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Abstract

The potential energy surfaces corresponding to the long-lived fixed-nuclei electron scatering
resonances of HoO relevant to the dissociative electron attachment process are examined using
a combination of ab initio scattering and bound-state calculations. These surfaces have a rich
topology, characterized by three main features: a conical intersection between the 2A; and 2B,
Feshbach resonance states; charge-transfer behavior in the OH (II) 4+ H™ asymptote of the 2B;
and 2A4; resonances; and an inherent double-valuedness of the surface for the 2By state the Co,
geometry, arising from a branch-point degeneracy with a 2B, shape resonance. In total, eight

individual seams of degeneracy among these resonances are located.
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I. INTRODUCTION

We recently reported calculations of the cross sections for dissociative attachment through
the lowest-energy resonance [1, 2] in electron-water collisions that incorporated a full quan-
tum treatment of the nuclear motion of the resonant state. That study found good agreement
with experiment for dissociative attachment through the lowest resonance state (*B;) of the
water anion to produce H™, and it established that the associated dynamics are intrinsically
polyatomic and thus cannot be described successfully by one-dimensional models.

Dissociative attachment to water is known to also proceed through two other metastable
electronic states of the HoO™ anion. At the equilibrium geometry of the water molecule the
three states of the water anion have vertical transition energies of approximately 6.5 (*By),
8.5 (*A;), and 11.5eV (?B;). Our purpose here is to describe the larger picture that has
emerged from the combination of our previous calculations of the potential energy surface
for the ?B; state with preliminary calculations of the potential energy surfaces of the 24,
and 2B, resonance states.

We have found that these potential surfaces have a number of intersections, at least
one of which - namely, a conical intersection between the 2A4; and 2B, resonance states
- may have a major effect on the dynamics of dissociative attachment to water. Indeed,
the calculations we will present here strongly suggest that production of O~ + H, from
dissociative attachment to the 2B, state must result from nonadiabatic coupling to the ?A4;
state, since that channel is not an asymptote of the 2B, (22A’) surface.

Polyatomic anions can also pose interesting questions regarding the topology of the dis-
sociation limits of their potential energy surfaces, and those concern us here as well. For
example, for a potential surface of HoO~ to dissociate both to Hy + O~ in one arrangement
and to H™ 4+ OH in another might not initially appear to raise any topological question.
However, dissociating the Hy molecule in one of those limits and dissociating the OH frag-
ment in the other brings the system to exactly the same geometry of three separated atoms,
but with the extra electron on O~ in first case and H™ in the other — a clear impossibility
on a single potential surface.

Metastable states have finite lifetimes, and the associated widths form the imaginary parts
of their energies. Therefore the overall topology of this system of potential energy surfaces for

the water anion involves intersections of complex-valued surfaces. As we will demonstrate,



this situation allows topological complications such as branch-point degeneracies between
complex potential energy surfaces. We endeavor here to provide a comprehensive view of the
topology of the potential energy surfaces of the three resonance states of the water anion
that feature in experimental observations of dissociative attachment, and to explore the
potential role of their intersections in the dynamics of the dissociative attachment process.

Dissociative attachment of electrons to water molecules was examined experimentally as
early as 1930 [3]. Subsequent experiments [4-12] and calculations [10, 13-19] in the decades
that followed improved the understanding of this physical process and characterized the
three resonances that are responsible for clearly resolved peaks in the cross sections for
producing different fragments.

To understand the identities of the three resonances responsible for dissociative at-
tachment in water it useful to recall that the ground state configuration of water is la?
2a? 1b3 3a? 1b? in its equilibrium geometry, with bond distances equal to 1.81 ay (where
ap = 0.528 x 107 m is the Bohr radius) and a bond angle of 104.5°. The three resonances
are “Feshbach resonances” because they are associated with electronically excited states of
the molecule. They are characterized by configurations in which an electron is attached in a
4a, virtual orbital to the state arising from the excitation of an electron from the occupied
1by, 3a; or 1by to the same 4a; virtual orbital. In C,, geometries those resonances have,
respectively, 2By, 24, and 2B, symmetry. When the OH distances are unequal, the molecule
belongs to the C, point group, and the appropriate symmetry labels are 2A"(2B;) , 1 24’
(2A;), and 2 2A'(2B,). We will see later that the 1 ?A’ and 2 2A’ states undergo a conical
intersection with each other, so that strictly speaking they each may be associated with
either the 24, or 2B, states at various geometries.

These states have a finite lifetime because they are embedded in the electronic continuum
of e + Hy0O. At a fixed nuclear geometry they correspond to the energies of electron scat-
tering resonances with complex-valued energies, Fr — iI'/2. Our calculations of the nuclear
dynamics of dissociative attachment [1] to this system have employed the Local Complex
Potential (LCP) [20-24] model, which uses complex-valued potential energy surfaces just as
the Born-Oppenheimer treatment of bound-state dynamics uses real-valued ones. A prin-
cipal conclusion of the present study is that a complete treatment including all three of
the resonance states must involve the dynamics on at least three complex potential surfaces

coupled by the appropriate nonadiabatic couplings.



The outline of this paper is as follows. In Section II we briefly summarize the pertinent
experimental results on dissociative attachment and the inverse process of associative de-
tachment. In Section III we describe the features of the ?B; (2A") resonance potential energy
surface — in particular, its proper asymptotes. In Section IV, we describe the manifold of
resonant states of A’ (*A; and ?By)) symmetry relevant to the dissociative attachment pro-
cess. We will discuss the fact that this manifold includes not only the ?A; and 2B, Feshbach
resonances, but also a shape resonance of 2B, symmetry. We catalog the asymptotes of the
Feshbach resonances, and the two interesting features of this manifold: a conical intersection
between the 24, and 2B, states, and a seam of degeneracy between the 2B, shape and Fes-
hbach resonances. We conclude in Section V with some speculations about the implications
of the topology of these potential surfaces for the interpretation of the experimental results

on dissociative attachment to water.

