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Highlights

•

Ferrous Fe addition suppressed mineralization of 13C-labeled lignin methoxyls.

•

Ferrous Fe addition did not affect total soil respiration.

•

Mineralization rates of lignin methoxyls implied decadal turnover times.

Abstract

The importance of lignin as a recalcitrant constituent of soil organic matter(SOM) 

remains contested. Associations with iron (Fe) oxides have been proposed to 

specifically protect lignin from decomposition, but impacts of Fe-lignin interactions 

on mineralization rates remain unclear. Oxygen (O2) fluctuations characteristic of 

humid tropical soils drive reductive Fe dissolution and precipitation, facilitating multiple 

types of Fe-lignin interactions that could variably decompose or protect lignin. We tested

impacts of Fe addition on 13C methoxyl-labeled lignin mineralization in soils that were 

exposed to static or fluctuating O2. Iron addition suppressed lignin mineralization to 21%

of controls, regardless of O2 availability. However, Fe addition had no effect on soil 

CO2 production, implying that Fe oxides specifically protected lignin methoxyls but not 

bulk SOM. Iron oxide-lignin interactions represent a specific mechanism for lignin 

stabilization, linking SOM biochemical composition to turnover via geochemistry.
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Soil organic matter

The new paradigm of soil organic matter (SOM) dynamics posits that biochemical 

differences among compounds that influence short-term decomposition do not impact 

long-term persistence in SOM (Grandy and Neff, 2008, Marschner et     al., 2008, Schmidt 

et     al., 2011). These findings challenged the doctrine of humus formation, namely 

that recalcitrant biomolecules derived from lignin contribute disproportionately to SOM 

(Bollag et     al., 1997). In support of the new paradigm, several studies reported that lignin

might decompose as fast or faster than bulk SOM (Dignac et     al., 2005, Gleixner et     al., 

1999, Guggenberger et     al., 1994, Heim and Schmidt, 2007, Kiem and Kögel-Knabner, 

2003). Yet, these findings are difficult to reconcile with other studies demonstrating 

preferential association of aromatic lignin constituents with minerals, especially 

Fe oxides (Chorover and Amistadi, 2001, Gu et     al., 1995, Hernes et     al., 2013, Huang 

et     al., 1977, Kaiser, 2003, Riedel et     al., 2013). These associations would presumably 

decrease lignin mineralization, as has been observed for coprecipitates of lignin 

and ferrihydrite (Eusterhues et     al., 2014). Thus, a fundamental question remains: can 

associations with minerals, particularly Fe oxides, decrease the decomposition of lignin 

relative to bulk SOM?

Iron-lignin interactions in soils are also complicated by potential stimulation of 

decomposition by solid-phase and soluble Fe. Fenton reactions driven by coupled 

biotic/abiotic Fe redox cycling can decompose lignin (Yelle et     al., 2011), and may be 

important in Fe-rich soils that experience fluctuating O2(Hall et     al., 2015a, Hall and 

Silver, 2013). Also, Fe minerals such as goethitecan abiotically oxidize SOM (Chorover 

and Amistadi, 2001). Finally, Fe reduction dominates anaerobic metabolism in many Fe-

rich soils (Dubinsky et     al., 2010), solubilizing Fe and exposing adsorbed or co-

precipitated organic matter to enzymatic attack.

Our previous work (Hall et     al., 2015a) demonstrated that redox fluctuations increased 

the contribution of methoxyl groups in lignin to respiration from a tropical forest soil 

relative to static aerobic conditions. Here, we report an additional experiment where 

soils were amended with aqueous Fe(II) to simulate a highly reduced microsite, and 

then exposed to aerobic or fluctuating aerobic/hypoxic conditions. Added Fe(II) reacted 

with O2 to form Fe(III) oxides, a portion of which was again reduced under 

subsequent hypoxic conditions. We evaluated three alternative hypotheses: H1) the 

precipitation of Fe oxides following Fe(II) oxidation disproportionately protects lignin 

relative to bulk SOM; H2) precipitation of Fe oxides protects lignin and bulk SOM 

equally; H3) oxidation of added Fe(II) stimulates organic matter decomposition.
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Soil was sampled from a tropical montane forest in the Luquillo Experimental Forest, 

