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Abstract

Development Method For an Astronaut-Powered Laundry Machine

Without a precedent to laundering clothes off-Earth, a preliminary solution is required to

develop a spaceflight laundry machine capable of operating in various gravity fields. With

this thesis’ proposed solution, human exercise to power an agitating bladder, a closed-loop

hydraulic system, and a wastewater sensor suite provide a desirable environment for quanti-

fying waste-mass transfer away from textiles while minimizing textile damage. Bond Graph

Theory is used to model the proposed solution and to evaluate how human-power and valve

configurations affect the system’s cleaning performance. Bond Graph simulation results re-

veal preliminary performance metrics and hardware significantly impacting the machine’s

performance. A human-powered laundry machine prototype and model are essential for

maturing the technology to Spaceflight readiness.
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Chapter 1

Introduction

1.1 Motivation

From language to preferred diets and workout regimens, human spaceflight programs

have addressed fundamental behaviors of humans, except for a frequent activity thousands

of years old. Laundering textiles is inherently human and something essential to human life.

Leaving Earth’s gravity for prolonged periods rapidly deteriorates the human body, requiring

astronauts to exercise for multiple hours during a twenty-four-hour period to avoid long-term

health risks and maintain in-flight performance. An extended exercise period saturates tex-

tiles with perspiration, dead skin, and other bodily fluids. Exposure to human excretions

for prolonged periods also poses a health risk to the human body. Future spaceflight oper-

ations must address storing contaminate-saturated textiles and donning clean textiles while

off-Earth to mitigate health issues.

The dirty textiles go where the humans go. Off-Earth surface activities, such as show-

ering and horizontal sleeping, will require laundering towels and sheets. Multi-day transits

between planetary bodies and future Low Earth Orbit (LEO) tourism programs must also

address contaminated garments. Spaceflight textiles consume volume, add mass, and require

the forethought of handling and replacing once soiled. From a logistical spaceflight stance,

it is not practical to continually discard and resupply exercise clothing during an extended

duration mission. During a 3-year mission to Mars without textile laundering, each crew

member may go through about 210 kg (460 lbs.) of textiles, with attendant launch and trans-

port costs.1 Furthermore, the prolonged impacts of lunar and martian regolith on spaceflight
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textiles have yet to be observed, which makes current deep-space textile logistics planning

conservative and uncertain.

This thesis proposes using human exercise as power input, wastewater recycling, ad-

justable agitation rates, and feedback metrics for textile cleanliness to address the generation

of soiled textiles off-Earth, regardless of the local gravity field.

1.2 Research Questions

Our guiding research questions to build a fundamental development method for machine

design are:

1. What factors are required to launder textiles on Earth?

2. What are the characteristics of laundry mass dynamics?

3. How to measure general textile cleanliness?

(a) What are cleanliness metrics?

(b) How do we measure the metrics?

4. Machine design in the context of the spaceflight environment.
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Chapter 2

Literature Review

2.1 Overview

There is no precedent to reliably laundering textiles off-Earth; however, the collective

human knowledge of laundering textiles has identified a few core aspects of the laundering

environment for off-Earth living. The objective of laundering clothing is to transport waste

matter away from textiles. Traditional laundering environments combine water, heat, me-

chanical agitation, and chemicals in a complex combination of time-dependent rate-driven

relationships. Contaminants naturally diffuse out of textiles submerged in water, and more

waste can be removed (dispersed) by deforming textile weaves with mechanical power from

hydrodynamics, abrasion, and fiber flexing. The mechanical actions promote the rolling-up

of oils off textiles, penetration and chemical degradation of attached particulates, and the

solubilization and emulsification of the washing fluid. Hard and pre-contaminated water

plays a significant role in the overall laundering efficiency regardless of water, energy, chem-

ical, and textile combination. After a long washing period without replacing the washing

fluid, the redeposition rate of waste from the water back onto the textiles is negligible.2–9

Furthering the complexity of laundry, the waste-textile combination is an essential factor in

the contaminate mass dynamics.

Depending on how waste enters and interacts with textiles, specific laundering environ-

ments (i.e., machine configurations) become more impactful. Textile wastes are either solu-

ble, saponifiable, emulsifiable, or inert. Soluble waste readily dissolves in water, saponifiable

waste contains lipids that react with alkalis to become soluble soaps, and emulsifiable waste
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does not react with alkalis and is often petroleum-based. Inert waste consists of abrasive

particles such as lunar regolith. Waste-mass enters fiber matrices through the siphoning of

dirty water and textile-waste collisions. Waste is held in place by Van der Waal’s forces,

chemical bonds, and the location of waste relative to fabric cores (the microfibers at the

center of fiber bundles). Water dislodges waste primarily with kinetic impacts and dipole

moments. The closer the waste is to the fabric cores, the further away the waste is from the

water flow path, thereby lowering the probability of waste detaching from textiles during the

laundering process - the general laundering length scales and this Stagnate Core phenomenon

are illustrated in Figure 2.1 and 2.3 respectively. In addition, if large pores are present in

the textile’s fabric weave, as shown in Figure 2.1, water flow increases through the textile

and increases the likelihood of waste removal.

Figure 2.1: Typical length scales of textile weaves, pores, and fabric bundles with dense inner
cores.10

Textile material properties influence washing fluid absorption, abrasion resistance, and

flexibility. Materials that swell reduce the water flow path area and the waste’s overall

diffusion and dispersion rate. Regardless of configuration, an average rate of waste removal

can be determined over time (see Section 2.3). Deviations from the relationship occur due

to the changing laundering environment (e.g., adding detergent, rinsing with cold water, or
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having impulse agitation instead of continuous); regardless, most waste removal occurs within

the first twenty minutes of laundering.6–9 No work found in literature addresses how altered

gravitational fields will impact a laundering process and the end cleanliness of laundered

textiles.

In a constant 1-g field without a pressure differential, gravitational forces overcome stag-

nant water surface tension forces, and the free surface of the resting water can be assumed

to be normal to the gravity vector. The reduction of the gravity vector magnitude enables

the surface tension of stagnated water to be the dominating force.11 Because gravitational

fields generate a potential energy field for matter, calibrated systems perform suboptimally if

the gravity field changes, i.e., the head acting on hydraulic reservoirs changes, the pipe fluid

dynamics change, the equilibrium point of mass-spring-damper systems changes, and the

loading from masses change. Because the local gravity field directly affects mass dynamics,

material stresses, and strains, biomechanics, and bioprocesses in living organisms change in

spaceflight, leading to organism (astronaut) atrophy.

Over extended periods of non-Earth gravity levels, simple exercise machines counter hu-

man body atrophy. The prominent degradation of human bodies in spaceflight occurs in

the first four months, with the cardiovascular, musculoskeletal, and muscle systems being

impacted the most by the removal of Earth’s gravity.12 Humans’ legs, hips, and lower back

are especially susceptible to reduced bone tissue and muscle density, strength, and volume

due to the lack of loading on the legs while off-Earth. Aerobic and resistive exercise can

improve red blood cell count and skeletal structure to combat cell atrophy. Countering at-

rophy is vital to promoting adequate in-flight crew mission performance, safe Earth reentry,

and post-flight recovery.12–16 Due to the importance of exercise off-Earth and spaceflight re-

source management, exercise machines gain mechanical robustness from simple low-volume

and mass designs for maintenance, usage, and vibration isolation. Many Spaceflight exer-

cise machines struggle to achieve a relatively low-mass and volume configuration. Frequent

spaceflight exercise produces liquid perspiration and other waste that contaminate and pro-

duce biohazard-ridden textiles that are not laundered, which is why off-Earth laundering is

needed.

This review discusses laundry mechanics, textile cleanliness evaluation methods, and
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capturing human-power in spaceflight. First, References [10, 17–20] suggest high-frequency

fiber flexing and clean flowing water being the best promotors of waste transfer off tex-

tiles. Next, to quantify general cleanliness during a laundering process, References [21–27]

suggest observations of electrolyte, organic, and particulate waste transported away from

textiles. Lastly, considerations to convert human energy to mechanical work in spaceflight

are explored.1,11–16,28–30

2.2 Laundry Mechanics

Textile agitation in the laundering environment is needed to remove a majority of waste-

mass because agitation is how most energy enters the system; however, agitation methods

have different waste-removing capabilities. References [10, 17, 18] evaluate and compare the

four most common laundering textile agitation methods (swelling, hydrodynamics, abrasion,

and fiber flexing) using the same cleanliness quantification method (fluorescent microscopy).

The main difference between abrasion and fiber flexing is the direction of the applied force

with respect to the fabric core axis. As shown in Figure 2.2, abrasive agitation has most of

the applied force off-set and parallel to the fabric core axis, thereby generating a shearing

force along the core. Fiber flexing has most of the applied force along the fabric core axis

thereby generating a buckling-type response. In an ideal buckling, all fibers will bend so

they do not interact with neighboring fibers. Therefore, the ideal agitation method has

ideal buckling (fiber flexing) and no abrasion - real agitation applications generate both

phenomena.

Figure 2.2: Abrasion (Left) and ideal fiber buckling phenomena (Right) on fabric cores.
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Fiber-flexing is the best promoter of contaminate removal in non-detergent environments

with and without pre-soaking (a method to either have a time-dependent or independent

textile pore size, which affects initial contamination dispersion rates). References [19] and [20]

expand on the idea of agitating with high-frequency inputs to promote a higher rate of waste

transfer by controlling the frequency at which the fibers are flexing. The controlled agitation

methods conclude that rapidly pushing and pulling the fiber matrix at high frequencies (over

one kilohertz) with clean rinsing water encourages textiles to efficiently expel waste attached

to the inner fiber cores in only a few minutes.

Although Ref. [17] evaluated abrasion agitation with a Tribometer in a controlled en-

vironment, the cleanliness results depended heavily on the water temperature, and textile

damage results were not reported, which was unexpected and reaffirmed Ref. [18] and [10]’s

trade space on controlled agitation. In general, abrasive water-textile impacts and textile

fiber flexing break van der Waal’s forces holding inert particulates and promote the rolling

up and release of liposoluble (saponifiable and/or emulsifiable) waste.18 Although Ref. [18]

concluded that soaking and hydrodynamics do not cause significant fiber flexing or abrasion,

Ref. [10] found that clean water promotes a highly favorable concentration gradient for

waste transfer away from fibers comparable to hydrodynamics. Both Refs. [17] and [18] note

the potential textile damage of highly abrasive laundering, but they do not mention damage

potential from high-frequency flexing of the fibers.

Unlike agitators and impellers, ultrasonic laundering controls fiber flexing; Refs. [19] and

[20] agree that the asymmetrical collapse of pressure waves near the textile during ultrasonic

laundering compresses and stretches the fibers in a buckling-type motion. As a result,

ultrasonics promotes waste dispersion into the water, but most energy goes into deforming the

textiles and not displacing a bulk of wastewater from textiles.19 Ref. [20] addresses the high-

frequency abrasion concerns of Ref. [19] by performing a detailed inspection of the textile’s

structure before and after laundering. Ref. [20] found that ultrasonic-laundered fibers had

better tensile strength retention in both the warp (transverse weave) and weft (longitudinal)

directions with minimal abrasive and cavitation damage compared to commercial agitation

machines. Reducing textile damage is another important consequence to consider in the

laundering environment. As shown in Figure 2.3, high-frequency flexing textile fibers increase
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their water contact area over a longer period, increasing the area and opportunity for waste

to transfer off the textile into the nearby water.

Figure 2.3: Fiber bundle convection regions and fiber response to flexing (the changing of
available volume for contaminate transfer into water). Image modified from [19].

In summary, Refs. [10, 17–20] showed that waste transfer depends on how the textiles

are being deformed (axial or shearing force) and water cleanliness. Refs. [10, 19, 20] expand

upon Refs. [17] and [18] by concluding that high-frequency fiber flexing (axial loading)

rapidly pushes and pulls fibers in such a way that waste transfer rates increase and textile

damage decreases compared to other traditional mechanical agitations. However, Refs. [2–

10, 17–21] do not acknowledge the waste-removing ability of fiber flexing at high frequencies

with a continuous clean crossflow to promote waste transfer and transport, and they used

limited textile-waste combinations due to the cleanliness quantification method.

2.3 Cleanliness Quantification

Different combinations of water quantity and temperature, agitation method and du-

ration, and added detergents all impact the laundering environment and, therefore, the

cleanliness of textiles. The rate-dependent environment makes the quantification of tex-

tile cleanliness nontrivial. References [21–25] discuss laboratory reflectance, irradiation, and

image analysis methods that quantify the amount of waste remaining on a single type of

fabric or textile after laundering. To address the shortcomings of labor-intensive analysis of

waste-textile combinations, References [19, 26, 27] evaluate cleanliness through generalized

methods targeting waste’s chemical characteristics in a textile bulk instead of single article

combinations. Understanding the chemical properties of waste embedded in textiles leads to
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observing wastewater for cleanliness quantification.

Different wavelengths of light used in spectroscopy and microscopy methods can be used

to quantify how much specific waste is on a textile; Ref. [21–25] show how different models

can be used at different wavelengths to quantify the cleanliness of a single waste-textile

combination. The Kubelka–Munk equation based on reflectance (visible light microscopy)

measurements is a widely used model and it requires the dying of textile waste and knowledge

of textile-waste combinations to calibrate measurements.10,17,18,21,24,25

Alternatively, irradiating waste with near-infrared, ultraviolet, or x-ray wavelengths for

quantification can be done without dying waste beforehand. Nonetheless, textile-waste com-

binations are also needed to calibrate measurement systems. Irradiation can also damage

textiles after prolonged exposure.21,22,24,25 A noninvasive measurement approach can be made

with image analysis due to the periodic nature of textile structures and image converting

algorithms. It is possible to undertrain algorithms with improper textile-sensor alignment

and combination.23,24 Another noninvasive measurement method was derived by Reference

[26] to observe ozone decomposition rates within an agitation chamber containing a bulk of

textiles. Reference [26] found that the decomposition rate of ozone is proportional to the

amount of organic waste within the chamber; however, regardless of the model fit, ozone is

consumable, leaves a residual smell on textiles, does not clean textiles, and does not inter-

act with non-organic molecules. Keeping with practicality, References [10, 17, 18, 21–25]’s

cleanliness quantification methods of a single article are also not favorable because typi-

cal laundering consists of a bulk of textiles, often containing a few different materials with

different and unsteady contaminate removal rates.

The mass of the contaminants must enter the laundering water for the textiles to become

cleaner, so observing laundry wastewater may serve as a viable cleanliness quantification

method. Figure 2.4 shows all the time-dependent laundering elements affecting the con-

taminate removal rate. A primary contaminant expected in the spaceflight environment is

perspiration due to crew exercise requirements. Perspiration consists of salts, proteins, and

lipids; therefore, a method to quantify the amount of salt, biofluid, and inert particulates

in the wastewater may provide the necessary information to determine how clean a bulk of

clothes is becoming during the laundering process.
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Figure 2.4: Laundry control volume showing all the time-dependent variables affecting the
contaminate mass removal rate

References [19, 26, 27] outline ways to quantify the electrolytes and organic waste in

wastewater. Reference [27] found that off-the-shelf technology could quantify small concen-

trations of cortisol and amine biomarkers (common organic molecule structures in human-

produced biofluids) in a saline solution (wastewater) with an ultraviolet spectrometer without

preparing the sample for analysis as you would with laboratory equipment. Although a lin-

ear relationship between biofluid concentration and absorbance was determined, there was

no mention of the sample flowing through the optical path. Reference [27]’s method would

also incorporate the abundance of particulates that occlude the ultraviolet light. Another

consideration in this wastewater monitoring method is that References [21, 22, 24–27] did

not attempt to quantify waste removal while laundering.

A generalized relationship between the laundering environment and time-to-cleanliness

is needed to determine when equilibrium (i.e., no more contaminates removed from textiles

for the given laundering environment) is reached. Reference [6–8] use a log-log relationship,

Equation 2.1, to describe the amount of waste removed during laundering where c is the

average concentration of waste removed, ∆c
∆t

is the change in concentration over time, k

is the waste removal rate coefficient normalized to ∆c
∆t
, and n is the kinetic order (a term

derived by [6–8]). Equation 2.1 cannot always be physically realized because waste values

may combine different units (e.g., Volts from a conductivity sensor and pH from a pH meter)

for convenience, and n is not always an integer. Therefore, c must be unitless.
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c =

(
1

k
· ∆c

∆t

) 1
n

(2.1)

Although derived from domestic machine agitation, specific textile contamination meth-

ods, and specific textile-waste combinations, the general first-order kinetics equation (Equa-

tion 2.1) still holds across other experiments.6–8 The change in waste concentration over time

can be calculated with water monitoring sensors (e.g., conductivity, turbidity, hardness, pH).

In general, the kinetic order depends on the textile-soil combination, the agitation method,

the amount of energy imparted on the textiles, how the textiles were contaminated, and

the absorptivity of the textile. Various experiments empirically found that the kinetic or-

der ranges from 0.85 to 1.24.6–8 The main uncertainty with this model is with the waste

removal rate coefficient because it is a function of time and the same factors as the kinetic

order. Continual water monitoring and calculating of a waste removal rate model may reduce

the uncertainty during the laundering process; however, other time-dependent factors must

be considered in the context of the laundering machine and environment (This is explored

further in Section 4.5 within the context of a proposed solution).

In closing, there are many methods to quantify the cleanliness of laundered textiles,

with some methods providing more practical applications. For example, References [21, 22,

24, 25] provided high-accuracy methods at the expense of labor and textile damage, while

References [19, 26, 27] generalized the quantification from measuring the waste transport

out of textiles. Overall, conductivity measurement combined with irradiated wastewater

observation may provide the best solution in modeling and quantifying textile bulk cleanliness

during a laundering process with [6–8]’s generalized time-to-cleanliness equation. Still, the

spaceflight environment may further limit cleanliness quantification sensing and modeling.

2.4 Spaceflight Application

Laundering textiles on Earth started with humans exerting power, and off-Earth launder-

ing can take a similar approach. Frequent exercise is required off-Earth; References [28–30]

review the design of off-Earth exercise machines and their ability to keep humans healthy.

Last, Refs. [1, 11–16] are reviewed with Ref. [28–30] in the context of applicable spaceflight

engineering and operations principles. The synthesis of off-Earth exercise and generating fa-
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vorable laundering environments offers a preliminary solution to spaceflight laundering with

human-power in alternating gravity fields.

Currently, there are many spaceflight exercise machines in use and development. Ref-

erence [29] evaluates the International Space Station’s (ISS) Advanced Resistive Exercise

Device (ARED), while References [28, 30] explore compact pully driven exercise machines.

Although the ARED can exercise twenty different muscle groups and provide a two-point

skeletal loading, it is far too large and power-consuming for current exploration vehicles, and

it does not have an aerobic exercise component.29 Reference [30] evaluates a similar two-point

skeletal loading system with a resistive bar attached to pulleys; likewise, there is no aerobic

capability. Reference [28]’s Miniature Exercise Device - 2 is a compact motor and pully

device for aerobic and resistive exercise capable of getting the user to achieve a maximum

heart rate for an extended period; however, the resistive component cannot effectively load

skeletons. Regardless of the mechanism, the context of spaceflight dictates the hardware

needed to capture and convert human power.

A general spaceflight exercise hardware framework emerges from References [1, 11–16,

28–30]. Due to the critical health risks of musculoskeletal atrophy, exercise machines must

have robust, simple, and serviceable designs. From the user’s perspective, the interface

and machine operation should be intuitive. The exercise motion envelope and machine

stowage volume need to be as small as possible, and vibration isolation systems may be

needed.1,11–16,28–30 Each topic mentioned thus far in capturing human-power sets a context

to design and evaluate a human-powered spaceflight textile laundering machine. None of

the reviewed articles mention converting human-power in spaceflight into hydraulic- and

electrical-power.

2.5 Conclusion

A combined exercise and textile laundering machine to maintain human health in space

is possible in the context of current research. Compared to domestic machine agitation

methods, high-frequency fiber flexing improves waste transfer from textiles and reduces tex-

tile weave damage. Clean water rinsing also promotes a high rate of waste transfer. A

minimal resource consumption solution to quantify cleanliness uses conductivity sensors and
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an appropriate wavelength spectrometer to analyze textile wastewater in real time until an

equilibrium state is reached.21–27 Lastly, in spaceflight, the simultaneous working out and

laundering conserves astronaut time within a twenty-four-hour period, and the device per-

forms two health risk reduction activities within a small volume that can travel with an

astronaut wherever they go.1,11–16,28–30 Without a precedent to compare, a preliminary ma-

chine and accompanying model are needed to evaluate a development method to launder

textiles off-Earth with human-power.
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Chapter 3

Proposed Solution

Designing a spaceflight exercise and textile laundering machine requires evaluation of

the Literature Review, insight into determining spaceflight engineering design requirements,

and forethought of how the machine will be treated throughout its lifetime. The machine

presented and evaluated in this thesis does not address the detergent aspect of laundry due

to the complexity and heritage of laundry chemistry. It is assumed that if any chemicals

enter the machine in the future, the compounds will be compatible with hydraulic material,

fibers, and sensors. High-temperature water (+80◦F) will also be neglected in the laundering

methods because it is a main driver of chemical reactions. What follows are initial design

decisions and conceptual layout (Figure 3.1) for a preliminary spaceflight exercise and textile

laundering machine, which will be evaluated with Bond Graph Theory in Chapter 4.

