−1
a Xj)

g̃(t) = σ(gBg(t)gA)

g̃i = σ(gB ḡigA)

g̃a = σ(gagA)

(2.34)

Proof. From Claim 1, we get constant gC ∈ SE(3) and σ > 0 such that

X̃ i = σ(gCX
i), (2.35)

g̃ag̃
−1
i g̃(t)g̃−1

a = σ(gCgag
−1
i g(t)g−1

a ). (2.36)

Define

gA := g−1
a σ−1(g̃a), gB := σ−1(g̃ig

−1
a )gCgag

−1
i , ḡi := gig

−1
a g−1

C ga.

Then, applying the definition of ḡi to (2.35),

X̃j = σ(gCX
j) = σ((gaḡ

−1
i gig

−1
a )Xj).

Applying the definitions of gA and gB to (2.36),

g̃(t) = g̃ig̃
−1
a σ(gCgag

−1
i g(t)g−1

a )g̃a = σ
(
σ−1(gig̃

−1
a )gCgag

−1
i︸ ︷︷ ︸

gB

g(t) g−1
a σ−1(g̃a)︸ ︷︷ ︸

gA

)
= σ(gBg(t)gA).
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Rearranging the definitions of gA, gB and ḡi,

g̃i = σ(gBgig
−1
a g−1

C )g̃a = σ
(
gBgig

−1
a g−1

C σ(g̃a)
)

= σ
(
gBgig

−1
a g−1

C ga︸ ︷︷ ︸
ḡi

g−1
a σ(g̃a)︸ ︷︷ ︸

gA

)
= σ(gB ḡigA).

Finally, rearrange the definition of gA to get

g̃a = σ(gagA).

Eq. (2.34) describes the ambiguous state trajectories if only bearing measurement

time series are given. In that case, there is no alignment to other sensor, so we can assume

without loss of generality that ga = Id and so for g̃a, which in turn implies gA = Id. The

resulting ambiguity is well-known [79] and shows that scale σ is constant but arbitrary,

that the global reference frame is arbitrary (since gB is), and that the reference frame

of each group is also arbitrary (since ḡi is). To lock these ambiguities, we can fix three

directions for each group (thus fixing ḡi) and, in addition, for one of the groups fix the

pose (thus fixing gB); finally, we can impose that the centroid of the points in that one

group (the “reference group”) be one, which fixes σ. Thus, an observer designed based on

the standard model, where 3 directions within each group are saturated, and where the

pose of one group is fixed, and the centroid of the group is at distance one, is observable,

and under the usual assumptions it should converge to a state trajectory that is related

to the true one by an arbitrary unknown scaling, and global reference frame.

Now, when inertial measurements are present, of all the possible trajectories that

are indistinguishable from the measurements, we are interested only in those that are

compatible with the dynamical model driven by IMU measurements. Since the fact that

Xj and ga are constant has already ben enforced, the model will impose no constraints

on X̃j, g̃i and g̃a. However, it will offer constraints on g̃(t), that depends on the arbitrary

constants σ, gA, gB.
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2.2.2 Indistinguishable trajectories in bearing augmentation

Definition 2. For an R3-valued trajectory f : R→ R3 and interval I ⊂ R+, define

m(f :I) := inf
‖x‖=1

(
sup
t∈I
|f(t) · x|

)
= inf
‖x‖=1

(
sup
t∈I
‖f(t)× x‖

)
,

M(f :I) := sup
‖x‖=1

(
sup
t∈I
|f(t) · x|

)
= sup

t∈I
‖f(t)‖, and

m̄(f :I) :=
√

max{0, 2m(f :I)2 −M(f :I)2}.

Observe that M(f : I) ≥ m(f : I) ≥ m̄(f : I), and that the inequalities are strict

unless {±f(t)| t ∈ I} is dense on the sphere of radius M(f :I). We use these “minimum-

excitation” bounds in order to prove a partial converse of the Cauchy-Schwarz inequality:

Lemma 2.2.3. Let A = c1I + c2R, for some rotation R ∈ SO(3) and scalars c1 and c2.

Then, for any trajectory f : R+ → R3 and set of times I ⊂ R+,

sup
t∈I
‖Af(t)‖ ≥ ‖A‖ m̄(f :I).

Proof. First, observe that A is normal:

AAT = (c1I + c2R)(c1I + c2R
T ) = 2c1c2I + c1c2(R +RT ) = ATA.

Let {(λi, vi)}3
i=1 be orthonormal eigenvalue/eigenvector pairs of A, with λ1 ≥ λ2 ≥ λ3.

‖Af(t)‖2 = λ2
1(v1 · f(t))2 + λ2

2(v2 · f(t)2 + λ2
3(v3 · f(t))2

≥ λ2
1

(
(v1 · f(t))2 − (v2 · f(t)2 − (v3 · f(t))2

)
= ‖A‖2

(
2(v1 · f(t))2 − ‖f(t)‖2

)
.

Taking the supremum over I,

sup
t∈I
‖Af(t)‖2 ≥ ‖A‖2 sup

t∈I

(
2(v1 · f(t))2 − ‖f(t)‖2

)
≥ ‖A‖2

(
2 sup
t∈I

(v1 · f(t))2 − sup
t∈I
‖f(t)‖2

)
≥ ‖A‖2

(
2m(f :I)2 −M(f :I)2

)
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Lemma 2.2.4. Let A = I − R, for some rotation R ∈ SO(3). Then, for trajectory

f : R+ → R3 and I ⊂ R+,

sup
t∈I
‖Af(t)‖ ≥ ‖A‖m(f :I).

Proof. Let {(λ, v1), (λ̄, v2), (1, 0)} be the orthonormal eigenvalue/eigenvector pairs of R.

Since R and I commute, {(λ − 1, v1), (λ̄ − 1, v2), (0, u)} are the eigenpairs of A, and

‖A‖ = |λ− 1| = |λ̄− 1|. Then,

‖Af(t)‖2 = |λ− 1|2(v1 · f(t))2 + |λ̄− 1|2(v2 · f(t))2 + 0 = ‖A‖2(w · f(t))2,

where

w :=
(v1 · f(t))v1 + (v2 · f(t))v2

‖(v1 · f(t))v1 + (v2 · f(t))v2‖
=

(v1 · f(t))v1 + (v2 · f(t))v2√
(v1 · f(t))2 + (v2 · f(t))2

.

Taking the supremum over I,

sup
t∈I
‖Af(t)‖2 = ‖A‖2 sup

t∈I
‖w · f(t)‖2 ≥ ‖A‖2m(f : I)2.

Claim 5 (Indistinguishable Trajectories from IMU Data). Let g(t) = (R(t), T (t)) ∈

SE(3) be such that 
Ṙ= R(ω̂imu − ω̂b)

Ṫ = V

V̇ = R(αimu − αb) + γ

(2.37)

for some known constant γ and functions αimu(t), ωimu(t) and for some unknown functions

αb(t), ωb(t) that are constrained to have ‖α̇b(t)‖ ≤ ε, ‖ω̇b(t)‖ ≤ ε, and ‖ω̈b(t)‖ ≤ ε at all

t, for some ε < 1.

Suppose g̃(t)
.
= σ(gBg(t)gA) for some constant gA = (RA, TA), gB = (RB, TB), σ > 0,

with bounds on the configuration space such that ‖TA‖ ≤ MA and |σ| ≤ Mσ. Then,

under sufficient excitation conditions (described in this proof), g̃(t) satisfies (2.37) if and
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only if

‖I −RA‖ ≤
2ε

m(ω̇imu :R+)
(2.38)

|σ − 1| ≤ kc1ε+Mσ‖I −RA‖
M(α̇imu :Ic1)

(2.39)

‖TA‖ ≤
ε(kc2 + (2Mσ + 1)MA)

(1− |σ − 1|)m(ω̈imu :Ic2)
(2.40)

‖(1−RT
B)γ‖ ≤ ε(kc3 +MσMA) + (|σ − 1|+ ε)M(ωimu − ωb :Ic3)‖γ‖

m(ωimu − ωb :Ic3) (1− |σ − 1|)
(2.41)

for Ii and ki determined by the sufficient excitation conditions.

Proof.

(2.38) The ambiguous rotation R̃ must satisfy ˙̃R = R̃(ω̂imu − ̂̃ωb) for some ω̃b:

˙̃R = RBR(ω̂imu − ω̂b)RA = R̃RT
A(ω̂imu − ω̂b)RA = R̃(R̂T

Aωimu − R̂T
Aωb)

= R̃(ω̂imu − [ω̂imu + R̂T
Aωimu − R̂T

Aωb])

where the quantity in brackets is −̂̃ωb, which defines

ω̃b := RT
Aωb + (I −RT

A)ωimu. (2.42)

Taking derivatives and rearranging,

2ε ≥ ‖ ˙̃ωb −RT
Aω̇b‖ = ‖(I −RT

A)ω̇imu‖

Since this is true for all t ∈ R, we can write

2ε ≥ sup
t∈R
‖(I −RT

A) ω̇imu(t)‖ ≥ ‖I −RT
A‖m(ω̇imu :R+).

This rearranges to give (2.38).

(2.39) The ambiguous translation T̃ must satisfy the dynamics in (2.37):

¨̃T = ˙̃V = R̃(αimu − α̃b) + γ = RBRRA(αimu − α̃b) + γ.

Alternatively, working with T̃ = σRB(RTA + T ) and applying the dynamics to T ,

¨̃T = σRB(R̈TA + T̈ ) = σRB(R̈TA +R(αimu − αb) + γ).
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Taking the difference between these two expressions,

0 = σRBR̈TA +RBR(RAα̃b − σαb) +RBR(σαimu −RAαimu) + (σRB − I)γ,

and multiplying by RTRT
B,

0 = σ(RT R̈)TA + (RAα̃b − σαb) + (σαimu −RAαimu) +RT (σ −RT
B)γ

= σ((ω̂imu − ω̂b)2 + ( ˙̂ωimu − ˙̂ωb))TA + (RAα̃b − σαb) + (σαimu −RAαimu) +RT (σ −RT
B)γ.

Differentiating again,

0 = σ(ṘT R̈ +RT
...
R)TA (2.43)

+ ((I −RA)σ + (σ − 1)RA)α̇imu (2.44)

+ ṘT ((I −RT
B)σ + (σ − 1)RT

B)γ. (2.45)

+ (RA
˙̃αb − σα̇b) (2.46)

As a sufficient excitation condition, assume that ‖Ṙ(t)‖ ≤ ε, ‖R̈(t)‖ ≤ ε, and

‖
...
R(t)‖ ≤ ε, for t ∈ Ic1 . Under these constraints, (2.44) is bounded by kc1ε, where,

e.g. kc1 := 2MσMA + (2Mσ + 1)(‖γ‖+ 1). In that case,

kc1ε ≥ max
t∈Ic1
‖((I −RA)σ + (σ − 1)RA)α̇imu(t)‖

≥ |σ − 1|M(α̇imu :Ic1)−Mσ‖I −RA‖.

This rearranges to give (2.39).

(2.40) Now, assume that ‖Ṙ(t)‖ ≤ ε, ‖R̈(t)‖ ≤ ε, and ‖T̈ (t) − γ‖ ≤ ε, for t ∈ Ic2 .

Under these constraints, ‖α̇
imu
‖ ≤ 2ε, and (2.43) is bounded by kc2ε, where, e.g.

kc2 := (2Mσ + 1)(‖γ‖+ 3). In that case,

kc2ε ≥ max
t∈Ic2
‖σ((ω̂imu − ω̂b)( ˙̂ωimu − ˙̂ωb) + (¨̂ωimu − ¨̂ωb))TA‖

= max
t∈Ic2
‖σ((RT Ṙ)(RT R̈− (RT Ṙ)2) + (¨̂ωimu − ¨̂ωb))TA‖

≥ (1− |1− σ|)max
t∈Ic2
‖ω̈imu(t)× TA‖ − (2Mσ + 1)MAε

≥ (1− |1− σ|) ‖TA‖m(ω̈imu :Ic2)− (2Mσ + 1)MAε.

This rearranges to give (2.40).
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(2.41) Finally, assume that ‖R̈(t)‖ ≤ ε, ‖
...
R(t)‖ ≤ ε, and ‖T̈ (t) − γ‖ ≤ ε for t ∈ Ic3 .

