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ABSTRACT

There has been extensive discussion of the “Replication Crisis” in 

many fields, including genome-wide association studies (GWAS). We 

explored replication in a mouse model using an advanced intercross line 

(AIL), which is a multigenerational intercross between two inbred strains. We

re-genotyped a previously published cohort of LG/J x SM/J AIL mice (F34; 

n=428) using a denser marker set and genotyped a new cohort of AIL mice 

(F39-43; n=600) for the first time. We identified 36 novel genome-wide 

significant loci in the F34 and 25 novel loci in the F39-43 cohort. The subset of 

traits that were measured in both cohorts (locomotor activity, body weight, 

and coat color) showed high genetic correlations, although the SNP 

heritabilities were slightly lower in the F39-43 cohort. For this subset of traits, 

we attempted to replicate loci identified in either F34 or F39-43 in the other 

cohort. Coat color was robustly replicated; locomotor activity and body 

weight were only partially replicated, which was inconsistent with our power 

simulations. We used a random effects model to show that the partial 

replications could not be explained by Winner’s Curse but could be explained

by study-specific heterogeneity. Despite this heterogeneity, we performed a 

mega-analysis by combining F34 and F39-43 cohorts (n=1,028), which identified 

four novel loci associated with locomotor activity and body weight. These 

results illustrate that even with the high degree of genetic and 

environmental control possible in our experimental system, replication was 



hindered by study-specific heterogeneity, which has broad implications for 

ongoing concerns about reproducibility. 



INTRODUCTION

Genome-wide association studies (GWAS) in model organism can use 

genetically identical cohorts phenotyped under extremely similar conditions, 

which would be expected to enhance the success of replication. We sought 

to investigate replication in model organism GWAS using a mouse advanced 

intercross line (AIL). The use of GWAS in model organisms such as mice

(Talbot et al. 1999; Demarest et al. 2001; Yalcin et al. 2004; Valdar et al. 

2006; Ghazalpour et al. 2008; Samocha et al. 2010; Churchill et al. 2012; 

Consortium, 2012; Parker et al. 2012, 2016; Svenson et al. 2012; Carbonetto 

et al. 2014; Chesler, 2014; Coyner et al. 2014; Gatti et al. 2014; Nicod et al. 

2016; Hernandez Cordero et al. 2018, 2019), rats (Baud et al. 2014), 

chickens (Besnier et al. 2011; Johnsson et al. 2018), fruit flies (King et al. 

2012; Mackay et al. 2012; Kislukhin et al. 2013; Marriage et al. 2014; 

Vonesch et al. 2016), C. elegans (Doitsidou et al. 2016) and various plant 

species (Rishmawi et al. 2017; Cockram & Mackay, 2018; Diouf et al. 2018) 

has become increasingly common over the last decade. These mapping 

populations can further be categorized as multi-parental crosses, which are 

created by interbreeding two or more inbred strains, and various outbred 

populations, in which the founders are of unknown provenance. An F2 cross 

between two inbred strains is the prototypical mapping population; however,

F2s provide poor mapping resolution (Parker and Palmer 2011). To improve 

mapping resolution, Darvasi and Soller (Darvasi and Soller, 1995) proposed 

the creation of advanced intercross lines (AILs), which are produced by 



intercrossing F2 mice for additional generations. AILs accumulate additional 

crossovers with every successive generation, leading to a population with 

shorter linkage disequilibrium (LD) blocks, which improves mapping 

precision, albeit at the expense of power (Parker and Palmer 2011; Gonzales 

and Palmer 2014). 

The longest running mouse AIL was generated by crossing LG/J and SM/

J inbred strains, which had been previously selected for large and small body 

size prior to inbreeding and subsequent intercrossing. We obtained this AIL in

2006 at generation 33 from Dr. James Cheverud (Jmc: LG,SM-G33). Since 

then, we have collected genotype and phenotype information from multiple 

generations, including F34 (Cheng et al. 2010; Lionikas et al. 2010; Samocha 

et al. 2010; Parker et al. 2011, 2014; Bartnikas et al. 2012; Carroll et al. 

2017; Gonzales et al. 2018) and F39-F43. Our previous publications using the 

F34 generation employed a custom Illumina Infinium genotyping microarray 

to obtain genotypes for 4,593 SNPs (Cheng et al. 2010; Parker et al. 2014); 

we refer to this set of SNPs as the ‘sparse markers’. Those genotypes were 

used to identify significant associations for numerous traits, including 

locomotor activity in response to methamphetamine (Cheng et al. 2010), 

pre-pulse inhibition (Samocha et al. 2010), muscle weight (Lionikas et al. 

2010; Hernandez Cordero et al. 2019), body weight (Parker et al. 2011), 

open field (Parker et al. 2014), conditioned fear (Parker et al. 2014), red 

blood cell parameters (Bartnikas et al. 2012), and muscle weights (Carroll et 

al. 2017). Although not previously published, we also collected phenotype 



information from the F39-43 generations, including body weight, fear 

conditioning, locomotor activity in response to methamphetamine, and the 

light dark test for anxiety. 

While the prior GWAS using the F34 generation detected many 

significant loci, the sparsity of the markers likely precluded the discovery of 

some true loci and also made it difficult to clearly define the boundaries of 

the loci that we did identify. For example, Parker et al conducted an 

integrated analysis of F2 and F34 AILs (Parker et al. 2011). One of their body 

weight loci spanned from 87.93–102.70 Mb on chromosome 14. Denser 

markers might have more clearly defined the implicated region. 

In the present study, we used genotyping-by-sequencing (GBS), which 

is a reduced-representation sequencing method (Davey et al. 2011; Elshire 

et al. 2011; Fitzpatrick et al. 2013), to obtain a much denser set of SNPs in 

the F34 cohort and, for the first time, genotyped mice from the F39-43 

generations. With this denser set of SNPs, we attempted to identify novel loci

in the F34 cohort that were not detected using the sparse SNPs. We also 

performed GWAS using the mice from the F39-43 AILs. We explored whether 

imputation from the array SNPs could have provided the additional coverage 

we obtained using the denser GBS genotypes. Because F39-43 AILs are the 

direct descendants of the F34, they are uniquely suited to serve as a 

replication population for GWAS in the F34 generation. For the subset of traits 

measured in both cohorts, we attempted to replicate the results discovered 



in one cohort in the other. To set our expectations for replication, we 

performed simulations to estimate the power for these replication studies. 

Because the actual rate of replication was lower than predicted by the power

analysis, we used a random effects model to evaluate the role of Winner’s 

Curse and study-specific heterogeneity in the low rate of replication. Finally, 

we also performed a mega-analysis of subset of traits common to both 

cohorts.



MATERIALS AND METHODS

Animals

All mice used in this study were members of the LG/J x SM/J AIL that 

was originally created by Dr. James Cheverud (Loyola University Chicago, 

Chicago, IL). This AIL has been maintained in the Palmer laboratory since 

generation F33. Age and exact number of animals tested in each phenotype 

are described in Table S1. Several previous publications (Samocha et al. 

2010; Cheng et al. 2010; Parker et al. 2014; Lionikas et al. 2010; Carroll et al.

2017; Parker et al. 2011; Bartnikas et al. 2012) have reported association 

analyses of the F34 mice (n=428). No prior publications have described the 

F39-43 generations (n=600). The sample size of F34 mice reported in this study 

(n=428) is smaller than that in previous publications of F34 (n=688) because 

we only genotyped a subset of F34 animals using GBS. 

