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A Layered Network Model for Learning-to-Learn and Configuration
in
Classical Conditioning¥*

E. James Kehoe
School of Psychology, University of New South Wales

ABSTRACT

Networks composed of layers of adaptive elements provide a
rigorous explanation for complex associative learning
phenomena. In particular, a network composed of three
adaptive elements can explain previously intractable
phenomena, namely the rapid rate of reacquisitions,
learning-to-learn, spontaneous configuration, and negative
patterning (the exclusive-OR problem). This paper will
compare the results of computer simulations to the
behavioral results of classical conditioning experiments
using the rabbit's nictitating membrane response.

INTRODUCTION

Layered networks of adaptive elements have featured
prominently in contemporary theories of biological and machine
cognition, particularly with regards to pattern recognition
(Barto & Anderson, 1985; Feldman, 1985). Most notably, layered
networks provide an elegant means for solving problems of
nonlinear representation, for example, the exclusive-OR problem
in which the system must learn to respond to each of two inputs
but not their conjunction (Rumelhart, Hinton, & Williams, 1985).
Rather than being "prewired'" to represent particular combinations
of inputs, layered adaptive networks of the appropriate type
possess the ability to "tune" themselves to significant
combinations of inputs (e.g., Barto, 1984; Barto, Anderson, &
Sutton, 1982; Rumelhart et al., 1985). A less widely noted
feature of layered networks is their ability to explain
"learning-to-learn,'" that is a gain in the flexiblity of the
system's output as a consequence of prior training. At a more
general level, a capacity for learning-to-learn may provide the

*This research was supported by Grant A28315236 from the
Australian Research Grants Committee.
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foundation for "insight" and other forms of "understanding"
(Harlow, 1949). Accordingly, a major purpose of this paper is to
demonstrate that some of the same features of layered networks
that permit the recognition of arbitrary patterns also permit
learning-=to-learn.

This paper will present computer simulations of layered
networks that are intended to duplicate the course of associative
learning in a biological system, namely classical conditioning of
the rabbit's nictitating membrane (NM) response (Gormezano, 1966;
Gormezano, Kehoe, & Marshall, 1983). In the NM response
preparation, the measured response is an extension of the third
eyelid, which is innately elicited as an unconditioned response
(UR) by a brief (50 ms) electrical-pulse unconditioned stimulus
(US) administered to the surface of the skin posterior to the
eye. Learning is produced by sequential presentations of a
conditioned stimulus (CS) and the US, and, after a number of
CS-US pairings, learning is evidenced by the acquisition of an NM
conditioned response (CR) to the CS in advance of the US.

As a biological testbed for layered network models,
classical conditioning procedures have several useful features:

(1) Animals can be brought to the learning situation in
a relatively naive state, thus approximating the
initial state of an untutored network.

(2) Animals do not require any prior verbal
instructions, thus learning proceeds as a function
of the stimulus inputs and response outputs that
occur during the training task.

(3) In classical conditioning procedures, it is
possible to pose learning problems in a simplified
way that can be duplicated in simple layered
networks. For example, the exclusive-OR problem
has its behavioral counterpart in Pavlov's (1927)
negative patterning task. In that task, the animal
is presented a mixture of three types of learning
trials: (a) a tone CS that signals the US, (b) a
light CS that also signals the US, and (c) a
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compound tone + light stimulus that never signals

the US. The animal can be said to have solved the
negative patterning task when it generates CRs to

the tone and the light but not the compound.

(4) In many classical conditioning procedures, the CR
appears to the CS in advance of the arrival of the
US. By observing these anticipatory CRs, it is
possible to trace the course of learning on a
trial-by-trial basis. For purposes of testing a
network model, the eventual achievement of a
solution is perhaps less interesting than observing
the intermediate states of the system prior to the
solution state. For example, in solving the
negative patterning problem, animals initially show
considerable CR acquisition to the compound as well
as the separate tone and light stimuli, after which
responding to the compound gradually declines
(e.g., Bellingham, Gillette-Bellingham, & Kehoe,
1985; Whitlow & Wagner, 1972; Woodbury, 1943).