Figure 3.1: Spaceflight exercise and textile laundering machine concept diagram.
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3.1 Problem Statement

The problem is how to effectively and sustainably launder clothes during spaceflight.

Earth-based laundering provides a foundation for understanding the basics of removing waste

mass from fabrics, but the context (a one-g environment) of laundry is not sufficient to

design a spaceflight machine. To address this problem, this thesis documents technology

development for a spaceflight exercise and laundering machine by simultaneously developing

a prototype and mathematical model.

3.2 Spaceflight Approach

Current lunar exploration plans outline the different spacecraft and habitats humans

will live in while traveling to and from the Moon. In addition, there are multiple LEO

space stations under development for tourism. Each spacecraft, habitat, and station have

unique habitable volumes, Environmental Control and Life Support Systems, and available

resources during a mission. Therefore, an initial laundering machine for spaceflight should

be a standalone machine to reduce design complexity, ensure nominal operation regardless

of habitable volume, and enable machine transport between different spacecraft, habitats,

and stations. The constant resource across all the space environments is crew time, which

is scheduled according to maintenance and mission-related tasks.

A consequence of frequent astronaut exercise is deposits of salt, sebum, perspiration, and

dead skin onto textiles. A machine that simultaneously acts as an exercise and laundering

machine has the potential to counter human atrophy, mitigate the risk of crew exposure to

biohazard-ridden textiles, and reduce the logistical allocations of clean textiles on resupply

efforts at no extra cost to astronaut time during nominal operation. The machine is expected

to travel with astronauts during their spaceflight experience, so the machine needs to operate

nominally in various gravity fields without significant alterations, regardless of workout reg-

imen or power input. For 2024-related near-term goals, the gravity environments are Earth,

the Moon, and microgravity. A robust and straightforward exercise machine can be designed

around pedals, and simple off-the-shelf devices can convert rotary motion into translational

motion, electrical potentials, and hydraulic pressure differentials. The arms and upper body

of the user are the primary targets due to physically demanding extravehicular activities.
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3.3 Laundering Methods

Controlling fluids in microgravity is not trivial, so wetting and wringing textiles in mi-

crogravity may also not be trivial. In the proposed design, a flow-through flexible bladder

ensures all textiles are submerged in water before laundering. A flexible bladder can be filled

with water and textiles simultaneously, even if the volume of textiles changes. A flexible blad-

der can also compress the textiles within to wring out wastewater. In addition, the ability

for water to flow through the bladder may produce favorable waste concentration gradients

between the textile and water. To further the favorable concentration gradients, the water

system will include a reservoir and filters to hold clean water and remove the waste-mass

entering the water from laundering. Last, the value of water in human spacecraft cannot be

underestimated, so the water system is also designed to be closed-loop - negating the water

exiting the system from damp clothes and the eventual system top-off to maintain launder-

ing performance. Furthermore, the laundering water system filters should be designed to

be replaced. Replacement of filters is expected when the sorbents are saturated and or the

main textile contaminates change (e.g., perspiration, a soluble compound, is the expected

primary contaminate in lunar orbit while lunar regolith, an inert compound, is the expected

primary contaminate on the lunar surface).

The frequency of filter replacement is dependent on many factors. A primary factor is

the amount of contaminants and lint in the water, which depends on the agitation method

and fiber type. As noted in Section 2.2, an efficient combination of fiber flexing and abrasion

can be achieved with ultrasonic agitation with piezoelectric transducers. Ultrasonics is a

practical method for on-Earth laundering, but it may not be well suited for spaceflight

applications because it consumes lots of electrical-power, generates lots of vibration, and

requires specialized equipment to repair and replace.

All considered, ultrasonic agitation may not fit well into spaceflight resource allocation

and maintenance practices. Instead, a mechanical agitation device is proposed to mimic

the pressure waves of ultrasonic agitators but at a much lower frequency. Dubbed here as

periodic agitation, such an agitation method consists of traditional mechanisms to convert

rotary motion into oscillating motion with low amplitudes and frequencies above two Hertz

(limit determined by domestic machine agitation rates19) to generate fiber-flexing pressure
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waves with no electrical-power and maintenance similar to bicycle repair with common hand

tools. The initial periodic agitation method, which is explained further in Section 4.2,

consists of the water-textile bladder mounted on a tilt plate mechanism driven by a crank-

follower mechanism with an adjustable shock absorber so users can adjust the machine to

meet exercise and laundering needs.

3.4 Wastewater Monitoring

All the waste removed from textiles must enter the washing water, which means that

quantifying waste-mass in the water informs how clean a bulk of textiles are becoming.

Equation 2.1 can be used with the wastewater observation approach to model the amount of

contaminates removed from textiles because it was derived from previous theoretical work

and empirical data. The kinetic order (n) of the equation will remain empirically bound, and

the unknowns of the model are the waste removal rate coefficient and the change in waste

concentration over time.

The main uncertainty with this model is with the waste removal rate coefficient (k)

because it is a function of time and the same factors as the kinetic order. In other words, the

waste removal rate highly depends on the laundering environment’s small and large temporal

and spatial scales. Continual monitoring and calculating the waste removal rate may reduce

the uncertainty during the laundering process; however, other time-dependent factors must

be considered. Without chemical aids in this proposed solution, the agitation method and

power input significantly determine the waste removal rate coefficient.6–8 Fundamentally,

cleaning imparts momentum on waste to overcome binding forces; the periodic agitation and

crossflow through the agitation bladder are the sources of momentum imparted on textile

waste. Therefore, the agitation and hydraulic system dynamics significantly affect the waste

removal rate coefficient. Another dependency of the waste removal rate coefficient is that the

water flowing through the agitation bladder transports waste away from textiles, changing

the waste concentration gradients near textiles and the probability of waste detaching from

textiles. Lastly, the volume of textiles within the agitation bladder also affects the waste

removal rate coefficient because the agitation bladder is of a relatively fixed volume and filled

with water during all laundering cycles; therefore, with fewer textiles, there is more water
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interacting with the textiles to remove waste.

Equation 3.1 is an initial approach to combining all the factors affecting the waste removal

rate coefficient in the context of the proposed solution. Overall, a single value in Hertz is

determined, normalized, and scaled to the change in concentration over time measurements.

First, three ratios are multiplied: the ratio of textile volume to agitation chamber volume,

the ratio of water volume flux to agitation chamber volume in Hertz, and the ratio of me-

chanical momentum to hydraulic momentum interacting with textiles. The ratios identify

how much energy is added to the textiles and the water. The known variables, which can be

measured with appropriate sensors and devices, needed to calculate the waste removal rate

coefficient are the volume of the agitation chamber, the volume of textiles in the flow path,

the volumetric flowrate of water through the agitation chamber, the tilt plate momentum,

and the water momentum in the agitation chamber. The only unknown is the exponent (ks);

this exponent is used to scale the rate value to the magnitude of the contaminate measure-

ment and it requires experimentation to determine. The exponent is expected to be affected

by the material properties of all the fibers within a bulk of textiles, the intensity of water-

textile surface tension forces generated by the local gravity field, unobserved time-and-rate

dependent laundering phenomena, and the fusion of the known variables.

k =

((
Textile Volume

Chamber Volume

)(
Water Volume Flux

Chamber Volume

)(
Mechanical Momentum

Hydraulic Momentum

))ks

(3.1)

The last part of the general cleanliness model, Equation 2.1, is the change in waste con-

centration over time (∆c
∆t
). Measuring the concentration of waste in the water is determined

by the chemical characteristics of the waste. Salt deposits on textiles are expected, and

due to the high solubility of salt, a conductivity sensor can be used to quantify the relative

concentration of dissolved salt (electrolytes). Human-produced organic waste is typically

highly water soluble and contains primary amine groups; an appropriate wavelength can be

selected for wastewater spectroscopy. Appropriate wavelength irradiation provides enough

activation energy to interact with primary amine groups; the chemical bonds absorb the

emitted radiation. The Beer-Lambert Law, Equation 3.2, can then quantify the abundance

of particulates (e.g., dead skin, lint, and regolith) that occlude and primary amine groups

(e.g., perspiration, sebum, and microbes) that absorb emitted radiation by calculating the
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absorbance as a function of emission and detected intensity on the other side of a flow cell,

as shown in Figure 3.2.

Absorbance = log10

(
Emmitted Intensity

Detected Intensity

)
(3.2)

Figure 3.2: Flow cell utilizing the Beer-Lambert Law.

To address spaceflight human- and electrical-power requirements and rapid device devel-

opment desires, commercial off-the-shelf (COTS) hardware is selected to observe and measure

the waste-mass entering the washing water. COTS conductivity sensors can be created with

nichrome wire and an analog-to-digital converter. COTS diode spectrometers that target

primary amine groups consist of a single wavelength Light-emitting Diode (LED) between

180-320 nm27, a photon detector operating in the same wavelength range as the LED, and an

analog-to-digital converter. The specific LED and photon detector wavelengths presented in

this solution can be serviced and replaced. The spectrometer housing includes dark cham-

bers to reduce outside photon interference, electronic protection from water, and lenses and

windows with more than 90% transmittance at 1 nm to focus the emitted photons through

the water and onto the sensor detection area. The combination of flow rate, acceleration,

rotation speed, water conductivity, and water absorbance measurements provide the data

needed to quantify the cleanliness of a bulk of textiles during a laundering process. Figure

3.3 shows a preliminary layout of the sensors needed to quantify cleanliness. All the sensors

used in the prototype machine are summarized in Table 5.1 of Section 5.2
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Figure 3.3: Concetpual system layout for determining textile cleanliness. Sensors in red.
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Chapter 4

System Concepts and Modeling

4.1 Bond Graph Theory Overview

The device concept takes human power as an input and converts the power into chemical

concentration gradients and mechanical, electrical, and hydraulic power sources to launder

textiles. Bond Graph Theory31 models the device’s coupled mechanical, electrical, hydraulic,

and chemical properties to inform concurrent device design and hardware selection. Under-

standing how humans power and configure the device is essential to predicting textiles’ overall

waste removal rate. The Bond Graph model can be adjusted and verified from hardware

acquisition, device manufacturing, and sensor data collection to produce an accurate waste

removal rate model. Modeling can also be used to inform astronauts about their current

laundering efforts and indicate if the laundering processing should be changed. Further-

more, because humans are unique in their physical abilities and body functions (before and

after microgravity alterations), a machine and model capable of adapting to these conditions

is a goal of this technology development process.

Bond Graph (BG) modeling is a graphical method built from the first principles of energy

conservation that shows the flow of information and energy between system elements.31The

BG technique produces a topological graph that uses interconnected elements to generate

the system’s codable first-order differential state space. The elements are linear, nonlinear,

differential, and/or algebraic equations solved with computer code to obtain time and fre-

quency domain responses. The BG method reduces the time needed to derive entire sets

of equations for a dynamic or static system while producing symbolic and numeric transfer
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functions for a concurrent controller and hardware design and selection. Only a few BG

symbols model entire systems; each symbol interacts with power. Traditional BG power is

composed of two conjugate variables defined by the International System of Units: an effort

(”across variable”) and a flow (”through variable”) where the product of the variables has

the units of power in Watts.

Figure 4.1: Bond Graph Power Bond Structure

Figure 4.1 shows the most common sym-

bol, a power bond. The horizontal line joins

two elements, the arrowhead indicates the di-

rection of positive power, and the vertical line

is a causal stroke. The causal stroke indicates

the direction of the effort signal and dictates

the element’s consecutive relation. Causal

strokes cannot be assigned until the entire system is modeled and simplified; this is an

essential step because equations are derived depending on the model’s causality.

Domain Effort (e) Flow (f) Momentum(p) Displacement(q)

Mechanical

Translation

Force

N

Velocity

m
s
m
s
m
s

Momentum

N·s

Displacement

m

Mechanical

Rotation

Torque

N·m

Angular

Velocity

rad
s

rad
s

rad
s

Angular

Momentum

N·m·sN·m·sN·m·s

Angle

rad

Electrical
Voltage

V

Current

A

Flux Linkage

V·s

Charge

C

Hydraulic
Pressure

N
m2
N
m2
N
m2

Volumetric

Flow Rate

m3

s
m3

s
m3

s

Pressure

Momentum

N ·s
m2
N ·s
m2
N ·s
m2

Volume

m3m3m3

Chemical

Chemical

Potential

J
mol
J

mol
J

mol

Molar Flow

mol
s

mol
s

mol
s

Molar Mass

g
mol
g

mol
g

mol

Table 4.1: Bond graph power domain state variables with units in bold.
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A BG element’s constitutive relation, or mathematical model (Φ() functions in Table

4.2), are functions of an inputted effort or flow, a generalized momentum (integral of effort),

and/or displacement (integral of flow) state variable. Table 4.1 summarizes the different

state variables used in BG Theory. BG elements are ideal and are either a power source,

dissipator, conserver, converter, or junction. Ten additional BG elements commonly used

are summarized in Table 4.2. BG models oscillate when inertia and compliance elements

interact, motion decays occur when inertia and resistance elements interact, and energy

dissipation occurs rapidly when compliance and resistance elements interact.31

Effort and flow source elements have one permissible causality because they enforce an

effort or flow. Compliance and inertia elements utilize displacement and momentum variables

in an integral or derivative causality. It is generally preferred that compliance and inertial

Element Symbol Description
Math

Relationships

Effort Source Se Enforces effort value over time e(t) = E(t)

Flow Source Sf Enforces flow value over time f(t) = F (t)

Resistor R Power dissipating
e = ΦR(f)

f = Φ−1
R (e)

Compliance C Power storing
e = Φ−1

C (
∫ t

f dt)

f = d
dt
ΦC(e)

Inertia I Power storing
e = d

dt
ΦI(f)

f = Φ−1
I (

∫ t
e dt)

Transformer TF Power Conserving and or Converting
e2 = m · e1
f1 = m · f2

Gyrator GY Power Conserving and or Converting
f1 = r · e2
f2 = r · e1

Zero-Junction 0 Common effort distributor
∑

fi = 0

One-Junction 1 Common flow distributor
∑

ei = 0

Active Bond Information bond with zero power consumption.

Table 4.2: Common Bond Graph elements.
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elements are in integral causality. Because of power conservation and enforced relationships,

the transducers and gyrators have two causality configurations. Zero-junctions may only

have one causal stroke nearest the junction to enforce the common effort. One-junctions

may only have one causal stroke away from the junction to enforce the common flow. A

simulation can be coded with system diagrams, element constitutive relations, a causally

correct BG, and an ordinary differential equation solver.

Things considered while modeling are that oversimplifying models may lead to poor

results, no model can be exactly like a real system, it is the modelers’ discretion to assign

signs and determine how much system detail is required, and lastly, the initial state of

the system and future time history of the input signal must be known. The construction,

simplification, and use of multiple energy domain BG models require further explanation,

reading, derivation, and examples outside this thesis’ scope, but readings used to develop

the following BG model can be found in References [31–38].1

4.2 Mechanical Domain

Many mechanical devices can be powered using the human-power assumption from Sec-

tion 3.2. An initial mechanism to produce periodic agitation (the method discussed in

Section 3.3) is an agitation plate, as shown in Figure 4.2. The plate must impart oscillatory

momentum of at least 2 Hertz onto textiles submerged in washing fluid.19 Although a shaker

plate or linear actuator can produce higher frequency vibrations, the hydraulic connection

points would experience more mechanical fatigue than a rotating connection point at the

hinge. It is also assumed that more deformation of the agitation bladder causes a higher

waste removal by imparting a load gradient across the textiles. Such gradients would pro-

duce localized regions of convection in the washing fluid. A tilting plate mechanism can

impart momentum in two orthogonal directions; if washing fluid flows through the textiles

in another orthogonal direction, washing fluid momentum is imparted on the textiles in three

principal axes. Figure 4.3 shows a tilt plate mechanism BG with elements that have linear

constitutive relations. Note that the inertia of the tilt plate (I: Jtp ) depends on the volume

of washing fluid in the bladder capacitor element (qa).

1All the numeric and element information for the Bond Graph simulation for the astronaut-powered
laundry machine can be found in Appendix A and B.
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Figure 4.2: Tilt plate mechanism concept.

Figure 4.3: Bond Graph of the tilt plate mechanism concept.
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4.3 Hydraulic Domain

The crankshaft of the mechanical domain may also be attached to a reversible hydraulic

pump to power the system outlined in Figure 4.4. Hydraulic valves, porous plugs, and small

passageways in the hydraulic system are modeled as energy-dissipating BG elements. The

washing fluid filters can be modeled as a spherical particle-packed bed, and the lint catch

as a cylindrical fiber-packed bed. Modified Ergun Equations can be used as constitutive

relations to determine the pressure drop across the packed beds as a function of a uniform

volumetric flow rate.39 Pressure and volumetric flow rate measurements are needed to model

the resistive functions and coefficients. Therefore, the washing fluid filters and lint catches

of Figure 4.4 can be modeled as linear resistors in Figure 4.5 to reduce model complexity

initially. The flexible agitation bladder is a compliant BG element dependent on the amount

of textiles inside. Assuming the bladder is a thin-walled pressure vessel, the stress and

strain relationship in the thin-walls can relate the bladder’s volume change to the pressure

change.31 The reservoir and filters also act as a compliance BG element. The BG model

reveals a parallel variable resistor structure, which aligns well with meeting user needs:

these include a reservoir and filter loop to clean the washing fluid and an agitation bladder

and reservoir loop to fill and remove washing fluid from the agitation bladder, and the valves

can also be used to increase power feedback (exercise resistance) by choking the pump.

A few BG modeling assumptions need to be addressed before model adjustment and ver-

ification. First, fluid dynamics are not modeled because an analytical solution is not known

for this system. Therefore, a finite-element method is used to model the fluid dynamics.

Second, the flow is assumed and modeled as incompressible and quasi-one-dimensional due

to each pipe segment’s small cross-sectional area and length. Third, an average fluid velocity

is used because the velocity profile is unknown spatially and temporally before gravity effects

are considered. Fourth, resistance effects due to large area changes, wall friction, and pres-

sure drops due to gravity are initially neglected until experimental data is available. Fifth,

with the previous assumptions, a Bernoulli resistance31 effect must be considered when fluid

dynamic pressure is converted to static pressure at certain system regions. Fifth, the con-

trol volume does not have an inertial reference frame when considering micro-gravity effects.

Last, it is assumed that the amount of trapped air is negligible.

26



Figure 4.4: Hydraulic system concept.

Figure 4.5: Bond Graph of the hydraulic system concept.
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4.4 Electrical Domain

Figure 4.6: Bond Graph of the electrical system concept.

The crankshaft may also be

attached to a permanent mag-

net generator to power the mi-

crocontroller pinout in Figure

4.7. Evaluating the electrical

schematic reveals that a mini-

mum of approximately 2W is re-

quired to power the entire electrical system. With a minimum flow requirement, it is of little

impact if power-conserving elements are neglected in the initial Bond Graph. Therefore, only

the resistive effects of the electronics will be considered in the construction of the electrical

BG in Figure 4.6 at this time.

Figure 4.7: Microconroller pinout.

4.5 Chemical Domain

In addition to the chemical domain information in Table 4.1, chemical BGs use absolute

temperature and pressure as efforts and the time derivative of entropy and volume as flows.35

The information in Table 4.1 is determined using Gibbs Free Energy functions and assuming

constant pressure and temperature. Chemical BGs use scalar flow to conserve mass within
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the system, not moles of chemical species, which are used as transformer elements that

interact with other BG elements. Chemical processes and reactions couple solvent diffusion,

electrolyte interactions, and hydrodynamic dispersion, resulting in very complex BGs outside

the scope of this BG application.35 For this application, chemical BGs are used to determine

the mass of waste dissolving into the washing fluid, with the textiles acting as a waste source

and the filters acting as a waste sink. Figure 4.8 reports a basic diagram of the chemical

domain.

Figure 4.8: Chemical domain concept.