As before, ‖α̇imu‖ ≤ 2ε. Then, (2.43) + (2.44) is bounded by kc3ε, where, e.g.

kc3 = 2Mσ + 3. In that case,

kc3ε ≥ ‖σ(ṘT R̈ +RT
...
R)TA + ṘT ((I −RT

B)σ + (σ − 1)RT
B)γ‖

≥ ‖σṘT (R̈ + (I −RT
B))γ‖ −MσMAε− |σ − 1| ‖ṘT‖ ‖γ‖

≥ (1− |σ − 1|) ‖ṘT (I −RT
B)γ‖ −MσMAε− (|σ − 1|+ ε) ‖ṘT‖ ‖γ‖

≥ (1− |σ − 1|)m(ṘT :Ic3)‖(1−RT
B)γ‖ − ε(kc3 +MσMA)− (|σ − 1|+ ε)M(ṘT :Ic3)‖γ‖

This rearranges to give (2.41).

2.2.3 Gauge transformations

The set of indistinguishable trajectories I is an equivalence class, and when the model

is observable up to the initial condition, it is parametrized by x̃0. Choosing the “true”

initial condition x̃0 = x0 produces an indistinguishable set consisting of the sole “true”

trajectory, otherwise it is a singleton other than the true trajectory. In some cases, the

initial condition corresponds to an arbitrary choice of reference frame, and therefore the

equivalence class of indistinguishable trajectory are related by a gauge transformation

(a change of coordinates). As the equivalence class can be represented by any element,

enforcing a particular reference for the gauge transformation yields strong observability

(although the singleton may not correspond to the true trajectory).

Formally, an arbitrary choice of initial condition is sufficient to fix the gauge refer-

ence. For instance, the set of indistinguishable trajectories in the limit where ε → 0 is
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parametrized by an arbitrary TB ∈ R3 and θ ∈ R,

T̃ = exp(γ̂θ)T + TB

R̃ = exp(γ̂θ)R

T̃ti = exp(γ̂θ)T̄ti + TB

R̃ti = exp(γ̂θ)R̄ti up to O
(
‖ω̇b‖
‖ω̇imu‖ ,

‖α̇b‖
‖α̇imu‖ ,

1
‖γ‖

)
T̃cb = Tcb

R̃cb = Rcb

(2.47)

If we impose that T (0) = T̃ (0) = 0, then TB = 0 is determined; similarly, if we impose

the initial pose to be aligned with gravity (so gravity is in the form [0 0 ‖γ‖]T , then θ = 0.

But while we can impose this condition, we cannot enforce it, since the initial condition

is not a part of the state of the filter, so we cannot relate the measurements at each time

t directly to it.

However, if the gauge reference can be associated to constant parameters that are part

of the state of the model, the gauge ambiguity can be enforced in a consistent manner.

For instance, the ambiguous set of points is

X̃j = gaḡ
−1
i gig

−1
a Xj. (2.48)

If each group i contains at least 3 non-coplanar points, it is possible to fix ḡi by parametriz-

ing Xj .
= ȳjtiZ

j and imposing thre directions yjti = ỹjti = yj(ti), j = 1, . . . , 3, the mea-

surement of these directions at time ti when they first appear. This yields ḡi = gi and

X̃j = Xj for that group. Note that it is necessary to impose this constraint in each group.

The residual set of indistinguishable trajectories is parameterized by constants θ, TB,

that determine a Gauge transformation for the groups, that can be fixed by always fixing

the pose of one of the groups. This can be done in a number of ways. For instance, if for

a certain group i we impose

Rti = R̃ti = R̂(ti) and Tti = T̃ti = T̂ (ti) (2.49)

by assigning their value to the current best estimate of pose and not including the corre-

sponding variables in the state of the model, then we have that

R̂(ti) = exp(γ̂θ)R̂(ti) (2.50)
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and therefore θ = 0; similarly,

TB = (I − exp(γ̂θ))T (ti) = 0 (2.51)

Therefore, the gauge transformation is enforced explicitly at each instant of time, as each

measurement provides a constraint on the states. This suggests the following modeling

procedure in the design of a filter/observer for bearing-assisted navigation:

1. Set T (0) = 0 with zero model error covariance, and zero initial covariance.

2. Set R(0) = R0 such that [I2×20]R0αimu = 0, with zero model error and non-zero

initial covariance.

3. Fix gravity to [0, 0, ‖γ‖]T from tabulates

4. Initialize at rest, then perform some fast motions before groups of features are

added.

5. Add K groups, each with 2N +N states, plus their pose for each group but one.

6. Fix 2 directions per group ([34] fixes all directions; this results in a non-zero mean

component of the innovation, that in turn results in a small bias in all other states,

that have to account for/absorb the mean)

7. Fix the pose of one group (remove its pose from the state)

8. Triage groups before adding them to the state.

After the Gauge Transformation has ben fixed, the model is observable, and therefore a

properly designed observer will converge to a solution x̃ that is related to the true one x
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as follows:

X̃ref = (1 + σ̃)R̃cbe
ωBeγ̂θeωAR̃T

cb(X
ref − TA) + (1 + σ̃)(R̃cbe

ωATB + R̃cbTA + T̃cb)(2.52)

X̃j = (1 + σ̃)R̃cbR̄iR̃tiR̃
T
cb(X

j − TA) + (1 + σ̃)(R̃cbR̄iT̃ti + R̃cbT̄i + T̃cb) (2.53)

T̃ = eγ̂θT + TB(1 + σ̃) + ωBe
γ̂θT + eωBeγ̂θRTA(1 + σ̃) (2.54)

R̃ = eωBeγ̂θReωA (2.55)

T̃ti = eγ̂θT̄i + TB(1 + σ̃) + ωBe
γ̂θT̄i + eωBeγ̂θR̄iTA(1 + σ̃) (2.56)

R̃ti = eωBeγ̂θR̄ie
ωA (2.57)

T̃cb = Tcb + σ̃Tcb +RcbTA(1 + σ̃) (2.58)

R̃cb = Rcb exp(ωA) (2.59)

where

‖TA‖ ≤
2kmint ‖ω̇b‖
maxt ‖ω̈imu‖

‖ωA‖ ≤
2 mint ‖ω̇b‖
maxt ‖ω̇imu‖

‖ωB‖ ≤
(

3kmax(mint ‖ω̇b‖,mint ‖α̇b‖)
min(maxt ‖ω̇imu‖,maxt ‖α̇imu‖, ‖γ‖)

)
|σ̃| ≤

(
2kmint ‖α̇b‖

min(maxt ‖ω̇imu‖,maxt ‖α̇imu‖)

)
and arbitrary θ, TB and suitable constant κ. The groups will be defined up to an arbitrary

reference frame (R̄i, T̄i), except for the reference group where that transformation is fixed.

Note that, as the reference group “switches” (when points in the reference group become

occluded or otherwise disappear due to failure in the data association mechanism), a

small error in pose is accumulated. This error affects the gauge transformation, not the

state of the system, and therefore is not reflected in the innovation, nor in the covariance

of the state estimate, that remains bounded. This is unlike [71], where the covariance of

the translation state TB and the rotation about gravity θ grows unbounded over time,

possibly affecting the numerical aspects of the implementation. Notice that in the limit

where ω̇b = α̇b = 0, we obtain back Eq. (2.47).
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CHAPTER 3

Scene Segmentation by Aggregation of Global

Ordering Constraints

3.1 Introduction

In this chapter, we present a method, illustrated in Fig. 3.1, to endow a scene, densely re-

constructed from monocular video, with a metric that incorporates geometric homogene-

ity and image topology through occlusions. While the latter are temporally inconsistent

(they change with the video), the way they change is spatially consistent, an observation

key to defining affinities that allow us to partition the scene into coherent “objects” at

a level of granularity relevant to the viewer. Occlusions inform the scale of the segmen-

tation, allowing the selection of a partitioning of the scene, out of all possible partitions,

that respects the occlusions present in the video. For robotic interaction tasks, such as

manipulation or obstacle avoidance, the granularity of the scene representation can be

critical, and our approach focuses the scene segmentation task on objects that generate

occlusions in the images due the motion of the viewer relative to the scene.

To achieve this, we employ a robust metric on the scene using a combination of

curvature-based geodesics on a 3D mesh and back-projected occlusion-constrained image

segmentations. The spatial consistency of these segmentations on the scene allows our

Occlusion-based
Segmentations

3D Mesh

Monocular Video

Augmented
Geodesic

Curvature 
Weights

Geometric
 Segmentation

Our SegmentationAugmented
Geodesic

Figure 3.1: Our monocular dense reconstruction and segmentation pipeline
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segmentation method to adapt to the scale informed by the occlusions in the video.

While one could employ trained object detectors at the outset to arrive at a semantic

segmentation of the scene, we focus on low-level geometric and topological cues first,

to segment the scene and images into coherent regions, where one could then deploy

object detectors if so desired. Semantic analysis of the scene involves object identities

and relations, and knowledge of scene geometry, topology, and putative object regions

are key to infer the latter. This is the focus of our work.

The remainder of the chapter is organized as follows: In Sec. 3.2.1 we formulate scene

(and video) segmentation as a selection problem on the set of potential nested parti-

tions of the underlying scene based on homogeneity properties, and Sec. 3.2.3.1 presents

occlusion-based image segmentation as a scale-selection mechanism on this set of poten-

tial partitions. Sec. 3.2.2.2 presents the construction of a curvature-augmented geometry

on a 3D mesh used in Sec. 3.2.3.2 to regularize these occlusion-based selections obtained

from the image frames through an adaptive geodesic that combines these two compo-

nents to perform a scene segmentation at the level of granularity relevant to the viewer.

Finally, Sec. 3.3 shows a quantitative and qualitative evaluation of our scale-adaptive

segmentation scheme on a ground-truthed dataset of monocular dense reconstructions

that we have collected.

The work described here is the result of a fifty-fifty collaboration with Konstantine

Tsotsos, who designed and assembled the 3D pipeline, made significant contributions to

the “object distance” metric, and implemented the segmentation scheme.

3.1.1 Contributions and Related Work

There is a vast body of literature pertaining to semantic segmentation of images [22, 85,

57, 21, 99, 83, 72, 92, 51, 43, 62]; our work is particularly related to joint segmentation

(a.k.a. “co-segmentation”) of multiple images, or video [50, 100, 41, 74, 52, 14]. However,

the goal of such approaches is a partitioning of the spatio-temporal image volume, not of

the scene that generated it. Seeking a segmentation of the scene allows us to bypass the

complex and discontinuous changes in the partitioning of the video due to scale, spatial

quantization, and occlusions. Furthermore, occlusions provide local ordering constraints

that can be used to partition the image into “layers” [86, 68, 102, 75, 44, 45] by solving a
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convex optimization problem [41]. In all of these cases, “objects” are collections of pixels

that are often temporally inconsistent as the local ordering constraints can change over

time (think of a merry go round), producing flickering segmentations. However, by by

using occlusions as topological cues these segmentations tend to correspond to spatially

consistent regions on the scene, even if their image labels are not temporally consistent.

Our method relies heavily on this observation to accumulate data-driven cues for the

extent of individual objects in the scene.

Our work can be interpreted as an attempt to combine multiple image segmentations

(which depend on both the scene and the viewer) into one persistent segmentation of the

scene independent of the viewer. Since our method involves the intermediate reconstruc-

tion of a dense three-dimensional model of the scene, which we do in real time, our work

also relates to multiple-view stereo and structure-from-motion, and in particular real-time

dense multi-view stereo [60, 87, 88]. As an alternative, one could use an alternate range

sensor [77], for instance based on structured light [61], although those perform poorly in

natural illumination and have a fixed scale of interaction.

There are relatively few attempts to generate a dense label field in the scene [36].

While semantic labels have been attached to various forms of 3D reconstruction, these

typically are sparse (e.g., collections of feature descriptors and their coarse positions

[53, 33]).

Our work is also related to [39], in which Regression and Decision Tree Fields are used

to segment a 3D scene, and [69], in which SVMs are used to segment point clouds gathered

from RGB-D data. Similarly, Bleyer et al. [11] describe a method for labeling that is

explicitly compatible with the 3D structure of the scene. Although direct comparison

with these algorithms is not possible as neither their code nor their datasets are publicly

available, in Sect. 3.3.2 we report experiments on data similar in nature and scale that

we intend to release publicly upon completion of the anonymous review process. Other

related work includes [101, 80, 6], where the focus is on manipulation. Additionally,

Zheng et al. [103] use 3D point clouds to find objects in the scene using geometric and

physical cues from RGB-D data. Most closely related to our work are are the recent

works of [28, 73, 76, 46]), all of which generate semantic segmentations of the scene using

responses from trained detectors as input. We seek to generate segmentations at a similar
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level of abstraction (albeit without semantic labels) through viewpoint-based topological

homogeneity instead of semantic homogeneity (object detector responses). Our method

can also be thought of as a generic proposal scheme for regions within which to collect

support for semantic categorization based on geometric and viewpoint based contextual

information. Partitions based on solely geometric homogeneity have also been explored

extensively by the 3D mesh segmentation community ([15, 7, 49]).