Puerto Rico (Bisley Watershed), with 3500 mm of annual precipitation and mean annual

temperature of 22 °C (Hall and Silver, 2015). This Aquic Hapludox was derived from 

volcaniclastic sediments and contained substantial short-range-

order Fe oxides (24 mg Fe g−1) and Fe(II) (0.2–0.8 mg g−1). Iron(II) concentrations were 

much higher in reducing microsites, occasionally exceeding 5 mg g−1 (Hall and Silver, 

2013).

A macromolecular synthetic guaiacyl lignin labeled with 13C at the methoxyl position was

produced (Kirk et     al., 1975) to provide a sensitive index of mineralization. Lignin was 

precipitated onto ground leaf litter and gently homogenized with soils (20 mg lignin and 

1000 mg soil) following Hall et     al. (2015a). We used a synthetic 13C-labeled lignin 

because these polymers yield similar long-term mineralization estimates as plant-

derived lignins (Haider and Martin, 1981), while eliminating the 

labeled polysaccharides that inevitably contaminate labeled lignins produced in 

planta (Crawford, 1981). We recognize that the physical state of synthetic lignins does 

not completely represent that of natural lignins, which are intimately associated with 

other organic compounds (e.g. hemicellulose) in plant biomass. However, the fact that 

lignin biodegradation is a highly nonspecific oxidative process (Ruiz-Dueñas and 

Martínez, 2009) indicates that the precise spatial orientation of the lignin is probably not 

a critical factor, especially considering that extensive fragmentation of litter occurs 

during its breakdown in soils.

Samples were incubated under one of four headspace and Fe addition treatment 

combinations (n = 5 per treatment): static aerobic + aqueous Fe(II), static 

aerobic + water, fluctuating aerobic/hypoxic + aqueous Fe(II), fluctuating 

aerobic/hypoxic + water. The fluctuating aerobic/hypoxic treatment experienced three 

days of aerobic conditions followed by four days of hypoxia(N2 atmosphere). Before the 

experiment, samples received either N2-flushed water (controls), or 5 mg 

Fe(II) g soil−1 as aqueous FeCl2 (Fe addition treatment) in an anaerobic chamber. Total 

CO2 and 13CO2 production were measured by gas chromatography and isotope 

ratio mass spectrometry over 3–4 day intervals. Additional subsamples were 

destructively sampled for Fe(II) analysis in 0.5M HCl using a modified ferrozine method 

(Hall et     al., 2015a).

In the Fe addition treatment, most (>70%) of added Fe(II) oxidized to Fe(III) or 

precipitated in non-HCl extractable phases within the first three days (Fig.     1). Iron 

addition increased subsequent Fe(II) production during the hypoxic phase of the 

fluctuating treatment 2–5 fold relative to the control (Fig.     1), likely due to the facile 
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reduction of newly-formed short-range-ordered Fe(III) oxides (i.e., phases with nm-scale

structure). This indicated that the availability of short-range-ordered Fe phases likely 

limited Fe reduction even in this Fe-rich soil. Iron(II) decreased over time in all 

treatments, and was ultimately similar between Fe addition and control treatments.

1. Download high-res image     (342KB)

2. Download full-size image

Fig. 1. Soil Fe(II) concentrations in 0.5 M HCl extractions by treatment and day of 
experiment (n = 1 per treatment/day). The grey bars represent the hypoxic phase of the 
fluctuating headspace treatment. In the Fe addition treatments, 5000 μg Fe(II) g−1 soil 
were added at the beginning of the experiment.