II. THE OBSERVED PRODUCTS OF DISSOCIATIVE ATTACHMENT

The experimental evidence for the products formed by electron attachment to each of the
three resonances yields information about the asymptotes of each of their potential surfaces
but also raises questions about their topology. Observations of dissociative attachment to
gas-phase water and D,O show three peaks in the cross section, corresponding to the three
resonant states, near 6.5, 8.5, and 11.5eV. The gross features of the experimental results
are that the product arrangement H~ + OH (*II) is produced from the first two resonance
states, and that Hy + O~ is produced from all three. In addition, the experiments of Curtis
and Walker [12] on D,O demonstrated that excited OD is produced from the third peak
in the arrangement, D~ + OD (?X), along with some ground state products, D~ + OD
(*IT), in the same arrangement. These experiments also gave evidence for the opening of the
three-body dissociation channel D,O~ (24;) — O~ + D + D at 8.28¢eV.

These observations lead us to expect that the two-body asymptotes of the resonant states
involved in dissociative attachment to water will include both OH (2II) + H~, and OH (*X)
+ H™ in that arrangement and Hy, + O~ in the other. We expect that the three-body
asymptote O~ + H + H will be present on the 24, surface. It is important to note that
while OH™ + H production has been observed in some experiments, it is believed to be a

result of dissociative attachment to HoO clusters (H2O),, [25].



Experiments on the inverse process of associative detachment [26-31] are also pertinent to
the question of the topology of the potential surfaces for the three resonances we treat here,
and in particular have implications concerning their asymptotes. These experiments demon-
strate a large rate of autodetachment for the processes OH™ + H — H;O + e~ and O~
+ Hy — Hy0 + e~ at thermal collision energies, and moreover, that the electron detaches
quickly once the anion becomes unbound. These findings indicate that these fragments may
correlate to a resonant state of Ho O™ which has a large width and an attractive potential
energy surface, and is therefore probably not one of the Feshbach resonances suggested by
the peaks seen in dissociative attachment and with which our study here begins.

The oxygen anion, O, has P symmetry, and the ground state of Hy has '3, symmetry,
so there are three spatial components of the electronic state of separated O~ + Hjy. The
existence of a very broad shape resonance state in associative detachment that correlates to
one of the three spatial components of O~ + H; would suggest that only the two remaining
components can correlate with the Feshbach resonances. Since there are three Feshbach
resonances, this means that the asymptotes of those three Feshbach resonance potential

surfaces must include a channel besides O~ + H,.

III. THE 2B; (?A") STATE
A. Two-body asymptotes

Our previous configuration interaction study of the potential energy surface of the ?B;
(2A") state [1] indicated that H= + OH (*IT) and Hy + O~ are the correct asymptotes for
this state. This potential energy surface and the subsequent study of the quantum nuclear
dynamics on the 2B; surface [2] were consistent with experimental observations of the total
cross section and the degree of vibrational excitation of the OH (*II) fragment. Also, the
production of O~ + Hj, though that channel is present as an asymptote of the surface,
was very small in comparison to the H~ + OH channel due to the shape of the potential
energy surface. That result is consistent with the experimental observation that much less
O~ is produced through this resonance than H~. Since the 2B; state is the lowest Feshbach
resonance and does not appear to interact with any other state, except for the 24, state

at linear H-O-H geometry, we are driven to conclude that H- + OH and Hy; + O~ are



the correct asymptotes for this state, i.e., the observed products from the ?B; resonance
correspond to different asymptotes of the same adiabatic electronic eigenstate. However,

that conclusion raises another question.

B. Three-body breakup paradox

Given that the >B; (*A”) state correlates with Hy + O~ in one asymptote and H- + OH
(*IT) in the other, there is an apparent paradox. OH (*II) correlates with O (®*P) + H, and
H, correlates with H + H. Thus the two paths
1) H,O~ (*B;)) — H- + OH — H- + H+ O (*P)

2) H,O~ (*°B;) — H, + O — H+H + O,
illustrated in Fig. 1, lead to precisely the same geometry but different final states. Which is
the correct three-body breakup channel?

The fact that these paths have taken the system adiabatically from one eigenstate at
the initial geometry to two different eigenstates at the same final geometry means that a
conical intersection of adiabatic surfaces must be crossed by the closed loop that they form.
We have performed configuration-interaction (CI) calculations to investigate this question,
the details of which calculations are described in Appendix A. Those calculations make use
of full CI in an atomic orbital basis that yields the correct energetic ordering of the states
of the neutral and anion fragments and thus enables us to follow the resonance surfaces
to their asymptotes. From those calculations we have found that the conical intersection
that resolves the paradox of the two different three-body breakup states lies effectively at
an infinite separation of the atomic and diatomic fragments, and corresponds to a charge-
transfer reaction between the fragments.

While the notion of a conical intersection at infinite separation of the fragments may
seem strange, it means only that the exact point of degeneracy of the two states is reached
only when the fragments do not interact. This behavior corresponds to a charge-transfer
reaction that may be understood by referring to the dashed lines in Fig. 2. This figure
shows the energies at infinite separation of product states with doublet spin symmetry for
either charge arrangement, OH™ + H and OH + H™. The potential energy of the adiabatic
product state OH (*I1) + H~ (for infinite separation between the anion and the diatom)

as a function of OH bond length crosses several states of the opposite charge arrangement.
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FIG. 1: The ?B; state may be taken from the equilibrium geometry of the neutral to the three-body

breakup region via either two-body breakup channel, raising the question of which is the proper

three-body asymptote.

There are six states of OH~ which correlate to O~ (2P) + H, due to the double spin and
triple spatial degeneracy of that product state. The first of these correlates to OH™ (X 'X)
+ H and is not involved here. The second and third of these, which are degenerate, are OH~
(TT) + H and are the first to intersect the OH + H™ curve as OH dissociates. Note that the

OH~ (3Y) state is unbound at small O-H separation (inward of its crossing with the neutral
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FIG. 2: (Color online) Energies of states involved in charge transfer behavior in OH (?II) + H~
asymptote of 2B; (2A") state, as computed by full CI calculations in an atomic orbital basis, as
a function of O-H bond length ro. States of OH™ + H, and of OH + H™, at infinite separation
are marked with dashed lines and labeled on the figure. Energies at finite separation of r;=10 ag
(#=104.5°) are labeled as follows: anion states, solid black lines; ground state neutral HoO, wide

grey line.