In the remainder of this presentation, I shall describe in
three stages a model of classical conditioning based on a layered
network scheme. The model originates in those of Barto, Sutton,
and their associates, which in turn are based on Hebb's (1949,
1972) theory of synaptic facilitation (e.g., Barto, 1984; Barto
et al., 1982; Sutton & Barto, 1981). 1In brief, each stage of the
model will encompass an increasing number of conditioning
phenomena. The first-stage model will explain simple CR
acquisition to one CS and a primitive form of learning-to-learn
evidenced by progressive increases in the rate of successive
acquisitions and extinctions conducted with the same CS (Hoehler,
Kirschenbaum, & Leonard, 1973; Scavio & Thompson, 1979; Schmaltz
& Theios, 1972; Smith & Gormezano, 1965). The second-stage model
will encompass a more advanced form of learning-to-learn, namely
a facilitation of CR acquisition to a new CS (e.g., light) after
prior training with another, highly distinctive CS (e.g., tone)
(Holt & Kehoe, 1985; Kehoe & Holt, 1984). Finally, the
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third-stage model will explain a variety of simple pattern
recognition phenomena, including negative patterning.

STAGE I: SUCCESSIVE ACQUISITIONS AND EXTINCTIONS

Figure 1 shows a schematic diagram of the network. The
network contains two "sensory'" elements, one for the tone CS (T)
and one for the unconditioned stimulus (US). The output from T
projects to an intermediate element (X), and the output from X
projects to another element (R), which in turn gives rise to the
observable behavior (CR/UR). Both nonsensory elements, namely X
and R, receive an output from the US element.

Initial CR Acquisition

At the beginning of training with a naive animal, only the
outputs from the US to X and R are effective. That is to say,
only the US element can trigger an all-or-none firing of X and R.
Initially, the T input is unable to trigger the intermediate
element, but the T input does render its connection with X
eligible for modification by the US input should it occur during
a brief eligibility period that follows CS onset (Sutton & Barto,
1981). Thus, as the T-X connection strengthens over successive
CS-US pairings, T will begin to trigger X. Then, the X-R
connection will become eligible for change by the US's input to
R. Observable CRs to the tone will only begin to appear when the
intervening connections become strong enough so that T triggers X
and then X triggers R. The changes in each of the interior
connections, namely T-X and X-R, are governed by the linear
operator process commonly uced in current models of conditioning
(Sutton & Barto, 1981). (See Appendix 1 for a full description of
the implementation of the model). The firing of both X and R is
all-or-none and is determined by a normally-distributed random
threshold variable. Thus, on a given trial, X fires in response
to an input from T only if the T-X connection weighting exceeds
the threshold value on that trial. Likewise, R fires only if the
X-R connection weight exceeds the current threshold.
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Figure 1. A minimal network of two sensory elements (T,
US) and two adaptive elements (X, R) for successive
acquisitions and extinctions in classical conditioning.

Figure 2's left-hand column of panels shows the changes
across blocks of CS-US trials in (a) the T-X connection, (b) the
X-R connection, and (c) the percent CR measure produced by a
computer simulation of the network's activities. As can be seen
in the bottom panel, it is possible to reproduce a typical
acquisition curve. The thresholds and growth rate parameters for
both connections were selected so that the simulated curve would
approximate the acquisition curve typically obtained in the
rabbit NM response preparation under an 800-ms CS-US interval
(see Appendix 1). As can be seen in the upper two panels, the
T-X connection rises to a high level before the X-R connection
shows any substantial change. For example, in the second block

of training, the T-X connection was .69 while the X-R connection
was only .10.

