
UC San Diego
UC San Diego Previously Published Works

Title
Sapper

Permalink
https://escholarship.org/uc/item/77v0c4xv

Journal
ACM SIGARCH Computer Architecture News, 42(1)

ISSN
0163-5964

Authors
Li, Xun
Kashyap, Vineeth
Oberg, Jason K
et al.

Publication Date
2014-04-05

DOI
10.1145/2654822.2541947

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/77v0c4xv
https://escholarship.org/uc/item/77v0c4xv#author
https://escholarship.org
http://www.cdlib.org/

Sapper: A Language for Hardware-

Level Security Policy Enforcement

Xun Li∗

Facebook

xun@fb.com

Vineeth Kashyap

University of California, Santa

Barbara

vineeth@cs.ucsb.edu

Jason K. Oberg

University of California, San Diego

jkoberg@cs.ucsd.edu

Mohit Tiwari∗

University of Texas, Austin

tiwari@austin.utexas.edu

Vasanth Ram Rajarathinam∗

AMD

vasanthram.rajarathinam@amd.com

Ryan Kastner

University of California, San Diego

kastner@cs.ucsd.edu

Timothy Sherwood

University of California, Santa

Barbara

sherwood@cs.ucsb.edu

Ben Hardekopf

University of California, Santa

Barbara

benh@cs.ucsb.edu

Frederic T. Chong

University of California, Santa

Barbara

chong@cs.ucsb.edu

Abstract

Privacy and integrity are important security concerns. These

concerns are addressed by controlling information flow, i.e.,

restricting how information can flow through a system. Most

proposed systems that restrict information flow make the

implicit assumption that the hardware used by the system is

fully “correct” and that the hardware’s instruction set accu-

rately describes its behavior in all circumstances. The truth

is more complicated: modern hardware designs defy com-

plete verification; many aspects of the timing and ordering of

events are left totally unspecified; and implementation bugs

present themselves with surprising frequency. In this work

we describe Sapper, a novel hardware description language

for designing security-critical hardware components. Sapper

seeks to address these problems by using static analysis at

compile-time to automatically insert dynamic checks in the

resulting hardware that provably enforce a given information

flow policy at execution time. We present Sapper’s design

and formal semantics along with a proof sketch of its secu-

rity. In addition, we have implemented a compiler for Sapper

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASPLOS ’14, March 1–4, 2014, Salt Lake City, Utah, USA.
Copyright c© 2014 ACM 978-1-4503-2305-5/14/03. . . $15.00.
http://dx.doi.org/10.1145/10.1145/2541940.2541947

and used it to create a non-trivial secure embedded processor

with many modern microarchitectural features. We empiri-

cally evaluate the resulting hardware’s area and energy over-

head and compare them with alternative designs.

Categories and Subject Descriptors B.6.3 [Design Aids]:

Hardware Description Languages

Keywords Hardware Description Language, Non-interference

1. Introduction

Security has become a first-order priority in many sys-

tem designs. High assurance and life-critical systems, such

as aircraft control systems and implantable cardioverter-

defibrillators and also systems used in banking and the mili-

tary, all require strong guarantees about their security prop-

erties. However, designing systems with provably strong

security properties can be extremely challenging and costly;

just assessing the assurance of the resulting system can cost

upwards of $10,000 per line of code [3]. Our goal is to enable

the design of provably-secure hardware systems such that (1)

the designs are easily expressed by hardware designers, and

(2) the resulting secure systems have low overhead in terms

of chip area, performance, and power consumption.

Information flow security [10] is an important category

of security properties that encompasses confidentiality (con-

fidential information cannot leak into unclassified chan-

∗ The work is done when Xun Li, Mohit Tiwari and Vasanth Ram Rajarathi-

nam are graduate students at University of California, Santa Barbara.

nels) and integrity (critical system components cannot be

affected or tampered with by untrusted parties). Information

flow control mechanisms associate security labels with the

resources and data contained in a system. A security policy

is specified by ordering the security labels in a lattice, such

that data with labels higher in the lattice are more restricted

(i.e., can flow to fewer places) than data with labels lower in

the lattice. For example, secret data would be labeled with

a high label, and an unsecured output port would be labeled

with a low label—this policy specifies that the secret data

(or any data directly or indirectly derived from the secret

data) should not be sent on the publically-visible port. The

goal is to ensure that a principal who can observe all data at

some security level ℓ cannot deduce any information about

data at a security level that is higher than or noncomparable

to ℓ. A system that meets this goal is said to enforce non-

interference [11]. Many approaches have been previously

attempted to enforce non-interference at the software or ISA

level, yet the resulting systems are still left vulnerable to

timing channels and bugs in the hardware implementation.

The core of our approach to this problem is a novel

security-aware hardware design synthesis language called

Sapper. The Sapper language is an extension of a synthesiz-

able subset of Verilog; the Sapper compiler translates Sap-

per code into synthesizable Verilog that is guaranteed to

meet a specified security policy. It does so by automatically

deriving and inserting dynamic security checks into the Ver-

ilog hardware design. The semantics of Sapper ensures that

the security properties of the resulting system are statically

guaranteed, even though these security checks are executed

dynamically. During the generated system’s execution, these

dynamic checks intercept any information flow that vio-

lates the security policy and replaces the offending operation

with one that is guaranteed to be secure (though potentially

changing the intended functionality of the system).

The intended design process makes use of the dynamic

checks in two phases. First, during testing but before fabri-

cation2, these dynamic checks will ensure that security vio-

lations are revealed to the hardware designers as functional-

ity bugs, which the modern design process already has many

techniques for detecting and dealing with. In other words,

Sapper transforms the problem of detecting security viola-

tions during testing (for which there is little support and

experience in the modern design process) into the problem of

detecting functionality bugs during testing (for which there

is a great deal of support and experience). Through careful

design iteration, the hardware designers can detect and fix

security problems to ensure that the system will operate as

intended in the vast majority of cases, including all common

cases, even with these dynamic checks in place.

Once testing is complete and the hardware is deployed,

the second function of these checks comes into play, because

2 Typically such tests are performed through a combination of hardware

simulation and prototyping on reconfigurable hardware.

the checks will remain in the final hardware design. The

checks serve as the last line of defense against run-time vio-

lations in conditions never encountered during testing and

verification. Both undiscovered hardware bugs and rarely

occurring combinations of events may provide opportunity

to attack an unprotected system. In contrast to this, hardware

designed with Sapper will automatically capture and prevent

any runtime violations.

We describe the design of Sapper and provide a for-

mal semantics and proof sketch of soundness. We demon-

strate the expressiveness of Sapper by implementing a fully-

featured secure embedded processor with a MIPS ISA and

an array of modern microarchitectural features; the proces-

sor is complete enough to run real-world benchmarks. We

empirically evaluate the overhead of the system generated

by Sapper and show that it has only a 4% hardware overhead

and no performance loss compared to an insecure baseline

version of the same processor.

2. Background

There are many ways in which a hardware/software system

might be compromised. We begin by describing our spe-

cific threat model and assumptions, and then present related

work.

2.1 Threat Model

Sapper focuses specifically on the information-flow policy

of noninterference.3 In this work we do not consider other

security properties of hardware systems.

For our purposes, a system consists of a set of input ports,

a set of output ports, a hardware implementation, and an

initial configuration. The input and output ports are assumed

to have a set of security labels (for example, a set of high

input “pins” and a set of low input “pins”, which may be

separate physical components or time multiplexed on the

same physical component). An information flow policy is

specified as a lattice over those labels. Sapper can enforce

policies specified by any finite security lattice. For clarity,

the discussion in the following sections assumes a simple

security lattice with two labels high and low such that low <
high . We evaluate the effect of a more complex security

lattice in Section 4. We assume that the initial configuration

of the machine is labeled conservatively (i.e., no high state is

labeled as low). This initial configuration may include both

high and low bits, and those bits may represent anything

from executable code, to initial memory states, to the start

states for various microarchitectural state machines.

The attacker is assumed to have complete control over

(1) all low inputs to the device; and (2) all of the bits in the

initial state labeled as low. The first assumption models an

3 Noninterference is perhaps too strong a property for general purpose sys-

tems, but is useful both in the context of crypto systems and safety critical

designs and matches closely with the existing design goals expressed by

both Intel [7] and ARM [6].

active attacker. The second assumption models any way in

which an attacker might take advantage of access to low data

used by the system, including but not limited to malicious

or compromised software running on the system. We do

not assign intent to the hardware; it simply transforms the

state of the system as directed by the hardware design and

(after our modifications) subject to the security policy. We

assume that hardware is fabricated as specified by our tools,

and we do not attempt to address the trusted fabrication

problem [5, 13, 35, 36], although we do not assume that the

hardware has been designed correctly or securely.