Our contributions are (a) a method for scene segmentation leveraging the spatial con-

sistency of temporally inconsistent image cues, (b) an adaptive geodesic distance function

on the scene shaped by spatially consistent image cues in the form of occlusions, (c) an

object-level scene segmentation scheme that extends a real-time dense reconstruction sys-

tem based on monocular video. To compare with standard approaches for segmenting

dense geometry, we have (d) collected a calibrated dataset with a variety of objects of

different scales and textures, indoor and outdoor, on natural and artificial laboratory

scenes. A key assumption for our dense monocular reconstruction pipeline is that the

only thing moving in the scene is the viewer. Extension beyond cases where this assump-

tion holds is desirable, but even the static case is relevant to several applications from

robotic inspection to autonomous navigation and exploration.

3.2 Methodology

3.2.1 Scene Model

The input to our system is a grayscale video {It}Tt=0, with each image It mapping from

a domain D ⊂ R2 to R+. The desired output is a constant partitioning of a higher-

dimensional “scene” that the video observes, from which we can also derive a piecewise-

constant, integer-valued function ct(x) that associates to each pixel x ∈ D a label. The

scene is represented by a (multiply-connected) collection of surfaces S ⊂ R3 supporting a

reflectance function (albedo) ρ : S → R+. Under the Lambert-Ambient model, the image

and the scene are related by
It(x) = ρ(p) + nt(x), p ∈ S

x = π(gtp) + vt(x)

(3.1)
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where gt ≡ (R(t), T (t)) ∈ SE(3) is the pose of the camera relative to the reference frame

of S, and π : R3 → D is a canonical central (perspective) projection. The residual

nt(x) accounts for unmodeled photometric phenomena such as changes in illumination

(assumed negligible in the short time-span during which the video is captured), deviations

from Lambertian reflection, sensor noise etc. The residual vt(x) accounts for violations

of the geometric assumptions (rigid motion, static scene). Estimates ĝt, Ŝ are obtained

as described in Sec. 3.2.2.1.

We consider that objects in the scene compose a nested covering of sets S = {Si}Ki=1,

where Si ∩ Sj ∈ {∅, Si, Sj} for all i and j, and
⋃K
i=1 Si = S. Any segmentation of the

scene is a selection P = {SP,i}KPi=1 of disjoint sets in S such that
⋃Kp
i=1 SP,i = S. For a

partitioning P to be meaningful, typically some homogeneity property must hold on each

SP,i, be that geometric, photometric, semantic, topological, or some combination.

One can perform a sequence of still-frame (or short-baseline video) segmentations

ct : D → Z+ using a subset of these properties which can then be leveraged into a seg-

mentation of the scene. A reasonable such segmentation is one that does not oversegment

the scene relative to ct (distinguish points that have the same label ct for all or almost all

t), or undersegment (fail to distinguish points that tend to have different labels), more

than necessary. As these ct will be temporally inconsistent, they can be regularized by

integration on the scene using geometric homogeneity. We consider a particular set of

segmentations ct to induce a selection P from S. The use of occlusion-based image seg-

mentation (Sec. 3.2.3.1) to induce a segmentation respecting topological homogeneity as

seen by the viewer is a key contribution of our approach.

3.2.2 Curvature Augmented Geometry and Geometric Affinity

Here we discuss the construction of a 3D mesh representation of the scene, and of an

augmented geometry for curvature-based affinity computations.

3.2.2.1 Dense Monocular Reconstruction

A estimate of the scene Ŝ is reconstructed in an on-line fashion as the camera browses

the scene. We use the real-time camera tracking system PTAM [40], a fast dense stereo
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module, and a globally optimal depth map fusion algorithm. The latter component

takes as input depth maps and camera poses obtained from the former components,

and computes a dense surface using an implicit volumetric representation via a truncated

signed distance function (TSDF), similar to [97, 96, 26]. Dense depth maps are computed

using multiview plane-sweeping [16] on a set of images and their camera poses obtained

from the tracking module. The main advantage of this approach is that it allows for

arbitrary scene topology. It is also closely related to the Kinect Fusion [61], although we

do not employ a depth sensor but work solely based on image data. Example surface

normal and depth maps extracted from our dense reconstruction are shown in figure 3.2.

For the purposes of computing affinities between points on Ŝ, we construct discretized

mesh derived from the regular voxelization of the reconstructed scene. Affinities between

regions of the scene can be computed as functions of the nodes of this mesh. Each node

q aggregates the spatial information (mean location, mean normal, Sec. 3.2.2.2) and

image-based topological cues (Sec. 3.2.3.1) of the surfaces passing through the associated

voxel.

3.2.2.2 Computing Geometric Affinity

Affinities (or distances) between regions of the scene can be computed as functions

of the nodes of this mesh. Following standard geometric mesh segmentation schemes

([15, 7, 49]) we use surface curvature as a heuristic for partitioning contiguous mesh

regions. In particular, we try to cut the mesh at “creases”, regions where one of the

principal curvature directions dominates the other. At each mesh node, we compute

the local principal curvatures k1(q) > k2(q), and the corresponding principal direc-

tions v1(q) and v2(q), by fitting a second-order surface to that node and its neigh-

bors. The scalar field K(q) := max{0, k1(q)2

k1(q)+|k2(q)|} computed at every mesh node mea-

sures the strength and dominance of the most-positive eigenvalue, k1(q) (see Figure

3.3). The augmented geometric distance between two points qi and qj on the mesh

is computed as a K-weighted mesh geodesic, that is, as the minimum path length

dG(qi, qj) = min{ s0→···→ sn
qi=s0, qj=sn} dG(s0, . . . , sn), where the s0, . . . , sn are a sequence of con-
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Figure 3.2: Dense reconstructions of indoor and outdoor scenes from monocular video: depth

(left column) and normal (right column) maps. From top: City of Sights, Tree, Industrial1,

Industrial2 (described in section 3.3.2).
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Figure 3.3: Illustration of curvature penalty. Paths are penalized which pass over regions with

high concavity, especially in the direction of greatest concavity. At left, we show the scalar field

K(q) = max{0, k1(q)2/(k1(q)+ |k2(q)|)}, on a sample curved surface, where k1(q) is the greatest

positive principal curvature component, with associated vector field v1(q). At right, we show

the weighted field K(q)v1(q) at each point.

nected intervening nodes, {A1, A2} are scalar weights, and

dG(s0, . . . , sn) :=
∑n

i=1

(
‖si − si−1‖2︸ ︷︷ ︸

Path length

+ K(si)︸ ︷︷ ︸
Concavity weight

(
A1 + A2|(si − si−1) · v1(si)|︸ ︷︷ ︸

Path-component in direction of greatest concavity

))
(3.2)

A segmentation of the scene using these geometric homogeneity cues is a standard ap-

proach to 3D mesh segmentation, and is used as a baseline with which to evaluate our

scale-aware segmentation in Sec. 3.3. A drawback of a purely geometric approach is that

there is no unique scale appropriate for a task-relevant segmentation (such as segmenting

potential objects for manipulation), as scenes typically consist of multiple scales of geo-

metric primitives with strong violations of homogeneity between them (think of a coffee

mug or a pineapple).

3.2.3 Constructing an Occlusion-Informed Geometry

To upgrade this curvature-augmented geometry to one capable of supporting queries

beyond geometric homogeneity, trained detectors are typically used (e.g. [28, 46]) to

provide semantic homogeneity cues. In lieu of a battery of trained detectors for a fixed

set of object classes, we obtain cues of topological characteristics as seen by the viewer
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through occlusions and use these to adapt the granularity of the distances on the scene

to one relevant to the viewer’s motion relative to the scene.

3.2.3.1 Single Image Occlusion-Based Segmentation

Salient occlusion boundaries provide a strong topological cue as to the arrangement of

surfaces in the scene from a given vantage point and motion. Furthermore, they are

derived from the measurements entirely at runtime and not dependent on prior training

data. We implement the linear program formulation of [8], which employs occlusion

relationships between regions on the image plane as constraints on a depth-ordering of

the image based on low level photometric or geometric homogeneity cues. Occlusion

boundaries are obtained from salient depth discontinuities using the known geometry of

the scene, and the segmentation is performed on a superpixelization of the image derived

from the projected areas spanned by voxels associated to nodes of the scene mesh. These

nodes are coarsified based on proximity to generate a computationally tractable number

of superpixels which respect geometric boundaries in the images. Affinities between

neighboring superpixels are found by computing the cost dG between their corresponding

nodes. Sample single image segmentations are shown in section 3.3.2. Since the presence

of salient occlusion cues is dependent on the viewpoint (and motion) of the camera,

the back-projections of these segmentations give us a homogeneity cue relevant to the

viewer’s motion to combine with the geometric homogeneity cues of Sec. 3.2.2.2. To

use these image segmentations ct as topological homogeneity cues, we aggregate a history

C(q) = {Ct(q)}Tt=1 at each node q. If the node q is visible in the image at time t, then Ct(q)

takes the mode of assignments in ct corresponding to the area its voxel subtends on the

image plane. Zeroes in the history C(q) denote frames in which the point p is not visible.

A key assumption is that segmented regions in the images will be spatially consistent when

back-projected onto the scene. If they consistently have disagreeing labels, then they were

typically considered to occupy different depth-layers from the viewer’s perspective and

are likely not part of the same region. We quantify this by accumulating a penalty dL

along traversals of the scene that cross consistent image segmentation boundaries. This

penalty is the normalized total number of frames for which the segmentation assignment
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Figure 3.4: At left, example back-projected image segmentation labels ct from three frames,

over a sequence of nodes traversed from ‘A’ to ‘B’. At right, the traversal penalty dL accumulated

over the traversal due to passing through nodes with conflicting image segmentation histories.

The fact that some nodes are not visible in some frames means that penalties are not incurred

along the same boundaries, depending on the direction of travel.

changes, at least once, along the path (Eq. 3.3), as illustrated in Fig. 3.4.

dL(s0, . . . , sn) :=

1
T
|{t : ∃i, j ∈ 0, . . . n, 0 6= Ct(sj) 6= Ct(si) 6= 0}|︸ ︷︷ ︸

Frames in which the layer assignment changes between s0 and sn

(3.3)

Note that 0 ≤ dL ≤ 1.

3.2.3.2 Occlusion-Constrained Geometric Affinity

Secs. 3.2.2.2 and 3.2.3.1 present two different traversal costs along the nodes of the mesh.

dG models deviations from geometric homogeneity, and dL models violations of image

topology informed by occlusions. Nonparametric segmentation techniques (such as those

used in Sec. 3.2.4) are preferred for generic segmentation tasks due to their ability to select

the number of segments automatically. As a consequence, any combination of dG and dL

between two nodes must change the structure of the resulting scene distance matrix at

all scales in order to be effective. For example, a cost d(qi, qj) = dG(qi, qj) +dL(qi, qj) will

amplify geometric distances linearly when dL(qi, qj) 6= 0, and have no impact on distances

within contiguous regions bounded by occlusions cues in the images. This will likely lead

to over-segmentations of the scene in those regions when using non-parametric methods.

Therefore a key design criterion for our adaptation of the geometric costs dG between

nodes using dL is that they be attenuated when dL is small and amplified when dL is close
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Figure 3.5: Example behavior of the combined traversal cost in Eq. 3.4 using artificial data.

Note that as dL increases, the rate of increase of d as a function of dG accelerates up until

saturation of the robust penalty.

to one.

To achieve this, and serve the dual purpose of providing a natural conversion from

distances dG to affinities for segmentation, we compute the cost of traversing a path

between successive adjacent nodes on the scene using the Geman-McClure robust penalty

(Eq. 3.4) with a scale parameter σα,ε(dL) (Eq. 3.5).

d(qi, qj) = min
{ s0→···→ sn
qi=s0, qj=sn}

(
1 +

σα,ε(dL(s0, . . . , sn))2

dG(s0, . . . , sn)2

)−1

, (3.4)

σα,ε(dL) acts as a scale shaping function, the goal of which is to locally adapt the scale of

the distance function based on the available evidence for object boundaries. If minimal

evidence is present (dL is small), σα,ε will be large and attenuate the increase in distance.