OH ground state curve), but bound where it crosses OH(?*X) + H~. The OH~ (3II) state
is a shape-resonance type state with configuration [OH (%II)]40?, that is obtained from the
ground state configuration of OH™ by promotion of a 7 electron into the antibonding 4o
orbital.

As the atomic and diatomic fragments are brought closer and interact, the crossings
in Fig. 2 become avoided. In particular, this behavior occurs in the crossing of the H™
+ OH () and H + OH~ (M), which is the physically relevant one for understanding
the asymptotes of the 2B;(*A") surface. In Fig. 2, where results of CI calculations on the

anion system at a separation of 10 ay are also plotted, it can be seen that the crossing of



states of opposite charge arrangement at Ry_oy = 0o becomes an avoided crossing at finite
atom-diatom separation. At this avoided crossing, the 2B, resonance switches from being
predominantly H~ + OH (?II) and changes character to the OH~ (3II) + H state. In other
words, the negative charge is moved from the H to the OH fragment as the system is brought
adiabatically towards three-body breakup. (Similar considerations apply to the crossing of
the H- + OH (%II) and H +OH~ ('II) curves, which occurs at larger OH distances.)

This is a charge-transfer reaction situation but it is geometrically different from the
analogous type of crossing in the ion-atom case. In the ion-atom case we see the avoided
crossing appear as a function of the interatomic distance, i.e., as a function of the distance
across which the charge is being transferred. In this case the avoided crossing occurs at a
fixed distance between the fragments as a function of the internal degree of freedom of the
diatomic fragment. The geometry at which the intersection occurs (Romg ~ 2.8a¢ in the
calculations in Fig. 2) corresponds to a conical intersection “at infinity” because the H~
fragment is at infinite separation from the diatom. Of course such a conical intersection
cannot be circled and so no Berry phase effects could be observed from it.

At finite H-OH separations, the accessibility, and probably also the width, of the avoided
crossing is no doubt exaggerated in these calculations, because they do not yield an accurate
bond energy for the OH. Nonetheless, they suggest the prospect of nonadiabatic coupling
to the OH~ (3TI) + H state from high vibrational states of OH (?IT) + H~ produced as the
2By (*A”) resonance dissociates. Such nonadiabatic coupling would lead to a to selective
autodetachment from high OH (%II) vibrational states. We should note that our previous
study [1, 2], which did not account for this effect, did in fact predict higher dissociative
attachment cross-sections for production of vibrationally excited OH than has been observed
in experiment.

In summary, we understand that the 2B; (*A”) state correlates with the three-body
channel O~ + H + H, and not O + H~ + H, because it has an avoided crossing with
another bound state as the OH bond is stretched and the electron jumps from H™ to OH.

IV. 24’ MANIFOLD OF STATES

We now turn to the description of the numerous interesting features of the 2A’ manifold

of resonant states relevant to the dissociative attachment process. This manifold includes



not only the 24, and 2B, Feshbach resonances, but also, as we will demonstrate, a shape
resonance of 2B, symmetry.

We find two main features of this manifold. First, there is a conical intersection between
the 24, and 2B, states, which certainly plays a part in the nuclear dynamics associated
with dissociative attachment via the 2B, Feshbach resonance. Second, the 2B, Feshbach
resonance interacts with the 2B, shape resonance in such a way that these two states are
actually two components of a double-valued resonant surface in Cy, geometries. There is
a branch-point degeneracy between these two states which is responsible for this double-
valuedness.

The combination of the conical intersection and the 2B, seam of degeneracy will lead
to a complicated global topology, once Cs, symmetry is broken and these three resonances
become members of the same A’ irreducible representation. For this reason, it is difficult to
provide a complete representation of the topology of the three members of the 2A’ manifold of
states. Therefore we will restrict our discussion here to an analysis of the conical intersection
between the Feshbach resonances, the determination of the two-body breakup channels of
the Feshbach resonances and a description of the single-valued 24, and double-valued 2B,

surfaces in Cy, geometries.

A. Conical intersection of 24; and 2B, states

The dominant configurations of the 2B;, 24, and 2B, states at the equilibrium geometry
of the neutral are [HyO]1b7'4a?, [Hy0]3a; '4a?, and [H,O]1b; " 4a?, respectively. The 1b
orbital is primarily nonbonding in character, being comprised mostly of the oxygen 2p,
orbital. (We define the z axis as the C,, axis, and the x axis as perpendicular to the
molecular plane.) The 1by orbital has a node along the xz plane and is bonding between the
oxygen and each hydrogen, and antibonding between the hydrogens. The 3a; orbital has
bonding character among all the atoms. Finally, the 4a; orbital is antibonding along the
O-H bonds and bonding between the hydrogens.

A Walsh diagram, shown in Fig. 3, of SCF orbital energies of ground-state neutral water is
useful in understanding the behavior of the resonance potential surfaces. Fixing r; and 79 at
1.81 ay, the energy of the 1b, orbital increases as the H-O-H bond angle is decreased, owing

to its antibonding H-H character, and the energy of the 3a; orbital decreases. Therefore,
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FIG. 3: Walsh diagram of SCF orbital energies of ground state HyO at 1 = ro = 1.81 ayp, as a

function of the bond angle 6.

since the 24, resonance state is characterized by a hole in the 3a,; orbital, its energy increases
as the bond angle is decreased, and that of the 2B, resonance decreases.