Using Sapper, we create hardware that ensures the data

flowing to any output port conforms to the information flow

policy specified by a security lattice given at design time,

e.g., that no untrusted information contaminates a trusted

port, and no secret information leaks to a non-secret port.

This threat model includes both explicit and implicit infor-

mation flows, timing and storage channels, and any other

digital form of information flow, but does not include the

use of physical or analog phenomena such as EM emission,

temperature, or power draw. A system is said to be strictly

enforcing a policy if it can be shown that the policy can never

be violated regardless of the actions of the attacker subject

to this model.

2.2 Related Work

Denning and Denning are one of the first to show how

programming language techniques and static analysis can

be used to enforce information flow policies [10]. This

approach was later formalized by Volpano [34] and sub-

sequently implemented as various language extensions [20,

27]. A more comprehensive study of programming language

techniques related to information flow security can be found

in the survey by Sabelfeld and Myers [25].

While language level techniques provide strong guaran-

tees inside application implementations, security enforce-

ment between applications relies on an underlying operating

system. Here too there are many related approaches [14, 16,

17, 24, 28, 39]. Security mechanisms at the OS level cannot

provide full hardware/software system security guarantees

in the face of adversaries that take advantage of information

leakage in the underlying hardware implementation, such

as through caches [23] and branch predictors [4]. Specific

secure hardware component designs have been proposed to

defend against existing covert channel attacks [32, 37, 38].

More systematic approaches have also been proposed to con-

trol hardware timing channels through software/hardware

contracts [40], quantitative measurements [9], or fuzzing

mechanisms [19]. Designing a hardware Trusted Comput-

ing Base (TCB) with minimum complexity while provid-

ing strong security guarantees is also an active research

area [22, 33, 41].

Towards this end, various approaches have been pro-

posed in previous work towards analyzing and enforcing

information flow security in hardware designs, including

Gate Level Information Flow Tracking (GLIFT) [31] (and

its extension Star Logic [30]) and Caisson [18]. While these

past approaches represent a first generation of secure hard-

ware design languages, both the expressiveness of those lan-

guages (the class of hardware systems that could be shown

to be secure) and the efficiency of their implementations

(the amount of extra logic required to perform checks) can

be prohibitively poor.

GLIFT tracks every single bit of information in the sys-

tem through each logic gate. Every bit in the system is

associated with a shadow bit to represent its security label,

and for every logic gate, a shadow logic circuit is used

to calculate the output’s security level. The values of the

gate’s inputs are used to achieve precise tracking, e.g. when

a low input of an AND gate is known to be 0, the out-

put should be labeled as low even the other input can be

high. This feature is extremely important for implementing

a practical system in which trusted and untrusted compo-

nents can be securely multiplexed [29]. Despite GLIFT’s

pure dynamic nature, the tracking technique is guaranteed

to be complete, i.e. it covers both implicit flows and tim-

ing channels, since all forms of information flow become

explicit at the gate level. Note that GLIFT itself does not

provide any enforcement mechanism, but rather works as

a foundation for information flow tracking. Later work on

Execution Leases [29] builds upon GLIFT and enforces non-

interference (by construction) through memory and timing

boundaries. To reduce the substantial overhead of GLIFT,

the authors reworked their method as a static analysis in the

form of Star Logic [30]. As a verification tool, Star Logic

takes a given hardware design, augments it with GLIFT

tracking logic, loads a given piece of trusted computing base

(e.g., the system kernel) and uses abstract interpretation to

explore the execution space and detect potential violations.

The tracking logic is removed from the final design before

fabrication. It is important to see that Star Logic does not

provide assistance to or early feedback for hardware design-

ers attempting to create secure hardware; instead it allows

for the after-the-fact static verification of a coordinated pro-

cessor and kernel design, which is not the same problem that

Sapper is solving. Hence throughout this work, references to

GLIFT are regarding the dynamic tracking technique origi-

nally shown by Tiwari et al. [29, 31] and not with reference

to Star Logic.

Caisson is another attempt to use programming language

techniques to enable secure hardware design [18]. Caisson

takes techniques from information flow security type sys-

tems at the programming language level and applies them

at the hardware level. The Caisson language syntax is very

similar to that of Sapper, and in fact Sapper borrows the con-

cept of nested states from Caisson. However, since Caisson

uses a purely static type system, all registers must be dupli-

cated for different security levels and multiplexers are used

to choose the corresponding register based on the current

security context. The advantage of this approach is that (1)

there is no runtime overhead due to the storage or manip-

ulation of labels as labels are never tracked during execu-

tion; and (2) the programmer need never worry about the

effects of a security violation because, by construction, there

can never be one. It does come with two big problems how-

ever: (1) statically typing everything requires that resources

be hard-partitioned or even duplicated, and then multiplexed

at runtime, resulting in large area overheads; and (2) there is

no way for the system to ever examine, react to, or affect the

flow of program metadata (a.k.a. labels). Labels are strictly

a concept used for analysis, and have no physical manifesta-

tion in the final design.

3. The Sapper Language

We propose Sapper, a hardware description language that

enforces noninterference security policies through statically-

inserted logic for dynamic tracking and enforcement. Instead

of enforcing security policies completely statically via a type

system as in our previous work [18], Sapper dynamically

tracks security tags runtime, increasing the expressiveness

and decreasing the overhead required for security. Impor-

tantly, designers do not need to manually insert dynamic

tracking or enforcement logic. Instead, the Sapper com-

piler automatically does so in a provably sound manner. The

tracking and enforcement logic is generated based on static

analysis of Sapper programs to cover explicit, implicit, and

timing based information flows.

Furthermore, Sapper (unlike any prior formally sound

hardware approach) enables hardware systems to be aware

of, and react to, the security tags of the data that they oper-

ate upon. Hardware designers have complete freedom to

choose how the system responds to runtime security viola-

tions. Despite this flexibility, Sapper does all of this in a way

that allows the security properties of the system to be stati-

cally verified by the Sapper compiler.

3.1 Language Overview

Sapper extends upon a core subset of Verilog and requires

minimal changes to existing Verilog source code. A typical

Verilog program consists of three parts: signal declarations

that define registers and wires, a synchronous block, and a

combinational logic block. We refer registers here as flip-

flops that store data, and wires as communication channels

between flip-flops and logic gates. The synchronous block

is responsible for writing data back to flip-flops (i.e. regis-

ters) at clock edges. The combinational logic block contains

computation that will always be executed within one clock

cycle. Commands in combinational logic block are simi-

lar to those in software programming languages, including

assignments, branches and switch/cases. Although in prac-

tice hardware designs can be more complicated, most of

them can be reduced to such a simple model. In order to

make hardware designs less ambiguous, Sapper simplifies

r ✷ ❘❡❣✐st❡� ♥ ✷ ❩ ✟ ✷ ❖♣❡�❛t♦�

✁ ✷ ❙❡❝✉�✐t②▲❛❜❡❧ ❵ ✷ P�♦❣�❛♠▲❛❜❡❧

♣�♦❣ ✷ P�♦❣ ✿✿❂ ✂✄☎✆ ❵ ❂ ⑦r❀⑦✝ ✞✠ ❞

❞ ✷ ❉❡❢ ✿✿❂ ✡☛☞ ⑦✌ ✞✠ ✍ ❥ ✍

✌ ✷ ❙t❛t❡ ✿✿❂ ✎☞✏☞☛ ❵ ❂ ❞

✑ ✷ ❊①♣ ✿✿❂ ♥ ❥ r ❥ ✝❬✑❪ ❥ ✑ ✟ ✑

✝ ✷ ❘❡❣✐st❡�❆��❛② ✿✿❂ ♥ ✼✒ r

✁✑ ✷ ❚❛❣❊①♣ ✿✿❂ ✁ ❥ ☞✏✆✭✓✮

✓ ✷ ❚❛❣❣❡✔❊✕t✐t② ✿✿❂ r ❥ ❵ ❥ ✝❬✑❪

✍ ✷ ❈♠✔ ✿✿❂ ✎❦✞✂ ❥ ✖ ✿❂ ✑ ❥ ✍ ✗ ✍ ❥ ✘✏✡✡✙

❥ ✆☎☞☎✙✶ ❵✚ ❥ ✎☛☞✛✏✆✭✓❀ ✁✑✮

❥ ✞✘✙ ✑ ☞❤☛✠ ✍ ☛✡✎☛ ✍✗ ☛✠✜✞✘

❥ ✍ ☎☞❤☛✄✇✞✎☛ ✍

✢ ✷ P✣�❛s❡ ✿✿❂ ♣�♦❣ ❥ ❞ ❥ ✌ ❥ ✑ ❥ ✍

Figure 1: Abstract Syntax of Sapper

the syntax by having designers to only write a single combi-

national logic block. All writes to regsiters will be automati-

cally compiled into a synchronous block by the Sapper com-

piler, while computation will remain in the combinational

logic block.