F34, F39-43 Phenotypes

All phenotypes are listed in Table S1. We have previously described the

phenotyping of F34 animals for locomotor activity and locomotor response to 

methamphetamine (Cheng et al. 2010), fear conditioning (Parker et al. 

2014), open field (Parker et al. 2014), coat color, body weight (Parker et al. 

2011), complete blood counts (Bartnikas et al. 2012), heart and tibia 

measurements (Lionikas et al. 2010), muscle weight (Lionikas et al. 2010). 



Iron content in liver and spleen, which have not been previously reported in 

these mice, was measured by atomic absorption spectrophotometry, as 

described in Gardenghi et al. (Gardenghi et al. 2007) and Graziano, Grady 

and Cerami (Graziano et al. 1974). Although the phenotyping of F39-43 animals

has not been previously reported, we followed previously published protocols

for locomotor activity and locomotor response to methamphetamine (Cheng 

et al. 2010), coat color, body weight (Parker et al. 2011), and light/dark test 

for anxiety (Sittig et al. 2016). We point out here that even though 

“locomotor activity” was measured in both the F34 and F39-43 using the 

Versamax software (AccuScan Instruments, Columbus, OH), “open field” in 

the F34 cohort was also measured using Versamax, whereas “open field” in 

the F39-43 cohort was measured using the EthoVision XT software (Noldus 

system; (Noldus et al. 2001)). Because there are meaningful differences in 

these experimental procedures, we did not attempt to use “open field” data 

for replication. In summary, we performed GWAS on all traits collected in 

individual cohorts. For the replication analysis between the F34 and F39-43 

cohorts, we only directly compared a number of traits that had been 

measured in both cohorts: body weight, two Mendelian coat color traits 

(albino and agouti), and three locomotor activity traits (locomotor activity on 

day 1 and on day 2, and activity on day 3 following a methamphetamine 

injection).



F34 AIL Array Genotypes

F34 animals had been genotyped on a custom SNP array on the Illumina

Infinium platform (Cheng et al. 2010; Parker et al. 2014), which yielded a set 

of 4,593 SNPs on autosomes and X chromosome that we refer to as ‘sparse 

SNPs’. 

F34 and F39-43 GBS Genotypes

F34 and F39-43 animals were genotyped using genotyping-by-sequencing 

(GBS), which is a reduced-representation genome sequencing method

(Parker et al. 2016; Gonzales et al. 2017). We used the same protocol for 

GBS library preparation that was described in Gonzales et al (Gonzales et al. 

2017). We called GBS genotype probabilities using ANGSD (Korneliussen et 

al. 2014). GBS identified 1,667,920 autosomal and 43,015 X-chromosome 

SNPs. To fill in missing genotypes at SNPs where some but not all mice had 

calls, we ran within-sample imputation using Beagle v4.1, which generated 

hard call genotypes as well as genotype probabilities (Browning & Browning, 

2007). After imputation, only SNPs that had dosage r2 > 0.9 were retained. 

We removed SNPs with minor allele frequency < 0.1 and SNPs with p < 

1.0×10-6 in the Chi-square test of Hardy–Weinberg Equilibrium (HWE) (Table 

S2). All phenotype and GBS genotype data are deposited in GeneNetwork2 

(http://gn2.genenetwork.org/). 

http://gn2.genenetwork.org/


QC of individuals 

We have found that large genetic studies are often hampered by cross-

contamination between samples and sample mix-ups. We used four features 

of the data to identify problematic samples: heterozygosity distribution, 

proportion of reads aligned to sex chromosomes, pedigree/kinship, and coat 

color. We first examined heterozygosity across autosomes and removed 

animals where the proportion of heterozygosity was more than 3 standard 

deviations from the mean (Figure S1). Next, we sought to identify animals in 

which the recorded sex did not agree with the sequencing data. We 

compared the ratio of reads mapped to the X and Y chromosomes. The 95% 

CI for this ratio was 196.84 to 214.3 in females and 2.13 to 2.18 in males. 

Twenty-two F34 and F39-43 animals were removed because their sex (as 

determined by reads ratio) did not agree with their recorded sex; we 

assumed this discrepancy was due to sample mix-ups. To further identify 

mislabeled samples, we calculated kinship coefficients based on the full AIL 

pedigree using QTLRel. We then calculated a genetic relatedness matrix 

(GRM) using IBDLD (Abney, 2008; L. Han & Abney, 2011), which estimates 

identity by descent using genotype data. The comparison between pedigree 

kinship relatedness and genetic kinship relatedness identified 7 pairs of 

animals that showed obvious disagreement between kinship coefficients and 

the GRM, these animals were excluded from further analysis. Lastly, we 



excluded 14 F39-43 animals that showed discordance between their recorded 

coat color and their genotypes at markers flanking Tyr, which causes 

albinism in mice. The numbers of animals filtered at each step are listed in 

Table S2. Some animals were detected by more than one QC step, 

substantiating our evidence that these samples were erroneous.

At the end of SNP and sample filtering, we had 59,561 autosomal and 

831 X chromosome SNPs in F34, 58,966 autosomal and 824 X chromosome 

SNPs in F39-43, and 57,635 autosomal and 826 X chromosome SNPs in the 

combined F34 and F39-43 set (Table S2). GBS genotype quality was estimated 

by examining concordance between the 66 SNPs that were present in both 

the array and GBS genotyping results (Figure S3). 

LD decay

Average LD (r2) was calculated using allele frequency matched SNPs 

(MAF difference < 0.05) within 100,000 bp distance, as described in Parker et

al. (Parker et al. 2016). 

Imputation to LG/J and SM/J reference panels

F34 array genotypes (n=428) and F34 GBS genotypes (n=428) were 

imputed to LG/J and SM/J whole genome sequence data (Nikolskiy et al. 

2015) using BEAGLE (Browning & Browning, 2007).  For F34 array imputation, 



we used a large window size (100,000 SNPs and 45,000 SNPs overlap). 

Imputation to reference panels yielded 4.3 million SNPs for F34 array and F34 

GBS imputed sets. Imputed SNPs with R2 > 0.9, MAF > 0.1, HWE p-value > 

1.0×10-6 were retained, resulting in 4.1M imputed F34 GBS SNPs and 4.3M 

imputed F34 array SNPs.

 

Genome-wide association analysis (GWAS)

We used the linear mixed model, as implemented in GEMMA (Zhou & 

Stephens, 2012), to perform a GWAS that accounted for the complex familial 

relationships among the AIL mice (Cheng et al. 2010; Gonzales et al. 2017). 

We used the leave-one-chromosome-out (LOCO) approach to calculate the 

GRM, which effectively circumvented the problem of proximal contamination

(Cheng et al. 2013). We used the univariate linear mixed model described in 

Zhou and Stephens (Zhou & Stephens, 2012):

   1 1        ;  ~ 0, ,  ~ 0, ,n n ny W x u u MVN K MVN I         

where y is a n-vector of traits for n individuals; W  is a n×c matrix of 

covariates (fixed effects);   is a c-vector of the corresponding coefficients; x

is an n-vector of genotypes;   is the effect size of the genotype; u is an n-

vector of random effects;  is an n-vector of errors; 
1 

is the variance of the 

residual errors;   is the ratio between the two variance components; K  is a 



known n × n relatedness matrix and nI  is an n × n identity matrix. nMVN  

stands for the n-dimensional multivariate normal distribution (Zhou & 

Stephens, 2012). 