As a result, the real parts of the energies of these resonances will cross. Because they
have different couplings to the continuum, their imaginary parts need not be equal in C,,
symmetry, and therefore the crossing of the real parts does not exactly correspond to an
acutal degeneracy of these states. Our calculations place the crossing of the real parts at a
bond angle of approximately 73° when the OH bond distance is 1.81 ay. In Fig 4 we show
the potential curves obtained from four-configuration MCSCF calculations on each state
that included the three excitations 4a? — 2b2, 5a2, 2b?, which are the dominant correlating
configurations at the equilibrium geometry of the neutral. In this figure we see the crossing
of the real parts of the 24, and 2B, energies and also the II degeneracy at H-O-H linear
geometry between the 2A"(%B;) and 1 ?A’(*A;) states, which will lead to Renner-Teller

coupling between them.
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FIG. 4: Real parts of resonance energies for OH bond distance = 1.81 ag in Cq, geometry from

the four-configuration MCSCF calculation described in text.

Distorting the molecule away from a point in Cy, geometry where the real parts of the
energies cross, it is possible, for a range of OH bond distances, to find a point where both
the real and imaginary parts are equal, thereby locating an actual degeneracy between
resonance states. For the 2A4; and 2B, resonances this is indeed the case and the resulting
conical intersection is analogous to the one between the 2 'A; and 1 !B, states of neutral
H,O which has been discussed elsewhere [32] in the context of photodissociation. However,
in the present case we have a conical intersection of resonant states, not bound states.
Conical intersections of metastable states have been discussed in the literature [33-35], and
have analytical properties that are different from their bound-state counterparts.

To understand the case of a conical intersection between resonances, consider the simpli-

fied case of a two-dimensional electronic Hilbert space with N nuclear degrees of freedom,
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collectively denoted ¢, whose electronic Hamiltonian may be expressed

Hi1(q) Hi(q)
H = 1
@ Hi5(q) Ho(q) .

For a bound state system the matrix elements above may be taken to be real numbers, in

which case the equation
Det(H(q) — E5(q)I) =0 (2)
will yield degenerate eigenvalues F; and Ey only if the two independent (real-valued) equal-

ities,
Hi1 = Ho (3a)
H12 == 0 (?)b)

are satisfied. If the adiabatic states belong to the same symmetry representation, then nei-
ther of these conditions are satisfied a prior:, and a seam of intersection will have dimension
N-2, which is a conical intersection.

Whereas the energies of bound electronic states can generally be obtained as the eigenval-
ues of a real symmetric matrix, resonance energies may be found as eigenvalues of a complex
symmetric matrix. There are several ways to see that this is the case, but perhaps the most
direct is to consider the point spectrum of the Hamiltonian under complex scaling of its
coordinates [36, 37] which maps onto the poles of the resolvent. The roots of a complex

symmetric matrix M,

A B
M = (4)
B D

will be degenerate if the two independent constraints
Re((A— D)*+4B* =0 (5)

Im((A— D)*+4B*) =0 (6)

are satisfied, and so for resonances we will in general expect that degeneracies occur along
seams of dimension N — 2, just as in the bound state case for states of the same symmetry.
Seams of intersection of the real parts of the eigenvalues of M will occur where Eq. (6) is
satisfied and the inequality

(A-D)*+4B*><0 (7)

13



holds. For seams of intersection of the imaginary parts, this inequality is reversed. In
general, such seams will occur along (possibly curvilinear) line segments which terminate
at degenerate points. In our calculations we have found cases with both one and two such
points of degeneracy and we give specific models for those situations below.

It is important to note that the existence of geometries of high symmetry, in which the
two states belong to different irreducible representations and therefore B = 0, still leaves two
conditions to be satisfied in Egs. (5) and (6). Therefore, whereas in bound-state theory there
is a class of conical intersections which lie entirely within such high-symmetry geometries,
there will be no such class of seams of degeneracy of metastable states. Instead, we may
find the actual degeneracies slightly offset from these higher-symmetry geometries. That is
indeed the case in our calculations of the conical intersection of the surfaces that correspond
in Cy, geometry to the 24, and 2B, resonances.

Feuerbacher et al. [34] examined the effect of switching on the coupling of the resonance
states to the continuum for some simple model problems, and they made several observations
that are reflected in the results of our calculations. These authors observed that the effect of
switching on the continuum coupling on a conical intersection is to split the single seam of
degeneracy into two. The essential result, first demonstrated by Estrada et al. [33], is that
the real part of the resonance energies behaves as in Fig. 5: there is a line segment along
which the real part of the resonance energies are the same.

In Figure 5 are plotted the real parts of the energies of the resonances obtained from the
“minimal model” of Feuerbacher et al. [34], which are solutions F; of the eigenvalue equation

Det | &7 T Y — 0 (8)
Y —x —1il'y — F;

This model makes a prediction about the trajectories of the resonance poles E; in the
complex F plane as functions of the parameters x and y. Along a closed path in this
parameter space that encircles one of the branch points shown in Fig. 6, the resonance poles
interchange positions. In Fig. 6 the closed path from A to B to C to D and back to A takes
the system around one of the branch point degeneracies of the model. The behavior of the
resonance energies in the complex plane is also shown in Fig. 6. Going from point B to C,
the real parts of the resonance energies avoid one another, and the widths cross. Going from

point D to A, the real parts cross, while the imaginary parts avoid one another. The result

14
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FIG. 5: Value of the real part of the energy of two interacting resonances, from “minimal model”

of ref. [34].

is that, after following this closed loop in parameter space, the resonances have changed
places.

This behavior is a reflection of the branch-point degeneracy in Eq. (8) which has been
circumnavigated by this path. It has an interesing parallel in the theory of “hidden cross-
ings” [38-40], in which the analytic continuation of bound-state potential energy curves into
regions of complex-valued geometries often yields similar branch points. In this way it is
seen that the various bound state potential energy curves are actually different branches of
the same multivalued function in the complex coordinate plane. The pairing of the branch
points in resonant potential energy surfaces which were observed in the complex symmetric
matrix models of Ref. [34], and which we have found in calculations on the 2A; / 2B, conical
intersection, is similar to the pairing of hidden crossings with mirror-image pairs across the
real coordinate axes. These similarities are not surprising, since the analytic continuation

of a real symmetric bound-state Hamiltonian into the complex coordinate plane also yields
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the resonance energies is denoted by a solid line, and the seam of intersection of the imaginary
parts is denoted by a dashed line. Lower: Trajectory in the complex plane of eigenvalues E; (solid
line) and E5 (dashed line) as parameters x and y are varied according to upper panel from point

A—B—C—D—A.
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FIG. 7: Real and imaginary parts of 24; and 2B, (1 24’ and 2 24’ ) energies, in hartrees, as a

function of bond angle 6, at (top row to bottom row) r1 = ro = 1.81 agp; 1 = 1.8094, o = 1.8106

apg, 1 = 1.8075, ro = 1.8125 apg, 1 = 1.805, To = 1.815 ag.

a complex symmetric matrix.