If dL is large and a consistent boundary in back-projected image segmentations is present

then σα,ε(dL) will shrink, accelerating the increase in distance. The parameters α and

ε control the rate of decreasing scale and boundary values (at dL = 0 and dL = 1)

respectively. Fig. 3.5 shows an example of the behavior of this choice of combined

geodesic and adaptive scale using artificial data.

σα,ε(dL) =
1− exp(−α(1− dL)− ε)

1− exp(−dL − ε)
(3.5)
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Figure 3.6: Sample geometric traversal costs dG from a single point to all others across the

scene overlaid on images. Colored lines indicate the path of the geodesic on the scene originating

at the magenta square in each image, with distance increasing with changing colors, starting

from zero (black).

The set of distances di := {dij : j ∈ S} is computed in O(|S|nframes) time, using a

modified Dijkstra’s algorithm on the nodes of the scene mesh.

3.2.4 Scene Segmentation

Discrete representations of complex scenes at high resolution can typically consist of

many thousands of nodes, making both computation and storage of a pairwise distance

matrix of geodesics between all nodes infeasible. To make segmentation based on pairwise

distances tractable we generate a subgraph of the scene by uniformly sampling nodes

subject to a minimum Euclidean distance and compute geodesics between them using

the full resolution representation. To obtain a sparse segmentation of the scene, we

apply a graph-based version of the DP-Means [42] algorithm, a low-variance asymptotic
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clustering algorithm derived from the Dirichlet process Gaussian mixture model [82]. The

DP-Means algorithm was chosen for its nonparametric nature, i.e. its ability to select the

number of objects in the scene automatically, and its computational speed. However,

the original algorithm is only applicable to clustering data in a normed vector space;

thus, we find an initial segmentation of the subgraph by globally optimizing a spectral

relaxation [98, 93] of the DP-Means cost, and refine the segmentation via kernelized [19]

iterative updates. The partitioned subgraph is projected back to full mesh by performing

a Voronoi tessellation of the scene discretization using the previously computed geodesics

from each node in the subgraph.

A possible future extension of our segmentation pipeline is to enable adaptation to

dynamically changing scales by treating more recent images segmentations preferentially,

either through a fixed sliding window or decaying components of dL(s0, . . . , sn). The

Dynamic Means [13] algorithm, a low-variance asymptotic clustering algorithm based

on the dependent Dirichlet process Gaussian mixture [55] can be used to make such a

segmentation strategy temporally consistent. As in the batch case, this algorithm is

ideal due its nonparametric ability to automatically discover the number of objects in

the scene, and for its computational speed. However, Dynamic Means suffers from the

same limitation as DP-Means; it is only applicable to data in a normed vector space.

Therefore, for each video frame, we find an initial segmentation of the single frame alone

using spectral clustering, and then enforce temporal consistency in the segmentation by

using kernelized refinement iterations based on the Dynamic Means cost.

3.3 Evaluation

3.3.1 Comparison Methodology

We are not aware of benchmarks for evaluating scene segmentation inferred from monocu-

lar vision. While several RGB-D datasets for reconstruction and segmentation exist (such

as [90, 59, 81, 3]) they tend to have highly variable viewpoint scale, which makes the ap-

propriate scale of a segmentation (based on occlusion cues) vary over time, in addition to

having very similar scene content and geometry (indoor office and home scenes). There-

fore, we have captured a set of diverse sequences, both indoor and outdoor, on which to
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test our dense reconstruction and segmentation pipeline, and included one provided by

[26]. To generate ground truth for each sequence we manually segment the reconstruction

into regions that correspond to objects at a scale appropriate for interaction from the

video’s perspective. As noted in section 3.2.1, objects compose a nested covering of sets,

and the choice of which partition to use for groundtruth is subjective, though we have

endeavored to select a fair partition into the dominant objects as visible from the videos.

We compare the results of our occlusion-constrained segmentation to a baseline of seg-

mentation using standard geometric homogeneity cues (described in section 3.2.2.2), for

which typically a fixed scale parameter must be selected to perform segmentation, chosen

to preserve as many of the dominant objects as possible without over-segmenting them.

Note that it is infeasible for a single scale to accurately segment the entire scene, neces-

sitating our adaptation of scale using occlusion cues from the viewer’s motion. Baseline

segmentations are compared numerically to object-level segmentations through F-score

and precision-recall metrics. F-scores are computed following standard methodology [63],

to determine the agreement between ground-truth segments and computed segments.

Given a correspondence between computed cluster ci, i ∈ I and ground-truth regions

gj, j ∈ J , we compute F-scores as follows. Precision Pij and recall Rij are computed as

the average (weighted by cluster size) ground-truth fraction of clusters, Pij = |ci∩gj|/|ci|,

which penalizes under-segmentation, and the fraction of the corresponding ground-truth

region covered by a cluster, Rij = |ci∩gj|/|gj|, which penalizes over-segmentation. A com-

promise measure Fij = 2PijRij/(Pij +Rij) penalizes both. An optimal correspondence

φ : I → J is found by the Hungarian algorithm, maximizing the the total F-score,

F = max
{φ:I→J}

1
|I|

∑
i∈I

Fiφ(i). (3.6)

A precision-recall curve may also be computed by comparing a thresholded affinity

matrix δMij>t with the ground truth affinity matrix δgi=gj . Since this is a monotonic

function of distance along the scene, the precision-recall curve sampling over affinity

thresholds allows us to evaluate the segmentation results across a range of scales.
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3.3.2 Geometric and Occlusion-Constrained Segmentation Results

We present results in the form of re-projected segmentations and sample geodesics on

four geometrically and topologically complex scenes, three of which were collected out-

doors (Park, Industrial1, and Industrial2) and two of which contain notable multi-scale

geometry (Park and City of Sights (CoS), made available by [26]). Please refer to our

supplemental material for video results on these sequences.

Fig. 3.7 shows sample images and re-projected groundtruth segmentations for each

scene, Fig. 3.8 shows sample occlusion-based image segmentation results, and Fig. 3.9

shows sample occlusion-constrained geodesics on the scene built using the occlusion-based

image segmentations. Fig. 3.10 shows qualitative examples of our baseline geometric

segmentation. Fig. 3.11 shows qualitative examples of our final scene segmentations,

with numerical evaluations relative to groundtruth shown in Fig. ??.

In the CoS sequence the multi-scale geometry of the domed structure (a single object)

makes the selection of a single scale infeasible, however the adaptive geodesic is able to

shape distances on the scene based on the available image segmentations, enabling a

correct segmentation. The Park sequence shows a scene with complex natural geometry

on the ground and smoothly varying geometry on the nearby tree. Highly variable ground

geometry makes the selection of a single scale unable to correctly segment both the smooth

tree limbs (which occlude each other throughout the sequence) and the rough ground

(as a single object). These sequences demonstrate that adapting the geometry using

occlusion-based image segmentation enables segmentation at the appropriate viewpoint

scale for all dominant objects in the scene. Both Industrial sequences shows scenes

of sophisticated topology and geometry, the segmentation of which is improved using

our occlusion-informed geometry compared to the over-segmented results using standard

geometric approaches.

The quantitative evaluation of Fig. ?? demonstrates a consistent improvement over a

standard geometric segmentation when compared to our adaptive geodesic. The Precision-

Recall curve comparisons serve to provide further support to the claim that no fixed scale

treatment of purely geometric distances can correctly segment scenes with complex geom-

etry, as varying affinity scale for both methods typically shows an increase in performance
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for our adaptive geodesic distances.

Fig. 3.12 shows a summary of timings for the various components of our system.

Typical size of meshes used to represent the scene geometry are on the order of fifty

thousand, with coarsified meshes for image segmentation on the order of two thousand,

and subgraphs used for clustering on the order of several hundred. The entire system runs

on a 3.5Ghz desktop machine (dense reconstruction, image, and scene segmentation).

3.4 Conclusions

We have presented a method to endow a scene, as densely reconstructed from monocular

video, with a metric that incorporates geometric and topological information as seen by

the viewer, as well as back-projected image statistics. While the latter are temporally

inconsistent (they change with the video), the way they change is spatially consistent,

an observation key to defining distances or affinities that allow us to partition the scene

into coherent “objects”. While one could employ trained object detectors at the outset

to arrive at a semantic segmentation of the scene (and, by simple forward projection,

of the video), we focus on low-level geometric and topological cues first, to segment the

image into coherent regions, where one could then deploy object detectors if so desired.

Semantic analysis of the scene involves object identities and relations, and knowledge of

scene geometry and topology is key to infer the latter. This is our focus in this work.
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Figure 3.7: Sample frames (left) and re-projected groundtruth segmentations (right) for CoS

(top), Park, Industrial1, Industrial2 (bottom). Different colors indicate different segments.
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Figure 3.8: Sample single-image segmentation on frames from CoS (top left), Park (top right),

Industrial1 (bottom left), Industrial2 (bottom right) inferred as described in Sec. 3.2.3.1. Dif-

ferent colors indicate different segments from occlusion-guided segmentation.
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Figure 3.9: Sample occlusion-constrained geodesics on CoS (top left), Park (top right), Indus-

trial1 (bottom left), Industrial2 (bottom right) built as described in Sec. 3.2.3.2. Colored lines

indicate the path of the geodesic on the scene originating at the magenta square in each image,

with distance coded between zero (black) and one (white) through intervening colors.
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Figure 3.10: Sample re-projections of our baseline geometric segmentation on CoS (top left),

Park (top right), Industrial1 (bottom left), Industrial2 (bottom right). Different colors indicate

different segments.
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Figure 3.11: Sample re-projected segmentation results using our occlusion-constrained

geodesics for CoS (top), Park, Industrial1, Industrial2 (bottom). Different colors indicate dif-

ferent segments.

47



F=0.724

F=0.583

Precision

Re
ca

ll

P/R Curve for City of Sights Affinity Matrix

Object affinity
Geometric affinity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
e
ca

ll

Segmentation Precision/Recall
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Precision
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F=0.767
F=0.788

Frame segmentations

Scene segmentations

F=0.628
F=0.549

Precision

Re
ca

ll

P/R Curve for Park Affinity Matrices

Object affinity
Geometric affinity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
e
ca

ll

Segmentation Precision/Recall
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Precision
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

F=0.729

F=0.836

Frame segmentations

Scene segmentations

Precision

Re
ca

ll

P/R Curve for Industrial1 Affinity Matrices

Object affinity
Geometric affinity

F=0.703

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F=0.632

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
e
ca

ll

Segmentation Precision/Recall
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F=0.605
F=0.648

Precision
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frame segmentations

Scene segmentations

F=0.535
F=0.511

Precision

Re
ca

ll

P/R Curve for Industrial2 Affinity Matrices

Object affinity
Geometric affinity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
e
ca

ll

Segmentation Precision/Recall
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F=0.648

Precision
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frame segmentations

Scene segmentations

F=0.701

48



Figure 3.11: Quantitative evaluation of our segmentations vs. groundtruth (Continued on the

following page The curves at left show precision and recall scores induced by thresholding the

affinity matrix at levels running from 0 to 1. Highlighted points indicate the best threshold for

clustering, vis-à-vis the ground truth. At right, precision and recall are computed from final

segmentations, as well as from re-projected image segmentations.
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1. Dense Reconstruction

2. Image Segmentation

3. Construct Mesh

4. Compute Geodesics

5. Segmentation

30Hz Realtime

3s / frame
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1 × CPU

1 × CPU

N × CPU

1 × CPU

Figure 3.12: Approximate timings on the CoS sequence with a final mesh size of roughly 57000

points. GPU is an Nvidia GTX 780. Note that traversing the mesh to compute geodesics for

the sampled subgraph is parallelized. Typically a subgraph of several hundred nodes is used.
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CHAPTER 4

Information-Driven Autonomous Exploration

4.1 Introduction

We describe an information-gathering approach for exploring an unknown scene using

a range sensor. Our explorer maintains a map of known and likely obstacles, under an

Ising-like prior distribution, and follows a greedy best-next-view policy, whereby uncer-

tainty at the next timestep is minimized by maximizing the uncertainty of the next range

measurement. Uncertainty is efficiently approximated by a novel Poisson disk sampling

technique. Our algorithm improves the performance of recent visibility-based planning

approaches that come with guaranteed performance bounds on the expected path length

to complete exploration, and extends them to allow exploration of an unbounded region.