Separate GWAS were performed using the F34 array genotypes, the F34 

GBS genotypes, and the F39-43 GBS genotypes. Apart from coat color (binary 

trait), raw phenotypes were quantile normalized prior to analysis. Coat color 

traits were coded as follows: albino: 1 = white, 0 = non-white; agouti: 1 = 

tan, 0 = black, NA=white. Because F34 AIL had already been studied, we used

the same covariates as described in Cheng et al. (Cheng et al. 2010) in order

to examine whether our array and GBS GWAS would replicate their findings. 

We included sex and body weight as covariates for locomotor activity traits 

(see covariates used in (Cheng et al. 2010)) and sex, age, and coat color as 

covariates for fear conditioning and open field test in F34 AILs (see covariates 

used in (Parker et al. 2014)). We used sex and age as covariates for all other 

phenotypes. Covariates for each analysis are shown in Table S1. Finally, we 

performed mega-analysis of F34 and F39-43 animals (n=1,028) for body weight, 

coat color, and locomotor activity, since these traits were measured in the 

same way in both cohorts. We quantile transformed all continuous 

phenotypes in each cohort and then combined the transformed phenotypes 

for the mega-analysis (Coat color traits were not quantile normalized 

because they are binary). 



Identifying dubious SNPs

Some significant SNPs in the F34 GWAS were dubious because the 

flanking SNPs, which would have been expected to be in high LD with the 

significant SNP (a very strong assumption in an AIL), did not have high -

log10(p) values. We only examined SNPs that obtained significant p-values; 

close examinations revealed that these SNPs had dubious ratios of 

heterozygotes to homozygotes calls and had corresponding HWE p-values 

that were close to our 1.0×10-6 threshold (Table S3). We chose the 1.0×10-6 

as the filter threshold of the HWE p-values based on a gene-dropping 

exercise. We used the F33-34 family pedigree and the F34 genetic map to 

simulate the genotypes in F34 (QTLRel; (Cheng et al. 2011)). The p-value of 

the chi-square test for Hardy-Weinberg equilibrium in the simulated F34 

population was 7.24329×10-06, which was close to the HWE threshold used in

Gonzales et al. (Gonzales et al. 2018). To avoid counting these as novel loci, 

we removed those SNPs prior to summarizing our results as they likely 

reflected genotyping errors. 

Selecting independent significant SNPs

To identify independent “lead loci” among significant GWAS SNPs that 

surpassed the significance threshold, we used the LD-based clumping 

method in PLINK v1.9. We empirically chose clumping parameters (r2 = 0.1 

and sliding window size = 12,150kb) that gave us a conservative set of 



independent SNPs (Table S4). For the coat color phenotypes, we found that 

multiple SNPs remained significant even after LD-based clumping, 

presumably due to the extremely significant associations at these Mendelian 

loci. In these cases, we used a stepwise model selection procedure in GCTA

(Yang et al. 2011) and performed association analyses conditioning on the 

most significant SNPs. 

Significance thresholds 

We used MultiTrans to set significance thresholds for GWAS (B. Han et 

al. 2009; Joo et al. 2016). MultiTrans is a method that assumes multivariate 

normal distribution of the phenotypes, which in LMM models, contain a 

covariance structure due to various degrees of relatedness among 

individuals. We were curious to see whether MultiTrans produced 

significance thresholds that were different from the thresholds we obtained 

from a standard permutation test (‘naïve permutation’ as per Cheng et al.

(Cheng et al. 2013)). We performed 1,000 permutations using the F34 GBS 

genotypes and the phenotypic data from locomotor activity (days 1, 2, and 

3).  We found that the 95th percentile values for these permutations were 

4.65, 4.79, and 4.85, respectively, which were very similar to 4.85, the 

threshold obtained from MultiTrans using the same data. Thus, the 

thresholds presented here were obtained from MultiTrans but are similar (if 

anything slightly more conservative) to the thresholds we would have 



obtained had we used permutation. Because the effective number of tests 

depends on the number of SNPs and the specific animals used in GWAS, we 

obtained a unique adjusted significance threshold for each SNP set in each 

animal cohort (Table S5).

Credible set analysis

We followed the method described in (The Wellcome Trust Case 

Control Consortium et al. 2012). Credible set analysis is a Bayesian method 

of selecting an interval of SNPs that are likely to contain the causal SNPs; we 

used LD r2 threshold = 0.8, posterior probability =0.99. The R script could be 

found on GitHub: 

https://github.com/hailianghuang/FM-summary/blob/master/getCredible.r

Power analysis

To estimate the power of replication of a SNP from the discovery set in 

the replication set, we simulated GWAS with 50 varying effect sizes for the 

discovery SNP using the LMM model. We first fit the trait in a null model (i.e., 

no genotype effect), and obtained estimates of model parameters including 

the intercept and the genetic variance component. Using these model 

parameters, we added the genotype effect to the random numbers 

generated from the null model to recreate a trait. For each simulated effect 

https://github.com/hailianghuang/FM-summary/blob/master/getCredible.r


size, we scanned every simulated trait 2,500 times and examined the ratio of

association tests whose test statistics surpassed the significance thresholds 

(both the genome-wide significance threshold for the cohort and the nominal

p-value of 0.05). 

Replication analysis between F34 and F39-43 GWAS studies

We modeled the replication between F34 and F39-43 GWAS studies using 

two random effects models (Zou et al. 2019). Both models take as input a set

of z-scores for variants computed from an association study (“summary 

statistics”).  

The WC model accounts only for Winner’s Curse.  We assume that 

there is a shared genetic effect (λ¿ that is responsible for the observed 

association signal in both studies. To model random noise contributing to 

Winner's Curse, we model the summary statistics for each variant k  from the

discovery and replication studies as normally distributed random variables (

sk
(1) N ( λ ,1) and sk

(2) N ( λ ,1) , respectively).  We define the prior probability of 

the true genetic effect to be λ N (0 ,σg
2
), where the variance in the true 

genetic effect is learned through a maximum likelihood procedure.  We 

correct for the effect of winner's curse in the discovery study by computing 

the conditional distribution of the replication summary statistic given the 

discovery summary statistic.



The WC+C model accounts for Winner’s Curse and study-specific 

heterogeneity. In this model, we partition the total effect sizes observed into 

genetic effects (λ¿ and study-specific effects (δ(1) and δ(2)).  We model the 

statistics for each variant k  from the initial and discovery studies as normally

distributed random variables (sk
(1) N ( λ+δ(1) ,1) and sk

(2) N ( λ+δ(2) ,1) , 

respectively).  In addition to the prior on the genetic effect defined in the WC

model, we define the prior probabilities of the study-specific effects to be

δ(1) N (0 ,σc1

2
),  and δ

(2) N (0 ,σc2

2
), where the variance parameters are learned 

through a maximum likelihood procedure.  We correct for the effect of 

Winner's Curse in the discovery study and study-specific effects by 

computing the conditional distribution of the replication summary statistic 

given the discovery summary statistic.