BG modeling issues arise when consid-

ering the state of a chemical process. The

chemical reactions and processes dissipate

energy as a function of reaction rate and

chemical affinity, meaning that a multi-

port resistive BG element is required to

complete the set of simulation equations

and the causality of the BG model. It

is also known that chemical reaction for-

ward and reverse reaction rates are not always equal or linear when in far-off equilibrium

conditions; this leads to an unsymmetrical resistor constitutive matrix Jacobian. Eventually,

the reaction reaches equilibrium; in other words, the forward and backward reaction rates

are equal, and the Jacobian of the chemical BG resistor constitutive matrix is symmetrical,

indicating that the BG topology needs to change.35 Reliability changing BG model topology

during a simulation is also outside the scope of this application and is the primary justifica-

tion for foregoing a traditional chemical BG branch in the machine’s model.31–38 Moreover,

the complexity of the laundry environment also motivates the foregoing of chemical BGs. To

overcome chemical BG modeling difficulty, Equation 2.1 can be derived to model the waste

removal from textiles instead of using chemical domain constitutive relations, and Equation

3.1 can be used to determine the waste removal rate coefficient.

The BG variables needed to calculate the waste removal rate coefficient are the volume

of the agitation chamber (VA), the volume of textiles in the flow path (VT ), the volumetric

flowrate of washing fluid through the agitation chamber (qA), the tilt plate momentum (ptp),
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the washing fluid momentum in the agitation chamber (pa1), and a scaling exponent (ks)

to account for textiles with various types of fabric, gravity effects, unknown time-and-rate

dependent laundering processes, and the fusion of the data from the sensor suite. Active

bonds extend from corresponding mechanical and hydraulic BG elements to transmit the

required information to compute Equations 2.1 and 3.1. The final mean soil removal value is

the average of Equation 2.1 with an upper (1.24) and lower (0.84) kinetic order value.6–8 It

is important to note that Equation 3.1 is specific to the laundering environments discussed

so far, and currently, there are no datasets to reinforce the derived model.

4.6 Initial Model Simulation

All the sub-subsections and information outlined so far in Chapter 4 result in Figure 4.9,

a BG of the exercise and textile laundering machine concept to relate human torque input

to the rate of waste transported away from textiles in the agitation bladder. To generate a

model response, the causality of the BG model needs to be assigned and evaluated. It can be

seen in Figure 4.9 that all the effort source elements are outputting an effort, all the inertial

and compliance elements are in their preferred integral causalities, all the transformers and

gyrators comply with energy conservation and conversion, and all the junctions have the

proper configurations for setting common efforts and flows. Although causality is assigned

appropriately to the BG model, the model’s behavior must be initiated and actuated with

realistic values for a proper performance evaluation.2

It is assumed that there is no washing fluid in the agitation chamber when the machine

starts because the bladder in Section 3.3 only contains clothes at the start. To account for

this state, the initial simulation values need to reflect the amount of washing fluid in the

bladder and reservoir; all state initial values can be found in Table A.3. The initial volume

of washing fluid in the agitation bladder is the total volume (one gallon) of the bladder

minus the volume of textiles (a full bladder without textiles is assumed to be the reference

point). Likewise, the washing fluid reservoir has a net positive volume to reflect the fluid to

be added to the agitation chamber. The input signal to the simulation reflects the torque

2The full derivation of Astronaut Powered Laundry Machine can be found in Appendix A, in addition to
the BG element constitutive relations and parameters used in the simulation. The parameter values used for
the initial simulation results in this Section (Figures 4.10, 4.11, 4.12, and 4.13) can be found in Table A.2.
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generated by a human or other power source. Two types of input signals were used for an

initial evaluation: constant and periodic. The constant signal reflects a mechanism that

produces constant and continuous step-type torque through a Heaviside-type function. The

periodic signal mimics human pedaling because, at an instant in the pedal’s rotation, the

human-exerted force vector is perpendicular and co-planar to the pedal’s rotational axis. An

underlying Heaviside-type function reflects the buildup to the maximum pedaling torque.

The magnitude of the torque signals was determined by the distance between the center

of rotation and pedal mounting location (approximately a foot-long moment arm) and a

human’s ability to push a ten-pound-force weight with each arm for an extended period.

Figure 4.9: Bond Graph of an astronaut-powered laundry machine concept with inputs in
green and outputs in red.
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Figure 4.10: Bond Graph results for Heaviside-type Torque input, crankshaft speed, and
electrical current outputs.

Figure 4.11: Bond Graph results for Heaviside-type Torque input: Tilt plate maximum
momentum, flow rates for each flow path as a function of valve position, and generated electrical
current outputs.
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Figure 4.12: Bond Graph results for Sinusoid-Heaviside-type Torque input, crankshaft speed,
and electrical current outputs.

Figure 4.13: Bond Graph results from Sinusoid-Heaviside-type Torque input: Tilt plate max-
imum momentum, flow rates for each flow path as a function of valve position, and generated
electrical current outputs.
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The BG model can be simulated with initial, parameter, and torque values. MATLAB

was used for the BG simulation, although any coding language with an ordinary differential

equation solver can be used. The first step in evaluating the results is to check the BG

simulation model for Bounded Input Bounded Output (BIBO) stability, which was done,

and not presented, with parameters that mimic real-world values and the same sinusoid

Heaviside-type function approximation for both forward and backward pedaling acting on a

variety of valve configurations. Six different valve configurations were used in testing: one

with all flow paths open, one with all flow paths closed, and one with a single flow path open

while the others are closed - All results were BIBO stable. The valve configurations were also

tested as initial conditions and then again as functions of time during a non-zero torque input

- All results were BIBO stable. With a BIBO model, the machine performance indicators can

be calculated: input torque in Newton meters, crankshaft speed in revolutions per second,

electrical circuit current in milliamps, agitation plate angular momentum in Newton meter

seconds, the flow rate of washing fluid in each flow path in liters per second with respect to

value positions, and the mean soil concentration removed. Note that the exponential decay

rate of the unitless mean soil amount removed has been modified to a one-minute simulation

instead of the empirically expected fifteen to twenty minutes.6–8

Figures 4.10, 4.11, 4.12, and 4.13 are the results of an initial BG simulation for an

astronaut-powered laundry machine. The main difference between the two sets of results is

that the constant torque input set shows the max values achieved in the periodic set that

oscillates between the value and zero. The produced crankshaft speed is reasonable and

follows the torque signal shape, as expected from the BG structure. Similarly, the current

produced is reasonable in shape. However, the magnitude depends on the arbitrarily selected

generator coefficients; electrical results are expected to change after a prototype is developed

and analyzed. Another difference between the two result sets is the momentum generated

at the edge of the tilt plate. The constant torque produces a typical sinusoidal shape with a

constant frequency and an underlying exponential growth and decay similar to the periodic

torque input signal. Conversely, the periodic torque signal produces a superimposed sinu-

soidal shape with underlying exponential growth and decay. This result reveals that constant

torque inputs achieve a higher magnitude of time-rate-of-change in momentum transfer. The
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periodic torque signals produce a less uniform time-rate-of-change momentum transfer. It

is unknown which shape is desired for textile agitation. So, the torque input signal impacts

laundering performance and may dictate a preferred valving configuration for the washing

fluid.

The phases of Subplot E in Figures 4.11 and 4.13 show the flow rates and value positions;

the magnitudes and shapes are acceptable for this low pressure and flow area system. The

phases of the figures are as follows: Phase 1 is the release of reservoir washing fluid (dashed

blue) to fill the vacuum sealed agitation bladder (solid blue), Phase 2 is the closure of

reservoir valves (dashed orange) and bypass value (dotted orange) as a torque signal is

applied to the system at ten seconds, Phase 3 is the steady state operation of the machine

under the applied torque signal, Phase 4 is the closure of filter valves (dashed orange), the

opening of the reservoir valves (solid orange), and the closure of one agitation bladder value

to draw washing fluid out of the textiles (dot-dash orange), and Phase 5 is the closure of the

open agitation bladder valve (dashed orange) and final ramp down and reconfiguration of

the system for the following user. The mean soil removed is the primary metric (cleanliness

quantification) of this machine development method. It will require further analysis due

to the model’s uncertainty and other unaccounted chemical phenomena in the laundering

process.

The next step in the device’s development was to create a prototype, where more advan-

tages of Bond Graph Theory manifest themselves. From the laundry machine BG model, the

measurable states can be determined. The selection and placement of sensors in the system

correspond to the energy domain under observation and the state variables present in a BG.

The mechanical domain requires two sensors: an accelerometer on the edge of the agitation

plate and an angular velocity sensor for the crankshaft. The hydraulic domain requires nine

sensors - a flow meter near each valve and an absolute pressure transducer on each side of

the hydraulic loop. The chemical domain sensors are selected to characterize the state of the

wastewater. A diode spectrometer quantifies the abundance of organics and particulates in

the washing fluid, and a conductivity sensor quantifies the salinity. The next advantage of

Bond Graph Theory is the identification of parameters impacting the desired performance.

In the context of the proposed machine, the goal is to launder clothes efficiently with a high
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momentum transfer rate from the tilt plate and flowing washing fluid to the soil attachment

points on textiles. The parameters that can be evaluated in a hardware context for proto-

type development to reach the desired goal are summarized in Table 4.3. The BG model

sets the initial approach to prototype development; after prototype development, the laun-

dry machine BG model will be updated to reflect the prototype to simulate more accurate

responses and predictions.

Variable Units Description

Mechanical Domain

aa m Distance from tilt plate hinge to crank arm mount.

asa m Distance from tilt plate hinge to shock absorber mount.

Jc kg ·m2 Inertia of crank shaft.

l m Length of crank arm.

ltp m Edge length of square tilt plate.

r m distance from crank arm mount to crankshaft center of rotation.

Hydraulic Domain

AP m2 Area of hydraulic piping.

VA m3 Volume of agitation bladder.

VR m3 Volume of reservoir.

Table 4.3: Bond Graph parameters identified as the main impacts on simulated and prototype
machine performance.
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Chapter 5

Prototype Development

5.1 Approach

The machine prototype used to verify assumptions and approaches in the design and

modeling process follows the conceptual Bond Graph domains discussed in Chapter 4: Me-

chanical, Electrical, Hydraulic, and Chemical. First, sensors are selected for each domain to

measure the states of the Bond Graph model within the respective domain. Second, the data

processing methods are discussed. Third, the sensors are calibrated to known values based

on calibrated sensors or benchtop experiments. Last, subsystem testing for functionality and

observation.

5.2 Sensors

Each subsystem’s sensors are reported in Table 5.1 and discussed below. Three technical

criteria were used in the COTS sensor selection: power consumption, analog signal capabili-

ties, and MicroPython capabilities. After collecting data on all available sensors, budgeting,

vendor reliability, and community support were considered before purchase. The power con-

sumption of the sensors is 1.369 W and the Raspberry Pi Pico microcontroller consumes a

maximum of 550 mW - the max electrical-power consumption of the machine is 1.919 W.
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Sensor Comm. Type Power Frequency Qty.

Mechanical Domain

Tachometer GPIO 25 mW 6.3 Hz 1

Hydraulic Domain

Flow Meter GPIO 5 mW 20 Hz 5

Electrical Domain

ADC I2C 1 mW 128 Hz 1

MicroSD I2C 8 mW 40 MHz 1

Chemical Domain

Cond. Sensor ADC 5 mW 50 Hz 2

Spectrometer ADC 0.65 W 50 Hz 2

Table 5.1: Sensors and other electronics present in the machine prototype.

5.2.1 Tachometer

The tachometer (Figure 5.1) consists of an infrared emitter and detector diode side-by-

side pointing at the same object. The constant emission of infrared reflects off a striped

paper wrapped around the crankshaft. Due to infrared absorption on black surfaces, the

striping allows for a high signal retention on white alignment and a low signal retention

on black alignment. At high crankshaft speeds, the detected frequency of the pulse-width-

modulated signals also increases. The detected signal is sent to the microcontroller through

General-purpose input/output (GPIO) pins.

Figure 5.1: Machine prototype infrared tachometer.
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5.2.2 Flow Meter

The flow meter (Figure 5.2) uses a mounted rotor (turbine) as a Hall sensor in the flow

path. A circuit closes as the embedded rotor magnet passes an electromagnet outside the

flow path. The pulsing circuit communicates with the microcontroller through GPIO pins.

Figure 5.2: Machine prototype Hall Effect flow rate sensor.

5.2.3 ADC and MicoSD

An ADC (Figure 5.3a) breakout board communicates with the analog conductivity and

diode spectrometer sensors. A microSD card (Figure 5.3b) breakout board stores the data

generated during a laundry cycle. Breakout boards (small printed circuit boards converting

analog signals to I2C signals for the microcontroller) reduce cable management complexity.

(a) Analog-to-digital converter. (b) MicroSD card reader.

Figure 5.3: Breakout board electronics used in the machine prototype.
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5.2.4 Wastewater Sensor Suite

The conductivity sensor (Figure 5.4a) is hand-made and is composed of copper wire, a

resistor, and two nichrome wire probes near each other that act as a voltage divider feeding

into the ADC; the first resistance of the divider is dependent on the electrolytes within the

water to connect the positive and negative nichrome wires.

The diode spectrometer is a light-emitting diode at 275 nm and an ultraviolet light

detector breakout board that sends analog voltage signals to the ADC. The conductivity

and diode spectrometer sensors are placed in a single body, making the Wastewater Sensor

Suite (WSS), as shown in Figure 5.4b.

Figure 5.5 shows a diagram of the wastewater sensor suite. Three electrical devices and

one optical device in the suite observe the half-inch diameter flow path. The suite was

assembled using a waterproof marine adhesive sealant that is corrosion resistant (salts and

oxidation) and ultraviolet light tolerant (will not become brittle after prolonged exposure).

The conductivity sensor was placed inside a plastic housing, sealed, and placed in the suite

housing to extend an eighth inch into the water, insulating the exposed nichrome wire from

the aluminum housing. A through hole was created for the ultraviolet light path on two

parallel faces of the housing. One face has the UV LED directly mounted and sealed to the

housing (i.e., the protective window on the LED directly touches water). The other face has

a countersunk hole for a 3D-printed mount for the UV detector breakout board and window.

The optical device (circular UV window) is quartz glass capable of letting UV through

infrared light pass with high transmittance (detectable photon intensity). The window also

serves as a protective barrier between the wastewater and UV detector breakout board. The

UV detector is placed behind the window facing the LED so that the diode spectrometer is

normal to the flow path once the suite is assembled. The detector and window are adhered

to the 3D-printed mount sealed in the countersunk hole. Once assembled, the housings are

integrated into the machine with a suite on each side of the agitation bladder, as shown in

the hydraulic system concept (Figure 4.4).
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(a) Individual sensors (b) Single body sensor suite.

Figure 5.4: Wastewater sensor suite containing a conductivity sensor and ultraviolet light
diode spectrometer used in the machine prototype.

Figure 5.5: Cut-away diagram of the wastewater sensor suite (grey) containing a conductivity
sensor (yellow) and ultraviolet light diode spectrometer (blue, red, and purple).

5.3 Data Processing

After each data set is recorded to the micoSD card, the card is removed from the Rasp-

berry Pi Pico microcontroller and placed into a Windows 10 computer. The raw data sets

are placed in a central raw data directory named from the MicroPython code running on

the microcontroller. All directories on the Windows 10 computer are the turquoise blocks

of Figure 5.6. R code is then used to manage and process the collected data; Appendix F
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has the whole code. In Figure 5.6, the ”Sensor Data” file contains each sensor’s systematic

error, filter window size, and confidence level quantile percentage (data set post-processing

variables are summarized in Table 5.2).

Figure 5.6: Flow chart for processing and plotting data from raw prototype signals.

Sensor Filter Window Length Systematic Error Quantile Percent

Tachometer 6 0.1 50%

Flow Meter 5 0.03 21%

Cond. Sensor 20 0.1 5%

Spectrometer 20 0.1 5%

Table 5.2: Sensor data post-processing variables.

The ”Signal Name” file contains string elements corresponding to plot legend names.

The code combines the raw data, the ”Sensor Data” file, and the ”Signal Name” file into a

single list object for manipulation. Each entry in the list is a different sensor data set. After

the list is created, a modified Thompson Tau outlier removal test40 is used on each data

set by identifying potential outliers and testing them against a rejection region of a local
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window mean. Due to the subjective nature of outlier removal, a check between data sets

with and without outlier removal is necessary to ensure data is not manipulated to falsify

results or produce an inaccurate bond graph model. Figure 5.7 and 5.8 are filtered data sets

produced from the same raw data sets for the flow meters where the first graph does not

remove outliers and the second one does. Comparing the raw and outlier removed data sets

numerically with average flow rates across all trials reveals an average difference of -8.64e-4

milliliters per second. Therefore, the main result of using the Thompson Tau outlier removal

method is a slight decrease in the mean value of the signal. This is expected when data points

are removed, and it holds across unsteady, steady, and transient periods in data sets. With

a small average difference in value from outlier removal, the data sets can then be filtered

and have a 95% confidence interval determined for bond graph modification. A built-in R

filter, a two-sided convolution function smoothing the data based on a moving window size,

filters the data. The window sizes were manually adjusted for each sensor until smooth data

sets were consistently produced. During the 95% Confidence Interval Function, systematic

and random errors are present. No error propagation is considered because the data sets are

not directly used to calculate variables with a high covariance. Because the data collected

is not always steady, the standard deviation of the signals cannot be used to determine the

random error. Instead, a quantile window specific to each sensor is used to calculate the

random error. Quantile windows were also adjusted for each sensor until smooth data sets

were consistently produced. The data sets are saved and plotted in each intermittent step

of the data processing and will be used to modify the machine’s Bond Graph model.

43



Figure 5.7: All flow meter signals processed without Thompson Tau outlier removal.

Figure 5.8: All flow meter signals processed with Thompson Tau outlier removal.
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5.4 Sensor Calibration

Some sensors need to be calibrated to known values to avoid sensor aliasing and improve

post-processing. The tachometer and flow meters must be calibrated because they have

associated errors reported on their data sheets.

5.4.1 Tachometer

Figure 5.9: Machine prototype tachometer
calibration experiment set-up.

For the tachometer, a variable speed fan and

a National Institute of Standards and Technology

calibrated tachometer, as shown in Figure 5.9, were

used to record the fan’s three speeds. The ma-

chine’s tachometer was then used to measure the

fan speed. The tachometer’s data collection fre-

quency and infrared diodes were then adjusted un-

til all three fan speeds were read constantly across

many trials. Figure 5.10 shows the calibration re-

sults.

Figure 5.10: Machine prototype tachometer calibration experiment results. Red lines repre-
sent the tachometer sensed revolutions per second.
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5.4.2 Flow Rate Sensors

Figure 5.11: Machine prototype flow meter calibration experiment set-up.

Figure 5.11 shows a device to model Torricelli’s Law for the flow rate sensors. Torricelli’s

law relates the ejection speed of a water stream out of a reservoir to the height of water

in a reservoir. The flow rate of the ejecting stream is an exponentially decaying function,

and the machine’s flow rate sensors were placed in the device to measure the exit flow

rate. The data collection rate of the flow meter was adjusted to the decaying function. The

calibration results after applying a low pass filter are shown in Figure 5.12. The initial height

of the reservoir was changed for each calibration trial, and the results show respective signals

oscillating around the respective decay function, revealing accurate sensor measurements.

Higher resolution signals could not be achieved due to the COTS hardware. Assuming no

heavy concentration of particulates, the waste within the water should not impact the flow

rate.
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Figure 5.12: Machine prototype flow meter calibration experiment results after applying a
low pass filter (LPF).

5.4.3 Wastewater Sensors

The wastewater sensors are normalized to a distilled water baseline and then compared

to the other upstream wastewater sensors. The relative sensitivity of the sensors needs to be

tested (e.g., what is the smallest change in electrolytes that the sensor can record). A sample

of saturated salt water was used for the conductivity sensor to observe the change in the

water’s bulk electrical resistance. The sensor baseline was set to tap water conductance before

the saturated salt water was added in small quantities to the fixed volume of water. Figure

5.13 shows the experiment results, which show that changes in electrolyte concentration

can be detected at a high resolution. The results also have a time delay in the response,

most likely due to the localized mixing and diffusion throughout the sample volume. The

conductivity sensor acts as a voltage divider, so the length of copper wire, amount of solder,

connection contacts, length of exposed nichrome wire, distance between the nichrome probes,

and condition of resistors in the circuit all impact the measured voltage.

47



Figure 5.13: Machine prototype conductivity sensor calibration experiment results.

The main impact is the condition of the secondary resistance in the voltage divider

because it controls the current intensity that interacts with the electrolytes in the water. The

sensitivity of the conductivity sensor manufacturing plays a significant role in the reliability

and ability to calculate the relative change in electrolyte concentration in the laundering

process. To address the manufacturing issue, all conductivity sensors used in the machine

were manufactured simultaneously to ensure all components came from the same batch (e.g.,

solder, resistors, connectors, wire) and constructed with an identical process that included

intermittent steps to compare each sensor to one another.