4.2 Prior Work

Information-driven visual exploration has a long history, both for the case of eye move-

ment and for the more general case of full mobility. The former is relevant to visual

attention and oculomotor control, where saccadic motions are hypothesized to be related

to the uncertainty on the irradiance in different locations of the visual field. Information

gain (uncertainty reduction) occurs due to the uneven distribution of sensing elements in

the retina (foveal vision). Since we are interested in uniformly-sampled omnidirectional

sensors, customary in robotics applications, no information gain can occur as a result

of gaze control. Therefore, we focus on the case of parallax motion (translation of the

optical center), where uncertainty is due to occlusions as well as scaling phenomena that

can be reduced by control of the vantage point. The use of information-theoretic cri-

teria for visual exploration dates back to the literature on Active Vision ([89], [5], [94],

[12]). For range sensors, where most of the uncertainty is due to occlusions, entropy can
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Figure 4.1: Lost Astronaut Prior Distribution The crash site x(t) is defined by a random

time t, chosen uniformly in [0, T ]. This induces prior marginal probabilities on the latitude

and longitude of the crash site. The limiting distribution for as T →∞ is shown at right,

while the limiting distribution on longitude is uniform.

be related to visibility, and therefore several have adopted geometric criteria ([17], [95],

[91], [70], [47]). Much of this work is concerned with a greedy approach to information

maximization by seeking the “best next view” for a particular task, which could be recog-

nition or manipulation ([70], [18], [67]). The problem is also addressed in the context of

optimal control ([4], [78]), sequential decision [2], “Value of Information” [66], partially-

observable path planning ([31], [56]), among others. In some cases, the problem exhibits

submodular characteristics that make it amenable to be solved with efficient algorithms

with provable guarantees [64]. For instance [23] perform underwater inspection, assum-

ing a known map, exploiting submodular optimization. Unfortunately, our setting is not

submodular, and therefore proper formalization in terms of optimal control or sequential

decision processes would yield an intractable inference problem. As customary, therefore,

we seek for surrogate criteria that yield algorithms with provable guarantees.

4.3 Information-Driven Exploration

In this chapter we consider the problem where the variable of interest is the geometry

and topology of a two-dimensional scene (e.g. the map of a building) represented by an

indicator function defined on a domain Ω ⊆ R2, supported on a closed subset O ⊆ Ω that

describes unknown “obstacles” or “objects.” The explorer follows a continuous path x(t)

in the space Ω rO. Let A ⊆ Ω rO be the path-component of Ω rO containing x(0).
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(a) Freely-placed obstacles (b) Gridded obstacles

Figure 4.2: Exploring a Random Room (a) In the first case, the explorer knows that there

are four identical boxes scattered within a room of known dimensions, three of which he

can see. There is a “shadow region” where the disposition of space is not known. Based

on allowable configurations of the missing block (blocks can not intersect, unseen blocks

can not lie in known free space), the explorer can compute, at each point in the shadow

region, the probability that that point is covered by an obstacle. (b) In the second case,

partitions (black line segments), constrained to grid lines (dotted lines) divide up a room.

Seeing any point of a grid segment reveals the disposition of any other point on that grid

segment.

(a) First View (b) New Vantage Point (c) Hypoth. Second View

Figure 4.3: Range Measurement Planning An explorer
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At discrete timesteps ti, i = 1, . . . , L, the explorer at xi = x(ti) measures an n-

directional range map Y(xi) ∈ (sN)n, which gives, to the nearest multiple of s > 0, the

distance to the first obstacle along each sensor element’s line of sight. Let Y t = {Y(xi) :

ti < t} denote the history of measurements up to time t.

Observe that each measurement is a function Y(x) = h(x,Ω,O) of the scene (Ω,O)

and the vantage point x. If we interpret this as a realization of a stochastic process, each

measurement Yi, on average, reduces the uncertainty in O. Although each range sensor

is affected by uncertainty due to scaling, spatial quantization, noise, etc. most of the

uncertainty is due to occlusions, for objects are opaque and therefore at the outset we

have no knowledge of the scene behind an occluder. An information-gathering controller

then aims to design the control {uj}Lj=i that maximizes the reduction in the entropy of

O. Here we will assume for simplicity that we can control the instantaneous velocity, so

that xi+1 = xi + ui.

4.4 Next-View Entropy

In order to compute the information gain of a measurement at time t, we have to define

suitable distributions on the objects of interest. We maintain an estimate of the explorer’s

state at time t as a distribution Pt[ · ] = P[ · |Y t
]

on possible realizations of A. Let

At = {x ∈ Ω : Pt[x ∈ A] = 1}, Ot = {x ∈ Ω : Pt[x ∈ A] = 0}, and Ut = x r (At ∪ Ot)

be the points which at time t are known to be visible, known to be invisible, or unknown,

respectively. Finally, let V t denote the set of points that are visible to the observer from

point xt.

4.4.1 Measurement Uncertainty

Let

G =
{
gij := s i

(
cos(2πj/n), sin(2πj/n)

)}
i,j∈N
j<n

be a uniform radial grid, centered at the origin, with radial spacing s and angular spacing

2π/n (see Figure 4.3). Although we define Y(x) = h(x,Ω,O) as an sN-valued random

n-tuple, it is natural to define an “alter-ego” YG(x), a Boolean-valued random vector
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indexed by sample points gij ∈ G, with the constraint that

YG(x)ij = 0 =⇒ YG(x)i+1,j = 0.1 (4.1)

Let Y(x)ij = 1 iff the point gij + x is visible from x. Observe that

YG(x)ij = 1{Y(x)j < s i}.

This defines a bijective relation between YG(x) and Y(x), so Ht[YG(x)] = Ht[Y(x)].

Our next-view energy Et(x) is the expected decrease in uncertainty at time t, due to

a measurement Y(x):

Et(x) : = Et
[
Ht[O]−Ht[O|Y(x)]

]
= Et

[
Ht[Y(x)]

]
= Ht[Y(x)] = Ht[YG(x)].

We can decompose the latter into a sum of relative entropies, given a ordering go1 , go2 , . . .

on G that respects radial ordering (i.e. if ok = (i, j), o` = (i′, j′), and i′ < i, then ` < k):

=
∑
k

Ht

[
YG(x)ok | {YG(x)o`}`<k

]
.

Now, if YG(x)i′,j = 0 for i′ < i, then by (4.1), we know Y(x)i,j must equal 0 as well. In

that case, the relative entropy at gij is zero, and so

=
∑

ok=(i,j)

Pt
[
YG(x)i′j = 1 for all i′ < i

]︸ ︷︷ ︸
Probability that x+ gij is visible from x

· Ht

[
YG(x)ok | {YG(x)o` | ` < k}, YG(x)i′j = 1 for all i′ < i

]︸ ︷︷ ︸
Value of revealing scene at x+ gij

. (4.2)

Here, we will reference the first term through its complement, which we will call the

“extinction probability”.

4.4.1.1 Extinction Probability

Define a normalized, instantaneous “mean free path” function MFP : Ω → [0,∞), such

that for any curve C ⊆ Ω,

Pt
[
C ∈ A] = exp

(∫
C

log
(
Pt(x+ gij ∈ A)

)
MFP(y)

|dy|

)
.

1This formalizes the notion that a visible object blocks the view of objects further along its line of
sight.
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Now we compute extinction probability, using a posterior estimate of the scene

Pt
[
YG(x)ij = 1 | YG(x)i−1,j = 1

]
= exp

(∫
line(x+gi−1,j , x+gij)

log
(
Pt(y ∈ A)

)
MFP(y)

|dy|

)

≈ Pt(x+ gij ∈ A)s/MFP(x+gij),

Induction on this chain of conditional probabilities gives

Pt
[
YG(x)ij = 1] ≈

∏
i′<i

Pt(x+ gi′j ∈ A)s/MFP(x+gi′j)

4.4.1.2 View Value

The second term in (4.2) is a conditional entropy whose computation is only tractable in

certain limited situations. We will discuss these in the next section.

4.5 Obstacle Models

4.5.1 Uniform Obstacle Density

The simplest obstacle model assigns, to all points in U t, equal and nonzero probability p

of lying in an obstacle. Additionally, it treats each sampled point as independent of all

others. Thus the difficult entropy term in (4.2) reduces to a Bernoulli entropy:

Ht

[
YG(x)ok=(i,j) | {YG(x)o` | ` < k}, YG(x)i′j = 1 for all i′ < i

]
= Ht

[
YG(x)k

]
= −p log p− (1− p) log p,

where we take 0 log 0 as 0. Additionally, we treat MFP(y) as constant. define

Et(x) =
∑
ij

(
−pij log pij − (1− pij) log(1− pij)

)∏
i′<i

p
s/MFP
i′j , (4.3)

where

pi,j =


0 line(x+ gi−1,j, x+ gij) ∩ Ot 6= ∅

1 o.w, x+ gij ∈ At

p o.w

.

The values p and MFP are model parameters.
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Figure 4.4: Looking into a Closet with Uniform Obstacle Density (a)-(b) Here we show

the value of different vantage points for looking into an unexplored closet, for various

values of p (MFP fixed). As p increases, a line of sight is less and less likely to penetrate

deeply into the room, so the best vantage points, counter-intuitively, move further back

where lines of sight are more parallel. (c) Green lines show the probability-0.5 penetration

limits of the blue explorer, for different values of p. As p → 1, the depth of penetration

near a point u ∈ ∂U t becomes proportional to the cosine of the incidence angle between

~n(u) and the line of sight.

4.5.1.1 Instant Extinction

A special case of uniform obstacle density, proposed by Valente et al. [84], this takes the

limit as ps/MFP → 0. To make sense of this, we treat it as a sum over visible shadow

boundaries.

Et(x) =

∫
∂Ut∩Vt

(r − x) · ~n(r)|dr|,

where ~n(r) is the outward-facing normal to the shadow boundary at point r. This gives

greatest value to viewpoints which look directly (not obliquely) onto long, faraway (all

lines of sight looking onto a faraway object are nearly parallel) shadow boundaries. The

advantage of this method is that it can be integrated over shadow boundaries, although

it assigns undue value to thin shadow regions which are unlikely to reveal much about

the scene.

4.5.1.2 Independent Cells

A more general approach models an unknown scene as a random partition of tD, with

each cell of that partition assigned a random “color” (designation of “object” or “free
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space”), independent of all other cells. Once a partition is known, all that remains is to

learn the coloring. The information gain of sampling S ⊆ D of a randomly-colored, known

partition is equal to the sum of the entropies of the colorings of all the cells sampled.

Denote the probability that cell c is an obstacle by pc. Then,

H[{Y(x) : x ∈ S}] = H[{Y(x) : x ∈ S} | P ]

=
∑

c : c∩S 6=∅

−pc log pc − (1− pc) log pc.

For an unknown partition P ,

H[Y(S)] = H[Y(S) | P ] + I[P ;Y(S)] (4.4)

So we can express the view value as

H
[
YG(x)ok=(i,j) | {YG(x)o` | ` < k}, YG(x)i′j = 1 for all i′ < i

]
= H[YG(x)ok | P , . . .] + I[YG(x)ok ; P | . . .], (4.5)

where “. . .” abbreviates the condititioning expression on the LHS. The first term on the

RHS of 4.5 is an average, over many known partitions P , of the coloring information

gained by sampling at x + gij. If no preceding nodes have sampled from the same cell,

the gain is −pc log pc − (1 − pc) log pc. Otherwise gain is zero. So computing marginal

entropy amounts to computing the probability that a sample point will be the “first to

find” the cell that it lies in.

If P is selected from a translationally- and rotationally-invariant probability distri-

bution, this is equal to the expectation of the reciprocal of the number of grid points

sharing a cell with x + gij. This expectation depends only on the position of gij in the

grid, and is radially symmetric, so we can write

H[YG(x)ok | P , . . .] = wi(−pc log pc − (1− pc) log pc), (4.6)

where

wi := E
[

1

#(G ∩ P(x+ gi,1))

]
.

The second term on the RHS of 4.5 can be computed directly:

I[YG(x)ok ; P| . . .] =
∑
P

∑
YG(x)ok

P[P , YG(x)ok | . . .] log
P[P , YG(x)ok | . . .]