We applied each of these models once using F34 as the discovery study 

and once using F39-43 as the discovery study. We used the genome-wide 

significance thresholds in Table S5 to identify variants in each discovery 

study and used the results as input to the random effects models.  We then 

used a Bonferroni corrected threshold (p=0.05/M) for the replication study, 

where M is the number of genome-wide significant variants in the initial 

study. We computed the “empirical replication rate” as the proportion of 

variants passing the genome-wide significant threshold in the discovery 

study that also passed this Bonferroni corrected threshold in the replication 

study.  Since the estimation of the model parameters requires at least two 



variants, we only applied this method to phenotypes with at least two 

genome-wide significant variants in the discovery study. 

To assess how well the WC and WC+C models explained the observed

patterns of replication, we computed the predicted replication rates under 

each model. For each variant that passed the genome-wide significant 

threshold in the discovery study, we used the conditional distributions 

previously learned to compute the probability that the variant passed the 

Bonferroni corrected threshold in the replication study.  For each phenotype, 

we computed the average of these predicted replication rates and compared 

this average to the empirical replication rates. 

Genetic correlation and heritability estimates between F34 and F39-43 

phenotypes

Locomotor activity, body weight, and coat color traits had been 

measured in both F34 and F39-43 populations. We calculated both SNP 

heritability and genetic correlations between F34 and F39-43 animals using 

GCTA-GREML analysis and GCTA bivariate GREML analysis (Yang et al. 2011).

LocusZoom Plots

LocusZoom plots were generated using the standalone implementation of 

LocusZoom (Pruim et al. 2010), using LD scores calculated from PLINK v.1.9 



--ld option and mm10 gene annotation file downloaded from USCS genome 

browser. 

Data Availability

All relevant data are within the paper and its Supporting Information 

files. Genotypes and phenotypes of F34 (“AIL LGSM F34 (Array)”: GN655; “AIL 

LGSM F34 (GBS)”: GN656), F39-43 (“AIL LGSM F39-43 (GBS)”: GN657), and 

mega-analysis cohort (“AIL LGSM F34 and F39-43 (GBS)”: GN654) of AIL are 

uploaded to GeneNetwork2 (http://gn2.genenetwork.org/). Code used to 

perform the analyses is included in the supplementary materials as well as 

uploaded to FigShare (https://figshare.com/s/6f8e0a64b6e63a9a714b).

RESULTS

We used 214 males and 214 females from generation F34 (Aap:LG,SM-

G34) and 305 males and 295 females from generations F39-43. For the F34 AIL 

79 traits were available from previous published and unpublished work; for 

the F39-43 AIL 49 unpublished traits were available (Table S1). F34 mice had 

been previously genotyped on a custom SNP array (Cheng et al. 2010; Parker

et al. 2014). The average minor allele frequency (MAF) of those 4,593 array 

SNPs was 0.388 (Figure 1). To obtain a denser set of SNP markers, we used 

GBS in F34 and F39-43 AIL mice. Since data on the F39-43 AIL mice had been 

collected over the span of approximately two years, we carefully considered 

http://gn2.genenetwork.org/).


the possibility of sample contamination and sample mislabeling (Toker et al. 

2016) and removed these samples (see Methods; Figure S1 and S2). The 

final SNP sets included 60,392 GBS-derived SNPs in 428 F34 AIL mice, 59,790 

GBS-derived SNPs in 600 F39-43 AIL mice, and 58,461 GBS-derived SNPs that 

existed in both F34 and F39-43 AIL mice (Table S2). The MAF for the GBS SNPs 

was 0.382 in F34, 0.358 in F39-43, and 0.370 in F34 and F39-43 (Figure 1). There 

were 66 SNPs called from our GBS data that were also present on the 

genotyping array. The genotype concordance rate for those 66 SNPs, which 

reflects the sum of errors from both sets of genotypes, was 95.4% (Figure 

S3). We found that LD decay rates using F34 array, F34 GBS, F39-43 GBS, and F34

and F39-43 GBS genotypes were generally similar to one another, though 

levels of LD using the GBS genotypes appear to be slightly reduced in the 

later generations of AILs (Figure S4). 

GBS genotypes produced more significant associations than array 

genotypes in F34 

We used a linear mixed model (LMM) as implemented in GEMMA

(Zhou & Stephens, 2012) to perform GWAS. We used the leave-one-

chromosome-out (LOCO) approach to address the problem of proximal 

contamination, as previously described (Listgarten et al. 2012; Cheng et al. 

2013; Yang et al. 2014; Gonzales et al. 2017). We performed GWAS using 

both the sparse array SNPs and the dense GBS SNPs to determine whether 



additional SNPs would produce more genome-wide significant associations. 

Autosomal and X chromosome SNPs were included in all GWAS. We obtained 

a significance threshold for each SNP set using MultiTrans (B. Han et al. 

2009; Joo et al. 2016).To select independently associated loci (“lead loci”), 

we used an LD-based clumping method implemented in PLINK to group SNPs 

that passed the adjusted genome-wide significance thresholds over a large 

genomic region flanking the index SNP (Purcell et al. 2007). Applying the 

most stringent clumping parameters (r2 = 0.1 and sliding window size = 

12,150kb, Table S4), we identified 109 significant lead loci in 49 out of 79 F34 

phenotypes using the GBS SNPs (Table S7). In contrast, we identified 83 

significant lead loci in 45 out of 79 F34 phenotypes using the sparse array 

SNPs (Table S6, Table S7). Among the loci identified in the F34, 36 were 

uniquely identified using the GBS genotypes, whereas 11 were uniquely 

identified using the array genotypes. These unique loci could be explained by

the disparity of the marker density between the GBS and array genotypes. 

Some unique loci captured haplotype blocks that were not picked up in the 

other SNP set. Other unique loci were only slightly above the significance 

threshold in one SNP set where the corresponding loci in the other SNP set 

had sub-threshold significance (i.e., p-value ~ 10-5 but below the significance

threshold of the cohort; Table S7). Overall, GBS SNPs consistently yielded 

more significant lead loci compared to array SNPs regardless of the clumping

parameter values (Table S4), indicating that a dense marker panel was able 

to detect more association signals compared to a sparse marker panel. 



To determine the boundaries of each locus, we performed a Bayesian-

framework credible set analysis, which estimated a posterior probability for 

association at each SNP (r2 threshold = 0.8, posterior probability threshold = 

0.99; (The Wellcome Trust Case Control Consortium et al. 2012)). The 

physical positions of the SNPs in the credible set were used to determine the 

boundaries of each locus. As expected, the greater density of the GBS 

genotypes allowed us to better define each interval. For instance, the lead 

locus at chr17:27130383 was associated with distance travelled in periphery 

in the open field test in F34 AILs (Figure 2). However, no SNPs were 

genotyped between 26.7 and 28.7 Mb in the array SNPs, which makes the 

size of this LD block ambiguous. In contrast, the LocusZoom plot portraying 

GBS SNPs in the same region shows that SNPs in high LD with 

chr17:27130383 are between 27 Mb and 28.3 Mb. The more accurate 

definition of the implicated intervals allowed us to better refine the list of the

coding genes and non-coding variants associated with the phenotype (Table 

S6).