We found branch point behavior similar to that exhibited by the model problem above

in our computed ?A; / ?B, resonance energies. This behavior is manifested as a qualitative

change in the dependence of the resonance energies on one nuclear coordinate as another
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is varied. The signature of the branch point is a transition from the case where the real
parts of the resonance energy cross while the imaginary parts avoid as the resonance poles
approach each other, to a case where the real parts avoid while the imaginary parts cross.

That transition can be seen in the panels of Fig. 7, which shows the complex energies
of the 1 2A"” and 2 ?A” resonances (obtained from complex Kohn variational scattering
calculations described in Appendix B) plotted as a functions of nuclear geometry. Each of
the four rows of that figure show the results of varying the bond angle for different values
of one OH bond distance, 1, while the other is fixed by the relation (r; + 72)/2 = 1.81a,.
The top row shows the variation of § in Cy, symmetry and we see the real parts of the 24,
and 2B, potentials cross around =72 degrees while the imaginary parts cross at a different
geometry, around =73 degrees. Thus, at ry = ro = 1.81 ay, there is no degeneracy between
the 2A, and 2B, states for any 6.

To find the actual branch point degeneracy, we must break Co, symmetry. The next row
in Fig. 7, at r; = 1.8094, r, = 1.8106, shows that the connectivity of trajectories in the first
row is maintained, and we see a suggestion of the imaginary parts avoiding each other near
the angle where the real parts cross. Up to this point the states are most aptly labeled “A;-
like” and “Bs-like”, not “upper” and “lower.” However, by the third row, at r; = 1.8075,
ro = 1.8125, the connectivity has changed and now the real parts of the resonance energy
avoid one another as # is varied, as is the case for the model problem along path BC in
Fig. 6.

Therefore, at some point between the geometries of the second and third row, an actual
degeneracy of the resonant states was passed. A fit of the quantity |E; — E2|2 evaluated at 15
points near these geometries to a quadratic form yielded (ry, 72, ) = (1.8089ay, 1.8111ay,
72.103°) for the location of the conical intersection at 7 + ro = 3.62a9. A mirror-image
degenerate seam, of course, passes through r; = 1.8111, o = 1.8089.

Because these two mirror-image seams are so close — much closer than the de Broglie
wavelength for the moving nuclei — we do not expect that the two-seam structure of this
conical intersection of metastable states will have any implications for the nuclear dynamics.
In other words, we expect that we may treat this conical intersection using the standard array
of bound-state techniques, approximating the conical intersection as a single seam, without

compromising the subsequent description of the nuclear dynamics near the intersection.
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B. ?24; (1 24’) state

As explained above, starting from the equilibrium geometry of neutral water, the energy
of the 24, anion decreases as the H-O-H bond angle increases. At linear H-O-H geometry,
the 2A; (1 2A’) state and 2B; (2A") state are the two degenerate components of a %I state.
Thus, if it is first brought to linear H-O-H geometry and then dissociated, the 24; (1 2A")
state correlates with H= + OH (%II), as does the 2A” state. In turn, if the OH fragment
is then dissociated, the same charge-transfer behavior as demonstrated in Section III for
the 2A" state will occur. Therefore, by this mechanism the 24, state can correlate with
the three-body breakup channel O~ + H + H, in agreement with the results of Curtis and
Walker [12] who found evidence of this three-body channel from dissociative attachment to
the 2A; state.

The 2A; state may also be dissociated directly to the three-body breakup region while
maintaining Cq, geometry. We have performed scattering calculations along several such
paths, which demonstrate that the 24; state does indeed correlate to O~ + H + H as the
state is brought directly to this arrangement. Moreover, those calculations show that the
correct asymptote in the O + Hy two-body breakup arrangement is O~ + H, (1o,410,,) for
the 2A; resonance. Thus we find that the 2A; Feshbach resonance does not correlate to the
lowest 2A; state of the anion in that arrangement, which is O~ + Hy (107).

We provide evidence for our assignment of the O~ + Hy (1o, 10,) asymptote in Fig. 8.
This figure shows the real part of the energy of the resonant state as determined by scattering
calculations where it is unbound, and by structure calculations where it is bound. The details
of these calculations are included in Appendix B; for the present we will note only that they
are performed with a full CI representation of the target states in an atomic orbital basis.
In Fig. 8 we dissociate the resonance from a geometry (r; = ro = 2.0 ap, § = 104.5°)
slightly stretched from the equilibrium geometry of the neutral, by increasing the distance
between the oxygen nucleus and the Hy center of mass and keeping the H, internuclear
distance constant at 3.16 ao. This bond length is just big enough to bind the O~ + Hy
(loy10,) state as per the current treatment. Plotted in this figure is the energy of the 4,
Feshbach resonance where bound and unbound, and the lowest 24, state of the anion, where
bound. As is clear from this figure, the 24; Feshbach resonance correlates not to O~ + Hy

(102), but to O~ + Hy (1oglo,). We have found the same correlation along different paths,
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FIG. 8: Real part of energy of the 2A4; Feshbach resonance, where bound (< 0) and unbound
(> 0), and lowest 2A; state of the anion, where bound, as a function of the distance R between

the oxygen nucleus and the Hy center of mass, in Cy, geometries, with rgp=3.16 ag.

including the path from the equilibrium geometry of the neutral to the squeezed geometry
at vy = ry = 1.81 ag, 0 = 45° (rgyg = 1.40) to dissociation. Thus it appears that the 24,
Feshbach resonance correlates globally to this asymptote.