P[P | . . .]P[YG(x)ok | . . .]
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Let A be the event that x + gok is the first in its cell, let B0 and B1 be the event that

YG(x)ok equals 0 or 1, respectively. Then

P[A | . . .] = wi,

P[B0 | . . .] = P[A, B0 | . . .] = pcwi,

P[Ac, B1 | . . .] = P[Ac | . . .] = 1− wi,

so

I[YG(x)ok ; P | . . .] = −pcwi logwi + (1− pc)wi log
1− pc

1− pcwi
− (1− wi) log(1− pcwi).

Putting this together,

Et(x) ≈
∑
ij

(
H[YG(x)ok | P , . . .] + I[YG(x)ok ; P | . . .]

)
·
∏
i′<i

Pt[x+ gi′j ∈ A]s/MFP(x+gi′j) (4.7)

4.5.2 Ising-Type Obstacles

A good obstacle model should incorporate assumptions about the shape, density and

grouping behavior of obstacles. We have considered the obvious strategy of generat-

ing several hypothetical completions of partially revealed scenes, then averaging these

completed scenes pointwise.

4.5.2.1 The Ising Model

We will define the Ising Model as a probability distribution ID on the set of binary,

{−1, 1}-valued images
{
I : D → {−1, 1}

}
, where D is a 2- (or 3-) dimensional, 4- (or 6-)

connected lattice D (as shown in Fig. 4.5.2.2).

P (I) ∝ exp
(
β(IijIi+1,j + IijIi,j+1 + IijIi−1,j + IijIi,j−1)

)
(4.8)
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Figure 4.5: Computing Sample Weights for a Radial Sampling Grid (a) The weight wij

is the expected energy gain from a sample at position x+gij in G(x). (b) The entropy of

a sample from a random coloring of a random partition is taken as the expected value of

the reciprocal of the number of samples with which it shares a cell (argument detailed in

4.5.2.4). (c) Since the sampling pattern G is radially symmetric, the weights wij can be

described by a radial “profile”. The weight profile can be divided into three phases: The

first phase, when nodes are likely to share cells with angular neighbors, shows a increase in

weight as radius increases and radial neighbors get further and further away. The second

phase, when angular neighbors are too far away to share cells, has constant weight. The

third phase, as we reach the edge of the sampling pattern, shows a rapid doubling of

weight, as nodes with many inner and outer (smaller or greater radius) neighbors give

way to nodes with few or no outer neighbors.

4.5.2.2 Sampling from the Ising Model

To generate obstacle hypotheses, we run a Gibbs-sampling implementation of the sub-

critical Ising model (as discussed in [24]), initialized with known obstacles, and halted

after m iterations:

Pt(Im+1
ij = 1) =



exp(−β(Hm
ij−2))

exp(−β(Hm
ij−2))+exp(−β(Hm

ij−2))
xij ∈ U t

1 xij ∈ At

0 xij ∈ Ot

(4.9)

with Hm
ij := Imi+1,j + IijIi,j+1 + IijIi−1,j + IijIi,j−1, and Pt(I0

ij = 1) = 0.5 independently.

This defines a distribution ImD on the set
{
Im : D → {0, 1}

}
. Samples and statistics

of this family of distributions are shown in Fig. 4.5.2.2
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(a) High / Low Energy Configura-

tions
(b) Minimum Energy Configurations

Figure 4.6: Ising Model on a 4 × 4 Lattice Likelihood under the Ising Model decreases

exponentially with the number of edges between disagreeing nodes. Samples from the

Ising Model are concentrated near the two minimum energy configurations: all-white or

all-black.
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Figure 4.7: Ising-type Obstacle Posterior (a) The random process described in 4.5.2.2

is run on a scene with a rectangular shadow region (gray) produced by a flat obstacle

edge (white). Black denotes known free space. (b)-(e) Top row: Images produced by the

process. Bottom row: Average of 1000 runs.
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A good choice of the scale parameter m produces obstacles which “look like” (have

similar thickness and curvature to) obstacles that the explorer is likely to see. The

parameter can be estimated by estimating mean free path in the real environment (e.g.

by taking the average of the initial omni-directional range measurement) and choosing m

to match. Figure 4.8 details how this is done.

Since these scenes are generated using a fixed coloring probability of 0.5, we normalize

the MFP parameter so that Pt(y ∈ A) can vary:

Pt
[
YG(x)ij = 0 | YG(x)i−1,j = 1

]
≈ exp

(∫
line(x+gi−1,j , x+gij)

log
(
Pt(y ∈ A)

)
log(0.5) MFP0.5

dy

)

4.5.2.3 Poisson-Disk Approximation

In order to express the viewpoint quality in Ising-type in a simple form like (4.7), we make

use of certain statistical properties shared between our Ising-model scenes and randomly-

colored partitions of uniformly-sized Voronoi cells. A Poisson-disc cover Pr ⊆ [−1, 1]2 is

a uniformly random sampling of points in [−1, 1]2 such that no two points have distance

less than r, and no new point can be added without violating this property. These sample

points induce a Voronoi partition Lr = L(Pr) of Ω. Random colorings ξ of these Voronoi

partitions produce scenes Ir which bear a superficial resemblance to those produced by

the Ising process, as seen in Figure 4.9

We have found that the Poisson-Voronoi random checkerboard is a useful surrogate

for entropy computations involving Ising priors. For a given set of points {xk} ⊆ Ω,

the entropy H[Im({xk})] of sampling a random Ising scene Im, with scale parameter

m, can be estimated from the entropy H[IPV r({xk})], for a random Poisson-Voronoi

checkerboard. We have found a strong empirical correspondence between these joint

entropies, for sampling sets of ten or fewer (estimating the distribution of the boolean

random variable Im({x}), for a single sampling set {x} ⊆ Ω requires on the order of 2|{x}|

random Ising scenes - as we will see, it is much less taxing to generate the Poisson-Voronoi

checkerboards). Correlations between these entropies, for a range of values of m and r,

are plotted in Figure 4.13. Good matches are highlighted in pink.
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Figure 4.8: Extinction Profiles Here we show extinction profiles for Ising scenes with var-

ious granularities, indexed by number of update iterations. Instantaneous mean free path

(derivative of log survival probability) and best-fit MFP are plotted together, showing

that extinction in these scenes is well-modeled by an exponential decay.
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(a) Poisson-Disk Sam-

pling

(b) Voronoi Partition (c) Checkerboard

Figure 4.9: Generating Poisson-Voronoi Checkerboard (a) To produce a scene of desired

granulation, we first produce a Poisson-Disc sampling of the domain, which gives a max-

imal set of points satisfying the property that the distance between two points is no less

than r, a granularity parameter. (2) We compute a Voronoi partition of the scene based

on that sampling (3) We color the cells independently, denoting them as obstacle or free

space, with probability 1/2.

4.5.2.4 Computing the Weights wg

The statistical correspondence between Ising scenes and Voronoi checkerboards allows for

the efficient computation of weights wi. The joint entropy of samples from the random

checkerboards is easily expressed as a weighted sum of the marginal entropies of the

samples.

Recall that we can define

wi = E
[

1

#(G ∩ Pr(g))

]
. (4.10)

That is, G is the average of the reciprocal of the number of grid points in G that share

a Voronoi cell with g, as determined by a random Poisson disk sampling (see Figure 4.9)

These weights can be computed numerically, for a given Poisson disk radius r and

sampling pattern G, simply by generating many random Poisson-Voronoi partitions of

the region surrounding G and averaging the reciprocal of the number of g’s neighbors in

G. If the sampling pattern is radially symmetric, weights only depend on radial index.

Weight profiles for several Poisson disk radii r are shown in Figure 4.5.
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m = 40 m = 158 m = 251 m = 663m = 428 m = 10

(a) Ising Textures

r = 0.02 r = 0.03 r = 0.04 r = 0.06r = 0.05r = 0.01

(b) Corresponding Voronoi Checkerboards

Figure 4.10: Poisson-Voronoi Checkerboard There is a superficial resemblance Ising-type

obstacles and Voronoi checkerboards with appropriate scale parameters.

4.6 Numerical Optimizations

4.6.1 Bit-Parallel Monte Carlo

Recall that the update probability for our Monte Carlo Ising process is

P (I t+1
ij = 1|I t) =

exp
(
β(H t

ij − 2)
)

exp
(
β(H t

ij − 2)
)

+ exp
(
−β(H t

ij − 2)
) (4.11)

where

H t
ij := I ti+1,j + I ti,j+1 + I ti−1,j + I ti,j−1

This computation, which produces a single random bit, requires a new random floating-

point number to be generated each time it is run. Many such bits need to be averaged

to compute the marginal obstacle probabilities. If this operation could be approximated

using only bit-wise operations, we could run these operations in parallel, one for each bit

in a multi-bit datatype.

4.6.1.1 Overview

We define a random process Ī tij to approximate I tij. For simplicity, Ī will take val-

ues in {0, 1}, where I took values in {−1, 1}. First, we generate a random bit B ∼

Bernoulli(0.5). Recursively define

B0 := B, and Bk := Bk−1
1 ∧Bk−1

2 , (4.12)
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Figure 4.11: 2D Weight Profiles for Various r Using the counting technique described in

4.5.1.2, we compute the information contribution, in bits, of samples at different (radial)

positions on the radial sampling pattern (See Fig. 4.3), with regard to Poisson-Disc

Voronoi scenes of various scales. In this case, we have 30 angular divisions and 200 radial

divisions within a maximum radius of one unit.
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Figure 4.12: 3D Weight Profiles for Various r The counting technique described in 4.5.1.2

is applied to 3D Poisson-Disc Voronoi Scenes, drawing from a spherical sampling pattern

(a) with 30 azimuthal, 200 radial, and 11 elevation divisions. Again, radial symmetry

around the vertical axis allows us to ignore azimuthal index.
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Figure 4.13: Entropy Comparisons
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Figure 4.14: Bit-Parallel Computation of Ising Marginal “Bit twiddling” allows us to

compute 64 simultaneous realizations of the Ising process on a single array of long inte-

gers. In the plots above, color is assigned according to nominal integer value, i.e. each

realization contributes according to the significance of its bit position. This is the most

direct way of visualizing the data, and the exponential decay of bit significance gives a

sense of transparency and depth. Cf. Fig. 4.5.2.2

where Bk−1
1,2 ∼ Bk−1 are i.i.d. copies (their generation is discussed in the next section).

Thus Bk ∼ Bernoulli(2−2k). Define

Ī t+1
ij :=


B(H̄ t

ij) H̄ t
ij < 2

∼B(H̄ t
ij) H̄ t

ij > 2

B0 H̄ t
ij = 2

, (4.13)

where

B(H) :=
K∧
k=1

((∼Ck(H)) ∨Bk), (4.14)

Ck(H) := k-th bit of β̄|H − 2|+ 1. (4.15)

Here β̄ must be an integer. Observe that

exp2

(
−

K∑
k=1

2k Ck(H)
)

= 2−β̄|H−2|−1,

and thus

E(Ī t+1
ij ) =


2−β̄|H−2|−1 H t

ij < 2

1− 2−β̄|H−2|−1 H t
ij > 2

0.5 H t
ij = 2

(4.16)
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Figure 4.15: Comparison of Update Probabilities: Values of β̄ are taken from 0 to 6.

Update probabilities for the Ising Model and the parallel bit estimate are computed on

the continuum [0, 4], although only integers {0, . . . 4} are used in practice.

4.6.1.2 Computing the counts Ck

The counting bits Ck are computed as with a standard binary adder. This requires O(k)

bitwise AND and/or XOR operations for binary sum and carry, and about 2k boolean

variables as registers.

4.6.1.3 Generating I.I.D. Bits

equivalent to the conjunction of 2k independent coin-flips B0
i :

Bk ∼ B0
1 ∧B0

2 ∧ · · ·B0
2k .

Instead of calling the random number generator 2k times, we generate a single N -bit (N ≥

2k) integer L (for “long”), and conjoin it with k bit-shifted copies of itself. Recursively

define

L0 := L, Lk := (Lk−1 ∧ (Lk−1 � 2k−1))� 3 · 2k−1 − 2. (4.17)

Observe that

Lk = (Lk−1 ∧ (Lk−1 � 2k−1))� 3 · 2k−1 − 2

= (Lk−1 � 2k−1) ∧ (Lk−1 � 2 · 2k−1)� 2k − 2

= (Lk−1 � 2k−2) ∧ (Lk−2 � 2 · 2k−2)

∧ (Lk−1 � 3 · 2k−2) ∧ (Lk−2 � 4 · 2k−2)� 2k − 2

...