Figure 1 describes the abstract syntax of Sapper. We have

chosen the core subset such that all the interesting features

of the full language are covered. Other language clauses are

omitted either because their formal properties are trivial to

reason about (e.g., unary operations such as ∼x) or they can

be expressed equivalently using the syntax discussed in this

section (e.g., case/switch).

In the rest of the section, we start with a list of basic defi-

nitions and assumptions; then describe how Sapper imple-

ments tracking and checking of security tags; how state

machines are an integral Sapper abstraction for precise track-

ing and enforcement; and finally how Sapper enables run-

time security tag manipulation and how Sapper enables con-

figurable yet secure reactions to runtime security violations.

The formal semantics of Sapper will be presented in the end

of the setion.

3.2 Definitions and Assumptions

We define some terms used in the remainder of the section:

• Variables: We refer to the set of registers, wires, inputs

and outputs in the hardware design as variables.

• Join: Given a security lattice, the operation ⊔ takes

two security levels as operands and calculates their least

upper bound in the lattice, e.g., high ⊔ low = high

• Security Context: The security context of a statement in

a Sapper program is informally defined as the maximum

security level among all implicit information flowing

into that statement. Sapper models the hardware design

as a state machine, and the system can only be in one

state at any given cycle. Hence the security context of

1:����state�S�=�{

2: if (a == 0) then {
SC2 =�S.tag2:��������if�(�a� �0�)�then�{

3:������������if�(�b�==�0�)�then�

4:�������������������x�:=�0;������������

5:������������y�:=�0;

SC3 =�SC5 =�join(S.tag,�a.tag)

SC j i (S b)
y ;

6:��������}

7:����}

SC4 =�join(S.tag,�a.tag,�b.tag)

(a) (b)

Figure 2: Example showing how to compute security context.

any statement is determined by the security context of

the current state as well as any conditionals guarding the

statement. The default security context of any statement

inside a state is the same as the security context of the

state itself. The security context of a statement inside

a branch is calculated by taking the join of the default

security context and the security level of the branch

condition. Figure 2 illustrates how the security context

is determined.

We assume that the security tags of data are public infor-

mation, i.e., that only knowing the security level of data

(but not the data’s value) will not leak any information. This

assumption is commonly used in previous work for enforc-

ing information flow security. Without this assumption, the

system would not be able to react to any runtime security

violations, and hence could not enforce the security policy.

It is important to note that, Sapper does ensure that security

tags cannot be changed based upon data’s value in a way

that might violate security policies. More details are given

in Section 3.5.

We further assume that the set of security tags are based

on a statically-known (i.e., defined at design time) security

lattice of arbitrary but finite size. Extending Sapper with

dynamically-defined lattices rather than using a statically-

known lattice would allow different processes in a system

to define their own lattices for the hardware to enforce.

This can be done through efficient protocols to encode and

decode security policies in the hardware. The Raksha archi-

tecture proposed by Dalton et al. [8] demonstrates one way

to achieve this. Supporting programmable lattices in Sapper

is left to future work.

3.3 Security Tags

Variables (i.e., signals, wires, etc.) in Sapper are associated

with security tags that are tracked and checked for secu-

rity policy violations at runtime. Checking every data move-

ment in hardware for violations of noninterference would be

extremely expensive, both in terms of additional hardware

and performance overhead. We observe that in most hard-

ware designs only certain outputs are exposed and observ-

able by software/programmers, and thus only these outputs

require strict enforcement. Many variables, such as internal

pipeline registers and wires used to hold intermediate results,

are only used for temporary storage and are not directly

observable. These non-observable variables only require

security tags to be tracked dynamically so that their secu-

rity level is correctly reflected at runtime; no enforcement is

required. As such, Sapper allows designers to declare data

variables as one of the following two categories: Enforced

Tagged variables of which information flow will always be

checked for non-interference, and Dynamic Tagged vari-

ables whose security tags will be automatically tracked and

propagated at runtime. By default, a variable declared in

Sapper is dynamic tagged. Designers can explciitly declare

a enforced tagged variable by giving it a initial security type.

This dichotomy requires designers to make decisions on

what data should be tracked versus enforced, but it is often

an easy decision to make since typical architectures only

consist of a small portion of components exposed to users or

central to data movement. In many architectures, selecting

enforced tags for all the bus output ports, the memory and

the cache will be sufficient. Note that as long as the I/O

ports are enforced, not enforcing policies on some of the

other components does not lead to unsoundness, but rather

makes the system less precise and thus potentially harder

to use. The Sapper compiler is responsible for generating

dynamic tracking logic and inserting dynamic checks for

enforcement depending on the tag of the target variable.

Below we describe the details of tracking and enforcement.

3.3.1 Tracking Tags

Assignments to dynamic tagged variables will trigger the

propagation of security tags: the maximum security level

over all information that may affect the assigned value

(directly or indirectly) shall be propagated to the target vari-

able’s tag (rule ASSIGN-DYN-REG in Figure 6(a)). Without

careful consideration, simply tracking information at a fine

granularity can lead to significant overhead, as in previous

work. In general, tracking overhead consists of two parts:

extra hardware bits needed to store security labels and extra

hardware logic needed to perform tag propagations. Sapper

aims at achieving the flexibility of dynamic tracking with

minimum overhead. Instead of generating tracking logic

for every single logic gate as in some previous work [31],

Sapper takes advantage of static analysis on the HDL code

and inserts tracking logic aggregately at the granularity of

expressions and code blocks. Potential implicit flows (i.e.,

information flows arising from conditionals) are also derived

by the compiler, which inserts logic to ensure sound secu-

rity tag propagation. Purely dynamic tracking cannot handle

implicit flows, and thus the static analysis is required to

make this possible.

Sapper also uses simple logic to compute security levels:

the security level of the output is the least upper bound of

the security levels of the inputs. Sapper tracks security labels

and tags data appropriately at the register level; 4 each vari-

able has an n-bit tag independent of that variable’s width,

4 Note that we do not mean only architectural registers here (like %eax),

we mean register-transfer-level registers, which is any set of bits used as a

group in the hardware description language.

where n depends on the size of the security lattice. The cache

and main memory are each treated as a continuous array of

m-bit registers (where m is the width of the hardware being

designed), with a n-bit label for each m bits.

In theory, Sapper may be less precise (but still sound)

compared to bit- and gate-level tracking due to the coarser

tracking granularity and relaxed tag propagation. However

we observe that the major purpose of using precise fine-

grained tracking in previous work is to avoid label creep5 and

allow a secure switch from a high to low security context.

In the next section we will describe how the “nested states”

feature we use in Sapper provides exactly what is needed

to satisfy this requirement. In fact, there is nothing that

prohibits bit-level tracking in Sapper, but we believe this is

not necessary because the state transforms can be expressed

in the language itself rather than needing to be inferred

from the generated logic. Hence Sapper achieves sufficient

precision for security enforcement with significantly less

overhead while retaining a high degree of flexibility.

3.3.2 Enforcing Policy

Any assignment to a variable with enforced tags needs

to be checked for noninterference and violations must be

dealt with in a secure way (rule ASSIGN-ENF-REG in Fig-

ure 6(a)). Specifically, the security level of the target variable

must be higher than or equal to the maximum security level

of information that may affect the assigned value. The neces-

sary enforcement conditions will be derived by the compiler

and the security checks will be automatically inserted into

the resulting logic. Therefore, these assignments will take

effect only when they are guaranteed to be secure. Sapper

also provides flexibility for designers to specify how the

system should handle violations, which will be described

in Section 3.6. Figure 3 shows the generated Verilog code

for an 8-bit-and design written in Sapper. There are two

different cases shown in the figure, one with enforcement

(CHECK) while another with tracking (TRACK) only. Note

that both the tracking and enforcement logic are automat-

ically generated by the compiler and there is no need for

designers to manually specify anything except the initial

enforced tags.