In our prior studies using the sparse marker set, we did not attempt to 

increase the number of available markers by using imputation. Therefore, we

examined whether the disparity between the numbers of loci identified by 

the two SNP sets could be resolved by imputation, which should increase the 

number of markers available for GWAS. We used LG/J and SM/J whole 

genome sequencing data as reference panels (Nikolskiy et al. 2015) and 

performed imputation on array and GBS SNPs using Beagle v4.1 (Browning &



Browning, 2007). After QC filtering, we obtained 4.3M SNPs imputed from the

array SNPs and 4.1M SNPs imputed from the GBS SNPs. More imputed GBS 

SNPs were filtered out because GBS SNPs were called from genotype 

probabilities, thus introducing uncertainty in imputed SNPs. We found that 

imputed array genotypes and imputed GBS genotypes did not meaningfully 

increase the number of loci discovered, presumably because the utility of 

imputation is inherently limited in a two-strain cross.

Under a polygenic model where a large number of additive common 

variants contribute to a complex trait, heritability estimates could be higher 

when more SNPs are considered (Yang et al. 2017). Given that there were 

more GBS SNPs than array SNPs, we used autosomal SNPs to examine 

whether GBS SNPs would generate higher SNP heritability estimates 

compared to the sparse array SNPs. Heritability estimates were similar for 

the two SNP sets, with the exception of agouti coat color, which showed 

marginally greater heritability for the GBS SNPs (Figure S5; Table S8). Our 

results show that while the denser GBS SNP set was able to identify more 

genome-wide significant loci, greater SNP density did not improve the 

polygenic signal. 

Partial replication of loci identified in F34 or F39-43 and mega-analysis 

We identified 25 genome-wide significant loci for 21 phenotypes in the 

F39-43 cohort (Table S9). A subset of those traits: coat color, body weight, and 



locomotor activity, were also phenotyped in the F34 AILs. To assess 

replication, we determined whether the loci that were significant in one 

cohort (either F34 or F39-43) would also be significant in the other. We termed 

the cohort in which a locus was initially discovered as its “discovery set” and 

the cohort we attempted replication in as the “replication set” (Table 1). 

Coat color phenotypes (both albino and agouti) are Mendelian traits and thus

served as positive controls. All coat color and body weight loci were 

replicated. The three body weight loci identified in the F34 were replicated at 

nominal levels of significance (p<0.05) in F39-43; similarly, one body weight 

locus identified in F39-43 was replicated in F34 (p<0.05). However, none of the 

locomotor activity loci were replicated in the reciprocal (replication) cohorts.

 We found that using a broader definition of an association region 

rather than a single SNP did not improve replication between the F34 cohort 

and the F39-43 cohorts. Confidence intervals (e.g., (Baud et al. 2013; Nicod et 

al. 2016)) and the LOD support interval (Conneally et al. 1985; Lander & 

Botstein, 1989) have been used to define a QTL. LOD support interval is very 

sensitive to the density of the SNPs where sparse markers would produce 

misleadingly large support intervals. In contrast, the credible set interval is 

an estimate of the posterior probability for association at markers 

neighboring the discovery SNP, and thus defines the size of the association 

region. As a result, we extended the replication comparison from the 

discovery SNP position to the credible set interval. We found that in the 

replication cohort, the p-value at the discovery SNP and that at the top SNP 



within the credible set interval (defined by the discovery QTL) were generally

similar (Table S10). The replication of the locus chr14.79312393 (discovered 

in the F34 cohort) in the F39-43 cohort was more successful using the discovery 

QTL region defined by the credible set interval; the p-value at the top SNP 

within the credible set interval was noticeably more significant 

(chr14.82586326; p-value = 1.48×10-6) than the p-value at the discovery 

SNP (chr14.79312393; p-value = 0.0237; Table S10). Our results suggest 

that for the most part, the discovery SNP accurately represented the 

association strength of the loci, presumably because of its strong linkage 

with the neighboring SNPs. In our case, defining a QTL region by the credible 

set interval did not increase the count of replicated sites between the two 

cohorts. 

We then considered the more liberal “sign test”, a statistical method to

test for consistent differences between pairs of observations, to determine 

whether the directions of the effect (beta) of the coat color, body weight and 

activity loci were in the same direction between the discovery and replication

cohorts. Specifically, we compared whether the sign (direction) of the beta 

estimates are consistently above or below zero. We found that 11 of 12 

comparisons passed this much less stringent test of replication. The one 

locus (at chr15.67627183) that did not pass the sign test was the locomotor 

locus “discovered” in F39-43 (Table 1).  



In light of the failure to replicate the locomotor activity findings, we 

conducted a series of 2,500 simulations per trait to estimate the expected 

power of our replication cohorts. For each phenotype we used the kinship 

relatedness matrix and variance components estimated from the replication 

set. For the coat color traits, we found that we had 100% power to replicate 

the association at either genome-wide significant levels or the more liberal 

p<0.05 threshold (Figure S6). For body weight and locomotor activity, power 

to replicate at a genome-wide significance threshold ranged from 20% to 

85%, whereas power to replicate at the p<0.05 threshold was between 80% 

and 100% (Figure S6). These power estimates were inconsistent with our 

empirical observations for the locomotor activity traits, none of which 

replicated at even the p<0.05 threshold, where we should have had almost 

100% power (Table 1; Figure S6). However, our power simulations did not 

account for Winner’s Curse (Zöllner & Pritchard, 2007) or study-specific 

heterogeneity (Zou et al. 2019).

To determine whether these factors could explain the lower than 

expected rate of replication, we applied a statistical framework that jointly 

models Winner’s Curse and study-specific heterogeneity in two GWAS 

studies of the same phenotype (Zou et al. 2019). This framework proposes 

two random effects models. The first model (WC) only accounts for Winner’s 

Curse, while the second model accounts for both Winner’s Curse and study-

specific heterogeneity due to confounding (WC+C). In this context, we 

define confounding as any biological or technical effect present in one study 



but not the other. We applied each of these models once using F34 as the 

discovery study and once using F39-43 as the discovery study. The models can 

be used to assess how well Winner’s Curse explains the observed levels of 

replication. For example, when F34 is used as the replication study for the 

albino coat color phenotype, the expected value of the replication summary 

statistics after accounting for winner’s curse is the same as the expected 

value after accounting for Winner’s Curse and confounding (Figure S7). While

the 95% confidence intervals for the WC+C model are larger than the WC 

model, both models seem to explain the observed data well. However, when 

F34 is used as the discovery study for the locomotor activity on day 1 or body 

weight, the WC+C model explains the data better than the WC model. 



In order to quantitatively assess how well each of these models explain

the observed patterns of replication, we computed the predicted replication 

rates under each model (Methods) and compared these with the empirical 

replication rates.  In this analysis, we defined the empirical replication rate to

be the proportion of variants passing the genome-wide significance threshold

in the discovery study that also pass the Bonferroni corrected threshold in 

the replication study. We used this definition of replication for this analysis 

instead of replication of lead SNPs to allow for a larger number of variants to 

be included in the model fitting process. For all phenotypes tested, the WC 

model predicts that all the variants passing the genome-wide significance 

threshold in the discovery study should pass the Bonferroni corrected 

threshold in the replication study, which is dramatically different from the 

observed replication of body weight and locomotor activity on day 1 and 2 

phenotypes (Table 2). While the replication in the agouti coat color 

phenotype is not well predicted by the WC+C model, this may be due to the 

fact that the agouti phenotype is a dominant trait, while our model assumes 

additive allele effects. These results suggest that the sample sizes are 

sufficiently large that Winner’s Curse cannot account for the lack of 

replication. However, in these cases, the WC+C model has predicted 

replication rates that are much closer to the true (observed) values, 

indicating that the lack of replication in these phenotypes is more likely to be

due to study-specific heterogeneity that is potentially caused by 

confounding. 