For the diode spectrometer, samples of saliva diluted in distilled water were created to ob-

serve the relative change in detected absorbance using the Beer-Lambert Law (see Equation

3.2 and Section 3.4). After calibrating to local tap water, the three samples were sequen-

tially placed into the spectrometer. Figure 5.14 shows the results of the discrete-sample

testing. The near linear relationship between saliva by volume and absorbance reveals that

the UV detector breakout board circuit is sensitive to a 1% change in bio-fluid concentra-

tion. Particulate testing in the spectrometer was not done. After the conductivity and diode

spectrometer were tested, they were integrated into the single-body WSS. Two wastewater

sensor suites were manufactured to measure the waste-mass exiting textiles.
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Figure 5.14: Machine prototype diode spectrometer calibration experiment results.

The two wastewater sensor suites were calibrated for experimental use by subtracting

the sensed values of the same distilled water sample. The difference in sensed spectrometer

amplitude readings was approximately 5e-9, and conductivity readings were approximately

3e-7 V. Two experiments were done to evaluate the WSS measurement system’s performance.

The first experiment contaminated distilled water with table salt and real saliva (low in elec-

trolytes with bio-fluids). This was done to observe the diode spectrometer and conductivity

sensor performance in an environment where each can only measure a single contaminant.

The second WSS experiment contaminated distilled water with synthetic perspiration to

observe a primary spaceflight textile contaminate, which requires both sensors to quantify

relative concentration.

The first WSS experiment started with distilled water before adding salt in four centi-

grams and saliva in two percent by volume increments up to sixteen and eight, respectively.

This resulted in the twenty-five samples ranging from uncontaminated to eight percent by

volume saliva-water with sixteen centigrams of salt. The results from observing the twenty-

five wastewater samples per sensor suite are shown in Figure 5.15 for the conductivity sensor
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and Figure 5.16 for the diode spectrometer - Due to the slight difference in measurements, it

appears that only one sensor suite was operational, however, there is another set of data un-

der the visible lines. The conductivity results show that with higher saliva, the conductivity

increases, which is accurate due to the electrolytes in saliva, and that conductivity increases

with more dissolved electrolytes regardless of saliva concentration.

The diode spectrometer results reveal the expected trend of increased amplitude with

more saliva and the unexpected trend that with higher dissolved salt, the amplitude also

increases regardless of saliva concentration. The increasing detected abundance with higher

salt may be due to the electrolytes clouding the water, obscuring the emitted ultraviolet

light. With the expected results, a second experiment with synthetic perspiration can be

done to evaluate the wastewater sensor suite further.

Figure 5.15: Machine prototype wastewater sensor suite conductivity calibration experiment
for salt and saliva experiment.
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Figure 5.16: Machine prototype wastewater sensor suite diode spectrometer calibration ex-
periment for salt and saliva experiment.

The second WSS experiment started with uncontaminated distilled water before adding

synthetic perspiration in two percent by volume increments up to twenty percent. The ten

samples are shown in Figure 5.17 for the conductivity sensor and Figure 5.18 for the diode

spectrometer - Due to the slight difference in measurements, it appears that only one sen-

sor suite was operational, however, there is another set of data under the visible lines. As

the concentration of synthetic perspiration is lowered below 3%, the sensitivity of the sen-

sors becomes relatively poor compared to sensitivity at higher contaminate concentrations.

The linear rise of the detected conductivity and abundance with increasing synthetic per-

spiration concentration matches the first experiment’s results and discrete benchtop testing

results (Figure 5.13 and 5.14). These results and previous testing are deemed sufficient for

wastewater sensor suite integration into the prototype machine, along with all the other

sensors mentioned in this chapter.
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Figure 5.17: Machine prototype wastewater sensor suite conductivity calibration results for
synthetic perspiration experiment.

Figure 5.18: Machine prototype wastewater sensor suite diode spectrometer calibration re-
sults for synthetic perspiration experiment.
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5.5 Prototype Machine Assembly

Figure 5.19: Fully assembled standalone astronaut-powered laundry machine prototype.

The main structure of the machine prototype is a bicycle frame (Figure 5.19)with pedals,

a chainring, and a rear 7-level freewheel sprocket attached (originally used for changing

gear ratios). There is a chain linking the chainring (with pedals attached) and freewheel

to convert human-power into rotary-power. Another chain extends from the freewheel and

supplies power to a corrosion-resistant reversible hand pump mounted to the bicycle frame

to create a hydraulic-power source. A water reservoir is attached to the frame, feeding the

hydraulic system with a bladder and valve. The conceptual schematic is shown in Figure 4.4.

Half-inch vinyl tubing connected all hydraulic components and was mounted to the main

structure with zip-ties, nuts, and bolts depending on the shape and flexibility of the tubing.

The flow meters are attached to each valve in the hydraulic system. All sensors are connected

to a power supply and terminal block with the microcontroller (per Figure 4.7), and the

electrical system is covered in plastic for water protection. No electrical generator, or other
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power converting source, is linked to the rotary-power supply, so a power and communication

cable between a Windows 10 machine and the microcontroller was used. The Windows 10

machine runs ”Thonny,” a micropython-integrated development environment, to store and

manage microcontroller Micropython files. The code sets up libraries for breakout boards,

establishes data collection rates, and generates comma-separated value files from sensor

measurements. Once everything had been assembled and integrated into the main structure,

tests were run to ensure all sensors were properly communicating and recording data during

operation. Figure 5.19 shows the fully assembled machine prototype ready for data collection

and BG model modifications.

5.6 Machine Testing

With a prototype developed based on the astronaut-powered laundry machine concept

and a data processing pipeline established, the prototype can be tested to ensure nominal

operation to gather data for the Bond Graph modification and validation. Figure 5.19 shows

the completed machine prototype under the reduced scope: no electrical generator, tilt plate

agitator, or water filters.

To operate the completed prototype, the user must first insert a microSD card into the

reader, then set the valves to a laundry-loading configuration (i.e., all agitation bladder values

closed to prevent water from exiting the hydraulic system) before filling the agitation bladder

with contaminated textiles and distilled water; then, power is connected to the Raspberry Pi

Pico, and finally the user begins to power the system by pedaling and adjusting the valves

as needed - a complete procedure is in Appendix E. The machine configuration can change

throughout the laundering process to mimic an Earth-laundry cycle: fill to wet, rinse, empty,

fill, agitate, empty, rinse, and wring. For testing, all the valve configurations were tested

without consideration of the laundering process.

Figure 5.20 shows the initial bond graph results. Figure 5.21 and 5.22 compare the bond

graph results to the data collected from machine testing. The large deviations between the

simulated and filtered data in the initial results reveal that modifications to the bond graph

model are needed. The next chapter covers the reduced model and modifications in detail.
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Figure 5.20: Reduced model bond graph results of a standalone astronaut-powered laundry
machine.

Figure 5.21: Standalone astronaut-powered laundry machine prototype experiment flow rate
results with filtered data and BG model results
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Figure 5.22: Standalone astronaut-powered laundry machine prototype experiment wastew-
ater results with filtered data and BG model results. Prototype data is near zero between 40
and 90 seconds.
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Chapter 6

Model Verification

6.1 Bond Graph Modifications

The initial model comparison to experimental data is poor, so the bond graph model

needs to be modified. A torque signal actuates the whole machine model; however, the

torque generated by a human to operate the machine is unknown, which means a measured

variable is needed to actuate the model. The crankshaft speed was initially used because

it is a state variable within the model dependent on the torque input. The tachometer

data is passed through a bond graph transformer to generate a hydraulic flow rate into

one side of the hydraulic system - this is inaccurate because the pressure differentials from

the valve configuration also affect the flow rate generated. A more accurate model would

include a modulated transformer for the hydraulic pump. Still, another data set is needed to

accurately actuate the bond graph model without pressure transducers and detailed testing.

Using the law of conservation, all the flow rates from a side of the hydraulic system can be

added together to produce the prototype pump’s flow generation from one side to the other

over time. The total flow rate of the pump was then used as a flow source to actuate each

respective side of the bond graph model. Only six signals can be verified: each flow rate

sensor and the cleanliness equation under the reduced model and prototype.
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Figure 6.1: Bond Graph of an astronaut-powered laundry machine concept with inputs in
green and outputs in red.

In addition to a flow source replacing the pump transformer, other modifications to the

bond graph are needed to accurately account for each flow path’s impact on the system. The

two sides of the water flow path (P1 and P2 from Figure 4.4) are split into capacitance and

inertia terms for each flow path (i.e., each tube leading to the hydraulic components needs

to be considered individually in the bond graph model). Resistances are introduced into

the flow for long pipes, orifice changes, gravity, and capacitor restrictions. Resistance terms

are added before the valves because the pipes generate a pressure drop due to the length of

each pipe being over ten times the length of the diameter (the Pipe subscript of Equation

6.1 shows the constitutive relation used for a laminar assumption justified by preliminary

results) and the pipe’s change in elevation (the G subscript of Equation 6.1 is a constant).

A resistance term is added to each manifold capacitor (C : C1 and C : C2 of Figure:6.1)

to account for the changing orifice sizes and to reduce simulation solution time. Resistors

were also added to the reservoir and bladder capacitors (C : Cr and C : Ca of Figure:6.1)

because of office changes, pipe layout (e.g., the in and out vectors of the reservoir are one-

hundred and eighty degrees apart, so the water’s momentum is impacted), and the resistance
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generated by textiles within the bladder. These resistances were manually modified to match

the recorded data. The capacitance of each pipe was also added to set the pressure before

the valve (Equation 6.2 shows the constitutive relation used for this element where B is the

Bulk Modulus of water). Figure 6.2 reflects all the bond graph modifications discussed.

Rtot = RPipe +RG +RTune =
128 · µ · l
π · d4

+ ρ · g · h +RTune (6.1)

C =
π · r2Pipe · l

B
(6.2)

Figure 6.2: Modified reduced model bond graph of a standalone astronaut-powered laundry
machine. Bold elements are user inputs to the model.

6.2 Cleanliness Equation Modifications

Modifications were made to the cleanliness equation for data processing and bond graph

simulation. The primary logarithmic cleanliness equation (2.1) is used; however, the change

in waste concentration (∆c) needs to be defined, and the waste removal rate coefficient (k) is

reduced from the original form (3.1) to match the reduced prototype. Equation 6.3, 6.4, and

6.6 are the equations used for the collected data where the number subscripts indicate which

wastewater sensor suite data set is used for calculation. The two-hundredths of a second-time

step is from the 50 Hz data collection speed. The waste removal rate coefficient equation
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is the same for collected data and simulation (Equation 6.6) because the same variables

are available. An unexpected uncertainty with the cleanliness equation is the change in

concentration equations because the absorbance and conductivity measurements need to be

combined into a single value. Absorbance is unitless. Conductivity measures the voltage

drop across a bulk fluid. The conductivity measurements can be made unitless using the

voltage drop in distilled water as a baseline. A simple addition of the unitless measurements

can then be done for the waste measurement combination, as shown in Equation 6.5. After

calculations, multiple instances of an Infinite or NaN value appear in the data set (this was

expected with zero-value measurements used in logarithmic calculations) and are removed.

This results in sporadic data not very well suited to creating a line to compare to simulated

values; therefore, the data was regressed using the MATLAB fit function into the expected

exponential expression (y = AeBt + C).

Equation 6.7, the modeled change in concentration over time, was determined from a

guessed regression curve and the experimental data provided in the next section. The ex-

pected exponential expression was used as an initial guess. The simulation leading constant

(cdata(t0)) was set from the combined raw data initial value. The mean-time simulated waste

removal rate value (ksim) was found by averaging the calculated waste removal rate for the

data set due to the expected discontinuity in the rate removal equation and no chemical aids

(catalysts). The sign of the decay rate was established from the data regression for each trial

(i.e., is the initial condition of the water favorable for waste removal). The decay rate (τ) is

the only parameter to modify manually. A simulated time constant of fifteen minutes was

used across all trials for the experimental laundering environment. Recalling that the rate of

waste removal is heavily dependent on the contaminant-textile combination, the unaltered

time constant can be attributed to the solubility of preparation and the wetting properties

of cotton.41. The rates are plugged into the primary logarithmic cleanliness equation (2.1)

with a kinetic order (n) value of 0.85, 1, and 1.24. The three resulting equations for the data

and simulation are then averaged together and used as the simulated signal for analysis.

∆uv

∆t
=

(uv2(ti+1)− uv1(ti+1))− (uv2(ti)− uv1(ti))

0.02
(6.3)

60



∆cond

∆t
=

(cond2(ti+1)− cond1(ti+1))− (cond2(ti)− cond1(ti))

0.02
(6.4)

∆cdata
∆t

=
∆uv

∆t
+

∆cond

∆t
=

(∆uv +∆cond)

0.02
(6.5)

kdata =

(
Textile Volume · L/s into Bladder

(Bladder Volume)2 ·Momentum into Bladder

)0.001

= ksim (6.6)

∆csim
∆t

= cdata(t0) · ksim ·
(
1− 1

τ
· e

−t
τ

)
, τ = 900s (6.7)

6.3 Verification Trials

After modifying the bond graph and cleanliness equation to match the prototype data

sets, testing with four 100% cotton three-inch swatches (Figure 6.3) contaminated with

different amounts of synthetic perspiration was done to verify the model further. The root-

mean-square (RMS) error between the simulated and filtered data sets determines how well

the model fits the prototype’s performance. The RMS error is calculated with the MATLAB

rmse function that takes the square root of the square difference between the filtered data and

simulation results divided by the total number of data points. The RMS error is normalized

to the magnitude of the signals (i.e., typical flow rates have a magnitude of 1e-4 L/s, so the

errors are divided by 1e-4). The RMS error is a single indicator for evaluating the bond

graph model. The 95% confidence interval produced by the R code is also considered in

evaluating the bond graph model. Thirteen trials were done; the overall lowest RMS error

and highest flow rate RMS error trials are reported below, and the rest are in Appendix C.
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Figure 6.3: 100% cotton swatches and synthetic perspiration used in verification trials.

For each trial, the contamination conditions and RMS errors are shown in a table, followed

by two plots: a comparison between the collected and simulated flow rates with uncertainty

bars and the computed and simulated cleanliness equation. All the trials followed the same

basic procedure for contaminating the textiles and preparing the machine (Appendix D

and E, respectively, have the procedures). The only differences between the trials were

the amount of time pedaling, the valve configurations, and the initial state of the water.

By having different power inputs in different machine configurations, the robustness of the

model can be explored because it will have to conform to all the other conditions without

changing any simulation constants, which is expected in a typical use case of the machine.

Table 6.1 reports the average RMS error calculated from the raw, outlier-removed, and

filtered validation trial data sets. The red lines of the wastewater plots are the simulated

logarithmic cleanliness equation resulting from Equation 6.7.
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Data

Type

Bld.

Ent.

Bld.

Exit

Res.

Ent.

Res.

Exit
Bypass

Clean

Eq.

Raw 0.32817 0.29533 0.45161 0.31856 0.38819 0.24330

Outliers

Removed
0.51438 0.48476 0.51232 0.39633 0.44284 0.35146

Filtered 0.57637 0.54772 0.49543 0.48980 0.36410 0.27285

Table 6.1: Average root-mean-squared error results with flows normalized by 1e-4 for a
standalone astronaut-powered laundry machine. Bld. = Bladder, Res. = Reservoir, Ent. =
Entrance, and Ext. = Exit.

Contamination Information Value

Quantity of Synthetic Perspiration 4 ml

Regression Constant 4.673

Regression Rate 2.6479e-05 1/s

Signal RMS Error

Bladder Entrance 0.49327

Bladder Exit 0.43377

Reservoir Entrance 0.17651

Reservoir Exit 0.20486

Bypass 0.28558

Cleanliness Equation 0.34549

Table 6.2: Contamination conditions and Root-Mean-Squared error results of a standalone
astronaut-powered laundry machine for the lowest RMS error trial, #5.

63



Figure 6.4: Standalone astronaut-powered laundry machine prototype experiment flow rate
results with filtered and simulated data for the lowest RMS error trial.

Figure 6.5: Standalone astronaut-powered laundry machine prototype experiment wastewater
results with filtered and simulated data for the lowest RMS error trial at scale.
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Figure 6.6: Standalone astronaut-powered laundry machine prototype experiment wastewater
zoomed-in results with filtered and simulated data for the lowest RMS error trial.

Contamination Information Value

Quantity of Synthetic Perspiration 4 ml

Regression Constant 3.6721

Regression Rate -8.6278e-06 1/s

Signal RMS Error

Bladder Entrance 0.11516

Bladder Exit 1.2528

Reservoir Entrance 1.991

Reservoir Exit 2.0425

Bypass 0.26965

Cleanliness Equation 0.34525

Table 6.3: Contamination conditions and Root-Mean-Squared error results of a standalone
astronaut-powered laundry machine for the highest flow rate RMS error trial, #4.
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Figure 6.7: Standalone astronaut-powered laundry machine prototype experiment flow rate
results with filtered and simulated data for the highest flow rate RMS error trial.

Figure 6.8: Standalone astronaut-powered laundry machine prototype experiment wastewater
results with filtered and simulated data for the highest flow rate RMS error trial at scale.
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Figure 6.9: Fully assembled standalone astronaut-powered laundry machine prototype exper-
iment wastewater zoomed-in results with filtered and simulated data for the highest flow rate
RMS error trial.

The model needs higher-resolution sensors to better predict the dynamics of laundry.

Such capabilities would improve insight into exercise loading and laundering efficiency per

user. To predict the general laundering capabilities of this design, the tuned model is well

within the uncertainty of the measurements made with COTS hardware. The simulated

signals are within the calculated uncertainty even for the highest RMS error trial. The data

processing also impacts the resulting 95% Confidence Interval. Evaluating all the data sets

with relative uncertainty instills confidence that the simulated values represent the proto-

type machine. The RMS errors of the flow rates in Table 6.1 vary between the raw, outlier

removed, and filtered data sets due to the reduction of data resolution. The noise of the

measurements and the overall unsteady nature of flow are always present in the data, and a

reduced resolution for cleaner data is an acceptable trade-off in this general context. Reevalu-

ating the need for outlier removal, the RMS error for the raw and outlier removed flow rates

are similar and further justifies the conclusion that eliminating outliers with the Thomp-

son Tau Method does not produce misleading results. The resulting simulated cleanliness

data matches the expected equation and behavior derived from Kissa’s experimental results

from 1975-1979.6–8 Further testing in different laundering environments (especially ones with
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other contaminates, agitation, and detergents present) is needed to verify the simulated and

post-processed cleanliness equations thoroughly. There is a marginal difference in RMS error

when exploring the model with gravitational effects. The difference is somewhat expected

when approximately half a pound per square inch of hydraulic head is generated by gravity

between the highest (reservoir) and lowest (bladder) points in the system.

An interesting phenomenon was observed during the experiments. In two cases, the

measured and simulated values were different during rinsing (flow through the agitation

chamber). It was found that a swatch had been sucked into the bladder exit flow path,

occluding the UV LED in one trial and clogging a flow meter in the other. A machine model

and algorithms could be used on the microcontroller to report possible obstructions in flow

paths to a display (e.g., a message to agitate the bladder to remove the obstruction could

be displayed). Custom porous caps were manufactured and integrated into the bladder to

prevent textiles from unintentionally exiting the bladder. This additional hydraulic resistance

significantly affected the flow rates, so the data analysis algorithms must compensate for the

increased resistance. Remodeling the system consisted of adding a constant resistance (Rplug)

to Equation 6.1 for the agitation path only. This rapid model adjustment was another proof

of the amenability of using bond graphs for system modeling.

Moreover, on observations during the trials, the operation of the machine for more than

a couple of minutes resulted in elevated heart rates and fatigue in the arms of the user.

Changes in cardiac states support the goal of using the machine for exercise. No data was

collected to quantify the cardiac changes. The last observation was the amount of hardware

that failed during the manufacturing and testing. A total of one valve, one 7-speed freewheel,

and two hand pumps failed throughout the prototype development. After the replacement

hardware acquisition, the total repair time was about an hour. Although not suited for

spaceflight, the repairs speak to the simplicity of the maintenance design.
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Chapter 7

Conclusion and Future Work

Machine Weight 35 lbs

Machine Dimensions 40” x 16” x 30”

Machine Power Consumption 1.919 W

Average Modeling RMS Error 0.4152

Table 7.1: Key characteristics of the developed prototype.