3.4 A State Machine-based Language

Timing in synchronous hardware designs is strictly aligned

to clock edges; for example, registers are only updated at

clock edges. To capture the notion of hardware timing, the

Sapper language explicitly models hardware designs as state

machines. During a clock cycle the hardware can only be in

one of the state machine’s logical states,6 and all of the pro-

gram logic from that state will be executed within that clock

5 Label creep happens when a large portion of the system has to be conser-

vatively marked as tainted due to inability of a more precise analysis
6 In the following discussion, state will always mean a state of the finite

state machine specified by a Sapper program.

reg[7:0] a : L,
reg[7:0] a,b,c;

reg a tag b tag c tag;

Sapper Verilog

CHECK
reg[7:0] b, c;

a <= b & c;

reg a_tag,b_tag,c_tag;

if (a_tag>=(b_tag|c_tag))

a <= b & c;

[] b

CHECK

reg[7:0] a,b,c;

reg a_tag,b_tag,c_tag;

a <= b & c;

a tag <= b tag | c tag;

TRACK reg[7:0] a, b, c;

a <= b & c;

_ g _ g | _ g;

Figure 3: An 8-bit adder written in Sapper along with the generated

Verilog code. There are two cases: in the first case register a is

enforced tagged hence the assignment needs to be checked for

noninterference; in the second case a is dynamic tagged hence only

tracking is needed.

cycle. State transitions (indicated by goto in the Sapper pro-

gram) always take effect at clock edges. Another important

motivation behind modeling hardware as state machines is

that state machines are a common pattern used by hardware

designers, and most hardware designs are already written as

or can be easily transformed to state machines.

Because state transitions can be conditional, they open up

the possibility of implicit leaks, i.e., information flow due

to conditional execution. Therefore states must also have

security tags, and these tags must be correctly propagated

or checked during state transitions just like tags for vari-

able. In the same manner as variables, states can be declared

with enforced or dynamic tags. The security level of states

with dynamic tags will be tracked dynamically at runtime,

while states with enforced tags will be enforced for nonin-

terference and their security level will not change unless it

is explicitly modified. An immediate advantage of Sapper is

that a single dynamic tagged state can safely act at differ-

ent security levels at runtime, and hence that state can be

reused between different security levels instead of requiring

the design to duplicate states in order to have one per secu-

rity level.

To properly enforce noninterference in the presence of

conditional execution, a transition from some state A to

some state B should only occur if A’s tag is lower than B’s

tag. In the case of a state machine diagram that is strongly

connected (i.e., every state can reach every other state), the

existence of any high state will eventually require all states

to be high. This problem is known as label creep. Sapper

uses the concept of nested states proposed in Caisson [18]

to solve this problem. States can be organized hierarchically

as a tree structure. Within each clock cycle, before executing

the logic of some state S, the logic of S’s parent state must

be executed first; this rule is recursively applied until the

root of the tree. To give parent states complete control over

the execution of child states, fall commands are used to

explicitly indicate transfer of control from the parent state

to the child state. By having parent states with low security

levels and child states with high security levels, low states

have the freedom to decide when to terminate high states

without violating security.

Figure 4 shows an example of a state machine diagram

for a secure hardware design based on TDMA (Time Divi-

sion Multiple Access), which is a common design pattern

used by secure systems. A trusted timer (low) is used to

control the execution of untrusted components. In particular,

the Master state (trusted, labeled with low, enforced tagged)

sets up a timer and transits to the Slave state (also trusted,

low), which falls into its child state (potentially untrusted,

dynamic tagged) and executes the computation logic. At the

beginning of every cycle, the Slave State is always executed

first and the timer is checked. If the timer expires then con-

trol will transfer back to the Master State. The security level

of the child state (i.e., Pipeline State in the diagram) can be

either high or low at runtime depending on the data it is deal-

ing with at the time. No matter what level it is, it will never

affect the behavior of the parent states, thus enforcing non-

interference. The corresponding implementation in Sapper is

also shown on the side. When the code is compiled down to

Verilog, tracking and checking logic will be generated based

on the Sapper formal semantics. Although the runtime secu-

rity level of the Pipeline State is dynamically changing, the

generated checking logic will guarantee that the Master State

is always trusted.

To ensure that state transitions and falls are securely per-

formed, Sapper provides the following rules for goto com-

mands and fall commands:

• goto to enforced tagged state (GOTO-ENFORCED):

For a state transition goto S in which S is a enforced

tagged state, it is required that the security context of

the goto command be lower than the security level of S,

otherwise information can leak implicitly.

• goto to dynamic tagged state (GOTO-DYNAMIC): For a

state transition goto S in which S is a dynamic tagged

state, no enforcement is required. Instead, the security

tag of the target state S will be updated to the security

context of the goto command. Furthermore, if a goto

command is guarded by conditionals (i.e., the system can

transit to different states based on the value of condi-

tions), implicit flows exist from the current state to all

reachable states via the conditional goto commands. To

precisely capture such implicit flows statically, the secu-

rity tags of all dynamic registers that are assigned in all

goto-reachable states need to be updated to the security

context of the goto. This rule is the major cause of label

creep in most designs, and Sapper provides nested states

to contain states with higher security level in the child

group, leaving parent states unaffected by the gotos from

child states.

• fall to enforced tagged state (FALL-ENFORCED): fall

to a enforced tagged state has the same rule as goto to a

enforced tagged state.

Root

reg[31:0] timer : L;

state Master:L = {
timer = 100;
goto Slave;

Master Slave

goto Slave;
}

state Slave:L = {
let state pipeline = {

// Pipeline logic

Pi li

// Pipeline logic
goto pipeline;

}
in

if (timer == 0) begin
t M tPipeline gotoMaster;

end else begin
timer <= timer - 1;
fall;

end
}

Figure 4: State Machine Diagram example of a secure hardware

controller, along with its corresponding implementation in Sapper.

Noninterference is achieved by having a trusted timer controlling

the behavior of the computation logic.

• fall to dynamic tagged state (FALL-DYNAMIC): When

there is a fall from a state A to its child state B, the secu-

rity tag of B will be updated to the join of the context

of the fall and the current security level of B. The rea-

son we need to take the current security level of B into

consideration is as follows: when we have a goto from

one state to another, their ancestor states will be executed

first along with a series of fall commands. Hence before a

fall to state B, there can exist a goto B which will update

B’s security level to be the context of the goto.

3.5 Manipulating Tags

One important advantage of Sapper compared to purely

static mechanisms is that security labels can be read, reacted

upon, and updated at runtime. As we have defined earlier, the

security level of enforced tagged registers will not change

until they are explicitly modified through the language pro-

vided interface. This feature can be used by system kernels

to efficiently and securely share memory among different

security levels (e.g., the kernel can allocate memory to a

high process, then reclaim it, reset the memory’s tag to low,

and allocate it to a low process). Although we allow secu-

rity tags to be modified explicitly, they cannot be modified

arbitrarily, otherwise information can be leaked. Sapper pro-

vides a pre-defined command setTag to allow modification

of the security tags of enforced tagged variables and states.

Sapper language rules will ensure that no information can be

leaked by using this command: (1) the security level of any

data can only be changed under a context whose level is not

higher than the data’s (e.g., low data cannot be hoisted under

a high context), thus no information can flow from high to

low by manipulating tags; and (2) when data is downgraded

(e.g., changed from high to low) the data is automatically

zeroed instantly to avoid leakage. The logic for checking,

changing the tag, and zeroing the data is generated by the

Sapper compiler. The formal semantics of this instruction is

provided in Figure 6(a) (SET-REG-TAG). Explicit declassi-

fication is not supported as Sapper is currently targeted to

information-theoretic rather than cryptographic notions of

security. Declassification can be added and is certainly use-

ful in many cases (e.g. a crypto unit). It will be a simple

relaxation of our existing mechanism for modifying security

levels. Of course one must be careful how declassification is

allowed; but these mechanisms have been extensively stud-

ied in the literature [21, 26].