This finding is reassuring in light of the experiments on associative detachment. The
experiments on associative detachment of O~ + Hy [26, 28, 30, 31] and OH~ + H [27, 29|
indicate that these fragments correlate with an attractive state which has a very large width
at highly distorted geometries of neutral H,O — a width much larger than we would expect
for the 2A; Feshbach resonance. This state, with configuration [H,O]4al, has been termed a
shape resonance [41, 42|, although it is surely extremely broad at the equilibrium geometry
of the neutral. It is clear from our scattering calculations that this 24; “shape resonance”
is distinct from the 24; Feshbach resonance relevant to dissociative attachment, and that

these two states represent separate poles of the S-matrix. The 2A4; “shape resonance” is
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FIG. 9: Real parts of energies of 2B, states in Cg, geometries, in hartrees above the ground state
energy, as a function of H-H bond distance gz and the distance between the Hy center of mass
and the oxygen nucleus, R. Inset: top view including a line at § = 73°. Left image is aligned with

the printed axes; right image is its stereographic partner for 3D viewing.

most likely irrelevant to the dissociative attachment process.

C. 2B, (2 %4') state

The experiments of Curtis and Walker [12] indicated that OH (%) + H™, i.e. electroni-
cally excited OH, is produced from the third resonance peak. Since the other two resonance
states, 1 24’ and ?A", correlate with the two components of ground state OH (2II) + H~
state in that arrangement, the 2 >A’ state is left to correlate to H- + OH (2X). This asymp-
tote can also be expected for this resonance because the 16y SCF orbital becomes the sigma
bonding molecular orbital on OH. We have confirmed this asymptote in electron scattering
calculations using the complex Kohn method.

We now turn to the behavior of the 2B; resonance within Cov geometries. Within this
cut of the potential surface the 2B, state is distinct from the 24; state. We have found that
the 2B, state has a seemingly isolated branch-point degeneracy with a 2B, shape resonance.

This branch point leads to an inherent double-valuedness of the 2B, surface within Cs,
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geometries.

The 2B, shape resonance, with configuration [HyO]2b,", has been observed in experiments
and calculations on the process of electron-impact vibrational excitation of water [41-47].
This resonance is found near 7 eV incident energy and is several eV wide at the equilibrium
geometry of the neutral; it is too wide for the present theoretical investigation to locate at
that geometry. However, we have located two resonance features in 2B, symmetry at certain
distorted geometries, and we have no plausible candidate besides the 2B, shape resonance
to be responsible for the second feature.

We have performed scattering calculations in 2B, symmetry within Cy, geometries. These
calculations are described in Appendix B and are exactly analagous to the calculations used
to determine the asymptotes of the 24, state: they define the target states and 11-electron
configurations responsible for the resonance features by full CI in an atomic orbital basis.
We have performed analagous CI structure calculations in the regions where the resonance
becomes bound.

These calculations demonstrate the inherent double valuedness of this potential surface
and indicate that the 2B, Feshbach resonance can correlate to either of two three-body
breakup channels. Starting from the equilibrium geometry of neutral HyO (ry = r, = 1.81
ag, 6 = 104.5°), if the bond angle is first decreased to 45°, corresponding to rgy = 1.4 ay,
and then the H, fragment is dissociated from the oxygen, we obtain the bound two-body
asymptote O~ + H,. The Hy fragment may then be dissociated to produce O~ + H + H.

In contrast, if the bond angle is kept constant at 104.5° and the hydrogens are dissociated
symmetrically, the 2 By Feshbach resonance does not correlate to O~ + H + H. It stays higher
in energy and appears to correlate with the state O (*D) + H + H™.

These result are plotted in the stereogram in Fig. 9, in which the location of the 2B,
resonance in Cy, geometries is plotted as a function of the H-H bond distance, rgg, and the
distance between the Hy center of mass and the oxygen nucleus, R. The double-valuedness
of the 2B, state is clear from this figure. The geometries ryy = 2.86, R = 1.69 and
rgg = 2.86, R = 2.01, which are the first two and last two points on the path, have two
resonance locations plotted. The exact path in the Cs,, plane is shown at upper right. Going
clockwise, the 2B, Feshbach resonance becomes bound as O~ + H, between ryy = 1.40,
R =2.51and rgy = 1.40, R = 3.01, and stays so until 7z = 2.86, R = 2.51, at which point

it has become the 2B, shape resonance. Also plotted is the line # = 73°, which approximates
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the location of the 2A; / ? B, conical intersection.

The three-body asymptote O (!D) + H + H~ is consistent with the two-body asymptote
OH (%) + H™, but not Hy + O~. Following the Hy + O~ asymptote into the three-body
breakup region, we obtain H + H + O~. In so doing, we have followed the ground state of
the system, and therefore there can be no charge-transfer crossing of the type demonstrated
above for the OH (*I) + H~ asymptote of the ?B; and 2A; states to account for this
inconsistency. Therefore, the 2B, surface is inherently double-valued.

It is useful to have a simple mathematical model for this behavior. None of the models
of Refs. [33-35] produce an isolated degeneracy. In contrast, the following 2x2 complex
symmetric eigenvalue equation,

Dot [ £ % exp(~y) — E; y _0o )
Y —x—1— B
produces a single point of intersection at (z,y) = (0,0.2662). The real parts of the eigenval-
ues F; of Eq. (9) are plotted in Figure 10. When the point of degeneracy is circumnavigated,
the two resonances exchange identities, just as in Fig. 6.

The difference between the model in Eq. (9) and the one in Eq. (8) is that instead of
having fixed widths for the noninteracting resonances, I'y and I'y, Eq. (9) has one width
fixed (I'y = 1) while the other varies with y. A variety of behaviors can be seen in such a
model depending on the parametrization of I'y and I's, including one, two or three points
of degeneracy between the resonance eigenvalues. Presumably, all of those behaviors might
be found in real systems, although thus far in HoO~™ we have found only the two types we

have discussed here, having either one or two branch point degeneracies.