Guiding questions were proposed to produce a machine and a model of an astronaut-

powered laundering machine. A human-powered hydrodynamic rinsing machine prototype

and bond graph model were created and tested (characteristics summarized in Table 7.1). A

machine and model enable the prescription of exercise and laundering regimens for individ-

ual astronauts to ensure proper loading on the body and removal of bodily excretions from

garments. A single machine to exercise and recycle textiles regardless of gravity or habitable

environment would reduce a large portion of mass and volume allocations on spaceflight mis-

sions, thereby providing new mission capabilities. One effect not simulated is the gathering

of air in the system as a function of gravity. With possible off-gassing and leaks, air pockets

may form in the hydraulic system. On Earth, this was accounted for with the placement

of the reservoir and specific valve configurations to cycle the water through and remove

the entrapped air. This method may not be viable in microgravity. These effects of air in

the system would modify the compliance elements of the bond graph model. Without a

microgravity environment to test this result, no further information is available to answer
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the research questions and validate the derived development method. Below are the topics

discussed for each question under investigation in this thesis.

1. What factors are required to launder textiles on Earth:

(a) Water, waste deformation and dispersion energy, chemical additives, and time.

2. What are the characteristics of laundry mass dynamics:

(a) Soil types, fiber types, and their combinations.

(b) Agitation mechanics with respect to the location of contaminate.

(c) Water-fiber-soil interactions.

3. How to measure general textile cleanliness:

(a) What are cleanliness metrics?

i. Quantification of the waste-mass removal from fiber matrices.

ii. Feel and smell of cleaned textiles (subjective).

(b) How do we measure the metrics?

i. Visual inspection of irradiated contaminate and or dyes.

ii. Decomposition monitoring of specific chemical additives.

iii. Wastewater visual inspection and sensor observation for contaminates.

4. Machine design in the context of the spaceflight environment:

(a) Human power for sustainability and atrophy countermeasures.

(b) Standalone, maintainable, and closed water cycle for ease of use across any space-

flight environment.

(c) Periodic agitation to reduce textile damage and detergent usage.

(d) UV spectrometer and conductivity sensors to monitor water contaminates.

(e) Microelectronics for low power and real-time computations.

(f) Bond graphs for user and machine performance predictions.

70



Besides a reevaluation of the mechanical assembly, the future work needed to improve

this methodology is:

1. Validation of periodic agitation mechanisms.

2. Bladder wringing efficiency testing.

3. Water filtration of electrolytes, biofluids (primarily sebum and urea), and particulates.

4. Electricity generation from a mounted and modified hand crank DC generator.

5. Creation of an info-metric display for users.

6. Relate cardiovascular power output to machine performance via metabolic rate and

energy expenditure calculations.

7. Integrate the state space into the microcontroller code to be used as a base for machine

performance monitoring/diagnostics/prognostics - e.g., Displays warning for flow paths

or regions that may be obstructed by lint.

8. Comparison of machine performance in a domestic Earth setting to the Association of

Home Appliance Manufacturers standard HLW-1-2013.
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Appendix A

Astronaut-Powered Laundry Machine

Bond Graph Information

A.1 State Variables

Variable Units Representation

Mechanical Domain

q̇c
m
s

Translational velocity difference across crank arm shock

absorber.

q̇tp
rad
s

Rotational velocity of tilt plate.

q̇sa
m
s

Translational velocity experienced by shock absorber.

ṗc N ·m Net torque acting on crank shaft.

ṗtp N ·m Net torque acting on tilt plate.

Hydraulic Domain

q̇A
m3

s
Net volumetric flow rate through agitation chamber.

q̇c1
m3

s

Net volumetric flow rate through side #1 of hydraulic sys-

tem.

q̇c2
m3

s

Net volumetric flow rate through side #2 of hydraulic sys-

tem.

q̇R
m3

s
Net volumetric flow rate through water reservoir.

q̇wf
m3

s
Net volumetric flow rate through water filter(s).
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ṗa1
N
m2 Net pressure of agitation bladder valve #1.

ṗa2
N
m2 Net pressure of agitation bladder valve #2.

ṗBP
N
m2 Net pressure of bypass valve.

ṗr1
N
m2 Net pressure of reservoir bladder valve #1.

ṗr2
N
m2 Net pressure of reservoir bladder valve #2.

ṗwf1
N
m2 Net pressure of water filter valve #1.

ṗwf2
N
m2 Net pressure of water filter valve #2.

Table A.1: Bond graph state variables.
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A.2 Parameters

Term Units

Initial

Simulation

Value

Definition

aa m 0.15
Distance from crank arm mount to tilt plate

rotation center.

asa m 0.14
Distance from shock absorber to tilt plate ro-

tation center.

A(u) m2 – Valve flow area as a function of valve position.

AA m2 0.1603 Cross sectional area of agitation chamber.

AP m2 2.835e-04
Area of hydraulic piping between reservoir and

agitation chamber.

Alcp m2 2.835e-04 Area of lint catch porous plug .

Awfp m2 2.835e-04 Area of water filter porous plug .

bc
N ·s
m

19.75
Crank arm shock absorber damping coeffi-

cient.

bcs
N ·s
m

0.4750 Crankshaft friction.

bsa
N ·s
m

0.5585 Tilt plate shock absorber damping coefficient.

B N
m2 2.180e+09 Fluid bulk modulus.

c mol
1
n – Average amount of waste removed.

∆c mol –
Concentration of waste in water as measured

from senor array.

Cd(u) m2 –
Valve discharge coefficient as a function of

valve position.

DPlc
m – Particle diameter of lint catch.

DPwr m – Particle diameter of water reservoir.

E N
m2 5000000 Elastic modulus of bladder rubber.

Jc kg ·m2 2.0503e-05 Inertia of Crank Shaft.
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Jtp(qa) kg ·m2 0.0368
Inertia of Tilt Plate as a function of water vol-

ume.

k 1
s

– Waste removal rate coefficient.

kc
N
m

1.412e+02 Crank arm shock absorber stiffness coefficient.

ks – Waste removal rate exponential scaling factor.

ksa
N
m

0.452 Tilt plate shock absorber stiffness coefficient.

ktp N ·m · s 1.453 Tilt plate stiffness coefficient.

Llc m – Length of lint catch BG resistor.

Lwr m – Length of water reservoir BG resistor.

l m 0.19 Length of crank arm.

lp m 0.75
Length of hydraulic path between reservoir

and agitation chamber.

ltp m 0.4 Side length of square tilt plate.

n –
Kinetic order of average amount of waste re-

moved.

∆Q m3

s
–

Volumetric flow rate difference for BG ele-

ment.

r m 0.015
Distance from crank arm mount to crankshaft

rotation center.

rA m 0.01 Radius of agitation bladder corners.

rR m 0.01 Radius of water reservoir bladder corners.

Re Ω 20 Electrical circuit resistance.

Rlc
N
m2 – Linear lint catch resistance.

Rwf
N
m2 – Linear water filter resistance.

t s 60 Simulation run time.

tA m 0.003 Thickness of agitation bladder.

tR m 0.003 Thickness of water reservoir bladder.

Tem
V ·s
rad

1.5 DC generator rate #1.

Tme
N ·m
A

1.5 DC generator rate #2.
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TP
m3

rad
7.50e-05 Hydraulic pump rate.

u % –
Hydraulic valve position as a percentage of

stroke.

VA m3 0.003785 Volume of agitation bladder.

VP m3 2.126e-04 Volume of piping.

VR m3 0.003785 Volume of water reservoir bladder.

VT m3 0.0025
Volume of textiles within the agitation blad-

der.

Vwf m3 – Volume of water filter.

α rad – Position of tilt plate rotation.

ϵlc – Porosity of lint catch .

ϵwr – Porosity of water reservoir .

ρ kg
m3 998 Density of washing fluid .

θ rad – Position of crankshaft rotation.

τ(t) N ·m – Human Generated torque over time.

µ N ·s
m2 1.0e-03 Dynamic viscosity of washing fluid.

Table A.2: Bond graph model parameters. ”–” values are for calculated, time dependent, or
non-simulated variables

Variable Units Value Description

Mechanical Domain

qc m 0 Displacement across crank arm shock absorber.

qtp rad 0 Angular displacement of tilt plate.

qsa m 0 Displacement across shock absorber.

pc N ·m·s 0 Momentum of crank shaft.

ptp N ·m·s 0 Momentum of tilt plate.

Hydraulic Domain

qA m3
-

0.0013
Volume of agitation chamber.
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qc1 m3 0
Volume of washing fluid inside #1 of hydraulic sys-

tem.

qc2 m3 0
Volume of washing fluid in side #2 of hydraulic

system.

qR m3 0.0013 Volume of washing fluid in reservoir.

qwf m3 0 Volume of washing fluid in water filter(s).

pa1
N ·s
m2 0

Momentum of washing fluid in agitation bladder

valve #1.

pa2
N ·s
m2 0

Momentum of washing fluid in agitation bladder

valve #2.

pa2
N ·s
m2 0

Momentum of washing fluid in agitation bladder

valve #2.

pBP
N ·s
m2 0 Momentum of washing fluid in bypass valve #2.

pr1
N ·s
m2 0

Momentum of washing fluid in reservoir bladder

valve #1.

pr2
N ·s
m2 0

Momentum of washing fluid in reservoir bladder

valve #2.

pwf1
N ·s
m2 0

Momentum of washing fluid in water filter valve

#1.

pwf2
N ·s
m2 0

Momentum of washing fluid in water filter valve

#2.

Table A.3: Bond graph initial value of variables.
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A.3 Constitutive Equations

Physical

Element

Bond Graph

Element
Constitutive Relation

Applied

Torque
Effort Source Se1 = τ(t)

Crankshaft Inertia ΦI1 = JC

Crankshaft

Friction
Resistor ΦR1 = bcs

Shock Abs.

#
Resistor ΦR2 = bC

Shock Abs. Capacitor ΦC1 =
1
kC

Hinge Resistor ΦR3 = btp

Hinge Capacitor ΦC2 =
1
ktp

Tilt Plate Inertia ΦI2 = Jtp +
ρ·qa·ltp

12

Shock Abs.

#2
Resistor ΦR4 = bsa1

Shock Abs.

#2
Capacitor ΦC3 =

1
ksa1

Crank-

Follower

Modulated

Transformer
m(θ) = r · sin(θ) + (

l· r
l
2)·cos(θ)·sin(θ)√
1− r

l
2·sin2(θ)

Shock Abs.

#1 Mount

Modulated

Transformer
m2(α1) = a1 · cos(α)

Shock Abs.

#2 Mount

Modulated

Transformer
m3(α2) = a2 · cos(α)

DC

Generator
Gyrator r1 = Tem

DC

Generator
Gyrator r2 = Tme

Resistor Resistor Φ−1
R5

= Re
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Hydraulic

Pump
Transformer m4 = TP

Path

Inertia
Inertia ΦI3i

= ρ·li
4·Ai

Hydraulic

Valve
Resistor ΦR6 =

ρ·∆Qi|∆Qi|
2·C2

d ·(ui)·A2·(ui)

Lint Catch
Nonlinear

Resistor
ΦR7 =

9.375·∆Q·µ·L·( 4
Dp

2
)·(1−ϵ)2

Alcp·ϵ3
+

0.4375·∆Q2·ρ·L·( 4
Dp

)·(1−ϵ)

A2
lcp·ϵ3

Water

Filter

Nonlinear

Resistor
ΦR8 =

4.167·∆Q·µ·L·( 6
Dp

2
)·(1−ϵ)2

Awrp·ϵ3 +
0.2917·∆Q2·ρ·L·( 6

Dp
)·(1−ϵ)

A2
wrp·ϵ3

Lint Catch Resistor ΦR9 = Rlc∆Q

Water

Filter
Resistor ΦR10 = Rwf∆Q

Agitation

Bladder
Capacitor ΦC4 =

6·rA·VA

tA·E + VA

B

Water

Reservoir
Capacitor ΦC5 =

10·rR·VR

tR·E + VR

B

Water

Filter
Capacitor ΦC6 =

Vwf
B

Pipe Capacitor ΦC7 =
Vp

B

Table A.4: Bond graph model consecutive equations.
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A.4 State Space Derivation

The following state space derivation is done in the context of the labeled power

bonds in Figure A.1.

Figure A.1: Effort and Flow labeled Bond Graph of spaceflight exercise and textile laundering
machine concept.

A.4.1 Derivation with Annotated Efforts and Flows

q̇c = MTF (θ) · f1 −MTF (α1) · f2 (A.1)

q̇tp = f2 (A.2)

q̇sa = MTF (α2) · f2 (A.3)

ṗc = e1 −MTF (θ) · (e2 + e3)− e20 − e21 − e22 (A.4)

ṗtp = MTF (α1) · (e2 + e3)− e4 − e5 −MTF (α2) · (e6 + e7) (A.5)

q̇c1 = f3 − f4 − f6 − f8 − f10 (A.6)

q̇c2 = −f3 + f4 + f5 + f7 + f9 (A.7)

q̇A = f10 − f9 (A.8)
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q̇R = f8 − f7 (A.9)

q̇wf = f6 − f5 (A.10)

ṗa1 = e8 − e12 − e15 (A.11)

ṗa2 = e15 − e18 − e19 (A.12)

ṗBP = e8 − e19 (A.13)

ṗr1 = e8 − e11 − e14 (A.14)

ṗr2 = e14 − e17 − e19 (A.15)

ṗwf1 = e8 − e10 − e13 (A.16)

ṗwf2 = e13 − e16 − e19 (A.17)

A.4.2 Annotated Effort and Flows with Parameters

f1 = Φ−1
I1

· pc =
pc
Jc

(A.18)

f2 = Φ−1
I2

· ptp =
ptp
Jtp

(A.19)

f3 = m5 · f1 =
Tp · pc
Jc

(A.20)

f4 = Φ−1
I3

· pBP =
pBP

ρ·lBP

4·ABP

(A.21)

f5 = Φ−1
I3

· pwf2 =
pwf2

ρ·lwf2

4·Awf2

(A.22)

f6 = Φ−1
I3

· pwf1 =
pwf1

ρ·lwf1

4·Awf1

(A.23)

f7 = Φ−1
I3

· pr2 =
pr2
ρ·lr2
4·Ar2

(A.24)

f8 = Φ−1
I3

· pr1 =
pr1
ρ·lr1
4·Ar1

(A.25)

f9 = Φ−1
I3

· pa2 =
pa2
ρ·la2
4·Aa2

(A.26)

f10 = Φ−1
I3

· pa1 =
pa1
ρ·la1
4·Aa1

(A.27)
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e1 = Se1 = τ(t) (A.28)

e2 = Φ−1
C1

· qc = kc · qc (A.29)

e3 = ΦR2·(m1·(θ)·f1−m2·(α1)·f2) = bc

pc
Jc

· r · sin(θ) +
l · r

l
2) · cos(θ) · sin(θ)√
1− r

l
2 · sin2(θ)

− ptp
Jtp

· α1 · cos(α)


(A.30)

e4 = ΦR3 · f2 =
btp · ptp
Jtp

(A.31)

e5 = Φ−1
C2

· qtp = ktp · qtp (A.32)

e6 = ΦR4 ·m3(α2) · f2 = bsa1 ·
ptp
Jtp

· a2 · cos(α) (A.33)

e7 = Φ−1
C3

· qsa1 = ksa1 · qsa1 (A.34)

e8 = Φ−1
C8

· qc1 =
B

Vp

· qc1 (A.35)

e9 = ΦC7(f4) =
ρ(f4) · |f4|

2 · C2
d · (uBP ) · A2 · (uBP )

(A.36)

e10 = ΦR7(f6) + ΦR9(f6)

=
ρ(f6) · |f6|

2 · C2
d · (uwf1) · A2 · (uwf1)

+
4.167 · (f6)) · µ · Lwr · ( 6

Dpwr

2
) · (1− ϵwr)

2

Awrp · ϵ3wr

+
0.2917 · (f6))2 · ρ · Lwr · ( 6

Dpwr
) · (1− ϵwr)

A2
wrp · ϵ3wr

(A.37)

e11 = ΦR7(f8) =
ρ(f8) · |f8|

2 · C2
d · (ur1) · A2 · (ur1)

(A.38)

e12 = ΦR7(f10) + ΦR8(f10)

=
ρ(f10) · |f10|

2 · C2
d · (ua1) · A2 · (ua1)

+
9.375 · (f10)) · µ · Llc · ( 4

Dplc

2
) · (1− ϵlc)

2

Alcp · ϵ3lc

+
0.4375 · (f10))2 · ρ · Llc · ( 4

Dplc
) · (1− ϵlc)

A2
lcp · ϵ3lc

(A.39)

e13 = Φ−1
C7

· qwf =
B

Vwf

· qwf (A.40)

e14 = Φ−1
C6

· qr =
{

tR · E
10 · rR · VR

+
B

VR

}
· qr (A.41)
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e15 = Φ−1
C5

· qa =
{

tA · E
6 · rA · VA

+
B

VA

}
· qa (A.42)

e16 = ΦR7(f5) + ΦR9(f5)

=
ρ(f5) · |f5|

2 · C2
d · (uwf2) · A2 · (uwf2)

+
4.167 · (f5)) · µ · Lwr · ( 6

Dpwr

2
) · (1− ϵwr)

2

Awrp · ϵ3wr

+
0.2917 · (f5))2 · ρ · Lwr · ( 6

Dpwr
) · (1− ϵwr)

A2
wrp · ϵ3wr

(A.43)

e17 = ΦR7(f7) =
ρ(f7) · |f7|

2 · C2
d · (ur2) · A2 · (ur2)

(A.44)

e18 = ΦR7(f9) =
ρ(f97) · |f9|

2 · C2
d · (ua2) · A2 · (ua2)

(A.45)

e19 = Φ−1
C8

· qc2 =
B

Vp

· qc2 (A.46)

e20 = m5 · (e21 − e10) =
Tp ·B
Vp

· (qc2 − qc1) (A.47)

e21 = ΦRr · r1 · r2 · f1· =
Tem · Tme · pc

Re · Jc
(A.48)

e22 = ΦR1 · f1 =
bcs · pc
Jc

(A.49)
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Appendix B

Modified Bond Graph Information

B.1 State Variables

Variable Units Representation

q̇a
m3

s
Net volumetric flow rate through agitation chamber.

q̇a1
m3

s
Net volumetric flow rate through agitation pipe #1.

q̇a2
m3

s
Net volumetric flow rate through agitation pipe #2.

q̇b1
m3

s
Net volumetric flow rate through bypass pipe #1.

q̇b2
m3

s
Net volumetric flow rate through bypass pipe #2.

q̇c1
m3

s
Net volumetric flow rate through manifold #1.

q̇c2
m3

s
Net volumetric flow rate through manifold #2.

q̇r
m3

s
Net volumetric flow rate through water reservoir.

q̇r1
m3

s
Net volumetric flow rate through reservoir pipe #1.

q̇r2
m3

s
Net volumetric flow rate through reservoir pipe #2.

ṗa1
m3

s
Net pressure differential of agitation bladder valve #1.

ṗa2
N
m2 Net pressure differential of agitation bladder valve #2.

ṗBP
N
m2 Net pressure differential of of bypass valve.

ṗr1
N
m2 Net pressure differential of reservoir bladder valve #1.

ṗr2
N
m2 Net pressure differential of reservoir bladder valve #2.

Table B.1: Bond graph state variables.
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B.2 Parameters

Term Units
Initial

Value
Definition

a1h in -13
Distance reservoir head datum to agitation

valve #1.

a2h in -13
Distance reservoir head datum to agitation

valve #2.

a1l m 0.3556 Agitation pipe length #1.

a2l m 0.5842 Agitation pipe length #2.

AA m2 0.1017 Cross sectional area of agitation chamber.

B N
m2 2.180e+09 Fluid bulk modulus.

b1l m 0.1016 Bypass pipe length #1.

b2l m 0.2540 Bypass pipe length #2.

bph in -4
Distance reservoir head datum to bypass

valve.

c1l m 0.0254 Manifold pipe length #1.

c2l m 0.0254 Manifold pipe length #2.

Ca
m5

N
7.3378e+07 Agitation bladder capacitance.

Ca1
m5

N
4.83947e+13 Agitation pipe #1 capacitance.

Ca2
m5

N
2.94576e+13 Agitation pipe #2 capacitance.

Cb1
m5

N
1.69381e+14 Bypass pipe #1 capacitance.

Cb2
m5

N
6.77525e+13 Bypass pipe #2 capacitance.

Cc1
m5

N
6.77525e+14 Manifold pipe #1 capacitance.

Cc2
m5

N
6.77525e+14 Manifold pipe #2 capacitance.

Cd 0.64 Coefficient of discharge.

Cr
m5

N
4.60716e+12 Reservoir capacitance.