Subsequent Acquisitions

In its remaining panels, Figure 2 shows the simulated
changes for the interior connections and percent CR across an
initial extinction, a reacquisition, and a re-extinction. During
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Figure 2. Simulation results for successive acquisitions
and extinctions.
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the initial extinction, the T-X connection declines at a steady
rate, while the X-R connection declines to an asymptotic level of
.70. As the T-X connection weakens and X's frequency of firing
declines, the X-=R connection is eligible for modification less
and less often. In this way, the X-R connection is largely
protected from extinction and thus remains intact. With respect
to the simulated percent CR, it can be seen that the CR frequency
reaches negligible levels while both the T-X and X-R connections
are still appreciable. Consequently, during reacquisition in the
third stage, both the T-X and X-R connections need relatively few
reinforcements to rise to their asymptotic levels, yielding a
relatively rapid rise in CR likelihood.

The second extinction does not appear particularly more
rapid than the first extinction. To some extent, this simulated
outcome is accurate; the available data suggest that the change
in extinction rate is considerably slower than the change in
acquisition rate across alternations of the training conditions.
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Thus, this version of the model appears to be accurate to at
least a first approximation.

STAGE II: LEARNING-TO-LEARN

Figure 3 shows an example of a learning-to-learn effect that
has been repeatedly observed in conditioning of the rabbit NM
response (Holt & Kehoe, 1985; Kehoe & Holt, 1984; Kehoe, Morrow,
& Holt, 1984). 1In Phase I of this particular experiment, one
group of rabbits received CS-US pairings in which the initial CS
was an 800-ms tone- Another group served as a rest control. As
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Figure 3. Example of initial CR acquisition to a tone CS
(T+) and subsequent transfer to a light CS (L+). The
point marked X indicates the initial response levels to
the light CS.
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expected, the former group showed CR acquisition to the tone,
while the rest control group showed negligible responding. At
the start of Phase II, both groups received four unreinforced
presentations of an 800-ms light to determine the level of
immediate cross-modal generalization. 1In the present experiment
as in all our other studies, immediate transfer was not
detectable. In Figure 3, the mean response likelihood on the

tests are shown above the "X" marker on the abscissa. Only one
animal, which happened to be in the pretrained group, responded
twice to the light. However, once CS-US training with light was

begun, the pretrained group showed extremely rapid CR acquisition
to the new CS. For example, the animals in the pretrained group
achieved a mean CR likelihood of 36% within the first block of
reinforced light trials. By way of comparison, the naive animals
in the control group achieved a mean CR likelihood of only 2%
within the first block of reinforced light trials. 1In the
present case, the pretrained group showed a higher level of
responding to the light than the control group throughout Phase
I1. However, the asymptotic level of responding in the control
group usually converges with that of the pretrained group. In
other studies, we have shown that the positive transfer between
tone and light is symmetric.

In order to explain the cross-modal learning-to-learn
effect, it is only necessary to add an additional sensory element
for the light to the network, as can be seen Figure 4. The input
from light (L) projects to the intermediate element X just as the
input from tone (T) does. Nothing else about the model is
changed in any way.

Figure 5 shows the results of computer simulations for the
learning—to-learn effect. The simulation of initial CR
acquisition with the tone proceeds in the normal way for the
model. In particular, observable CRs to the initial CS (tone)
wait upon the successive strengthening of the T-X and X-R
connections. However, in subsequent reinforced training with the
new CS (light), the appearance of CRs requires only the
establishment of the L-X connection, because the X-R connection
has been already fully strengthened. Thus, as soon as the L-X
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Figure 4. A minimal network of three sensory elements (T, L, US)
and two adaptive elements (X, R) for learning-to-learn.
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Figure 5. Simulation results for learning-to-learn.
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connection becomes strong enough to trigger X, any firings of X
triggered by L are immediately translated into observable CRs via
the previously-established X-R connection. The rapid CR
acquisition to the light is displayed in the learning curve for
Phase I1 labelled as PRE, which denotes pretraining. In the way
of contrast, a learning curve for a naive control condition is
also displayed, labelled as REST. Thus, by relying on a common
connection and the combination of convergent CS inputs, a layered
network can explain the learning-to-learn effect.