Iron addition consistently and significantly (p < 0.0001) decreased the contribution 

of lignin methoxyl C to soil respiration (plignin) to 15–55% of the control 
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(Fig.     2a). Hypoxia also decreased plignin in both treatments on days 7 and 14 

(p < 0.05; Fig.     2a). However, O2 effects were dwarfed by Fe addition, especially for 

cumulative mineralization (Fig.     2b). Iron-amended soils cumulatively mineralized only 

21% of lignin methoxyls relative to the controls (p < 0.0001). Cumulative mineralization 

did not differ between O2 treatments (Fig.     2b).
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1. Download high-res image     (773KB)
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Fig. 2. a) Production of CO2 from 13C methoxyl lignin as a percent of total soil respiration.
b) Total mineralization of methoxyl lignin C. c) Soil CO2 production by sampling date. d) 
Cumulative CO2 production. Bars represent standard errors with n = 5 per treatment. 
See the text for a description of the treatments.

We modeled cumulative lignin methoxyl mineralization in the aerobic 

treatments (Fig.     2b) using first-order decay after discarding the first observation 

(R2 = 0.93 and 0.92, for Fe addition and controls, respectively). A two-pool model did not

improve the Akaike Information Criterion. Decomposition constants for Fe addition and 

control soils measured 0.0191 ± 0.0003 and 0.0762 ± 0.0009 y−1, respectively, implying 

mean turnover times of 52 and 13 y. These were similar to previous estimates of total 

lignin turnover in other ecosystems (10–40 y; Bahri et     al., 2008, Heim and Schmidt, 

2007, Rasse et     al., 2006), and of slow-pool mineral-associated C in this ecosystem (11–

26 y;Hall et     al., 2015b). Because we measured the most labile constituent of lignin, its 

methoxyl group (Kirk et     al., 1975), our results suggest that the 

more recalcitrant aromatic C of lignin could persist in soils for decades because of 

interactions with Fe oxides.

Trends in soil respiration differed from those of lignin mineralization (Fig.     2c,d). Total 

CO2 production from Fe-amended soils was less than controls on day 3 (p < 0.0001), 

potentially due to direct toxicity of soluble Fe or reactive oxygen species produced 

during Fe(II) oxidation. Both mechanisms may have been important given the Fe(II) 

concentrations added here (Dunning et     al., 1998). However, by day 10 Fe addition did 

not affect CO2 production (Fig.     1c). Cumulative CO2 production was similar between Fe 

addition and controls (p = 0.15; Fig.     1d). The similar CO2 production from Fe addition 

and control treatments suggests no general suppression of organic matter 

mineralization upon interaction with Fe oxides as observed elsewhere (Eusterhues 

et     al., 2014). Rather, availability of Fe(III) oxides as a terminal electron acceptor (Sutton-

Grier et     al., 2011), or shifts in pH, dissolved organic C, or reactive oxygen species 

known to be associated with Fe reduction and oxidation (Hall and Silver, 

2013, Thompson et     al., 2006) might have sustained CO2production despite protective 

effects of Fe C interactions.

Our data thus support H1: Fe addition disproportionately inhibited 

the mineralization of lignin methoxyls relative to bulk SOM, irrespective of O2availability. 

This is consistent with preferential interactions between Fe oxide minerals and aromatic 

lignin constituents (Gu et     al., 1995, Kaiser, 2003, Riedel et     al., 2013). Given that short-
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range-order Fe oxides are present in most soils (Reyes and Torrent, 1997), Fe-lignin 

interactions deserve attention as contributors to “hidden lignin” pools that have 

potentially been obscured due to methodological artifacts associated with common 

lignin measurements (Hernes et     al., 2013). Lignins synthesized with labeled isotopes 

provide one method to surmount these analytical challenges. We propose that 

consideration of specific interactions between recalcitrant biomolecules and soil 

geochemical constituents may prove useful in bridging old and new paradigms of SOM.
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