=
(∧2k−1

j=0

(
L0 � j

))
� 2k − 1.
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Thus, for the i-th bit of Lk:

(Lk)i =
∧2k+1−2

j=2k−1
L0
i−j

where bit indices are taken modulo N . This is a 2k-fold conjunction of independent

random bits, so

P ((Lk)i = 1) = 2−2k ,

Observe, also, that the bits

(Lk1)i =
∧2k+1−2

j=2k−1
L0
i−j and (Lk2)i =

∧2k+1−2

j=2k−1
L0
i−j

are independent for k1 6= k2 (the ranges [2k1 − 1, 2k1+1− 2] and [2k2 − 1, 2k2+1− 2] do not

overlap). Note, however that when indices i1 and i2 differ by less than 2k, the bits (Lk)i1

and (Lk)i1 are highly correlated, especially for large k.

In modern processors, the bit-shift operation runs in constant time, so the random

lookup integers {Lk, . . . , Lk} are generated in O(K) time.

4.7 Exploration

Having the range detector measurements (the observations) available Y(xi) ∈ Y at time

ti, we estimate pt(x) for a regular sampling of points in At. Our next waypoint xt+1 is

selected as

xt+1 = arg max
x∈A

Et(x) (4.18)

Exploration terminates when Et(x) falls below a certain threshold for all points on the

sample grid.

4.7.1 Performance Bounds

These bounds depend on some assumed properties of the Ising-model marginal visibility

probabilities pt(x) = Pt[x ∈ V ].

The result in [48], that the zero-temperature Ising model acts (in the scaling limit) as a

curve-shortening flow on the level curves of binary images, suggests that the iterative low-

temperature simulations that generate our hypothetical scenes will produce predictably-

rounded hypothetical obstacles. In turn, it suggests that their pointwise average will
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(a) Visibility (b) Marginal Likelihood (c) Viewpoint Quality

Figure 4.16: Exploration of a 2D Scene An explorer (red dot) attempts to efficiently map

an unknown scene (a) by greedily choosing informative viewpoints (c). Observe that we

are not merely uncovering area. Once the disposition of a site has been determined with

high confidence (b), that site loses its informative value.
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(a) Visibility (b) Marginal Likelihood (c) Viewpoint Quality
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have predictably-rounded level curves. Here we will assume that, for any threshold ε > 0,

there is a finite constant K = K(ε), independent of Vt and Ot, such that the boundary

curvature of the level set {x : pt(x) ≤ 1− ε} is bounded above by K.

Now, let Vrt be the set of points in Vt that lie at distance r or greater from points in

Ot, and let Vrt (x0) be the path-component of Vrt containing x0. Next, we make a sort of

equicontinuity assumption:

Conjecture 4.7.1. For p sufficiently close to 1, and radius r > 0, there is a second radius

0 < r′ ≤ r, independent of Vt and Ot, such that(
x ∈ Vrt ∧ pt(x) > p ∧ d(x, z) < r′

)
implies that pt(z) ≥ 1

2
.

This would guarantee all points sufficiently far from known obstacles, with sufficiently

high marginal probability, lie within disks of high marginal probability. These conjectures,

if true, imply the following:

Lemma 4.7.1. Given a probability threshold pthresh > 0, and radius r, there is an energy

threshold Ethresh > 0 such that any point x ∈ Vrt with pt(x) > pthresh will induce an

energy Et(y) > Ethresh at a nearby point y.

Proof: Let r′ be as described in the conjecture, where r and pthresh take the place of

r and p. Then let

Ethresh = 2−λr
′/2πmin

{
K(pthresh)−2, 1

4
r′2
}

· (− log pthresh) .

Each of the three terms on the RHS is a lower bound of the corresponding term in the

energy calculation, centered at x. The first bounds the area of the intersection between

the level set {x : pt(x) > pthresh} and the disk of radius r′, centered at x. For points z in

this region, 1
2
≤ pt(z) ≤ pthresh, and so

2−λr
′/2 ≤ exp

(
λ

∫ r′

0

log pt(z(s)) ds
)

and

− log pthresh ≤ − log pt(z)− (1− pλβst (z)) log(1− pt(z)).
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�

Now, define

f(p, β, λ) = − log(pt(z))− (1− pλβst (z)) log(1− pt(z))

M(β, λ) = sup
p:[0,∞)→[0,1]

∫ ∞
t=0

f(p(t), β, λ)

exp
(
λ

∫ t

u=0

log p(u) du
)
dt. (4.19)

A restarting argument can be used to show that (4.19) is maximised by a constant function

p(t) = a, so

M(β, λ) = sup
a

f(a, β, λ)

∫ ∞
t=0

exp(λt log a) dt (4.20)

= sup
a

f(a, β, λ)

λ log a
. (4.21)

The last expression is continuous with respect to a, and bounded as a → 0 and a → 1,

so M(β, λ) does indeed exist.

Lemma 4.7.2. If an explorer has visited y ∈ Vrt (x0) before time t, then Et(y
′) < Ethresh

for all points y′ within distance δ = δ(Ethresh, r, β, λ) of y, where δ = r sin(α/nsh), α =

Ethresh/M(β, λ), and nsh is the maximum number of disjoint shadow boundaries cast from

a single point.

Proof: Traveling a distance δ in any direction will reveal a sliver of at most α along any

shadow boundary. The maximum energy of such a vantage point is thus nsh αM(β, λ).

�

Combining these two lemmas we get

Proposition 4.7.1. If A is the area of Vr(x0), then, the greedy algorithm will take at

most A/πδ(Ethreshr, β, λ)2 steps to bring pt(x) below pthresh, for all points x ∈ V r(x0).

4.7.2 Exploration Results

Using the exploration testbed provided by the authors of [84], we were able to compare our

algorithm with theirs, in terms of (1) number of planning steps (2) total distance traveled

by the explorer (3) unexplored area vs. total distance traveled, and (4) unexplored area

at termination. Results are shown in Figure 4.17.
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1 Results
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Figure 4.17: Exploration comparison with Valente et al.
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CHAPTER 5

Desiging Agents with Task-Specific Minimal

Representation

5.1 Introduction

We are interested in obtaining agents that perform optimally on a task involving un-

certainty while being as simple as possible, as measured by the size of their internal

representation. While this is a problem relevant in many fields, our motivation comes

from the fields of robotics and computer vision. Embodied agents have sensors providing

very high-dimensional data; the worlds state is similarly high dimensional. Representing

the agents belief about the world is complicated enough, and often inference is intractable.

However, it has been observed that, for certain tasks, it is not necessary to represent and

plan using the entire belief. Therefore, it is interesting to understand whether it is pos-

sible to solve a planning problem using a smaller representation than the entire belief.

We will show that it is indeed possible and we will provide a constructive algorithm to

obtain representation-minimal agents.

y
Belief

Inference

Planning

u

Agent

Joint Inference
and Planning

y u

Reduced Agent

Figure 5.1: Representation Reduction Canonical belief spaces can become a serious infor-

mational bottleneck between inference and planning modules. An agent’s understanding

of its environment need not be any richer than necessary to support the task at hand.
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5.1.1 Previous Work

The topic of reduction of logical functions has been extensively studied. The formalism of

finite state machines was developed in the 1950s and 60s, and by 1971, Hopcroft [32] pub-

lished an (n log n)-time algorithm for reducing completely-specified FSMs. Incompletely-

Specified FSMs were studied in turn, and various heuristics were developed to quickly

approximate minimum1 reductions. [65, 27, 25]. Representation reduction in artificial

intelligence has been dealt with in various guises: Dimensionality reduction, belief space

compression etc. – most heuristics can be considered as implicit hard-coded representation

reductions.

5.1.2 Contributions

This chapter re-casts problem of representation reduction in terms of well-studied compu-

tational constructs, and finds absolute minimum reductions in the case of discrete time,

discrete input and output. It evaluates three algorithms for approximating minimum

reductions, and clarifies their strengths and weaknesses. This work is the result of a

collaboration of Andrea Censi, who introduced the formalism of representation reduction

in the context of POMDP solvers and proposed the bit-at-a-time algorithm

5.2 Formalization

Example 5.2.1 (Equivalent Decision Tables). Suppose Y = {1, 2}, U = {A,B}, C =⋃2
i=1 Y i and

T (c) =


A c ∈ {(1), (1, 2)}

B c ∈ {(2), (2, 1)}

T ′(c) otherwise.

,

is an optimal policy, for arbitrary T ′ : C → U . However, depending on the choice of T ′

(highlighted in the tables below), the completed policy can have differently-sized minimal

1Here, we distinguish “minimal” from “minimum” reductions. A minimal reduction is one that cannot
be further reduced by combining any of its states, whereas a minimum reduction is a minimal reduction
with the fewest possible states
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representations:

T : C → U

(1) 7→ A

(2) 7→ B

(1, 1) 7→ A

(1, 2) 7→ A

(2, 1) 7→ B

(2, 2) 7→ B

(a) Decision Table

1:A

1:A 2:B

2:A 1:B 2:B

(b) Decision Tree

1:A 2:B

1

1:A
2:A2 1:B

2:B3

(c) Minimal Policy

T : C → U

(1) 7→ A

(2) 7→ B

(1, 1) 7→ B

(1, 2) 7→ A

(2, 1) 7→ B

(2, 2) 7→ A

(d) Decision Table

1:A 2:B

1: 2:A 1:B 2:B AB

(e) Decision Tree

1:A
2:B

1

1:B
2:A2

(f) Minimal Policy

Instead, we propose an “incompletely-determined” formalization:

Definition 5.2.1 (Policies). Given a set Y of observations, recursively construct

C0 = {∅} and Ci+1 = {(c, yi+1) : c ∈ Ci, yi+1 ∈ Yc}, (5.1)

where Yc ⊆ Y are the observations that may be seen in context c. Let C =
⋃∞
i=0 Ci. A

policy P is then a tuple 〈C,U , T ,Y〉, where U is some decision set and T : Cr{∅} → U .

Definition 5.2.2 (Completely-Determined Policies). If Y =
⋃
C Yc and C = Y≤n for

some n ∈ N, then P = 〈C,U , T ,Y〉 is completely determined. A completion of P is

a policy P ′ = 〈C ′,U ′, T ′,Y〉 such that

Y ⊆ Y ′, C ′ =
∞⋃
i=0

(Y ′)i, U ⊆ U ′, and T ′|C = T . (5.2)

Let Comp(P ) be the set of completions of the policy P .
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Definition 5.2.3 (FSM Representations). An FSM representation (or just repre-

sentation) is a tuple 〈C,R,U ,S, T ,Y〉 (abbreviated to 〈R,S〉 when P = 〈C,U , T ,Y〉 is

given), with “states” S ⊆ N and state assignments R : C → S, such that

R(c) = R(c′) and y ∈ Yc ∩ Yc′ =⇒ T (c, y) = T (c′, y). (5.3)

Let Rep(P ) be the set of representations of the policy P .

Definition 5.2.4 (Minimal Representations). The size of an FSM representation is the

cardinality of its state set. A representation 〈R,S〉 of P is minimal if |S| = min{|S ′| :

〈R′,S ′〉 ∈ Rep(P )}. A representation 〈R′,S ′〉 is a reduction of the representation 〈R,S〉

if there is a surjection φ : S → S ′ such that R′ = φ(R).

Example 5.2.2. If C = {c1, c2, . . .}, then we have a canonical representation 〈R,S〉,

where

S = {1, . . . , |C|} and R : ck 7→ k. (5.4)

It can be shown that the size of a minimal representation of a policy P is equal to

the minimum size of the minimal representations of its completions, i.e.

min{|S ′| : 〈R′,S ′〉 ∈ Rep(P )} = min{|S ′| : 〈R′,S ′〉 ∈ Rep(P ′), P ′ ∈ Comp(P )} (5.5)

Incompletely-determined policies allow more freedom in representation reduction, as

shown in the next example.

Example 5.2.3 (Incompletely-Determined Policies). Let C = {∅, (1), (2), (1, 2), (2, 1)},

U = {A,B}, and

T (c, y) =


A c ∈ {(1), (1, 2)}

B c ∈ {(2), (2, 1)}
.

Observe that the minimal policy is the same as that of the completely-determined policy

in Example 5.2(f).