3.6 Handling Security Violations

As previously described, the Sapper compiler will insert

checking logic in the appropriate locations in the design to

detect all security policy violations. The natural question,

then, is how should the system react if the runtime check

does not pass, i.e., the security policy is about to be vio-

lated. To handle this situation, the Sapper compiler inserts

alternative actions that are executed instead of any violating

operation. For each enforced operation, Sapper has a default

replacement action that is guaranteed to be secure. These

default actions are inserted into the generated Verilog code

in the form of branches as shown in Figure 5(a). For exam-

ple, a default secure action can turn a violating assignment

into a noop, or turn a violating state transition into a different

transition to a secure state.

To give hardware designers full flexibility to decide how

to react to runtime security violations, Sapper provides a

language interface for specifying the replacement behavior

when violation is about to happen. The syntax is shown in

Figure 5(b), which specifies that if there exists any secu-

rity violation in command, secure action will be executed

in replace of command. The above code will also be trans-

formed into a branch by the Sapper compiler as shown in the

figure.

Note that command will never be speculatively executed,

instead, only one of secure action and command will be exe-

cuted depending on the value of the generated condition.

These otherwise rules can be defined recursively, mean-

ing that the action in the otherwise branch can itself have

potential violations or even another otherwise clause. These

nested otherwise clauses are terminated by the default, guar-

anteed safe action; thus all commands in the program are

guaranteed to be secure even if designers provide buggy

otherwise clauses. figure 5(c) shows an example when the

provided action is also a command that requires runtime

enforcement.

3.7 Formal Semantics of Sapper

Figure 6(a) provides the formal semantics for Sapper. The

semantic domains and evaluation context grammar used in

these semantic rules are provided in Figure 6(d). The seman-

tics in Figure 6(a) also makes use of big-step semantic

relations for expressions (given by ⇓e, which are standard

and omitted) and big-step semantic rules for tag expres-

sions provided in Figure 6(b). The definition of φ, which is

used in the semantic rules, is provided in Figure 6(c). The

abstract machine configuration (provided in Figure 6(d)) for

command

if (derived condition)

command;;

else

default action;(a)

command otherwise secure action

if (derived condition)

command;

lelse

secure action;(b)

command 1 otherwise command 2

if (derived condition 1)

command_1;

else if (derived condition 2)command_1 otherwise command_2 else if (derived condition 2)

command_2;

else

d f lt tidefault action;
(c)

Figure 5: Violation handling logic generated by our Sapper com-

piler: (a) any command that requires enforcement will be guarded

by conditions that enforce noninterference. These conditions are

generated by static analysis on the context of the command. If the

conditions fail, a secure default action (provided by the compiler)

will be executed instead; (b) designers can also specify replace-

ment actions of their own, using the otherwise clause; (c) When the

designer-provided action also requires enforcement, our compiler

will generate conditions and default secure actions recursively.

the semantic rules in Figure 6(a) consists of (1) the current

program phrase p, (2) a fall map ρ, (3) a store σ, (4) a tag

map θ, (5) a security context stack S , and (6) current time

value δ.

We define the following mappings for each ℓ ∈ ProgramLabel

that are used in the semantic rules:

• if ℓ refers to a state name, Fpnt(ℓ) maps to the label of

state ℓ’s parent state.

• if ℓ refers to a state name, Fcmd(ℓ) maps to state ℓ’s
command.

• If ℓ is a label attached to an if statement, then Fcd(ℓ)
maps to the set of all the registers that are targets of

assignments control-dependent on the if statement, union

with the set of all dynamic states whose reachability (via

goto or fall) is control dependent on the if statement.

In addition, Froot maps to the root command of the prog

program phrase. Finally, we also define the following two

helper functions:

• ResetFallMap takes a FallMap ρ and a state label ℓ and

returns a new FallMap ρ′ identical to ρ except that label ℓ
and the labels of all states that are descendents of ℓ in the

state hierarchy are mapped to their default child states

(the same as their initial values).

• ResetTagMap takes a TagMap θ and a state label ℓ
and returns a new TagMap θ′ identical to θ except

that (1) labels of all dynamic states that are descen-

dents of ℓ in the state hierarchy are mapped to ⊥ (2)

if isDynamicState(ℓ), ℓ is mapped to ⊥.

A proof of non-interference is given in Appendix A.