In addition to demonstrating the learning-to-learn effect,
my associates and I have found that it survives extinction of the
original conditioned reflex (Kehoe et al., 1984). Figure 6 shows
the results of one of our experiments. The key experimental
group (4-E) received initial training at a 400-ms CS-US interval
with one CS (CS1-US). Between CS1-US training and transfer
training with a second CS (CS2-US), the animals in Group 4-E
received a CS1-alone extinction procedure. Another experimental
group (4-H) remained in their home-cages during the extinction
procedure. In addition, two corresponding control groups (28-E
and 28-H) initially received exposure to CS1 and the US but at a
long 2,800-ms CS-US interval. Examination of the left-hand panel
of Figure 6 reveals that Groups 4-E and 4-H showed conventional
CR acquisition, while Groups 28-E and 28-H showed negligible
levels of responding. The middle-panel shows that the Group 4-E
displayed considerable extinction of the CR to CS1, whereas Group
28-E continued to display little responding. Finally, the
right-hand panel reveals that, despite the near elimination of
the initial conditioned reflex (CS1-CR) in Group 4-E, those
animals acquired the new conditioned reflex (CS2-CR) as rapidly
as their counterparts in Group 4-H, both of which showed positive
transfer relative to their respective control groups.

On the theoretical side, the computer simulations
successfully reproduced the ability of the learning-to-learn
effect to survive disruption of the initial conditioned reflex.
According to the computer simulations, the learning-to-learn
effect survives for the same reasons that reacquisition after
extinction is more rapid than initial acquisition. Figure 7
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Figure 6. Learning-to-learn in Group 4-E survived extinction of
the initial CR (Kehoe, Morrow, & Holt, 1984).
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shows the results of computer simulations for the case in which
there is an intervening extinction of the original conditioned
reflex. As shown in Figure 7, the X-R connection is largely
intact at the end of tone extinction. With the X-R connection
still in place, pairings of the alternate CS (L) with the US can
take advantage of the X-R connection and rapidly produce CRs as
the L-X connection begins to strengthen. The lower right-hand
panel of Figure 7 shows two simulated percent CR curves. The
solid line represents acquisition to the light in the group that
received tone pretraining followed by tone extinction (i.e.,
Group 4-E). The dotted line represents the simulated acquisition
curve from a pretrained group that did not undergo extinction of
the original conditioned reflex (i.e., Group 4-H). In agreement
with the behavioral data, the two curves overlap perfectly.

STAGE III: CONFIGURAL LEARNING

The rabbit NM response preparation has expressed its
sensitivity to patterns of multiple sensory inputs in a variety
of ways. Figure 8 shows the course of differentiation between a
compound and its components under three different training
regimes. The lower panel shows the learning curves obtained
under a negative patterning schedule, which corresponds to the
exclusive-OR problem. As can be seen, differentiation proceeded
slowly; responding to the compound, which was never followed by
the US, declined only after extensive training (Bellingham et
al., 1985). The upper right-hand panel reveals that
differentiation proceeded much more rapidly in a positive
patterning procedure, in which reinforced presentations of a tone
+ light compound (TL+) were intermixed with unreinforced
presentations of the separate components (T-, L-) (Bellingham et
al., 1985; Kehoe & Schreurs, in press). In logical terms, the
positive patterning schedule corresponds to an AND problem.
Differentiation of a compound from its components is not confined
to procedures entailing explicit discrimination training. As
shown in the upper left-hand panel, pairings of a compound with
the US can produce spontaneous differentiation of the compound
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Figure 8. Examples of CR acquisition to a tone, light, and
compound (tone + light) in compound conditioning, positive
patterning, and negative patterning procedures.

from its components (Kehoe, 1986; Kehoe & Schreurs, in press).
On the basis of both explicit and implicit differentiation
between a compound and its components, numerous theorists have
proposed that the nervous system establishes distinctive
encodings for the compound and its components, each with its own
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excitatory or inhibitory associative strength (e.g., Bellingham
et al., 1985; Hull, 1943, 1945; Kehoe & Gormezano, 1980; Razran,
1965, 1971; Rescorla, 1972, 1973; Whitlow & Wagner, 1972). While
negative patterning clearly represents a nonlinear combination of
the components, positive patterning and spontaneous
differentiation may represent cases in which the CR-evoking
capacity of the compound results from a linear combination of the
CR-evoking capacities of the separate components, tone and light.
Nevertheless, a history of reinforced exposure to a compound
stimulus engages a combination process, linear or otherwise, that
permits the subject to respond to the compound as a functional
unit distinect from its components.