Cr1
m5

N
1.35505e+14 Reservoir pipe #1 capacitance.

Cr2
m5

N
5.64604e+13 Reservoir pipe #2 capacitance.

E N
m2 5000000 Elastic modulus of bladder rubber.
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g m
s2

9.81 Gravity

Ia1
kg
m4 2.802e+06 Inertia of agitation pipe segment #1.

Ia2
kg
m4 4.603e+06 Inertia of agitation pipe segment #2.

Ibp
kg
m4 2.802e+06 Inertia of bypass pipe segments.

Ir1
kg
m4 1.001e+06 Inertia of reservoir pipe segment #1.

Ir2
kg
m4 2.401e+06 Inertia of reservoir pipe segment #2.

k 1
s

– Waste removal rate coefficient.

ks – Waste removal rate exponential scaling factor.

n –
Kinetic order of average amount of waste re-

moved.

∆Q m3

s
–

Volumetric flow rate difference for BG ele-

ment.

rA m 0.01 Radius of agitation bladder corners.

ra
N ·s
m5 1 Agitation bladder resistance.

rR m 0.01 Radius of water reservoir bladder corners.

rr
N ·s
m5 200000 Reservoir resistance.

r1h in 0
Distance reservoir head datum to reservoir

valve. #1.

r2h in 0
Distance reservoir head datum to reservoir

valve. #2.

r1l m 0.1270 Reservoir pipe length #1.

r2l m 0.3048 Reservoir pipe length #2.

ria1
N ·s
m5 1.180e+06 Agitation pipe #1 total resistance.

ria2
N ·s
m5 1.538e+06 Agitation pipe #2 total resistance.

rib1
N ·s
m5 4.625e+05 Bypass pipe #1 total resistance.

rib2
N ·s
m5 7.012e+05 Bypass pipe #2 total resistance.

ric1
N ·s
m5 3.978e+07 Manifold pipe #1 total resistance.

ric2
N ·s
m5 3.978e+07 Manifold pipe #2 total resistance.
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rir1
N ·s
m5 6.989e+05 Reservoir pipe #1 total resistance.

rir2
N ·s
m5 9.774e+05 Reservoir pipe #2 total resistance.

rpipe in 0.5 Pipe radius.

tA m 0.003 Thickness of agitation bladder.

tR m 0.003 Thickness of water reservoir bladder.

u % –
Hydraulic valve position as a percentage of

stroke.

VA m3 0.003785 Volume of agitation bladder.

VR m3 0.003785 Volume of water reservoir bladder.

VT m3 2.304e-06
Volume of textiles within the agitation blad-

der.

ρ kg
m3 998 Density of washing fluid .

µ N ·s
m2 1.0e-03 Dynamic viscosity of washing fluid.

Table B.2: Bond graph model parameters. ”–” values are for calculated, time dependent, or
non-simulated variables
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Term Units
Initial

Value
Definition

Hydraulic Domain

qa m3 0.00189 Net volume of agitation chamber.

qa1 m3 4.505e-05 Net volume of agitation pipe #1.

qa2 m3 7.400e-05 Net volume of agitation pipe #2.

qb1 m3 1.287e-05 Net volume of bypass pipe #1.

qb2 m3 3.218e-05 Net volume of bypass pipe #2.

qc1 m3 3.218e-06 Net volume of manifold #1.

qc2 m3 3.218e-06 Net volume of manifold #2.

qr m3 4.732e-04 Net volume of water reservoir.

qr1 m3 1.609e-05 Net volume of reservoir pipe #1.

qr2 m3 3.861e-05 Net volume of reservoir pipe #2.

pa1
N ·s
m2 0 Net momentum of agitation bladder valve #1.

pa2
N ·s
m2 0 Net momentum of agitation bladder valve #2.

pBP
N ·s
m2 0 Net momentum of of bypass valve.

pr1
N ·s
m2 0 Net momentum of reservoir bladder valve #1.

pr2
N ·s
m2 0 Net momentum of reservoir bladder valve #2.

Table B.3: Bond graph initial value of variables.
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B.3 Constitutive Equations

Physical

Element

Bond Graph

Element
Constitutive Relation

Applied

Flow
Flow Source Sf1 = Total Flow #1 Data(t)

Applied

Flow
Flow Source Sf2 = Total Flow #2 Data(t)

Pipe

Inertia (ni)
Inertia ΦIni

= ρ·lni

4·Ani

Pipe

Length (ni)
Resistor ΦRini

= 128·µ·lni

π·d4pipe
+ ρ · g · hni +RTune

Hydraulic

Valve
Resistor ΦRni

= ρ·∆Qi|∆Qi|
2·C2

d ·(uni)·A2·(ui)

Agitation

Bladder
Capacitor ΦCa = 6·rA·VA

tA·E + VA

B

Water

Reservoir
Capacitor ΦCr =

10·rR·VR

tR·E + VR

B

Pipe Capacitor ΦCni
=

π·r2Pipe·lni

B

Table B.4: Bond graph model consecutive equations. ”ni” refer to the hydraulic path (where
n is either a = agitation, b = bypass, c = manifold, and r = reservoir) and component number
(i).
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B.4 State Space Derivation

The derivation is done from the bond graph in Figure 6.2.

B.4.1 Derivation of State Derivatives

q̇a =
pa1
Ia1

− pa2
Ia2

− qa · ca
ra

(B.1)

q̇a1 =
(qm1 · cm1 − qa1 · ca1)

ria1
− pa1

Ia1
(B.2)

q̇a2 =
pa2
Ia2

− (qa2 · ca2 − qm2 · cm2)

ria2
(B.3)

q̇b1 =
(qm1 · cm1 − qb1 · cb1)

rib1
− pbp

Ibp
(B.4)

q̇b2 =
pbp
Ibp

− (qb2 · cb2 − qm2 · cm2)

rib2
(B.5)

q̇c1 = Sf1 −
(qm1 · cm1 − qr1 · cr1)

rir1
− (qm1 · cm1 − qa1 · ca1)

ria1
− (qm1 · cm1 − qb1 · cb1)

rib1
− qm1 · cm1

rim1

(B.6)

q̇c2 =
(qr2 · cr2 − qm2 · cm2)

rir2
+

(qa2 · ca2 − qm2 · cm2)

ria2
+

(qb2 · cb2 − qm2 · cm2)

rib2
− qm2 · cm2

rim2

− Sf2

(B.7)

q̇r =
pr1
Ir1

− pr2
Ir2

− q·cr
rr

(B.8)

q̇r1 =
(qm1 · cm1 − qr1 · cr1)

rir1
− pr1

Ir1
(B.9)

q̇r2 =
pr2
Ir2

− (qr2 · cr2 − qm2 · cm2)

rir2
(B.10)

ṗa1 = qa1 · ca1 − qa · ca − ra1 (B.11)

ṗa2 = qa · ca − qa2 · ca2 − ra2 (B.12)

ṗBP = qb1 · cb1 − qb2 · cb2 − rbp (B.13)

ṗr1 = qr1 · cr1 − qr · cr − rr1 (B.14)

ṗr2 = qr · cr − qr2 · cr2 − rr2 (B.15)
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Appendix C

Astronaut-Powered Laundry Machine

Prototype and Bond Graph Model

Verification Trials

Contamination Information Value

Quantity of Synthetic Perspiration 0 ml

Regression Constant 4.9819

Regression Rate 0 1/s

Signal RMS Error

Bladder Entrance 0.39856

Bladder Exit 0.44157

Reservoir Entrance 0.49601

Reservoir Exit 0.32733

Bypass 0.3221

Cleanliness Equation 0.25865

Table C.1: Contamination conditions and Root-Mean-Squared error results of a standalone
astronaut-powered laundry machine for trial #1.
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Figure C.1: Standalone astronaut-powered laundry machine prototype experiment flow rate
results with filtered and simulated data for trial #1.

Figure C.2: Standalone astronaut-powered laundry machine prototype experiment wastewa-
ter results with filtered and simulated data for trial #1 at scale.
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Figure C.3: Standalone astronaut-powered laundry machine prototype experiment wastewa-
ter zoomed-in results with filtered and simulated data for trial #1.

Contamination Information Value

Quantity of Synthetic Perspiration 3 ml

Regression Constant 4.966

Regression Rate -8.2565e-06 1/s

Signal RMS Error

Bladder Entrance 0.77458

Bladder Exit 0.66752

Reservoir Entrance 0.65921

Reservoir Exit 0.69439

Bypass 0.2091

Cleanliness Equation 0.23955

Table C.2: Contamination conditions and Root-Mean-Squared error results of a standalone
astronaut-powered laundry machine for trial #2.
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Figure C.4: Standalone astronaut-powered laundry machine prototype experiment flow rate
results with filtered and simulated data for trial #2.

Figure C.5: Standalone astronaut-powered laundry machine prototype experiment wastewa-
ter results with filtered and simulated data for trial #2 at scale.
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Figure C.6: Standalone astronaut-powered laundry machine prototype experiment wastewa-
ter zoomed-in results with filtered and simulated data for trial #2.

Contamination Information Value

Quantity of Synthetic Perspiration 4 ml

Regression Constant 5.0596

Regression Rate -1.4336e-05 1/s

Signal RMS Error

Bladder Entrance 1.4092

Bladder Exit 0.13922

Reservoir Entrance 0.15912

Reservoir Exit 0.15384

Bypass 0.12775

Cleanliness Equation 0.30816

Table C.3: Contamination conditions and Root-Mean-Squared error results of a standalone
astronaut-powered laundry machine for trial #3.
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Figure C.7: Standalone astronaut-powered laundry machine prototype experiment flow rate
results with filtered and simulated data for trial #3.

Figure C.8: Standalone astronaut-powered laundry machine prototype experiment wastewa-
ter results with filtered and simulated data for trial #3 at scale.
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Figure C.9: Standalone astronaut-powered laundry machine prototype experiment wastewa-
ter zoomed-in results with filtered and simulated data for trial #3.

Contamination Information Value

Quantity of Synthetic Perspiration 4 ml

Regression Constant 3.6721

Regression Rate -8.6278e-06 1/s

Signal RMS Error

Bladder Entrance 0.11516

Bladder Exit 1.2528

Reservoir Entrance 1.991

Reservoir Exit 2.0425

Bypass 0.26965

Cleanliness Equation 0.34525

Table C.4: Contamination conditions and Root-Mean-Squared error results of a standalone
astronaut-powered laundry machine for trial #4.
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Figure C.10: Standalone astronaut-powered laundry machine prototype experiment flow rate
results with filtered and simulated data for trial #4.

Figure C.11: Standalone astronaut-powered laundry machine prototype experiment wastew-
ater results with filtered and simulated data for trial #4 at scale.

104



Figure C.12: Standalone astronaut-powered laundry machine prototype experiment wastew-
ater zoomed-in results with filtered and simulated data for trial #4.

Contamination Information Value

Quantity of Synthetic Perspiration 4 ml

Regression Constant 4.673

Regression Rate 2.6479e-05 1/s

Signal RMS Error

Bladder Entrance 0.49327

Bladder Exit 0.43377

Reservoir Entrance 0.17651

Reservoir Exit 0.20486

Bypass 0.28558

Cleanliness Equation 0.34549

Table C.5: Contamination conditions and Root-Mean-Squared error results of a standalone
astronaut-powered laundry machine for trial #5.
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Figure C.13: Standalone astronaut-powered laundry machine prototype experiment flow rate
results with filtered and simulated data for trial #5.

Figure C.14: Standalone astronaut-powered laundry machine prototype experiment wastew-
ater results with filtered and simulated data for trial #5 at scale.
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Figure C.15: Standalone astronaut-powered laundry machine prototype experiment wastew-
ater zoomed-in results with filtered and simulated data for trial #5.

Contamination Information Value

Quantity of Synthetic Perspiration 5 ml

Regression Constant 7.5107

Regression Rate 8.7631e-06 1/s

Signal RMS Error

Bladder Entrance 0.70433

Bladder Exit 0.55197

Reservoir Entrance 0.6177

Reservoir Exit 0.50829

Bypass 0.60114

Cleanliness Equation 0.43063

Table C.6: Contamination conditions and Root-Mean-Squared error results of a standalone
astronaut-powered laundry machine for trial #6.
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Figure C.16: Standalone astronaut-powered laundry machine prototype experiment flow rate
results with filtered and simulated data for trial #6.

Figure C.17: Standalone astronaut-powered laundry machine prototype experiment wastew-
ater results with filtered and simulated data for trial #6 at scale.
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Figure C.18: Standalone astronaut-powered laundry machine prototype experiment wastew-
ater zoomed-in results with filtered and simulated data for trial #6.

Contamination Information Value

Quantity of Synthetic Perspiration 3 ml

Regression Constant 4.909

Regression Rate -1.9694e-06 1/s

Signal RMS Error

Bladder Entrance 0.33256

Bladder Exit 0.30634

Reservoir Entrance 0.31523

Reservoir Exit 0.31788

Bypass 0.27691

Cleanliness Equation 0.27782

Table C.7: Contamination conditions and Root-Mean-Squared error results of a standalone
astronaut-powered laundry machine for trial #7.
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Figure C.19: Standalone astronaut-powered laundry machine prototype experiment flow rate
results with filtered and simulated data for trial #7.

Figure C.20: Standalone astronaut-powered laundry machine prototype experiment wastew-
ater results with filtered and simulated data for trial #7 at scale.
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Figure C.21: Standalone astronaut-powered laundry machine prototype experiment wastew-
ater zoomed-in results with filtered and simulated data for trial #7.

Contamination Information Value

Quantity of Synthetic Perspiration 3 ml

Regression Constant 8.9558

Regression Rate 0 1/s

Signal RMS Error

Bladder Entrance 0.36621

Bladder Exit 0.428

Reservoir Entrance 0.39786

Reservoir Exit 0.40793

Bypass 0.52489

Cleanliness Equation 0.68752

Table C.8: Contamination conditions and Root-Mean-Squared error results of a standalone
astronaut-powered laundry machine for trial #8.
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Figure C.22: Standalone astronaut-powered laundry machine prototype experiment flow rate
results with filtered and simulated data for trial #8.

Figure C.23: Standalone astronaut-powered laundry machine prototype experiment wastew-
ater results with filtered and simulated data for trial #8 at scale.
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Figure C.24: Standalone astronaut-powered laundry machine prototype experiment wastew-
ater zoomed-in results with filtered and simulated data for trial #8.

Contamination Information Value

Quantity of Synthetic Perspiration 5 ml

Regression Constant 1.1564

Regression Rate -1.505e-05 1/s

Signal RMS Error

Bladder Entrance 0.32694

Bladder Exit 0.31803

Reservoir Entrance 0.48164

Reservoir Exit 0.50013

Bypass 0.42504

Cleanliness Equation 0.087357

Table C.9: Contamination conditions and Root-Mean-Squared error results of a standalone
astronaut-powered laundry machine for trial #9.
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Figure C.25: Standalone astronaut-powered laundry machine prototype experiment flow rate
results with filtered and simulated data for trial #9.

Figure C.26: Standalone astronaut-powered laundry machine prototype experiment wastew-
ater results with filtered and simulated data for trial #9 at scale.
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Figure C.27: Standalone astronaut-powered laundry machine prototype experiment wastew-
ater zoomed-in results with filtered and simulated data for trial #9.

Contamination Information Value

Quantity of Synthetic Perspiration 4 ml

Regression Constant 1.8462

Regression Rate -8.3659e-06 1/s

Signal RMS Error

Bladder Entrance 0.49396

Bladder Exit 0.48529

Reservoir Entrance 0.22209

Reservoir Exit 0.24024

Bypass 0.55595

Cleanliness Equation 0.12418

Table C.10: Contamination conditions and Root-Mean-Squared error results of a standalone
astronaut-powered laundry machine for trial #10.
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Figure C.28: Standalone astronaut-powered laundry machine prototype experiment flow rate
results with filtered and simulated data for trial #10.

Figure C.29: Standalone astronaut-powered laundry machine prototype experiment wastew-
ater results with filtered and simulated data for trial #10 at scale.
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Figure C.30: Standalone astronaut-powered laundry machine prototype experiment wastew-
ater zoomed-in results with filtered and simulated data for trial #10.

Contamination Information Value

Quantity of Synthetic Perspiration 4 ml

Regression Constant 2.8497

Regression Rate 3.8667e-05 1/s

Signal RMS Error

Bladder Entrance 1.4264

Bladder Exit 1.503

Reservoir Entrance 0.11253

Reservoir Exit 0.12298

Bypass 0.40666

Cleanliness Equation 0.24146

Table C.11: Contamination conditions and Root-Mean-Squared error results of a standalone
astronaut-powered laundry machine for trial #11.
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Figure C.31: Standalone astronaut-powered laundry machine prototype experiment flow rate
results with filtered and simulated data for trial #11.

Figure C.32: Standalone astronaut-powered laundry machine prototype experiment wastew-
ater results with filtered and simulated data for trial #11 at scale.
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Figure C.33: Standalone astronaut-powered laundry machine prototype experiment wastew-
ater zoomed-in results with filtered and simulated data for trial #11.

Contamination Information Value

Quantity of Synthetic Perspiration 5 ml

Regression Constant 1.6079

Regression Rate -1.0174e-05 1/s

Signal RMS Error

Bladder Entrance 0.50072

Bladder Exit 0.44735

Reservoir Entrance 0.51635

Reservoir Exit 0.54429

Bypass 0.55204

Cleanliness Equation 0.097014

Table C.12: Contamination conditions and Root-Mean-Squared error results of a standalone
astronaut-powered laundry machine for trial #12.
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Figure C.34: Standalone astronaut-powered laundry machine prototype experiment flow rate
results with filtered and simulated data for trial #12.

Figure C.35: Standalone astronaut-powered laundry machine prototype experiment wastew-
ater results with filtered and simulated data for trial #12 at scale.
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Figure C.36: Standalone astronaut-powered laundry machine prototype experiment wastew-
ater zoomed-in results with filtered and simulated data for trial #12.

Contamination Information Value

Quantity of Synthetic Perspiration 5 ml

Regression Constant 1.832

Regression Rate -3.791e-06 1/s

Signal RMS Error

Bladder Entrance 0.15092

Bladder Exit 0.14539

Reservoir Entrance 0.29532

Reservoir Exit 0.30265

Bypass 0.1765

Cleanliness Equation 0.10397

Table C.13: Contamination conditions and Root-Mean-Squared error results of a standalone
astronaut-powered laundry machine for trial #13.
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Figure C.37: Standalone astronaut-powered laundry machine prototype experiment flow rate
results with filtered and simulated data for trial #13.

Figure C.38: Standalone astronaut-powered laundry machine prototype experiment wastew-
ater results with filtered and simulated data for trial #13 at scale.
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Appendix D

Verification Trial Textile

Contamination Procedures

1. PPE

(a) Don splash goggles and chemical resistance gloves.

2. Gather Material

(a) Cotton sheet

(b) Razor blade

(c) Ruler

(d) Cutting surface

(e) Bucket

(f) 5mL Pipette

(g) Synthetic Perspiration

(h) Distilled Water

(i) Astronaut powered laundry machine prototype.

3. Create Textile Sample

(a) Lay cotton sheet flat on cutting surface.
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(b) Use the ruler to cut four 3” swatches from the cotton with the razor

blade.

4. Prepare Machine Bladder

(a) Ensure machine is off (un-powered).

(b) Place machine bladder in bucket.

(c) Remove sealing clips from bladder.

(d) Drain bladder into bucket, including previous cotton swatches.

(e) Rinse bladder with distilled water, emptying into bucket.

(f) Remove bucket and dispose of wastewater. Keep swatch for examina-

tion.

5. Prepare Contamination Load

(a) Near the bladder, open synthetic perspiration.

(b) Contaminate each swatch with either 1 mL or 0.5 mL of synthetic

perspiration, place into bladder after.

i. Hold Swatch in palm of hand.

ii. Gather synthetic perspiration in pipette.

iii. Drip synthetic perspiration in a spiral pattern over swatch.

(c) Fill bladder with distilled water until valve openings are covered.

(d) Close bladder, remove air, and place both sealing clips back.

(e) Compress bag to remove more air.

6. Return contamination items.

7. Doff PPE

(a) Place splash goggle and chemical resistance gloves back.
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Appendix E

Astronaut-Powered Laundry Machine

Operation Procedures

1. PPE

(a) Don UV safety glasses.

(b) Display UV light warning sign and light.

(c) Open drain.

(d) Stow do not touch signs on PPE shelf.

2. Check for leaks

(a) Bladder, valves, and pump connections are common areas.

(b) Don appropriate gloves for repairs.

3. Open Electronics-Bag (E-Bag)

(a) Insert microSD card.

(b) Reinforce microSD breakout board wires.

(c) Align wire bunch on bike.