5.2.1 FSM Reduction

Given a decision policy (or an ISFSM) how do we find an obedient (or equivalent) ISFSM

with the smallest possible state set?
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T : C r {∅} → U

(1) 7→ A

(2) 7→ B

(1, 2) 7→ A

(2, 1) 7→ B

(a) Decision Table

1:A 2:B

2:A 1:B

(b) Decision Tree

R : C → S

∅ 7→ 1

(1) 7→ 2

(2) 7→ 2

(1, 2) 7→ 2

(2, 1) 7→ 2

(c) Representation

1:A
2:B

1

1:B
2:A2

(d) Minimal

Policy

for completely-specified FSM, this can be done in n log n time by Hopcroft’s algorithm

(Alg. 5.3.1).

To find a minimum representation of a given policy, we first compute a graph of

reducibility relations, then compute a minimal clique-covering.

Cliques on the equivalence graph identify sets of states that can be collapsed into a

single state. The minimal clique-covering, that is the smallest collection of disjoint cliques

that covers the equivalence graph, correponds to a minimal reduction of the FSM.

5.3 Representation Reduction Strategies

1

2

4:A  

3

6:B  

4

8:B  

5

9:G  

6

5:B  

7

1:G  

8

9:J  

9

10:F  

10

5:F  

11

10:I  

12

1:G  

13

7:G  

14

1:I  

15

2:E  

16

6:I  

17

10:C  

18

1:G  

19

2:C  

20

6:G  

21

5:B  

22

6:E  

23

7:C  

24

2:B  

25

1:J  

26

9:J  

27

10:I  

28

2:A  

29

4:J  

(a) Canonical Representation

5 10 15 20 25

5

10

15

20

25

(b) Compatibility Matrix

For practical computation of reducibility, we’ll start with the weaker condition of

compatibility.
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1

4

7

5

(c) Greedy Clique Covering of 5.4(b)

1

1:G 
2:C 
4:A 
5:B 
6:B 
7:G 

4

8:B 

5

9:G 

2:B 
9:J 
10:F 

6:G 7

1:G 

1:J 
2:A 
4:J 
5:F 
7:C 
10:I 

6:E 

1:I 
6:I 

2:E 

10:C 

(d) Reduced Repre-

sentation

Figure 5.4: Greedy Reduction Algorithm A “running clique” is kept, to which

new states are added until all remaining states are incompatible with at least

one state in the clique. Then, a new clique is begun. Here, the cliques are

{1, 2, 3, 6, 8, 9, 10, 11, 12, 13, 14, 16, 19, 22, 26, 27, 28, 29, 30, 31, 32} (red), {4, 15, 18} (blue),

{5, 17, 21, 22, 23} (yellow), and {7} (green). (d) shows the resulting policy graph once

5.3.1 Reducibility Relations

Definition 5.3.1 (Reducibility). For a given policy P = 〈C,U , T ,Y〉, two contexts

c1, c2 ∈ C are reducible (write c1 ∼ c2) if there exists a representation 〈R,S〉 of P such

thatR(c1) = R(c2). Likewise, for a given representation R = 〈R,S〉, two states s1, s2 ∈ S

are reducible if there exists a reduction (φ, 〈R′,S ′〉) of R such that φ(s1) = φ(s2).

Observe that for any representation 〈C,R,U ,S, T ,Y〉, the contexts c1, c2 ∈ C are

reducible if and only if the states R(c1) and R(c2) are reducible. Observe also that

for incompletely-determined policies, reducibility is a symmetric but not-necessarily-

transitive relation

Example 5.3.1 (Non-Transitive Reducibility). Suppose Y = {1, 2, 3}, C = {∅, (1), (2), (1, 3), (2, 3)},

U = {A,B}, and

T (c) =


A c ∈ {(1), (1, 3)}

B c ∈ {(2), (2, 3)}
. (5.6)

Observe that, under this policy, ∅ ∼ (1) and ∅ ∼ (2), but (1) 6∼ (2), since T (1, 3) 6=

T (2, 3).
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However, it can be shown that, under a completely-determined policy, reducibility in-

duces an equivalence relation. In either case, we compute reducibility using the following

criterion:

Lemma 5.3.1. Two contexts c1, c2 ∈ C are reducible iff

T (c1, s) = T (c2, s) for all s ∈ Y∗ such that (c1, s), (c2, s) ∈ C (5.7)

This informs the following algorithm

Algorithm 1: (Hopcroft) Compute Reducibility Relations

Input: A representation 〈C,R,U ,S, T ,Y〉

Output: A reducibility matrix A : S × S → {true, false}.

A(s1, s2)⇐ true for all s1, s2 ∈ S.

repeat

isChanged⇐ false

for s1 < s2 ∈ S do

if A(s1, s2) = true then

for c1 ∈ R−1(s1), c2 ∈ R−1(s2) do

for y ∈ Yc1 ∩ Yc2 do

if T (c1, y) 6= T (c2, y) or ∼A(R(c1, y),R(c2, y)) then

A(s1, s2)⇐ false.

isChanged⇐ true.

end if

end for

end for

end if

end for

until ∼isChanged

5.3.2 Bit-at-a-Time

The Bit-at-a-Time reduction, proposed by Andrea Censi, generates a set of states one at

a time, separating ambiguous contexts recursively. An ambiguous context is an (input,
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1:C 9:G

7:J 4:F

7:D 8:D 5:G 9:A

8:J 7:H

9:A 5:B 9:A

(a) Decision Tree

1:C 9:G

7:J 4:F

7:D 8:D 5:G 9:A

8:J 7:H

9:A 5:B 9:A

0

1

2 3

(b) Partitioned Tree

0 9:G

1

1:C

7:J 4:F

2
5:B
7:D
8:J
9:A

3

5:G
7:H
8:D
9:A
9:A

(c) Reduced

FSM

Figure 5.5: Censi’s Bit-at-a-time Algorithm

state) pair for which more than one output is defined. Ambiguities which arise in shorter

sequences are separated first. This results in an FSM whose graph structure is a subtree

of the original decision tree.

5.3.3 Greedy Covering

Although reducibility is not an equivalence relation, any reduction φ : S → S ′ induces

an equivalence relation, partitioning S into cliques of mutually-reducible states, i.e.

S =
⊔
s′∈S′

φ−1(s′), where φ(s1) = φ(s2) =⇒ A(s1, s2) (5.8)

Thus, a minimum reduction induces a minimum clique partition of the reducible states

of a representation.

5.3.4 Assembling Cliques

Notation 1 (Arrow notation). For a policy P = 〈C,U , T ,Y〉, write c → c′ if c =

(c1, . . . , ci) ∈ Ci ⊆ C and c′ = (c1, . . . , ci, y) ∈ Ci+1 ⊆ C, for some i. For a representation

〈R,S〉 of P , write s1 → s2 if there are c1 ∈ f−1(s1) and c2 ∈ f−1(s2) such that c1 → c2.

We propose the following, greedy, approximate algorithm In order find the absolute

minimum representation of a given policy, it suffices to run the greedy algorithm on all

possible orderings of its states: Given a minimum clique covering S = {sc11 , sc12 , . . . , sc1N1
}

∪ {sc21 , sc22 , . . . , sc2N2
} ∪ · · · ∪ {scK1

, scK2
, . . . , scKNK }, feed states to the greedy algorithm
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Algorithm 2: Greedy Clique Covering

Input: A representation 〈C,R,U ,S, T ,Y〉 with s1 < s2 only if s2 6→ s1.

Input: A reducibility matrix A : S × S → {true, false} as computed by Algorithm 1.

Output: A partition function φ : S → S ′ with φ(s1) = φ(s2) only if A(s1, s2).

S ′ ⇐ S

φ⇐ idS

unused⇐ S

while |unused| > 0 do

s1 ⇐ min(unused)

unused⇐ unusedr {s1}

for s2 ∈ unused do

if A(s1, s2) then

φ(s2)⇐ s1

unused⇐ unusedr {s2}

end if

end for

end while
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in the order in which they are written. Failure to add states to a running clique will occur

only once per clique in the minimal covering (exactly K times) 2, so the greedy algorithm

will produce a minimum covering. Of course, exhaustively checking every ordering will

end up taking exponential time. In fact, it has been shown that the minimum clique

cover problem is NP-hard [37].

5.3.5 Maximal Anticlique

Alberto and Simão [1] propose a heuristic to increase the likelihood that a greedy algo-

rithm produces a minimum clique covering – First, a maximum anticlique is found in the

compatibility graph (This is also an NP-hard problem [37], but the size of the maximum

anticlique generally grows more slowly than the graph itself). Now, each state in the

maximum anticlique must belong to a different clique in the minimum clique covering.

Also, every remaining state must be compatible with at least one of the states in the

anticlique (or else violate the maximality of the anticlique). The greedy algorithm then

proceeds, taking first the states in the maximum anticlique, then the remaining states

It can easily be shown that an ordering of this type will produce a minimum reduction.

The number of such orderings still grows exponentially with the number of states, but in

practice it grows significantly more slowly.

5.3.6 Comparisons

Two types of random FSMs were generated to test the correctness and numerical efficiency

of the algorithms described above.

5.3.6.1 Poisson Random Tree

A Poisson random tree is an decision policy generated by recursively adding X ∼

Poisson(λ) children to each new node of an existing policy. We conditioned this re-

sult on the outcome that the process not terminate before the tree reaches depth H

(contains a sequence of length H or greater). These decision policies are well-studied

2If more than K times, then some running clique
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1 2 3

4 5 6

Distinction
 Graph

Running Clique

(a) Bad Ordering

1 2 3

4 5 6
Distinction Graph

(b) Good Ordering

Figure 5.6: Greedy Algorithm on Pathological Trees Here we illustrate the dependence of

greedy algorithms on the order of their inputs. In the first set of figures (a), we proceed

randomly, greedily adding random states to a running clique until none can be added (no

two states sharing an edge in the distinction graph can be part of the same clique). This

results in one more clique than is necessary - proceeding counterclockwise, we cover the

set with only two cliques. Alberto and Simão’s maximum anticlique algorithm fares no

better, as the maximal anticlique has size 2.
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Figure 5.7: Poisson Random Tree
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Figure 5.8: Pathological Tree

in decision theory, as they model birth/death processes where individuals continuously

produce offspring at a rate of λ per lifetime.

5.3.6.2 Pathological Tree

The “pathological” tree is a policy of depth 2 with 6n + 1 contexts. was designed to

frustrate the algorithm of Alberto and Simão. Each of its states at depth 1 is incompatible

with exactly two others. The resulting distinction graph consists of disjoint rings. The

order in which states are added to cliques is critical. Half of all orderings result in a

three-state FSM, whereas the minimum number of states is two.

5.3.7 Discussion

The Bit-at-a-time algorithm consistently underperformed all of the greedy clique-assembly

algorithms, both in time requirements (finding the earliest ambiguous contexts took
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Figure 5.9: Typical Reductions Here we contrast the results of the various reduction

algorithms introduced above. The Bit-at-a-Time method (b) produces a minimal sub-tree

of the canonical policy. The last three methods are equivalent up to a reordering of states,

so reductions (c) and (d) are practically identical.

O(N3) time), and in reduction performance. However, the subtree property of its output

may make it better suited for applications that require running “in-place”.

Greedy algorithms seem to be the best choice, although they left something to be

desired. Although better heuristics helped to reduce the likelihood of non-optimal reduc-

tion, it was not hard to find policies that could trip them up.

Although it is not certain how much of this work can be generalized to more interest-

ing robotics applications (e.g. continuous time, continuous input/output, probabilistic

systems), our results suggest that some general-purpose ambiguity-splitting scheme could

eventually be applied to all types of POMDP solvers.

87



(a) Poisson Trees Reduced vs. Orig.

Size

(b) Patho. Trees Reduced vs. Orig.

Size

(c) Poisson Trees Reduced vs. Min.

Size

(d) Patho. Trees Reduced vs. Min.

Size

(e) Algo. Runtimes on Poison Trees (f) Algo. Runtimes on Patho. Trees

Figure 5.10: Red bars pertain to Alberto and Simão’s method, blue bars pertain to the

bit-at-a time method, green bars pertain to the greedy clique completion method, and

black bars pertain to an exhaustive search for a minimal reduction. The black dotted line

in the first two rows of figures plots the line y = x. Note the greater proportion (50% or

greater) of nonoptimal reductions in th pathological (“Patho.”) examples, and the clear

separation in performance between the bit-at-a-time and greedy methods.
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