We evaluated whether or not the traits showed genetic correlations 

across the two cohorts. High genetic correlations would indicate a high 

degree of additive genetic effect that is shared between the two cohorts, and

the low genetic correlations would indicate limited potential for replication. 

We used all autosomal SNPs to calculate genetic correlations between the F34

and F39-43 generations for body weight, coat color, and locomotor activity 

phenotypes (Table S11), using GCTA-GREML (Yang et al. 2011). Albino and 

agouti coat color, body weight and locomotor activity on days 1 and 2 were 

highly genetically correlated (rGs >0.7; Table S11). In contrast, locomotor 

activity on day 3 showed a significant but weaker genetic correlation 

(rG=0.577), perhaps reflecting variability in the quality of the 

methamphetamine injection, which were only given on day 3. Overall, these 

results suggest that genetic influences on these traits were largely similar in 

the two cohorts; however, the genetic correlations were less than 1, 

suggesting an additional barrier to replication that was not accounted for in 

our power simulations.  

We also calculated the SNP heritability for all traits using GCTA.  SNP 

heritability was consistently lower in the F39-43 cohort compared to the F34 

cohort, including the Mendelian traits of coat color. The ± 1 × standard error 

intervals of the F34 and F39-43 SNP heritability estimates for the coat color trait 

albino overlapped. This observation indicates that SNP heritability for albino 

in the two cohorts is comparable. In contrast, the ± 1 × standard error 

intervals of the F34 and F39-43 SNP heritability estimates for the coat color trait 



agouti did not overlap. We could not explain the differential SNP heritability 

for the binary trait agouti in the two cohorts. The lower SNP heritability in F39-

43 for the rest of the quantitative traits could be a result of increased 

experimental variance (Figure 3; Table S12; (Falconer, 1960; Lynch & Walsh, 

1996; Mhyre et al. 2005; Zöllner & Pritchard, 2007; Visscher et al. 2008; 

Zaitlen & Kraft, 2012)). 

Due to the relatively high genetic correlations (Table S11), we 

suspected that a mega-analysis using the combined sample set would allow 

for the identification of additional loci; indeed, mega-analysis identified four 

novel genome-wide significant associations (Figure 4; Table S13). The 

significance level of five out of six loci identified by the mega-analysis was 

greater than that in either individual cohort. For instance, the p-values 

obtained by mega-analysis for chr14:82672838 (p-value = 7.93×10-9) for 

body weight were lower than the corresponding p-values for the same loci 

for F34 (chr14:79312393, p-value = 7.53×10−6) and F39-43 (chr14.82586326, p-

value = 2.63×10-6; Table S13; Table 1).



DISCUSSION

We used F34 and F39-43 generations of a LG/J x SM/J AIL to perform GWAS,

SNP heritability estimates, genetic correlations, replication and mega-

analysis. We had previously performed several GWAS using a sparse marker 

set in the F34 cohort. In this study we used a denser set of SNPs, obtained 

using GBS, to reanalyze the F34 cohort. We found 109 significant loci, 36 of 

which had not been identified in our prior studies using the sparse marker 

set. We used a new, previously unpublished F39-43 cohort for GWAS and 

showed that genetic correlations were high for the subset of traits that were 

measured in both cohorts. Despite this, we found that many loci were not 

replicated between cohorts, even when we used a relatively liberal definition 

of replication (p<0.05). The failure to replicate some of our findings was not 

predicted by our power simulations. Therefore, we performed an analysis to 

determine whether Winner’s Curse and study-specific heterogeneity could 

account for the lower than expected replication rate. Winner’s Curse alone 

could not explain the failure to replicate. However, modeling both Winner’s 

Curse and study-specific heterogeneity better explained the observed 

replication rate. Finally, mega-analysis of the two cohorts allowed us to 

discover four additional loci. Taken together, our results provide a set of 

refined regions of association for numerous physiological and behavioral 

traits in multiple generations of AILs. These loci could serve as benchmarks 

for future GWAS results in intercross mouse lines. More broadly, this study 



illustrates the difficulty of replication even when using a highly controlled 

model system.

Previous publications from our lab used a sparse set of array 

genotypes for GWAS of various behavioral and physiological traits in 688 

F34 AILs (Cheng et al. 2010; Lionikas et al. 2010; Samocha et al. 2010; Parker 

et al. 2011, 2014; Carroll et al. 2017; Hernandez Cordero et al. 2018; 

Gonzales et al. 2018). In this study we obtained a much denser marker set 

for 428 of the initial 688 AIL mice using GBS. The denser genotypes allowed 

us to identify most of the loci obtained using the sparse set, as well as 

many additional loci. For instance, using the sparse markers we identified a 

significant locus on chromosome 8 for locomotor day 2 activity that 

contained only one gene: Csmd1 (CUB and sushi multiple domains 1). 

Gonzales et al. (Gonzales et al. 2018) replicated this finding in F50-56 AILs and 

identified a cis-eQTL mapped to the same region. Csmd1 mutant mice 

showed increased locomotor activity compared to wild-type and 

heterozygous mice, indicating that Csmd1 is likely a causal gene for 

locomotor and related traits (Gonzales et al. 2018). We replicated this locus 

in the analysis of the F34 cohort that used the denser marker set (Figure S8). 

We also replicated a locus on chromosome 17 for distance traveled in the 

periphery in the open field test (Figure 4; (Parker et al. 2014)), three loci on 

chromosomes 4, 6, and 14 for body weight (Figure S8; (Parker et al. 2011)), 

one locus on chromosome 7 for mean corpuscular hemoglobin 

concentrations (MCHC, complete blood count; Figure S8; (Bartnikas et al. 



2012)), and numerous loci on chromosome 4, 6, 7, 8, and 11 for muscle 

weights (Figure S8; (Lionikas et al. 2010)). We noticed 

that even using original sparse markers, some previously published loci were

not replicated in the current GWAS. The most likely explanation is that we 

had only 428 of the 688 mice used in the previous publications. 

QTL mapping studies have traditionally used a 1.0~2.0 LOD support 

interval to approximate the size of the association region (see (Cervino et al. 

2005; Logan et al. 2013)). The LOD support interval, proposed 

by Conneally et al. (Conneally et al. 1985) and Lander & Botstein (Lander & 

Botstein, 1989), is a simple confidence interval method involving converting 

the p-value of the peak locus into a LOD score, subtracting “drop size” from 

the peak locus LOD score, and finding the two physical positions to the left 

and to the right of the peak locus location that correspond to the subtracted 

LOD score. Although Mangin et al. (Mangin et al. 1994) showed via 

simulation that the boundaries of LOD support intervals depend on effect 

size, others observed that a 1.0 ~ 2.0 LOD support interval accurately 

captures ~95% coverage of the true location of the loci when using a dense 

set of markers (Lander & Botstein, 1989; Dupuis & Siegmund, 1999; 

Manichaikul et al. 2006). In the present study, we considered using LOD 

support intervals but found that the sparse array SNPs produced 

misleadingly large support intervals. Various methods have been proposed 

for calculating confidence intervals in analogous situations (e.g. (Baud et al. 