✐s❊♥❢♦r❝❡❞❘❡❣✐st❡r✭�✮ ❤✁❀ ✛✂ ✰✄ ☎

✛✵ ❂

✆

✛❬� ✼✝ ☎❪ ✿ ✒✭�✮ ✇ ✣✭✁✮ ✞ ✟✠

✛ ✿ ✡☛☞✁�✌✍✟✁

❤✎❬� ✿❂ ✁❪❀ ✚❀ ✛❀ ✒❀ ❙❀ ✏✂ ✥ ❤✎❬✑❦✓✔❪❀ ✚❀ ✛✵❀ ✒❀ ❙❀ ✏✂

✕❆✖✖■●◆✲✗◆❋✲✘✗●✙

✜✐s❊♥❢♦r❝❡❞❘❡❣✐st❡r✭�✮ ❤✁❀ ✛✂ ✰✄ ☎

❤✎❬� ✿❂ ✁❪❀ ✚❀ ✛❀ ✒❀ ❙❀ ✏✂ ✥

❤✎❬✑❦✓✔❪❀ ✚❀ ✛❬� ✼✝ ☎❪❀ ✒❬� ✼✝ ✣✭✁✮ ✞ ✟✠❪❀ ❙❀ ✏✂

✕❆✖✖■●◆✲❉❨◆✲✘✗●✙

❤✁✶❀ ✛✂ ✰✄ ☎✶ ❤✁✷❀ ✛✂ ✰✄ ☎✷

❛✭☎✶✮ ❂ � ✐s❊♥❢♦r❝❡❞❘❡❣✐st❡r✭�✮

✛✵ ❂

✆

✛❬� ✼✝ ☎✷❪ ✿ ✒✭�✮ ✇ ✣✭✁✶✮ ✞ ✣✭✁✷✮ ✞ ✟✠

✛ ✿ ✡☛☞✁�✌✍✟✁

❤✎❬❛❬✁✶❪ ✿❂ ✁✷❪❀ ✚❀ ✛❀ ✒❀ ❙❀ ✏✂ ✥ ❤✎❬✑❦✓✔❪❀ ✚❀ ✛
✵❀ ✒❀ ❙❀ ✏✂

✕❆✖✖■●◆✲✗◆❋✲✘✗●✲❆✘✘✙

❤✁✶❀ ✛✂ ✰✄ ☎✶ ❤✁✷❀ ✛✂ ✰✄ ☎✷

❛✭☎✶✮ ❂ � ✜✐s❊♥❢♦r❝❡❞❘❡❣✐st❡r✭�✮

✒✶ ❂ ✒❬� ✼✝ ✣✭✁✶✮ ✞ ✣✭✁✷✮ ✞ ✟✠❪

❤✎❬❛❬✁✶❪ ✿❂ ✁✷❪❀ ✚❀ ✛❀ ✒❀ ❙❀ ✏✂ ✥

❤✎❬✑❦✓✔❪❀ ✚❀ ✛❬� ✼✝ ☎✷❪❀ ✒✶❀ ❙❀ ✏✂

✕❆✖✖■●◆✲❉❨◆✲✘✗●✲❆✘✘✙

❤✁❀ ✛✂ ✰✄ ☎ ✠✵ ❂

✆

✠✶ ✿ ☎ ❂ ✢

✠✷ ✿ ☎ ✻❂ ✢

✒✵ ❂ ✒❬✽①✤① ✦ ✧★✩✭❵✮ ✿ ① ✼✝ ✒✭①✮ ✞ ✣✭✁✮ ✞ ✟✠❪

❤✎❬✓✪✫ ✁ ✬✯✱✳ ✠✶ ✱❧✑✱ ✠✷✴ ✱✳✸✓✪❪❀ ✚❀ ✛❀ ✒❀ ❙❀ ✏✂ ✥

❤✎❬✠✵✴ ✱✳✸✓✪❪❀ ✚❀ ✛❀ ✒✵❀ ✭✣✭✁✮ ✞ ✟✠✮ ✿✿❙❀ ✏✂

✕■❋✙

❤✎❬✑❦✓✔✴ ✱✳✸✓✪❪❀ ✚❀ ✛❀ ✒❀ ❙❀ ✏✂ ✥

❤✎❬✑❦✓✔❪❀ ✚❀ ✛❀ ✒❀ ✹❀ ✏✂
✕✗◆❉■❋✙

❤☛✁❀ ✒❀ ✛✂ ✰✺ ☛

✒✵ ❂

✆

✒❬� ✼✝ ☛❪ ✿ ✒✭�✮ ✇ ✟✠ ❫ ☛ ✇ ✟✠

✒ ✿ ✡☛☞✁�✌✍✟✁

✛✵ ❂

✆

✛❬� ✼✝ ✢❪ ✿ ✒✭�✮ ✾ ☛ ❫ ☛ ✇ ✟✠

✛ ✿ ✡☛☞✁�✌✍✟✁

❤✎❬✑✱✬❚❁❃✭�❀ ☛✁✮❪❀ ✚❀ ✛❀ ✒❀ ❙❀ ✏✂ ✥ ❤✎❬✑❦✓✔❪❀ ✚❀ ✛✵❀ ✒✵❀ ❙❀ ✏✂

✕✖✗❄✲✘✗●✲❄❆●✙

❤☛✁❀ ✒❀ ✛✂ ✰✺ ☛

✒✵ ❂

✆

✒❬❅ ✼✝ ☛❪ ✿ ✒✭❵✮ ✇ ✟✠ ❫ ☛ ✇ ✟✠

✒ ✿ ✡☛☞✁�✌✍✟✁

❤✎❬✑✱✬❚❁❃✭❵❀ ☛✁✮❪❀ ✚❀ ✛❀ ✒❀ ❙❀ ✏✂ ✥ ❤✎❬✑❦✓✔❪❀ ✚❀ ✛❀ ✒✵❀ ❙❀ ✏✂

✕✖✗❄✲✖❄❆❄✗✲❄❆●✙

❤☛✁❀ ✒❀ ✛✂ ✰✺ ☛ ❤✁❀ ✛✂ ✰✄ ☎ ❛✭☎✮ ❂ �

✒✵ ❂

✆

✒❬� ✼✝ ☛❪ ✿ ✒✭�✮ ✇ ✟✠ ❫ ☛ ✇ ✟✠ ✞ ✣✭✁✮

✒ ✿ ✡☛☞✁�✌✍✟✁

✛✵ ❂

✆

✛❬� ✼✝ ✢❪ ✿ ✒✭�✮ ✾ ☛ ❫ ☛ ✇ ✟✠ ✞ ✣✭✁✮

✛ ✿ ✡☛☞✁�✌✍✟✁

❤✎❬✑✱✬❚❁❃✭❛❬✁❪❀ ☛✁✮❪❀ ✚❀ ✛❀ ✒❀ ❙❀ ✏✂ ✥ ❤✎❬✑❦✓✔❪❀ ✚❀ ✛✵❀ ✒✵❀ ❙❀ ✏✂

✕✖✗❄✲✘✗●✲❆✘✘✲❄❆●✙

❤✎❬✑❦✓✔ ✴ ✠❪❀ ✚❀ ✛❀ ✒❀ ❙❀ ✏✂ ✥ ❤✎❬✠❪❀ ✚❀ ✛❀ ✒❀ ❙❀ ✏✂ ✕✖✗◗✙

✐s❊♥❢♦r❝❡❞❇t❈t❡✭❵✮ ♣✵ ❂

✆

✧★❍✩✭❵
✵
✮ ✿ ✒✭❵

✵
✮ ✇ ✟✠

✎❬❃❏✬❏✫ ❵❪ ✿ ✡☛☞✁�✌✍✟✁

❵
✵ ❂ ✚✭❵✮ ❙✵ ❂

✆

✒✭❵
✵
✮ ✿✿❑✐▲ ✿ ✒✭❵

✵
✮ ✇ ✟✠

❙ ✿ ✡☛☞✁�✌✍✟✁

❤✎❬✪❁❧❧✫❪❀ ✚❀ ✛❀ ✒❀ ❙❀ ✏✂ ✥ ❤♣
✵
❀ ✚❀ ✛❀ ✒❀ ✒✭❵✮ ✿✿❑✐▲❀ ✏✂

✕❋❆▼▼✲✗◆❋❖✘P✗❉✙

✐s❯②♥❈♠✐❝❇t❈t❡✭❵✮ ✒✵ ❂ ✒❬❵✵ ✼✝ ✟✠ ✞ ✒✭❵✵✮❪

❙✵ ❂ ✒✵✭❵✵✮ ✿✿❑✐▲ ❵✵ ❂ ✚✭❵✮

❤✎❬✪❁❧❧✫❪❀ ✚❀ ✛❀ ✒❀ ❙❀ ✏✂ ✥ ❤✧★❍✩✭✚✭❵✮✮❀ ✚❀ ✛❀ ✒
✵❀ ❙✵❀ ✏✂

✕❋❆▼▼✲❉❨◆❆❱■P✙

✐s❊♥❢♦r❝❡❞❇t❈t❡✭❵✷✮ ❵ ❂

✆

❵✷ ✿ ✒✭❵✷✮ ✇ ✟✠

❵✶ ✿ ✡☛☞✁�✌✍✟✁

✚✶ ❂ ❘❡s❡t❲❈▲▲❳❈❩✭✚❀ ❵✮ ✚✷ ❂ ✚✶❬✧❭❴❜✭❵✮ ✼✝ ❅❪

❙✵ ❂ ✒✭✧❥qq❜✮ ✿✿❑✐▲

❤✎❬❃❏✬❏✫✉ ❵✷❪❀ ✚❀ ✛❀ ✒❀ ❙❀ ✏✂ ✥ ❤✧❥qq❜❀ ✚✷❀ ✛❀ ✒❀ ❙
✵❀ ✏✈③✂

✕●❖❄❖✲✗◆❋❖✘P✗❉✙

✚✶ ❂ ❘❡s❡t❲❈▲▲❳❈❩✭✚❀ ❵✷✮ ✚✷ ❂ ✚✶❬✧❭❴❜✭❵✷✮ ✼✝ ❵✷❪

✐s❯②♥❈♠✐❝❇t❈t❡✭❵✷✮ ❙✵ ❂ ✒✷✭✧❥qq❜✮ ✿✿❑✐▲

✒✶ ❂ ✒❬❵✷ ✼✝ ✟✠❪ ✒✷ ❂ ❘❡s❡t④❈❣❳❈❩✭✒✶❀ ❵✶✮

❤✎❬❃❏✬❏✫✉ ❵✷❪❀ ✚❀ ✛❀ ✒❀ ❙❀ ✏✂ ✥ ❤✧❥qq❜❀ ✚✷❀ ✛❀ ✒✷❀ ❙
✵❀ ✏✈③✂

✕●❖❄❖✲❉❨◆❆❱■P✙

(a) Semantic rules for Sapper. Throughout the rules, we assume S = sc :: Σ. Various helper functions are used, which are

described in the accompanying text.

❤t❀ ✒❀ ✛✐ ✰� t

✭❚✲❙❊❈✲▲❇▲✮

❤✁❛❣✂r✄❀ ✒❀ ✛✐ ✰� ✒✂r✄

✭❚✲❘❊●✮

❤❡❀ ✛✐ ✰☎ ♥ ✆✂♥✄ ❂ r

❤✁❛❣✂✆❬❡❪✄❀ ✒❀ ✛✐ ✰� ✒✂r✄ ✝ ✣✂❡✄

✭❚✲❘❊●✲❆❘❘✮

❤✁❛❣✂❵✄❀ ✒❀ ✛✐ ✰� ✒✂❵✄ ✭❚✲❙❚❆❚❊✮

(b) Big-step semantics for TagExp. ⇓t⊆ 〈te, θ, σ〉 × t

✣✭♥✮ ❂ ❄

✣✭r✮ ❂ ✒✭r✮

✣✭❡✶ ✟ ❡✷✮ ❂ ✣✭❡✶✮ t ✣✭❡✷✮

❤❡❀ ✛✐ ✰� ♥ ❛✭♥✮ ❂ r

✣✭❛❬❡❪✮ ❂ ✣✭❡✮ t ✒✭r✮

(c) Definition of φ : e 7→ t. ⇓e is the standard big step

semantics relation.