Figure 9 shows a schematic diagram of a network that can
explain the configural learning phenomena. The network is
essentially two parallel instances of the network used in the
Stage II model. That is to say, the sensory inputs for tone,
light, and the US project to a second intermediate element (Y),
which in turn projects to the R element. For purposes of
triggering an element by a joint input, it was assumed that the
sum of currently eligible connection weights is compared to the
element's threshold value. For changing the input weights, the
present model followed the lead of Sutton and Barto (1981). In

RECEPTIVE FIELDS

Figure 9. A network of three sensory elements (T, L, US) and
three adaptive elements (X, Y, R) for configural learning.
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brief, when two inputs to either the X, Y, or R elements were
simultaneously eligible for modification, then the inputs
competed for the available connection weights supported by the US
input. Thus, in training with a single CS, say the tone, the
inputs from X and Y to the R element would compete with each
other. 1In compound training with the tone and light, the inputs
from T and L to the X element would compete with each other.
Likewise, the T and L inputs to the Y element would compete with
each other.

This competitive process was originally formulated to
account for stimulus selection phenomena, in which increases in
the weight of one stimulus input would be either blocked by prior
increases in the weight of another concurrent input or
overshadowed by more rapid increases in the weight of another
concurrent input (e.g., Rescorla & Wagner, 1972; Sutton & Barto,
1981). However, this competitive process can also cause elements
to become tuned to the combined T and L inputs. Specifically,
competition between the T and L inputs would ensure that neither
input by itself would gain sufficient connective weight to be
able to reliably trigger the next element.

In order to discover a set of parameters that would
accurately simulate configural learning, I manipulated two groups
of parameters, namely the mean threshold value of each element
(Tj) and the learning rate parameter for each element (aj).
Figure 10 shows the results of using the Stage III network to
simulate the results of the compound stimulus experiments. The
curves were obtained when (1) the X element had a higher learning
rate than that of the Y element (ax = .100, ay = .001) and (2)
the X element had a higher mean threshold than the Y element (Tx
= .65, Ty = .25).

Inspection of Figure 10 reveals that the proposed model was
able to simulate (a) the virtually complete differentiation
between the compound and its components in compound conditioning,
and (b) the relatively slow acquisition of negative patterning
characterized by an initial rise in responding to the
unreinforced compound stimulus followed by a gradual decline.

The only detail missing in the simulations was the initial rise
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Figure 10. Simulations of compound conditioning, positive
patterning, and negative patterning.

in responding to the unreinforced components in the positive
patterning schedule. However, in the rabbit NM response
preparation, such a rise does not appear to be a universal
feature of positive patterning (Bellingham et al., 1985). While
the Stage III network was constructed to simulate the
quantitative outcomes of the compound conditioning and patterning
schedules, further simulation runs using the same parameter
values have indicated that the Stage 111 network retains the
basic characteristics and limitations of the competitive models
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(Rescorla & Wagner, 1972; Sutton & Barto, 1981). In particular,
the Stage III network reproduces blocking and conditioned
inhibition, while being unable to generate latent inhibition.

DISCUSSION

The present simulations reveal that layered network models
have considerable scope for explaining a variety of distinctive
learning phenomena that have previously proved intractable to
rigorous, elegant explanation. In particular, the network model
not only reached the same endpoints as the behavioral phenomena
but followed much the same course of acquisition. Although the
particular network model used in this presentation was intended
to be as a nonspecialized as possible, it is nevertheless only an
example of a larger class of models. For purposes of explaining
rapid reacquisition and learning-to-learn phenomena, a large
variety of layered network structures would be suitable. In an
earlier version of the Stage II model, there were direct
connections from each sensory input to the R element as well as
to the intermediate element X. Simulations of that model
revealed that it too could generate rapid reacquisition and
learning-to-learn. These same phenomena should also appear under
a huge range of rules for the adaptive elements, provided that
the interior connections (e.g., X-R) do not change considerably
faster than the connections from the sensory elements to the
interior elements (e.g., T-X). However, successful simulation of
the configural learning phenomena may occur only under a narrow
range of network structures and adaptive rules, because these
phenomena require a more delicate balancing of acquisition rates
and threshold values to yield the appropriate connection weights.
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APPENDIX 1
SIMULATION OF THE LAYERED NETWORK MODELS