V. CONCLUSION

We have performed calculations which have determined the bulk of the features of the
adiabatic surfaces for the resonant states of HoO™~ relevant to the dissociative attachment
process. To summarize some of the findings we have presented, we list the asymptotes of
the resonant states of HoO™ in Table I.

We have to take account of the fact that the combination of the 2A; /2B, conical inter-

section between Feshbach resonances and the seam of degeneracy between the 2B, Feshbach
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FIG. 10: Real part of energies of resonances in the single-intersection model of Eq. (9). Arrow

indicates seam of degeneracy continues in that direction.

TABLE I:. Asymptotes of resonant states. The symmetry of the states in Cy, geometry is noted

for the applicable asymptotes.

O-H,

OH-H

O - H - H (three-body)

2" O (X?2P) 4+ Hy (X 102 By OH (X 2II) + H~
g

124! 0O (X 2P) + Hy (X 102 By OH (X 2II) + H~
g

AND O (!D) +H, (By)

224" O™ (X?2P) + Hy (logloy) (A1) OH (*%) + H™

AND ?

O X2P)+H+H (By)

O X2P)+H+H (4)

O~ (X2P)+H+H (By)
O(lD)+H +H (By)

and 2B, shape resonance can lead to either of two topological cases, because all three sur-

faces are connected. The ?A;/?B, conical intersection produces a “lower cone” and “upper

cone” that we have called the 1 24’ and 2 2A’ states, respectively. The seam of degeneracy

between the 2B, Feshbach and 2B, shape resonances could occur on either, and the present

calculations indicate that it is most likely on the lower of the two surfaces, i.e., the 1 24’
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state (see inset of Fig. 7). So it appears that the 1 2A’ state is the one that is inherently
double-valued in these calculations. For this reason in Table I there are two entries for the
1 2A’ state in each column.

We note then that there is some uncertainty in several of the entries in this table. A more
accurate calculation could place seam of degeneracy of the 2B, shape/Feshbach resonance
states on the 2 2A’ state (upper cone). Secondly, we have not determined to which resonant
state of H; the higher-energy 2B, resonance correlates, nor have we examined the OH + H
asymptote of the 2B, shape resonance. Nonetheless, we can make several comments about
how the results of this study bear on the question of the dynamics of dissociative attachment,
and how they may be related to the presently available experimental results.

First, it is observed that O~ + H, is by far the dominant product of dissociative attach-
ment to the 2 24’ (2B,) state. However, this channel is not present as an asymptote of the
2 2A" surface. Therefore, these products must result from nonadiabatic coupling between
the 2 2A’ surface and the 1 24’ surface, i.e. by dynamics following the 2B, surface in Cy,
geometries. This is the consequence of the 2B, /2A; conical intersection that occurs slightly
off of Cy, symmetry. By following the 2B, state downhill along its gradient from the equi-
librium geometry of the neutral to smaller bond angles, the 1 2A’ surface is easily reached
(see Fig. 4). The nuclear dynamics leading to these products from the 2 2A’ surface are
therefore likely to follow this direct, symmetric dissociation path. So the peak in dissocia-
tive attachment generally identified as as the 2B, Feshbach resonance, seems to be able to
produce O~ only because of this conical intersection.

Second, O~ + H, has been observed as a product of dissociative attachment via the 24,
(12A") resonance . However, the most direct path to these products goes uphill in energy for
this state. Therefore, two other paths are likely to be involved. Production of O~ + H, from
the 2A4; (1 2A4’) resonance can be due to Renner-Teller coupling to the >A” state as indicated
in Fig. 4. It can also be due to nuclear dynamics involving breaking C,, symmetry and
traversing around the ?A; / 2B, conical intersection, in which case the O~ + H, asymptote
of the 2B, state would be reached. Both of these mechanisms would probably involve the
water molecule first straightening to linear (§ = 180°) H-O-H geometry, and then continuing
beyond 180° to reach the O~ + H, well of either of the 24" or 1 2A’ states.

The conclusions at which we have arrived in this paper, relating to the correct asymptotes

of these states, dictate many requirements of an optimal orbital basis and configuration-
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interaction calculation. In addition, the double-valued 2B, surface provides an interesting
diabatization problem, which must be treated along with the more standard diabatization
of the 24, / 2B, conical intersection. The results of larger-scale calculations providing quan-
titative potential energy surfaces for these resonances, suitable for dynamics calculations,
will be reported in a subsequent publication.

We close by noting that this study has indicated that a full theoretical treatment of
the problem of dissociative attachment to water, incorporating all of the features of the
electronic states described in this paper, may be prohibitively complicated. In all, there are
eight distinct seams of degeneracy which we have identified among these resonant states: two
mirror-image seams each for the charge transfer-behavior of the OH (IT) + H~ asymptote
of the 2A" and 1 2A’ states; the degeneracy of the 24" and 1 2A’ states at linear H-O-H
geometry; the 24; / 2B, conical intersection, which actually comprises two mirror-image
seams of degeneracy slightly displaced to either side of the Cy, plane; and the 2B, shape-
Feshbach degeneracy.

APPENDIX A: DETAILS OF OF BOUND STATE CALCULATIONS

The resultss shown in Fig. 2 are the result of full CI calculations in an orthogonalized
atomic orbital basis. We first obtained an atomic orbital space from calculations on the ionic
H™ and O~ fragments. On O™, we performed a state-averaged SCF on the three spatial
components of the O~ (2P) state, in order to obtain a symmetric atomic orbital basis. On the
hydride state, we performed a multiconfiguration self-consistent field (MCSCF) calculation
defined by full CI with two s orbitals. For these calculations we used the primitive basis of
Gil et al. [16] augmented by diffuse orbitals with Gaussian exponents of 0.08 and 0.0333 (s),
and 0.2 and 0.05 (p) on the hydrogens. These calculations yielded 1s, 2s, 2p,, 2p,, and 2p,
orbitals on the O™, plus 1s and 2s orbitals on each of two H’s. These comprise 9 orbitals
and we have 11 electrons in the full problem for a total of 6048 configurations in the full CI
calculation on the anion states.