✚ ✷ ❋❛❧❧▼❛♣ ✿ Pr♦❣r❛♠▲❛❜❡❧ ✦ Pr♦❣r❛♠▲❛❜❡❧

✒ ✷ ❚❛❣▼❛♣ ✿ ❚❛❣❣❡❞❊♥t✐t② ✦ ❙❡❝✉r✐t②▲❡✈❡❧

✛ ✷ ❙t♦r❡ ✿ ❘❡❣✐st❡r ✦ ❩ � ✷ ▲✐st ✍ ✷ ❚✐♠❡ ✿ ◆

❈ ✷ ✁♦♥✂❣ ✿ ❤✄❀ ✚❀ ✛❀ ✒❀ �❀ ✍☎

✆ ✿✿❂ ✝ ❥ ① ✿❂ ✆ ❥ ✆ ✞ ✟ ❥ ✠✡☛☞ ❵ ❂ ⑦✌❀⑦✎ ✏✑ ✆

❥ ✓✔✕ ⑦✖ ✏✑ ✆ ❥ ✗✔✕✘✙☞✭❵❀ ✆✮ ❥ ✗✔✕✘✙☞✭✌❀✆✮

❥ ✗✔✕✘✙☞✭✎❬✆❪❀ ✜✢✮ ❥ ✗✔✕✘✙☞✭✎❬✣❪❀ ✆✮

(d) Semantic domains and evaluation context grammar.

Figure 6: Sapper Semantics

Instruction�Type Instruction List

Additive�Arithmetic add,�addu,�addiu,�sub,�subu

Binary�Arithmetic and,�andi,�or,�ori, xor,�xori,�nor,�sll,�sllv,�sra,�srav,�srl,�srlv

Multiplicative

Arithmetic

mult,�multu, div

Arithmetic

FPU�instructions add.s,�sub.s,�mul.s,�div.s,�neg.s,�abs.s,�mov.s cvt.s.w,�

cvt.w.s,�le.s,�lt.s,�ge.s,�gt.s

Branch beq bgt ble bne bltz bgez; beql bnel blel bltzl; bc1tBranch beq, bgt,�ble,�bne,�bltz,�bgez;�beql,�bnel,�blel,�bltzl;�bc1t

Jump j,�jr,�jal,�jalr

Memory Operation lb,�lbu,�lhu,�lw,�sb,�sh,�sw; lwl,�lwr, swl,�swr; swc1,�lwc1

Others slti,�sltiu,�lui,�mflo,�mfhi,�mtc1,�mfc1

Security Related setrtag*,�setrtimer

Figure 7: Complete ISA of our processor.

Module Name LOC

Fetch 52Fetch 52

Decode + Register File 590

Execute + ALU + FPU 3981

Memory + Cache 442

Write Back 29

Control Logic + Forwarding + Stalling 303g g g

Total 5397

Figure 8: Lines of Code (LOC) of each component in our processor.

4. Processor Design and Evaluation

Sapper is capable of building a wide variety of security criti-

cal hardware, e.g., an arbiter, a network-on-chip, or a secure

co-processor. In this section, we evaluate Sapper’s utility

specifically on one of the most general purpose designs one

might consider building: a pipelined microprocessor. Our

microprocessor design is significantly more complex than

any existing processor designs with strong security prop-

erties presented in the literature [18, 29, 30]. We describe

in detail what kind of processor we have built, how we

implement it in Sapper to enforce noninterference, and how

we validate its functional correctness and security enforce-

ment. Finally, we demonstrate the benefits of our technique

through empirical evaluation of hardware overhead for two

security policies: a simple two-level policy, and a more com-

plicated “diamond” policy.

4.1 Processor Description

Our processor design is a 5-stage pipelined processor with

a number of components that can be found in modern pro-

cessors, including cache, a division/multiplication unit, and

a floating point unit that alone accounts for 3000+ lines of

code. Typical pipelining techniques, including hazard detec-

tion, stalling, and data forwarding, are all implemented. Fig-

ure 8 lists the components of the processor along with their

lines of code (LOC). The total length of the implementa-

tion is over 5K LOC. A majority of the standard MIPS ISA

is implemented as shown in Figure 7. The ability to design

a practical processor with strict security properties that has

logic similar to that found in modern CPUs has significant

value—not only because more complex systems are simply

harder to evaluate for security, but because it also demon-

strates the expressiveness of our technique.

We implement an L1 cache, shared by both data and

instructions. The main memory is modeled as a single

large register array (64MB) that supports byte-level random

access with one read port and one write port. This simplified

memory system still allows us to exercise the basic function-

ality of the processor and cache in a non-trivial manner.

4.2 Security Enforcement

Along with the standard MIPS instructions, the processor

supports two extra security related instructions called set-

tag and set-timer. Neither instruction is part of the Sapper

language syntax, rather, they are hardware-provided ISA

instructions implemented in Sapper. It is worth noting that

here set-tag is an ISA instruction of the processor, while

setTag described in the previous section is a command in

the Sapper syntax. The set-tag instruction allows software

to explicitly modify the security tag of a word in memory

(the memory is modeled as an array of enforced tagged

words). This instruction is implemented through the setTag

primitive in Sapper. Security checks to ensure the safety

of the instruction are automatically generated as we have

described in Section 3.5.

The set-timer instruction allows software to set the timing

boundary of any untrusted program and allows for securely

switching from a high to low security context under the

control of software running on the processor. It is imple-

mented in the hardware by taking advantage of the nested

states feature in Sapper: the parent state controls the timer

(an enforced tagged register) which is always labeled as low,

and it checks whether the timer expires every cycle while

running high code in child states. When the timer expires it

always switches back to the low state. Calling the set-timer

instruction from software will modify the value of the timer

register. Because it is an enforced tagged register, the value

change operation will always be checked to ensure that a

high program can never change the value of timer. The state

machine structure of our processor is similar to that shown

in our previous example in Figure 4.

Without Sapper, one has to implement a cache very care-

fully, using sophisticated techniques in order to deliver

strong security guarantees. However, even sophisticated

designs can still be vulnerable to attacks due to unforeseen

considerations [15]. In contrast, a cache implemented with

Sapper is always guaranteed to enforce noninterference no

matter how it is implemented. However, it is worth mention-

ing that an insecure cache design if Sapper is not involved

will become a buggy cache when Sapper is applied, since

the checking logic will change cache behavior when viola-

tions are about to occur. Designers must make certain that

the resulting cache design is functionally correct, which for-

tunately is a requirement even when security is not a design

goal—the processor can be tested without changing exist-

ing testing frameworks. In our processor design, we simply

implement the cache as two partitions corresponding to the

two security levels. We choose this scheme for its simplic-

ity and effectiveness, however Sapper is not limited to this

technique. For example, one could choose to flush the cache

at every context switch from low to high. More advanced

scheduling schemes can also be applied and their security

guarantees can be easily tested.

The advantage of Sapper over previous techniques becomes

clear when looking at the implementation of memory. Instead

of being forced to partition the memory into independent

sections with one per security level, as proposed by all pre-

vious approaches, Sapper allows sharing of the same mem-

ory among different security levels in a secure manner. The

set-tag instruction allows the kernel to manage the memory

and recall resources securely upon context switches.

4.3 Functional Validation

We implement our processor in Sapper and compile it to

Verilog using the Sapper compiler. To demonstrate the com-

plexity and functional completeness of our processor design,

we use Mentor Graphics ModelSim to simulate our pro-

cessor. We pick applications from various benchmark suites

and load them into our processor. Since we have not devel-

oped a fully-featured operating system that supports I/O

and dynamic memory allocation, we modify each applica-

tion so that all I/O operations are in memory and memory

resources are statically allocated. We pick benchmarks from

two benchmark suites for evaluation, SPEC CPU 2006 [2]

and MiBench [12], due to their popularity in evaluating

architectural designs. We only choose a representative subset

from each benchmark suite due to significant efforts required

to modify each application to run on our processor without

operating system support. Note that we do not modify the

applications in any way that would change the functional-

ity or behaviors that are not related to system calls. As such,

we are able to validate our processor by cross-comparing the

output of a benchmark on our processor with its output on a

real machine.

The evaluated applications include three benchmarks

(mcf, specrand and bzip2) from SPEC CPU2006, 2 security

benchmarks (sha, rijndael), and one floating point bench-

mark (FFT) from MiBench. These applications are com-

piled with the GCC 3.4.4 cross-compiler targeting MIPS

binaries, which are then loaded into a dedicated range of

memory in our processor. We chose this GCC version due to

its simplicity when used as a cross-compiler for generating

well-formatted MIPS binaries. Being able to run realistic

and diversified benchmark suites on the processor shows the

potential and power of Sapper, that it is possible to design

and implement a provably information flow secure processor

that is comparable to commercial embedded processors. In

fact, running real benchmarks forced us to debug all kinds

of corner cases, some related to functional correctness and

some captured by Sapper as security flaws. We spent roughly

five times as long debugging the processor as we spent in its

initial development.