The computer simulation of the Stage I, II, and III
networks was implemented in the following fashion:

1. The output of each element (FIREj) was either 1 or 0. The
outputs of sensory elements T, L, and US were specified in the
program on a trial by trial basis, while the outputs of X, Y, and
R were determined by learning and output rules.
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2. Each point of connection between successive elements had a
connection weight designated as Vij. The connection weights were
designated as Vtx, Vty, V1x, Vly, Vxr, and Vyr, where the first
letter in the subscript refers to the origin of the output and
the second letter refers to the element receiving the output.
These connection weights started at zero and were unbounded in
both the positive and negative directions. The connection
weights from the US output to the X, Y, and R elements were fixed
at 1.00.

3. Each trial was divided into two time steps, the CS period
and the US period.
4. During the CS period, the following events occurred:

a. The output of the T and L elements was determined by
the programmed trial sequence, and the appropriate connections
with X and Y became eligible for change. For example, on a
compound trial, there were outputs from T and L. Accordingly,
the T=-X, T-Y, L=-X, and L-Y connections all became eligible for
change -

b. A separate threshold (Tj) was independently determined
for X, Y, and R by generating a random number between 0.00 and
0.99. Across trials, the distribution of thresholds was
approximately normal. To alter the threshold, a constant was
added or subtracted from the random number.

c. The output of X, Y, and R was:

FIRE] 1 if sum of eligible input weights > Tj

FIRE] O otherwise.
For example, on a compound trial, the output of X was determined
by comparing Vtx + V1x against Tx. At the same time, the output
of Y was determined by comparing Vty + Vly against Ty-

d. After the outputs of X and Y were determined, then the
output of R was determined by same process. For example, if only
X fired on a particular compound trial, then the output of R
(FIREr) was determined by comparing Vxr against Tr.

5. During the US period, the eligible connection weights
throughout the network were modified according to the

]
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Rescorla-Wagner model, where the change in a connection weight
(dvij) followed the formula:

dvij = aj (Lj - X Vij),
where

aj was the rate of change parameter for the target
element of the connection. (0 < aj < 1). On
non-reinforced trials, aj was modified by parameter BO
(0O € BO < 1) (See Point 7 below).

Lj was the total connection strength of eligible
connections on a target element that could be supported
by the US input on any given trial (Lj = 1.0 on
reinforced trials. LJj = 0.0 on nonreinforced trials.)

z Vij was the net sum of the associative strengths of
all concurrent eligible inputs to the jth element.

6. In order to compute the CR likelihood for the tone CS,
light CS, and compound CS for each block of training trials, a
series of 30 "phantom CS periods' was conducted at the end of
each block. Thus, the CS period for each type of trial was
repeatedly conducted and the likelihood of a CR was determined.
However, the change formula applicable during the US period of
training trials was not used. Effectively, these phantom CS
periods served as repeated test trials but without the extincti
effect that a prolonged series of test trials would have had in
behavioral experiment.

7. The simulations of successive acquisitions, extinctions
and learning-to-learn (Figures 2, 5, 7) used the following
parameter values: ax = ar = 0.02, mean Tx = 0.75, mean Tr = 0.5
BO = 0.15. The simulations for compound conditioning, positive
patterning, and negative patterning (Figure 10) used the
following parameter values: ax = 0.100, ay = 0.001, ar = 0.004
mean Tx = 0.65, mean Ty = 0.25, mean Tr = 0.50, BO = 0.33.
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