4. Close E-Bag

(a) Ensure bag is protected from hydraulics.
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5. Uncoil power cables.

(a) Plug the AC adapter into the protected outlet.

(b) Plug the USB-B cable into a computer.

6. Check power lights

(a) LED in E-Bag – Flow meters and UV LEDS

(b) Tachometer – Microcontroller, microSD, and ADC board

i. ADC – Wastewater Sensor Suite

7. Prepare Data Collection

(a) Open Thonny on computer

(b) Ensure communication with microcontroller.

i. Stop and Start on Thonny may help, otherwise check cable.

(c) Run “sl.py” for microSD communication.

i. Stop and Start on Thonny may help, otherwise Step 3 and 4.

8. Unlock bike

(a) Stow lock on secondary workbench.

9. Launder

(a) Run “sl.py” after configurating machine and laundry load.

(b) Power the machine by pedaling.

i. microSD card communication error

A. Data will be saved up to error.

B. Optional - Remove microSD and transfer data to computer fol-

lowed by Steps 3, 4, 6, and 7.

C. Start “sl.py” or Steps 3 and 4.

(c) Continue pedaling.

126



(d) Once done.

i. Stop pedaling and “sl.py”.

ii. Remove microSD and close E-Bag (Step 4)

iii. Transfer data to computer.

10. Lock bike

11. Coil power cables.

(a) Unplug the AC adapter and USB-B cable.

(b) Place cable bundle on convenient part of the bike.

12. Check for leaks

(a) Bladder, valves, and pump connections are common areas.

(b) Don appropriate gloves for repairs.

13. Doff PPE

(a) Place glasses, signs, lights, and drain covers back.
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Appendix F

Data Processing R Code

#This code was created by Andrew R. Arends (914009346) for Space Laundry

rm(list=ls()) #Clearing workspace

graphics.off() #Closing graphs

#

#LIBRARIES----------------------------------------------------------------

#

library(Hmisc)

library(RColorBrewer)

#

#STATISTICAL INFORMATION---------------------------------------------------------------

#

P <- 0.95 #Chosen confidence level for whole analysis

#

#GRAPHING CONTROLS------------------------------------------------------------------

#

loc <- "C:\\Users\\arare\\Desktop\\HRVIP\\SUDS\\Code\\data\\"

wd <- 3840 #Width of saved image

ht <- 2160 #Height of saved image

ps <- 3 #Scale of saved image

#---Unless otherwise specified, 0 = OFF, 1 = ON
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raw_plot <- 0 #Raw data graph

outlier_plot <- 0 #Outlier removed data graph

filt_plot <- 1 #Filtered data graph

cl_plot <- 0 #Confidence interval with filtered data graph

cals <- 0 #Calibration Analysis [0= NO, 1= YES]

flows <- 1 #Graph of all flow rates

wwss <- 0 #Wastewater Analysis type

#---Sensor Plots

tp <- 1 #Tachometer

fmp <- 1 #Flow meters

wssp <- 1 #Wastewater sensor suite

#

#IMPORTING AND FORMATTING CSV DATA----------------------------------------------------------------------

#

dl <- list() #Data directory

plt_title <- c() #Titles

plt_labels <- c() #Signal names

dat_nam <- c() #Data file save name

fil <- c() #Moving window size for each sensor filter

se <- c() #Known standard errors for each sensor

qw <- c() #Quantile window percentage for each sensor

wwi <- length(dl) + 1 # Counter for data management

#TACHOMETER DATA----------------------------------------------------

if (tp == 1){

tach <- read.csv(paste(loc,"raw\\data_tach.csv",sep=""), sep=’,’)

plt_title <- c(plt_title, "Tachometer")

plt_labels <- c(plt_labels, "Speed (rps)")

dat_nam <- c(dat_nam, "data_tach")

names(tach) <- c("t","data")

dl[[wwi]] <- tach
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wwi <- wwi + 1

tach_sens <- read.csv(paste(loc,"raw\\sensor_info\\tach.csv",sep=""),header=F,sep=’,’)

fil <- c(fil, tach_sens[[1]][1])

se <- c(se, tach_sens[[1]][2])

qw <- c(qw, tach_sens[[1]][3])}

#FLOWMETER DATA----------------------------------------------------

if (fmp == 1){

fwi <- wwi # Storing length for dyanmic flow meter plotting

if(cals==0){

flow_names <- read.csv(paste(loc,"raw\\data_names

\\data_fs_names.csv",sep=""),header=F, sep=’,’)

flow_sens <- read.csv(paste(loc,"raw\\sensor_info

\\flow.csv",sep=""),header=F,sep=’,’)

for(i in 1:5)

{ flow <- read.csv(paste(loc,"raw\\data_fs",i,".csv",sep=""),

sep=’,’)

plt_title <- c(plt_title, flow_names[[1]][i])

plt_labels <- c(plt_labels, "Flow Rate (L/s)")

dat_nam <- c(dat_nam, paste("data_fs",i,sep=""))

names(flow) <- c("t","data")

dl[[wwi]] <- flow

fwii <- wwi # Storing length for dyanmic flow meter plotting

wwi <- wwi + 1

fil <- c(fil, flow_sens[[1]][1])

se <- c(se, flow_sens[[1]][2])

qw <- c(qw, flow_sens[[1]][3])

}

plt_title <- c(plt_title, "Total Flow #1")

plt_labels <- c(plt_labels, "Flow Rate (L/s)")

dat_nam <- c(dat_nam, paste("data_fs",i + 1,sep=""))
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dl[[wwi]] <- dl[[wwi - 1]]

dl[[wwi]]$data <- dl[[wwi - 1]]$data + dl[[wwi - 3]]$data + dl[[wwi -

5]]$data

fwii <- wwi # Storing length for dyanmic flow meter plotting

wwi <- wwi + 1

fil <- c(fil, flow_sens[[1]][1])

se <- c(se, flow_sens[[1]][2])

qw <- c(qw, flow_sens[[1]][3])

plt_title <- c(plt_title, "Total Flow #2")

plt_labels <- c(plt_labels, "Flow Rate (L/s)")

dat_nam <- c(dat_nam, paste("data_fs",i + 2,sep=""))

dl[[wwi]] <- dl[[wwi - 2]]

dl[[wwi]]$data <- dl[[wwi - 2]]$data + dl[[wwi - 3]]$data + dl[[wwi -

5]]$data

fwii <- wwi # Storing length for dyanmic flow meter plotting

wwi <- wwi + 1

fil <- c(fil, flow_sens[[1]][1])

se <- c(se, flow_sens[[1]][2])

qw <- c(qw, flow_sens[[1]][3])

} else {

flow_sens <- read.csv(paste(loc,"raw\\sensor_info

\\flow.csv",sep=""),header=F,sep=’,’)

fch <- c(0.175,0.220,0.260)

for(i in 1:3)

{ flow <- read.csv(paste(loc,"raw\\data_fs",i,".csv",sep=""),

sep=’,’)

flow_names <- paste("Res. Height = ",fch[i]," m")

plt_title <- c(plt_title, flow_names)

plt_labels <- c(plt_labels, "Flow Sensor (L/s)")
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dat_nam <- c(dat_nam, paste("data_fs",i,sep=""))

names(flow) <- c("t","data")

dl[[wwi]] <- flow

fwii <- wwi # Storing length for dyanmic flow meter plotting

wwi <- wwi + 1

fil <- c(fil, flow_sens[[1]][1])

se <- c(se, flow_sens[[1]][2])

qw <- c(qw, flow_sens[[1]][3])}

}

}

#WASTEWATER SENSOR SUITE

if (wssp == 1) {

wwii <- wwi # Storing length for dyanmic wastewater sensor suite plotting

cond_sens <- read.csv(paste(loc,"raw\\sensor_info

\\cond.csv",sep=""),header=F,sep=’,’)

uv_sens <- read.csv(paste(loc,"raw\\sensor_info

\\uv.csv",sep=""),header=F,sep=’,’)

wwssxl <- "Time" # WWSS X label

wwsss <- "A" # First Sensor Suite

if(wwss == 1){

for (wwwss in c(0,1)){

for (csm in seq(from=0, to=160, by=40)){

for (usm in seq(from=0, to=8, by=2)){

cond_dat <- paste(loc,"raw\\wwss_testing\\",wwsss,"

\\data_cond_",csm,"_",usm,".csv",sep="")

uv_dat <- paste(loc,"raw\\wwss_testing\\",wwsss,"

\\data_uv_",csm,"_",usm,".csv",sep="")

#CONDUCTIVITY DATA-------------------------------------------------

cond <- read.csv(cond_dat, sep=’,’)

plt_title <- c(plt_title, paste(csm,"mg-",usm,"%-",wwsss,sep=""))
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plt_labels <- c(plt_labels, "Normalized Conductivity")

dat_nam <- c(dat_nam, paste("data_cond_",csm,"_",usm,"_",wwsss))

names(cond) <- c("t","data")

dl[[wwi]] <- cond

fil <- c(fil, cond_sens[[1]][1])

se <- c(se, cond_sens[[1]][2])

qw <- c(qw, cond_sens[[1]][3])

wwi <- wwi + 1

#UV DATA-----------------------------------------------------

uv <- read.csv(uv_dat, sep=’,’)

plt_title <- c(plt_title, paste(csm,"mg-",usm,"%-",wwsss,sep=""))

plt_labels <- c(plt_labels, "Normalized Absorbance")

dat_nam <- c(dat_nam, paste("data_uv_",csm,"_",usm,"_",wwsss))

names(uv) <- c("t","data")

dl[[wwi]] <- uv

fil <- c(fil, uv_sens[[1]][1])

se <- c(se, uv_sens[[1]][2])

qw <- c(qw, uv_sens[[1]][3])

wwi <- wwi + 1

}

}

wwsss <- "B" # Switching to new sensor suite

}

wwsss <- " "

} else if(wwss == 2){

for (wwwss in c(0,1)){

norm_cond <- 0

norm_uv <- 0

for (csm in seq(from=0, to=160, by=40)){

# create empty vector for new
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new_cond <- c()

new_uv <- c()

per_sal <-c()

for (usm in seq(from=0, to=8, by=2)){

cond_dat <- paste(loc,"raw\\wwss_testing\\",wwsss,"

\\data_cond_",csm,"_",usm,".csv",sep="")

uv_dat <- paste(loc,"raw\\wwss_testing\\",wwsss,"

\\data_uv_",csm,"_",usm,".csv",sep="")

cond <- read.csv(cond_dat, sep=’,’)

uv <- read.csv(uv_dat, sep=’,’)

new_cond <- c(new_cond, mean(cond[[2]]))

new_uv <- c(new_uv, -mean(uv[[2]]))

per_sal <- c(per_sal, usm)

if (csm == 0 && usm == 0){

norm_cond <- mean(cond[[2]])

norm_uv <- -mean(uv[[2]])

}

}

# Assign new vectors to data set

plt_title <- c(plt_title, paste(csm,"mg-",wwsss,sep=""))

plt_labels <- c(plt_labels, "Normalized Conductivity")

dat_nam <- c(dat_nam, paste("data_cond_",csm,"_avg_",wwsss))

cond <- list(per_sal, new_cond - norm_cond)

names(cond) <- c("t","data")

dl[[wwi]] <- cond

fil <- c(fil, cond_sens[[1]][1])

se <- c(se, cond_sens[[1]][2])

qw <- c(qw, cond_sens[[1]][3])

wwi <- wwi + 1

plt_title <- c(plt_title, paste(csm,"mg-",wwsss,sep=""))
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plt_labels <- c(plt_labels, "Normalized Absorbance")

dat_nam <- c(dat_nam, paste(wwsss,"data_uv_",csm,"_avg_",wwsss))

uv <- list(per_sal, new_uv - norm_uv)

names(uv) <- c("t","data")

dl[[wwi]] <- uv

fil <- c(fil, uv_sens[[1]][1])

se <- c(se, uv_sens[[1]][2])

qw <- c(qw, uv_sens[[1]][3])

wwi <- wwi + 1

}

wwsss <- "B" # Switching to new sensor suite

}

wwsss <- " "

wwssxl <- "Volume Percent Saliva" # X label

} else if(wwss == 3){

for (wwwss in c(0,1)){

# create empty vector for new data sets

new_cond <- c()

new_uv <- c()

per_sp <- c()

for (spp in seq(from=0, to=20, by=2)){

cond_dat <- paste(loc,"raw\\wwss_sp

\\data_cond_",wwsss,"_",spp,".csv",sep="")

uv_dat <- paste(loc,"raw\\wwss_sp

\\data_uv_",wwsss,"_",spp,".csv",sep="")

#CONDUCTIVITY DATA-------------------------------------------------

cond <- read.csv(cond_dat, sep=’,’)

new_cond <- c(new_cond, mean(cond[[2]]))

#UV DATA--------------------------------------------------------

uv <- read.csv(uv_dat, sep=’,’)
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new_uv <- c(new_uv, mean(uv[[2]]))

#PERCENT SALIVA----------------------------------------------------

per_sp <- c(per_sp, spp)

}

# Assign new vectors to data set

plt_title <- c(plt_title, paste(spp,"% - ",wwsss,sep=""))

plt_labels <- c(plt_labels, "Normalized Conductivity")

dat_nam <- c(dat_nam, paste("data_cond_",spp,"_spp_",wwsss))

cond <- list(per_sp, new_cond - new_cond[1])

names(cond) <- c("t","data")

dl[[wwi]] <- cond

fil <- c(fil, cond_sens[[1]][1])

se <- c(se, cond_sens[[1]][2])

qw <- c(qw, cond_sens[[1]][3])

wwi <- wwi + 1

plt_title <- c(plt_title, paste(spp,"% - ",wwsss,sep=""))

plt_labels <- c(plt_labels, "Normalized Absorbance")

dat_nam <- c(dat_nam, paste("data_uv_",spp,"_spp_",wwsss))

uv <- list(per_sp, new_uv - new_uv[1])

names(uv) <- c("t","data")

dl[[wwi]] <- uv

fil <- c(fil, uv_sens[[1]][1])

se <- c(se, uv_sens[[1]][2])

qw <- c(qw, uv_sens[[1]][3])

wwi <- wwi + 1

wwsss <- "B" # Switching to new sensor suite

}

wwsss <- " "

wwssxl <- "Volume Percent Syn. Perspiration" # X label

} else {
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#A-----------------------------------------------------------------

cond_dat_a<- paste(loc,"raw\\data_cda.csv",sep="")

uv_dat_a <- paste(loc,"raw\\data_uva.csv",sep="")

#CONDUCTIVITY DATA-------------------------------------------------

cond_a <- read.csv(cond_dat_a, sep=’,’)

plt_title <- c(plt_title, "A")

plt_labels <- c(plt_labels, "Normalized Conductivity")

dat_nam <- c(dat_nam, "data_cda")

names(cond_a) <- c("t","data")

dl[[wwi]] <- cond_a

fil <- c(fil, cond_sens[[1]][1])

se <- c(se, cond_sens[[1]][2])

qw <- c(qw, cond_sens[[1]][3])

wwi <- wwi + 1

#UV DATA-----------------------------------------------------------

uv_a <- read.csv(uv_dat_a, sep=’,’)

plt_title <- c(plt_title, "A")

plt_labels <- c(plt_labels, "Normalized Absorbance")

dat_nam <- c(dat_nam, "data_uva")

names(uv_a) <- c("t","data")

dl[[wwi]] <- uv_a

fil <- c(fil, uv_sens[[1]][1])

se <- c(se, uv_sens[[1]][2])

qw <- c(qw, uv_sens[[1]][3])

wwi <- wwi + 1

#B-----------------------------------------------------------------

cond_dat_b <- paste(loc,"raw\\data_cdb.csv",sep="")

uv_dat_b <- paste(loc,"raw\\data_uvb.csv",sep="")

#CONDUCTIVITY DATA-------------------------------------------------

cond_b <- read.csv(cond_dat_b, sep=’,’)
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plt_title <- c(plt_title, "B")

plt_labels <- c(plt_labels, "Normalized Conductivity")

dat_nam <- c(dat_nam, "data_cdb")

names(cond_b) <- c("t","data")

dl[[wwi]] <- cond_b

fil <- c(fil, cond_sens[[1]][1])

se <- c(se, cond_sens[[1]][2])

qw <- c(qw, cond_sens[[1]][3])

wwi <- wwi + 1

#UV DATA-----------------------------------------------------------

uv_b <- read.csv(uv_dat_b, sep=’,’)

plt_title <- c(plt_title, "B")

plt_labels <- c(plt_labels, "Normalized Absorbance")

dat_nam <- c(dat_nam, "data_uvb")

names(uv_b) <- c("t","data")

dl[[wwi]] <- uv_b

fil <- c(fil, uv_sens[[1]][1])

se <- c(se, uv_sens[[1]][2])

qw <- c(qw, uv_sens[[1]][3])

wwi <- wwi + 1

#DIFF-----------------------------------------------------------------

#CONDUCTIVITY DATA-------------------------------------------------

plt_title <- c(plt_title, "B - A")

plt_labels <- c(plt_labels, "Normalized Conductivity")

dat_nam <- c(dat_nam, "data_cdab")

dl[[wwi]] <- cond_b

dl[[wwi]]$data <- cond_b$data - cond_a$data[1:length(cond_b$data)]

fil <- c(fil, cond_sens[[1]][1])

se <- c(se, cond_sens[[1]][2])

qw <- c(qw, cond_sens[[1]][3])
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wwi <- wwi + 1

#UV DATA-----------------------------------------------------------

plt_title <- c(plt_title, "B - A")

plt_labels <- c(plt_labels, "Normalized Absorbance")

dat_nam <- c(dat_nam, "data_uvab")

dl[[wwi]] <- uv_b

dl[[wwi]]$data <- uv_b$data - uv_a$data[1:length(uv_b$data)]

fil <- c(fil, uv_sens[[1]][1])

se <- c(se, uv_sens[[1]][2])

qw <- c(qw, uv_sens[[1]][3])

wwi <- wwi + 1

}}

#

#SENSOR CALIBRATION INFORMATION---------------------------------------------------------------

#

#------TACH CAL

tcal <- c(80,100,120) #[rps] tachometer calibration vector

#------FLOW CAL

Ap <- pi*(0.005)^2 #[m^2] Max area of pipe

Ar <- 0.016129 #[m^2] Area of reservoir

g <- 9.81 #[m/s^2] Acceleration due to gravity

h0 <- c(0.175, 0.22, 0.26) #[m] Inital height of reservoir vector

dh <- 0.125 #[m] Height between bottom of reservoir and sensor

dc <- 0.475 #Discharge coefficient

flow_cal <- function(t, dat,hw){

fsi <- which(dat != 0)[1] #Flow start index

Ap <- Ap * (1 + exp(-5*(t-t[fsi]-0.5)))^-1 #Valve opening function

T <- Ar*hw/Ap*sqrt(2/g/hw) #Flow time function

htf <- hw*(1-((t-t[fsi])/T))^2 #Height function

return(dc*Ap*(sqrt(2*g*htf /(1-(Ap/Ar)^2)) + sqrt(2*g*dh)))}
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#