2013; Nicod et al. 2016)). We performed credible set analysis and compared 



LocusZoom plots of the same locus region between array SNPs and the GBS 

SNPs (Figure S8; (Pruim et al. 2010)). For example, the benefit of the denser 

SNP coverage is easily observed in the locus on chromosome 7 (array lead 

SNP chr7:44560350; GBS lead SNP chr7:44630890) for the complete blood 

count trait “retic parameters cell hemoglobin concentration mean, repeat”; 

denser SNPs delineate the start and the end of an association block much 

more clearly. Thus, there are advantages of dense SNP sets that go beyond 

the ability to discover additional loci.  

LD in the LG/J x SM/J AIL mice is more extensive than in the Diversity 

Outbred mice and Carworth Farms White mice (Parker et al. 2016). Some of 

the loci that we identified are relatively broad, making it difficult to infer 

which genes are responsible for the association. We focused on loci that 

contained 5 or fewer genes (Table S6). We highlight a few genes that are 

supported by the existing literature for their role in the corresponding 

traits. The lead SNP at chr1:77255381 is associated with tibia length in 

F34 AILs (Table S6; S8 Fig). One gene at this locus, EphA4, codes for a 

receptor for membrane-bound ephrins. EphA4 plays an important role in the 

activation of the tyrosine kinase Jak2 and the signal transducer and 

transcriptional activator Stat5B  in muscle, promoting the synthesis of insulin-

like growth factor 1 (IGF-1) (Lai et al. 2004; Hyun, 2013; Sawada et al. 

2017). Mice with mutated EphA4 shows significant defect in body 

growth (Hyun, 2013). Curiously, another gene at this locus, Pax3, has been 

shown as a transcription factor expressed in resident muscle progenitor cells 



and is essential for the formation of skeletal muscle in mice (Relaix et al. 

2006). It is possible that both EphA4 and Pax3 are associated with the trait 

tibia length because they are both involved in organismal growth. Another 

region of interest is the locus at chr4:66866758, which is associated with 

body weight (Table S6; Table S13). The lead SNP is immediately upstream 

of Tlr4, Toll-like receptor 4, which recognizes Gram-negative bacteria by its 

cell wall component, lipopolysaccharide (Hoshino et al. 1999; Takeuchi et al. 

1999). TLR4 responds to the high circulating level of fatty acids and induces 

inflammatory signaling, which leads to insulin resistance (Shi et al. 

2006).  Kim et al showed TLR4-deficient mice were protected from the 

increase in proinflammatory cytokine level and gained less weight than wild-

type mice when fed on high fat diet (Kim et al. 2012). The association 

between Tlr4 and body weight in the AILs corroborates these findings. 

We considered both the F34 and the F39-43 as both “discovery” and 

“replication” cohorts. Significant loci for coat color, which are monogenic and

served as positive controls, were replicated, between the two cohorts, as 

expected. One locus for body weight was replicated (p<0.05) between 

F34 and F39-43. However, the loci for locomotor activity were not 

replicated. Power analyses predicted a much higher rate of replication, which

led us to conduct additional analyses to better understand the lower than 

expected rate of replication.  



First, we used a newly introduced method to determine whether 

Winner’s Curse  (Zöllner & Pritchard, 2007)) which has also been termed the 

Beavis Effect (Beavis et al. 1991, 1994; Xu, 2003; King & Long, 2017; Keele 

et al. 2019; Paterson, 2019) could account for the lower than expected rate 

of replication. Beavis’ original report described a lack of replication of QTL for

agronomic traits between small populations of maize (Beavis et al. 1991). 

Using progeny sizes ranging from 100 to 1000, Beavis simulated interval 

mapping to evaluate the accuracy of the estimates of phenotypic variance 

explained at the statistically significant QTL (Beavis et al. 1994; Xu, 2003; 

Paterson, 2019). Simulations showed that progeny sizes greatly influenced 

the estimates of phenotypic variance explained; smaller progeny sizes 

(n=100) generated highly overestimated estimates of phenotypic variances, 

whereas larger progeny sizes (n=1000) generated estimates of phenotypic 

variances similar to the actual value (Xu, 2003; Paterson, 2019). King and 

Long (King & Long, 2017) further examined the Beavis Effect in the next-

generation mapping populations in Drosophila melanogaster. The authors 

found that sample size was the major determinant for the overestimation of 

phenotypic variance explained at the significant QTL in both the GWAS-

based Drosophila Genetic Reference Panel (DGRP) and the multi-parental 

Drosophila Synthetic Population Resource (DSPR). When sample size 

remained constant and the true phenotypic variance explained at the 

significant QTL was small, the estimation bias was more pronounced. In 

contrast, estimates for the phenotypic variance explained at all simulated 



QTL, significant or not, were generally centered at the true values. In an 

analogous study of power and replication in Collaborative Cross mice, Keele 

et al. (Keele et al. 2019) found that the Beavis Effect was most striking when 

the number of strains and true effect size of the QTL were small. This 

estimation bias indicates that mapping statistically significant QTL across 

experiments, populations, and panels can be problematic (Macdonald & 

Long, 2004; Gruber et al. 2007; Najarro et al. 2015). The analyses we 

performed indicated that Winner’s Curse alone could not explain the lack of 

replication, but a model that also included study-specific heterogeneity 

could. 

Our analysis does cannot explain the source of the study-specific 

heterogeneity. Possible sources of confounding could include maternal 

effects, which could differentiate the F34 cohort and the F39-43 cohort because 

F33 animals were transported to the University of Chicago from Washington 

University in St. Louis. In contrast, the breeder animals of the F39-43 cohort 

have already acclimated to the environment for multiple generations. 

Another possible source of confounding is that the phenotyping of the F39-

43 occurred over five generations (more than a year) during which time 

numerous environmental factors may have changed (e.g. several technicians

performed the data collection). Such factors are known to be an important 

potential source of confounding; (Falconer, 1960; Lynch & Walsh, 1996; 

Crabbe et al. 1999; Mhyre et al. 2005; Visscher et al. 2008; Zaitlen & Kraft, 

2012; Sorge et al. 2014). Our analyses did not correct for the fact that six 



phenotypes were examined, thus somewhat increasing the chances that at 

least one of our significant associations could have been a false positive that 

would not be expected to replicate. 

Interestingly, we found that the genetic correlations between the 

discovery and replication samples were relatively high for all traits; however,

some traits replicated well and others replicated poorly. Our subsequent 

analysis showed that study-specific heterogeneity was low for the coat color 

traits, but higher for the body weight and locomotor traits. This makes an 

important point, namely that a strong genetic correlation can exists in the 

presence or absence of study-specific heterogeneity. Finally, it was notable 

that replication (at p<0.05) was relatively successful for body weight, 

despite the significant evidence of study-specific heterogeneity and low 

predicted replication (Table 2). Power analyses predicted that the body 

weight loci should replicate at the genome-wide significance threshold, 

whereas we only observed replication when at the less stringent p<0.05 

level (Table 1). The lack of replication at the genome-wide significance 

threshold for the body weight phenotype was likely due to study-specific 

heterogeneity due to confounding that was not accounted for in the power 

analyses. In Table 2, “predicted replication” refers to replication using a 

Bonferroni significance threshold that accounts for the number of significant 

SNPs in the discovery study. The low predicted replication rate under the 

WC+C model for the body weight phenotype is consistent with the low 

replication (genome-wide) reported in Table 1. Thus, both body weight and 



locomotor traits were strongly impacted by study specific confounding; 

however, nominal replication was still possible for body weight but not for 

the locomotor traits. 