This full CI treatment is designed to reproduce the correct ordering of the relevant states
and to employ the smallest orbital basis possible. The correct ordering is necessary so
that crossings of diabatic states are neither artificially created nor omitted, and the small

orbital basis is useful in simplifying the spectrum when the relevant anionic species become
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unbound. The full CI treatment using these orbitals gives a small H™ electron affinity of
about 0.3eV and an electron affinity for O~ of 2.7eV. These may be compared with the
experimental values of 0.754 and 1.462eV, respectively. The OH bond energy obtained from
a full CI calculation within this orbital space on that diatomic fragment is approximately
3.2eV, considerably lower than the experimental value of 4.4eV.

The data in Fig. 2 are the energies of CI roots from calculations on the states of the anion,
and summed energies from calculations on the atom and diatom fragments. The energy of
neutral HyO, also from a full CI in the same basis, is included. Full CI is size-consistent and

therefore this it is meaningful to compare these calculations.

APPENDIX B: DETAILS OF SCATTERING CALCULATIONS

The scattering calculations described in this paper were all performed using the complex
Kohn variational method. This method makes use of a trial wave function that is expanded
in terms of square-integrable (Cartesian Gaussian) and continuum basis functions that in-
corporate the correct asymptotic boundary conditions. Detailed descriptions of the method
have been given elsewhere (see, for instance, refs. [48, 49]).

For a target with N electrons, the trial wavefunction has the form

\I!g) :ZA [Xr(rl---I‘N)Fr(})O(I‘NH)
r (B1)
+ Zdio@u(rl...rNH)
I

The first sum in Eq. (B1) is over target states explicitly included in a close-coupling ex-
pansion, which may be energetically open or closed, and for which xr(r;...ry) denotes the
corresponding electronic state of the target molecule. The antisymmetrizer is denoted by

A, and the scattering orbital (channel eigenfunction) associated with channel I is
T,
R, () =) ()

+ ) Uim (krr)1100m,mor.ro (B2)

I,m

+ T G (k)| V() /7

l,lo,m,mo gl,m

for incoming boundary conditions in channel I'y. In Eq. (B2) ¢; denotes a Gaussian molecu-
(+)

lym

lar orbital, and f,,(krr) and g,/ (krr) denote continuum functions which are regular at the
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origin and whose asymptotic forms correspond to Ricatti-Bessel and outgoing Ricatti-Hankel

functions, respectively:

Som(ker) — i(ker) [/ ke (B3)
gim (ker) — B (ker) [V ke (B4)

With each of these continuum functions is associated a channel momentum, kr:
k2/2=E — Er . (B5)

The second sum in Eq. (B1) is over square-integrable (N+1)-electron terms (configuration
state functions) constructed from Gaussian molecular orbitals and incorporates correlation
effects not described by the close-coupling expansion of the first sum. For convenience we
refer to the (N+1)-electron configurations, ©,, in the second sum as the “Q-space” and to
the (N+1)-electron configurations explicitly involving target states as the “P-space” of the
calculation.

For the calculations presented in Fig. 7, we used the same Gaussian basis as described
in Appendix A. Using this primitive basis, we performed SCF calculations on ground state
neutral water and on the 2B, resonance state at the geometry r; = r, = 1.81, § = 73°. For
the neutral HyO calculation, we then obtained a correlating orbital of By symmetry via a CI
calculation including the SCF reference configuration as well as all double excitations from
the 3a; and 1by orbitals. The density matrix corresponding to the ground state CI root was
diagonalized to obtain the correlating b, orbital.

For the 2B; resonance calculation, we obtained 4a;, 5a;, 2by, and 2b; orbitals via a
CI calculation in which the grandparent core configuration, 1a? 2a? 163 3a? 1b;, was held
constant, and a full CI was performed with the remaining two electrons in the remaining
orbital space. Again, the density matrix of this CI calculation was diagonalized to produce
natural orbitals.

The six orbitals from the neutral calculation — five SCF and one correlating — were
combined with the four resonance orbitals from the resonance calculation. The resulting
set was re-orthogonalized at each geometry. We found the calculation of the resonance
trajectories shown in Fig. 7 to be extremely sensitive to variations in the basis set; this is
why the orbitals were only calculated once.

Thirteen states yr were explicitly included in the P-space portion of the Kohn trial

function in Eq. (B1). These states were defined as the roots of a complete active space CI
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within the space of the six neutral orbitals, with the 1a; and 2a; orbitals constrained to be
doubly occupied and all single and double excitations into the other four resonance orbitals.

Similarly, the Q-space terms ©, were comprised of all configurations that could be gener-
ated by doubly occupying the 1a; and 2a, orbitals, and performing full CI with the remaining
seven electrons in the space of the remaining four neutral orbitals, with single and double
excitations into the space of the four resonance orbitals. This prescription for the Q-space
avoids problems with recorrelation of the target states [49)].

The expansion of the continuum functions FF(})O in Eq. (B2) included Y ,,,’s spanning the
range [ = 0 to 4, with all symmetry-allowed values of m included for each target state.

A careful fit of S-matrix elements was performed to obtain the real and imaginary parts
of the energies of the nearly degenerate 1 24’ and 2 2A’ resonances from complex Kohn
calculations to produce the data plotted in Fig. 7. At 30 energies near the resonance position,
the values of two S-matrix elements, one A;-like and the other Bj-like, were summed, and
that sum was fit to a Breit-Wigner form with a background contribution given by a quartic
polynomial in the energy. A fit using a quartic background was necessary to allow the two
overlapping resonance profiles to be resolved.

For the full CI scattering calculations of subsections IV B and IV C, we used the smaller
double zeta plus polarization and diffuse orbital set of Dunning [50, 51], but the same
prescription for the orbital basis and target states as described for the full CI calculations
in Appendix A, except we constrained the oxygen 1s orbital to be doubly occupied. The
Q-space terms were described by full CI within the atomic orbital basis, with the 1a; orbital
always doubly occupied. These calculations were 21-state close coupling calculations (21
target states included in the trial wavefunction, Eq. (B1)), and included Y] ,,’s spanning /=0

to 5.
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