#PLOTTING FUNCTION------------------------------------------------------------------

#

plt_lab <- 3 #Plot label size

plt_axs <- 2 #Plot axis size

plt_man <- 3 #Plot title size

plt_sub <- 3 #Plot sublabel size

plt_lwd <- 2.5 #Line width

plt_mgp <- c(5,2,0) #Move plot labels

plt_mar <- c(6,8,4,4) #Margin around plot

plot_data <- function(t,dat,dat_name,out,cldat){

windows()

par(mar = plt_mar, mgp=plt_mgp)

title <- plt_title[dat_name]

switch(out,

title <- title,

title <- paste(title," - SOR"),

title <- paste(title," - LPF"),

title <- paste(title," - CI"))

plot(t, dat,

xlim=c(0,max(t)), xlab=’Time (s)’,

ylim=c(0,max(dat)*1.25), ylab= plt_labels[dat_name],

main= title,

cex.lab=plt_lab, cex.axis=plt_axs, cex.main=plt_man,

cex.sub=plt_sub, panel.first=grid(lwd=plt_lwd))

lines(t, dat,lwd=plt_lwd)

if (out == 4) {errbar(t, dat, dat + cldat, dat - cldat, add = TRUE,

errbar.col="red")}

png(paste(paste(loc,"\\graphs\\",sep=""), title, ".png"), width = wd,

height = ht)
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par(mar = plt_mar*ps, mgp=plt_mgp*ps)

plot(t, dat,

xlim=c(0,max(t)), xlab=’Time (s)’,

ylim=c(0,max(dat)*1.25), ylab= plt_labels[dat_name],

main= title,

cex.lab=plt_lab*ps, cex.axis=plt_axs*ps, cex.main=plt_man*ps,

cex.sub=plt_sub*ps, panel.first=grid(lwd=plt_lwd*ps-2))

lines(t, dat,lwd=plt_lwd*ps)

if (out == 4) {errbar(t, dat, dat + cldat, dat - cldat, add = TRUE,

errbar.col="red")}

dev.off()}

plot_cal <- function(t,dat,sens,out,cldat,cal){

windows()

par(mar = plt_mar, mgp=plt_mgp)

title <- plt_title[sens]

if (cal == 1 & sens == 2){title <- "Flow Rate Sensor"}

if (cal == 1){title <- paste(title, "Calibration")}

switch(out,

title <- title,

title <- paste(title," - SOR"),

title <- paste(title," - LPF"),

title <- paste(title," - CI"))

if (cal == 1 & sens == 1) {

plot(t, dat,

xlim=c(0,max(t)), xlab=’Time (s)’,

ylim=c(0,max(dat)*1.25), ylab= plt_labels[sens],

main= title,

cex.lab=plt_lab, cex.axis=plt_axs, cex.main=plt_man,

cex.sub=plt_sub, panel.first=grid(lwd=plt_lwd))

lines(t, dat,lwd=plt_lwd)
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} else {

plot(t[[1]], dat[[1]],

xlim=c(0,max(as.numeric(unlist(t)))), xlab=’Time (s)’,

ylim=c(0,max(as.numeric(unlist(dat)))*1.25), ylab= plt_labels[sens],

main= title,

cex.lab=plt_lab, cex.axis=plt_axs, cex.main=plt_man,

cex.sub=plt_sub, panel.first=grid(lwd=plt_lwd))

colors <- c("black","green","blue")

for(i in 1:length(dat)){lines(t[[i]], dat[[i]],lwd=plt_lwd, col=colors[i])}}

if (out == 4) {errbar(t, dat, dat + cldat, dat - cldat, add = TRUE, errbar.col="red")}

if (cal == 1 & sens == 1)

{for (i in 1:length(tcal)){abline(h=tcal[i],col=’red’,lw=plt_lwd,lty=’dashed’)}}

if (cal == 1 & sens == 2)

{for (i in 1:length(dat))

{lines(t[[i]], flow_cal(t[[i]],dat[[i]],h0[i]),lwd=plt_lwd, col=’red’,lty=’dashed’)}

legend("topright",legend=plt_title[2:4],lwd=plt_lwd, col=colors)}

png(paste(paste(loc,"\\graphs\\",sep=""), title, ".png"), width = wd, height = ht)

par(mar = plt_mar*ps, mgp=plt_mgp*ps)

if (cal == 1 & sens == 1) {

plot(t, dat,

xlim=c(0,max(t)), xlab=’Time (s)’,

ylim=c(0,max(dat)*1.25), ylab= plt_labels[sens],

main= title,

cex.lab=plt_lab*ps, cex.axis=plt_axs*ps, cex.main=plt_man*ps,

cex.sub=plt_sub*ps, panel.first=grid(lwd=plt_lwd*ps-2))

lines(t, dat,lwd=plt_lwd)

} else {

plot(t[[1]], dat[[1]],

xlim=c(0,max(as.numeric(unlist(t)))), xlab=’Time (s)’,

ylim=c(0,max(as.numeric(unlist(dat)))*1.25), ylab= plt_labels[sens],
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main= title,

cex.lab=plt_lab*ps, cex.axis=plt_axs*ps, cex.main=plt_man*ps,

cex.sub=plt_sub*ps, panel.first=grid(lwd=plt_lwd*ps-2))

for(i in 1:length(dat)){lines(t[[i]], dat[[i]],lwd=plt_lwd*ps, col=colors[i])}}

if (out == 4) {errbar(t, dat, dat + cldat, dat - cldat, add = TRUE, errbar.col="red")}

if (cal == 1 & sens == 1)

{for (i in 1:length(tcal)){abline(h=tcal[i],col=’red’,lw=plt_lwd*ps,lty=’dashed’)}}

if (cal == 1 & sens == 2)

{for (i in 1:length(dat))

{lines(t[[i]], flow_cal(t[[i]],dat[[i]],h0[i]),lwd=plt_lwd*ps,

col=’red’,lty=’dashed’)}

legend("topright",legend=plt_title[2:4],lwd=plt_lwd*ps,

col=colors,cex=plt_lab*ps-4)}

dev.off()}

plot_flows <- function(frs,out,cldat){

windows()

par(mar = plt_mar, mgp=plt_mgp)

title <- "All Flow Rates"

switch(out,

title <- title,

title <- paste(title," - SOR"),

title <- paste(title," - LPF"),

title <- paste(title," - CI"))

ymax <- 0

for(ym in 1:length(frs)){if (max(frs[[ym]]$data) >

ymax){ymax <- max(frs[[ym]]$data)}}

plot(frs[[1]]$t, frs[[1]]$data,xlim=c(0,max(frs[[1]]$t)),xlab=’Time (s)’,

ylim=c(0,ymax*1.25),ylab= "Flow Rate (L/min)",main= title,

cex.lab=plt_lab, cex.axis=plt_axs, cex.main=plt_man,
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cex.sub=plt_sub, panel.first=grid(lwd=plt_lwd))

colors <- c("black","red","blue","green","purple")

for(pf in 1:length(frs)){lines(frs[[pf]]$t,frs[[pf]]$data,lwd=plt_lwd,col=colors[pf])}

if (out==4){for(pf in 1:length(frs))

{errbar(frs[[pf]]$t,frs[[1]]$data, frs[[pf]]$data+

cldat[pf], frs[[pf]]$data- cldat[pf], add = TRUE, errbar.col="red")}}

legend("topright",legend=plt_title[fwi:fwii],col=colors,

lwd=plt_lwd)

png(paste(paste(loc,"\\graphs\\",sep=""), title, ".png"), width = wd, height = ht)

par(mar = plt_mar*ps, mgp=plt_mgp*ps)

plot(frs[[1]]$t, frs[[1]]$data,xlim=c(0,max(frs[[1]]$t)),xlab=’Time (s)’,

ylim=c(0,ymax*1.25),ylab= "Flow Rate (L/min)",main= title,

cex.lab=plt_lab*ps, cex.axis=plt_axs*ps, cex.main=plt_man*ps,

cex.sub=plt_sub*ps, panel.first=grid(lwd=plt_lwd*ps-2))

for(pf in 1:length(frs))

{lines(frs[[pf]]$t,frs[[pf]]$data,lwd=plt_lwd*ps,col=colors[pf])}

if (out==4){for(pf in 1:length(frs))

{errbar(frs[[pf]]$t,frs[[pf]]$data,

frs[[pf]]$data+ cldat[pf], frs[[pf]]$data- cldat[pf],

add = TRUE, errbar.col="red")}}

legend("topright",legend=plt_title[fwi:fwii],col=colors,

lwd=plt_lwd*ps, cex=plt_lab*ps-4)

dev.off()}

plot_wwss_cond <- function(frs,out,cldat,ssl,xl,wssc){

windows()

par(mar = plt_mar, mgp=plt_mgp)

title <- paste("Wastewater Conductivity Suite ",ssl)

switch(out,

title <- title,

title <- paste(title," - SOR"),
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title <- paste(title," - LPF"),

title <- paste(title," - CI"))

ymax <- 0

ymin <- 0

n <- length(frs)

qual_col_pals = brewer.pal.info[brewer.pal.info$category == ’qual’,]

col_vector = unlist(mapply(brewer.pal,

qual_col_pals$maxcolors, rownames(qual_col_pals)))

colors <- sample(col_vector, n)

for(ym in 1:length(frs)){if (max(frs[[ym]]$data) > ymax){ymax <- max(frs[[ym]]$data)}}

for(ym in 1:length(frs)){if (min(frs[[ym]]$data) < ymin){ymin <- min(frs[[ym]]$data)}}

plot(frs[[1]]$t, frs[[1]]$data,xlim=c(0,max(frs[[1]]$t)),xlab=xl,

ylim=c(ymin*1.25,ymax*1.25),ylab= "Normalized Conductivity",main= title,

cex.lab=plt_lab, cex.axis=plt_axs,

cex.main=plt_man, cex.sub=plt_sub, panel.first=grid(lwd=plt_lwd))

for(pf in 1:length(frs)){lines(frs[[pf]]$t,frs[[pf]]$data,lwd=plt_lwd,

col=colors[pf])}

if (out==4){for(pf in 1:length(frs))

{errbar(frs[[pf]]$t,frs[[1]]$data,

frs[[pf]]$data+ cldat[pf], frs[[pf]]$data- cldat[pf],

add = TRUE, errbar.col="red")}}

legend("topright",legend=plt_title[seq(from=wwii,

to=length(dl)-1,by=2)],col=colors,lwd=plt_lwd)

png(paste(paste(loc,"\\graphs\\",sep=""), title, ".png"), width = wd, height = ht)

par(mar = plt_mar*ps, mgp=plt_mgp*ps)

plot(frs[[1]]$t, frs[[1]]$data,xlim=c(0,max(frs[[1]]$t)),xlab=xl,

ylim=c(ymin*1.25,ymax*1.25),ylab= "Normalized Conductivity",main= title,

cex.lab=plt_lab*ps, cex.axis=plt_axs*ps,

cex.main=plt_man*ps, cex.sub=plt_sub*ps, panel.first=grid(lwd=plt_lwd*ps))

for(pf in 1:length(frs))
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{lines(frs[[pf]]$t,frs[[pf]]$data,col=colors[pf],lwd=plt_lwd*ps)}

if (out==4){for(pf in 1:length(frs))

{errbar(frs[[pf]]$t,frs[[pf]]$data, frs[[pf]]$data+

cldat[pf], frs[[pf]]$data- cldat[pf], add = TRUE, errbar.col="red")}}

legend("topright",legend=plt_title

[seq(from=wwii,to=length(dl)-1,by=2)],col=colors,lwd=plt_lwd*ps,cex=plt_lab*ps-4)

dev.off()}

plot_wwss_uv <- function(frs,out,cldat,ssl,xl,wssc){

windows()

par(mar = plt_mar, mgp=plt_mgp)

title <- paste("Wastewater UV Suite ",ssl)

switch(out,

title <- title,

title <- paste(title," - SOR"),

title <- paste(title," - LPF"),

title <- paste(title," - CI"))

ymax <- 0

ymin <- 0

n <- length(frs)

qual_col_pals = brewer.pal.info[brewer.pal.info$category == ’qual’,]

col_vector = unlist(mapply(brewer.pal,

qual_col_pals$maxcolors, rownames(qual_col_pals)))

colors <- sample(col_vector, n)

for(ym in 1:length(frs)){if (max(frs[[ym]]$data) > ymax){ymax <- max(frs[[ym]]$data)}}

for(ym in 1:length(frs)){if (min(frs[[ym]]$data) < ymin){ymin <- min(frs[[ym]]$data)}}

plot(frs[[1]]$t, frs[[1]]$data,xlim=c(0,max(frs[[1]]$t)),xlab=xl,

ylim=c(ymin*1.25,ymax*1.25),ylab= "Normalized Absorbance",main= title,

cex.lab=plt_lab, cex.axis=plt_axs, cex.main=plt_man,

cex.sub=plt_sub, panel.first=grid(lwd=plt_lwd))

for(pf in 1:length(frs)){lines(frs[[pf]]$t,frs[[pf]]$data,
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col=colors[pf],lwd=plt_lwd)}

if (out==4){for(pf in 1:length(frs))

{errbar(frs[[pf]]$t,frs[[1]]$data,

frs[[pf]]$data+ cldat[pf], frs[[pf]]$data- cldat[pf],

add = TRUE, errbar.col="red")}}

legend("topright",legend=plt_title[seq(from=wwii+1,

to=length(dl),by=2)],col=colors,lwd=plt_lwd)

png(paste(paste(loc,"\\graphs\\",sep=""), title, ".png"), width = wd, height = ht)

par(mar = plt_mar*ps, mgp=plt_mgp*ps)

plot(frs[[1]]$t, frs[[1]]$data,xlim=c(0,max(frs[[1]]$t)),xlab=xl,

ylim=c(ymin*1.25,ymax*1.25),ylab= "Normalized Absorbance",main= title,

cex.lab=plt_lab*ps, cex.axis=plt_axs*ps, cex.main=plt_man*ps,

cex.sub=plt_sub*ps, panel.first=grid(lwd=plt_lwd*ps))

for(pf in 1:length(frs)){lines(frs[[pf]]$t,frs[[pf]]$data

,col=colors[pf],lwd=plt_lwd*ps)}

if (out==4){for(pf in 1:length(frs))

{errbar(frs[[pf]]$t,frs[[pf]]$data,

frs[[pf]]$data+ cldat[pf], frs[[pf]]$data- cldat[pf], add = TRUE, errbar.col="red")}}

legend("topright",legend=plt_title[seq(from=wwii+1,to=length(dl),by=2)],col=colors,

lwd=plt_lwd*ps,cex=plt_lab*ps-4)

dev.off()}

#

#PLOTTING RAW DATA--------------------------------------------------------------------------------------

#

if (raw_plot == 1){

if(cals == 1){for(i in 1:2){if(i==1){plot_cal(dl[[i]]$t, dl[[i]]$data, 1, 1, 0, 1)}else {

plot_cal(list(dl[[2]]$t,dl[[3]]$t,dl[[4]]$t),

list(dl[[2]]$data,dl[[3]]$data,dl[[4]]$data), 2, 1, 0, 1)}}}

if(flows == 1 && fmp == 1){plot_flows(dl[fwi:fwii],1,0)}

if(wssp == 1){plot_wwss_cond(dl[seq(from=wwii ,to=length(dl)-
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1,by=2)],1,0,wwsss,wwssxl,wwss)

plot_wwss_uv(dl[seq(from=wwii +1,to=length(dl),by=2)],1,0,wwsss,wwssxl,wwss)}

if(tp == 1 || fmp == 1){for(i in 1:length(dl))

{plot_data(dl[[i]]$t, dl[[i]]$data, i, 1, 0)}}}

#

#SAVING RAW DATA--------------------------------------------------------------------------

#

for(i in 1:length(dl))

{write.csv(dl[[i]],file=paste(loc,"\\raw\\",

dat_nam[i],".csv",sep=""),row.names = FALSE)}

#

#SINGLE THOMPSON OUTLIER FOR RAW DATA--------------------------------------------------------------------

#

thom_out <- function(P,d_l,j,dat) { #Thompson outlier function

x <- d_l$data #Capturing Data Frame column into a vector

N <- length(x) #Number of sample points

tt <- qt(p=(1+P)/2,df=N-2) #Student’s t vaiariable

tau <- (tt*(N-1))/(sqrt(N*(N-2+tt^2))) #Thompson tau variable

delta <- abs(x-mean(x)) #Outlier criteria baseline

delta_max <- tau*sd(x) #Outlier upper limit

x_out <- which(delta >= delta_max) #Reporting dataset outliers index

if(dat == 0){cat(’out:col-’,j,’-id-’,x_out,’\n’)

return(d_l <- d_l[-c(x_out),])} #Returning vector with outliers removed

else{return(length(x_out))}} #Returning number of outliers detected

for(j in 1:length(dl)){

if(thom_out(P,dl[[j]],j,1)!= 0) #If to detect outliers

dl[[j]] <- thom_out(P,dl[[j]],j,0)} #Call function to remove

#

#SAVING OUTLIER REMOVED DATA--------------------------------------------------------------------------

#
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for(i in 1:length(dl))

{write.csv(dl[[i]],file=paste(loc,"\\outout\\",

dat_nam[i],".csv",sep=""),row.names = FALSE)}

#

#PLOTTING OUTLIER REMOVED DATA--------------------------------------------------------------------------

#

if (outlier_plot == 1){

if(cals == 1){for(i in 1:2){if(i==1){plot_cal(dl[[i]]$t, dl[[i]]$data, 1, 2, 0, 1)}else {

plot_cal(list(dl[[2]]$t,dl[[3]]$t,dl[[4]]$t),

list(dl[[2]]$data,dl[[3]]$data,dl[[4]]$data), 2, 2, 0, 1)}}}

if(flows == 1 && fmp == 1){plot_flows(dl[fwi:fwii],2,0)}

if(wssp == 1){plot_wwss_cond(dl[seq(from=wwii ,to=length(dl)-

1,by=2)],2,0,wwsss,wwssxl,wwss)

plot_wwss_uv(dl[seq(from=wwii +1,to=length(dl),by=2)],1,0,wwsss,wwssxl,wwss)}

if(tp == 1 || fmp == 1){for(i in 1:length(dl))

{plot_data(dl[[i]]$t, dl[[i]]$data, i, 2, 0)}}}

#

#FILTERING DATA------------------------------------------------------------------------------------------

#

for(fli in 1:length(dl)){

if(length(dl[[fli]]$t) == 0){} # If null data set from outlier removal, do not filter

else{

dl[[fli]]$data <- filter(dl[[fli]]$data, rep(1/fil[fli],fil[fli]),

method = "convolution", sides = 2)

dl[[fli]] <- na.omit(dl[[fli]])}}

#

#SAVING FILTERED DATA-----------------------------------------------------------------------------------

#

for(i in 1:length(dl))

{write.csv(dl[[i]],file=paste(loc,"\\filtered\\",
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dat_nam[i],".csv",sep=""), row.names = FALSE)}

#

#PLOTTING FILTERED DATA--------------------------------------------------------------------------------

#

if (filt_plot == 1){

if(cals == 1){for(i in 1:2){if(i==1){plot_cal(dl[[i]]$t, dl[[i]]$data, 1, 3, 0, 1)}else {

plot_cal(list(dl[[2]]$t,dl[[3]]$t,dl[[4]]$t),

list(dl[[2]]$data,dl[[3]]$data,dl[[4]]$data), 2, 3, 0, 1)}}}

if(flows == 1 && fmp == 1){plot_flows(dl[fwi:fwii],3,0)}

if(wssp == 1){plot_wwss_cond(dl[seq(from=wwii ,to=length(dl)-1,by=2)],

3,0,wwsss,wwssxl,wwss)

plot_wwss_uv(dl[seq(from=wwii +1,to=length(dl),by=2)],3,0,wwsss,wwssxl,wwss)}

if(tp == 1 || fmp == 1){for(i in 1:length(dl)){if(length(dl[[i]]$t) == 0){}

else{plot_data(dl[[i]]$t, dl[[i]]$data, i, 3, 0)}}}}

#

#CONFIDENCE LEVEL FOR OUTLIER REMOVED DATA----------------------------------------------------------

#

clc <- c() #Creating confidence interval list

for(cli in 1:length(dl)){

if(length(dl[[cli]]$t) == 0){clc <- c(clc, 0)}

# If null data set from outlier removal, do not add confidence intervals

else{

cl <- 1.96*sqrt((quantile(dl[[cli]]$data, 0.5+qw[cli]/2) -

quantile(dl[[cli]]$data,0.5- qw[cli]/2))^2 * (1 + se[cli])^2)

clc <- c(clc, cl)}}

#

#SAVING CONFIDENCE LEVEL DATA-----------------------------------------------------------------------------------

#

for(i in 1:length(dl))

{write.csv(clc[[i]],file=paste(loc, "\\filtered
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\\",dat_nam[i],"_cl.csv",sep=""), row.names = FALSE)

write.csv(clc[[i]],file=paste(loc, "\\outout

\\",dat_nam[i],"_cl.csv",sep=""), row.names = FALSE)

write.csv(clc[[i]],file=paste(loc, "\\raw

\\",dat_nam[i],"_cl.csv",sep=""), row.names = FALSE)}

#

#PLOTTING CONFIDENCE INTERVAL DATA---------------------------------------------------------------------

#

if (cl_plot == 1){

if(cals == 1){for(i in 1:2){if(i==1)

{plot_cal(dl[[i]]$t, dl[[i]]$data, 1, 4, 0, 1)}else {

plot_cal(list(dl[[2]]$t,dl[[3]]$t,dl[[4]]$t),

list(dl[[2]]$data,dl[[3]]$data,dl[[4]]$data), 2, 4, 0, 1)}}}

if(flows == 1 && fmp == 1){plot_flows(dl[fwi:fwii],4,clc[fwi:fwii])}

if(wssp == 1){plot_wwss_cond(dl[seq(from=wwii ,to=length(dl)-1,by=2)],

4,0,wwsss,wwssxl,wwss)

plot_wwss_uv(dl[seq(from=wwii +1,to=length(dl),by=2)],4,0,wwsss,wwssxl,wwss)}

if(tp == 1 || fmp == 1){for(i in 1:length(dl))

{plot_data(dl[[i]]$t, dl[[i]]$data, i, 4, clc[i])}}}
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