Finally, we performed a mega-analysis using F34 and F39-43 AIL mice. The

combined dataset allowed us to identify four novel genome-wide significant 

associations that were not detected in either the F34 or the F39-43 cohorts 

presumably because of the increased sample size in the mega-analysis

(Visscher et al. 2017). As is true for all GWAS, the loci identified in the mega-

analysis could be false positives. 

In addition to performing many GWAS and related analyses that led to 

the identification of dozens of novel loci for locomotor activity, open field 

test, fear conditioning, light dark test for anxiety, complete blood 

count, iron content in liver and spleen, and muscle weight, our study also 

tested our expectations about replication of GWAS findings. We did not 

obtain the expected rate of replication. We used a method that can 

distinguish between Winner’s Curse and study-specific heterogeneity to 

show that the lower than expected rate of replication was due to study-

specific heterogeneity. This indicates that study-specific heterogeneity can 

have a major impact of replication even when in a model system when a 

genetically identical population is tested under conditions that are designed 

to be as similar as possible. 
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Table 1. Replication of significant SNPs between F34 and F39-43 AIL association analyses. “Discovery set” 
indicates the AIL generation that significant SNPs were identified. “Replication set” shows the association p-
value, β estimates, etc. of the “discovery set” significant SNPs in the replication AIL generation. SNPs that 
replicated (p<0.05, same sign for the beta) between F34 and F39-43 are in bold italics, SNPs that replicated at the 
genome-wide threshold (see Table S5) are bold, italic and underlined. Genetic correlations (rG) for phenotypes 
measured in both F34 and F39-43 are listed (see also Table S11).

      Discovery set   Replication set

Phenotype rG(s.e.) SNP P
-
log10(
p)

af beta se P
-
log10(p) af beta se

F34 GBS F3943 GBS replicate

Body weight 0.711(0.25)*

chr4.664145
08

8.58×1
0-8 7.07

0.41
9 -0.25 0.05

3.55×1
0-3 2.45 0.406 -0.13 0.04

chr6.814051
09

6.22×1
0-6 5.21

0.49
7

0.21 0.05 3.52×1
0-2 1.45 0.518 0.09 0.04

chr14.79312
393

7.45×1
0-6 5.13

0.51
4 -0.20 0.04

2.37×1
0-2 1.63 0.566 -0.10 0.04

Coat color, albino 0.967(0.04)* chr7.876420
45

5.00×1
0-106 105.30

0.43
2 -0.58 0.02

1.59×1
0  -162  161.80 0.388 -0.61 0.02

Coat color, agouti 0.971(0.04)* chr2.154464
466

9.43×1
0-191 190.03

0.12
9 0.94 0.01

5.7×10
-93 92.24 0.207 0.72 0.03

Locomotor test day 
1, total distance 
travelled in 30min

0.968(0.24)*
chr19.218122
98 3.98×10-
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1 -0.36 0.07
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0.711(0.25)*

 
chr1.8919220
9

6.42×10-

6 5.19 0.22 0.22 0.05
5.16×1
0-2 1.29 0.276 0.10 0.05

chr14.82586
326

1.48×1
0-6 5.83

0.65
8 -0.22 0.04

3.08×1
0-5 4.51 0.575 -0.19 0.05

Coat color, albino 0.967(0.04)* chr7.872551
56

3.37×1
0-166 165.47

0.38
9 -0.62 0.02

7.80×1
0  -97  96.11 0.444 -0.57 0.02

Coat color, agouti 0.971(0.04)* chr2.155091
628

1.78×1
0-115 114.75

0.21
8 0.74 0.02

1.51×1
0  -185  184.82 0.135 0.90 0.01

Locomotor test day 
2, total distance 

0.988(0.19)* chr15.676271
83

3.33×10-

6
5.478 0.46

1
0.30 0.06 2.07×1

0-1
0.683 0.522 -0.08 0.07
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travelled in 30min
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Table 2.  Predicted replication rates.  We applied the replication analysis to phenotypes with at least two genome-
wide significant variants in the discovery study.  These phenotypes include body weight, albino coat color, agouti 
coat color, locomotor test day 1, and locomotor test day 2.  We computed the true replication rate as the fraction of
variants that were genome-wide significant in the discovery study that also passed the Bonferroni significance 
threshold in the replication study (“Empirical replication rate”).  The model accounting for Winner's Curse and 
confounding (“Predicted replication rate WC+C”) explains the true replication rate more accurately than the model 
accounting for only Winner's Curse (“Predicted replication rate WC”).

Discovery
set

Replication
set Phenotype Empirical 

replication rate
Predicted replication 
rate (WC)

Predicted replication 
rate (WC +C)

F34 GBS F39-43 GBS

Body weight 0.009 1.000 0.044

Coat color, albino 1.000 1.000 0.997

Coat color, agouti 0.932 1.000 0.577

Locomotor test 
day 1 0.000 1.000 0.028

Locomotor test 
day 2 0.000 1.000 0.140

Body weight 0.297 1.000 0.071

F39-43 GBS F34 GBS

Coat color, albino 0.911 1.000 0.932

Coat color, agouti 0.815 1.000 0.925

Locomotor test 
day 2 0.000 1.000 0.053
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Main figure legends

Figure 1. Minor allele frequency (MAF) distributions for F34 array, F34

GBS, F39-F43 GBS, and F34 and F39-F43 GBS SNP sets. The average MAF of 

those 4,593 array SNPs was 0.388; the average MAF of the 60,392 GBS-

derived SNPs in 428 F34 AIL mice was 0.382; the average MAF of the 59,790 

GBS-derived SNPs in 600 F39-43 AIL mice was 0.358; the average MAF of the 

58,461 GBS-derived SNPs that existed in both F34 and F39-43 AIL mice was 

0.370 (Table S2). MAF distributions are highly comparable between AIL 

generations.

Figure 2. Significant loci on chromosome 17 for open field, distance 

traveled in periphery in F34 AIL. As exemplified in this pair of LocusZoom 

plots, GBS SNPs defined the boundaries of the loci much more precisely than 

array SNPs. GBS SNPs that are in high LD (r2 > 0.8, red dots) with lead SNP 

chr17:27130383 resides between 27 ~ 28.3 Mb. In contrast, too few SNPs 

are present in the array plot to draw any definitive conclusion about the 

boundaries or LD pattern in this region. Purple track shows the credible set 

interval. LocusZoom plots for all loci identified in this paper are in Figure S8.

Figure 3. SNP-heritability estimates in F34 and F39-43 AILs. Square dots 

represent the SNP heritability estimated by the GCTA-GREML analysis (Yang 

et al. 2011). The whiskers flanking the square dots show the ± 1 × standard 
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error of the heritability estimate. All heritability estimates are highly 

significant (p < 1.0×10-05; see Table S12). 

Figure 4. Manhattan plots comparing F34 GBS, F39-43 GBS, and mega-

analysis on locomotor day 1 test using 57,170 shared SNPs in all AIL

generations. We performed mega-analysis of F34 and F39-43 animals 

(n=1,028) for body weight, coat color, and locomotor activity, the set of 

traits that were measured in the same way in both cohorts. 
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