4.4 Security Validation

We demonstrate that our processor enforces noninterference

at runtime by running applications with different security

levels on our processor. To do so, we implement a simpli-

fied micro-kernel in MIPS assembly. It contains a scheduler

that can schedule among multiple processes with different

security levels and be responsible for storing/restoring the

registers during a context switch. A static memory alloca-

tion mechanism is also implemented to provide private stack

space for each process. It is important to note that the micro-

kernel is not providing any security enforcement: all security

enforcement is achieved through Sapper in the processor.

The major responsibility of the micro-kernel is to provide

a useful interface to applications running on it.

To take advantage of the processor’s capability to pre-

vent timing leaks, the kernel issues a “set-timer” instruction

before every switch to an untrusted application. The pro-

cessor guarantees that when the timer expires, the control

always jumps back to the kernel. The kernel will be respon-

sible for storing all register values and restoring them before

the next switch to the same application to ensure it contin-

ues from wherever it pauses. To make the system more effi-

cient, the micro-kernel is responsible for reclaiming memory

regions for reuse through set-tag instructions.

4.5 Quantitative Evaluation

For a quantitative analysis, we evaluate the overhead that

Sapper imposes on the hardware by synthesizing our pro-

cessor to a 90nm library provided by Synopsys [1] and com-

pare this to an insecure base processor in terms of area

(ASIC chip area), delay (estimates minimum clock period),

and power (total power including both leakage power and

dynamic power). We also compare Sapper with two existing

secure hardware design mechanisms, namely GLIFT [31]

and Caisson [18]. Since neither Caisson nor Sapper changes

the number of cycles a program will execute, the clock delay

determines performance.

We first implement our processor design without any

security features using standard Verilog (designated the

Base Processor). To collect overhead results for our pro-

cessor design with GLIFT logic, the base processor is first

synthesized using Synopsys’ Design Compiler targeting its

and or.db library which contains only gate primitives

(AND, OR, and Inverters) and flip-flops. At this stage, the

processor is augmented with GLIFT logic by associating

information flow tracking logic with each gate. Once the

tracking logic has been added, the GLIFT processor is syn-

thesized again, this time targeting the 90nm library to obtain

area, delay and power results. Note that GLIFT only pro-

vides tracking logic without enforcement (which can be

done through an architectural mechanism named Execution

!"#$%&&#"' ("%)'*+,-.' /%0)1'*2&.' !#3%"'*,4.' 5%,#"1'

!"#$%&'()$##('% *+,-+./% *0*/% 10/2%

34567% 8-1//-891% 6789' 190+1% :9' 9:08% ;9' -9'

;"<##(=% 9-9/9-88.%% -9' +0:+% <7<:9' *0*8% -9' -9'

>"??$'% *.1-:::% <7=:9' *0*/% <9' 102:% <7=;9' <7=>9'

Figure 9: Hardware overhead comparison of processors designed

with different techniques: the original non-secure processor (Base

Processor), processor designed under GLIFT, Caisson and Sapper,

normalized to the Base Processor.

Lease [29]), however adding Execution Lease support would

make the overhead even larger than GLIFT alone [29].

We then migrate our base processor (as a Verilog pro-

gram) into both Caisson and Sapper, both enforcing the

same noninterference guarantee. We also add the two new

security-related instructions to the ISA in both processors

to support an interface for software. Both designs are then

compiled back into Verilog—the design in Caisson is type

checked, while the design in Sapper is augmented with

tracking and checking logic. Once both designs are in Ver-

ilog, the designs are synthesized using the same 90nm

library to obtain results. Memory itself cannot be synthe-

sized directly using this methodology, and depending on

the technology, size, and type of memory, varying results

would be obtained. As a result, we only synthesize the data-

path and control logic of the processor. This does, however,

include the logic associated with the memory subsystem,

including cache control logic.

We now have four versions of the processor design, with

almost identical functionality (because the GLIFT version

does not provide enforcement). Figure 9 shows the overhead

for the Base, GLIFT, Caisson, and Sapper processors. The

GLIFT and Caisson processors incur a 7.6× and 2× area

overhead, respectively. The Sapper processor, on the other

hand, imposes an overhead of only 1.04×. Similar observa-

tions also apply to delay and power. We also observe that

Caisson’s intensive use of multiplexers to select the right

security level for each register/wire use leads to significant

overhead when the processor design complexity increases.

Elimination of those multiplexers is a big gain for Sapper.

Furthermore, since both GLIFT and Caisson require dupli-

cation of resources, memory itself must be duplicated, while

in Sapper no duplication is necessary (only extra tag store is

required, taking 3% overhead). This provides further incen-

tive for using Sapper in systems which are heavily memory

dominated and have little space for extra functional logic.

4.6 Diamond Lattice

To demonstrate the scalability of Sapper, we further augment

our processor with a more complex security lattice that con-

tains four security levels (L, H , M1, and M2). This “dia-

mond lattice” has L as the lowest element, H as the highest

element, and M1 and M2 both being higher than L and less

than H (and noncomparable with each other). This lattice

can be used to demonstrate the enforcement of both secrecy

and integrity in the same system, a big step towards imple-

menting a practical provably secure system. We found that

supporting a more complex lattice is as natural as imple-

menting a two-level lattice, since all states will be traced and

checked in similar ways. We did not need to modify the Sap-

per design except for the lattice specification. Major changes

to the generated design (introduced by the Sapper compiler)

include one more bit for each tag and relatively more compli-

cated checking logic to compare among four different secu-

rity levels. We do need to modify the micro-kernel to handle

the scheduling among four different security levels, however

this was straightforward. With the same evaluation method

as used above, a secure processor enforcing noninterference

on a diamond lattice using Sapper incurs only slightly more

overhead (3% more) compared to a two-level lattice counter-

part. While supporting such kind of lattice in Caisson would

require duplicate all resource into four pieces.

5. Conclusions

This paper is a step towards a new class of tools that help

inform hardware designers about the security ramifications

of their design choices and that assist them in guarding

against unforeseen exploits. We explore provable security

properties in hardware designs through Sapper, an extension

of the Verilog hardware description language that automati-

cally augments a hardware design with appropriate security

checks so that it is impossible to violate an information flow

security policy. While there is still more work to do, we have

proven the security of Sapper’s constructions with respect

to specified policies; we have shown Sapper’s expressive

power by designing a complex processor core that includes

non-trivial microarchitectural features complete enough to

execute a number of real-world programs; and we have per-

formed a quantitative evaluation that shows we can provide

security at a reasonably low cost while remaining expressive

enough to describe complex and interesting designs.

Acknowledgments

This work was supported by NSF grants CCF-1117165.

The views and conclusions contained herein are those of

the authors and should not be interpreted as necessarily

representing the official policies or endorsements, either

expressed or implied, of the sponsoring agencies.

References

[1] 90nm generic CMOS library, Synopsys University program,

Synopsys Inc.

[2] SPEC CPU 2006. http://www.spec.org/cpu2006/.

[3] What does CC EAL6+ mean? http://www.ok-

labs.com/blog/entry/what-does-cc-eal6-mean/.

[4] O. Accigmez, J. pierre Seifert, and C. K. Koc. Predicting

secret keys via branch prediction. In The Cryptographers’

Track at the RSA Conference, 2007.

[5] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and

B. Sunar. Trojan detection using IC fingerprinting. Security

and Privacy, 2007.

[6] T. Alves. Trustzone: Integrated hardware and software secu-

rity. ARM white paper, 3(4), 2004.

[7] R. Benadjila, O. Billet, S. Gueron, and M. J. Robshaw. The

Intel AES instructions set and the SHA-3 candidates. In Pro-

ceedings of the 15th International Conference on the The-

ory and Application of Cryptology and Information Security:

Advances in Cryptology, 2009.

[8] M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: A flex-

ible information flow architecture for software security. In

Proceedings of the 34th Annual International Symposium on

Computer Architecture, ISCA ’07, pages 482–493, New York,

NY, USA, 2007. ACM.

[9] J. Demme, R. Martin, A. Waksman, and S. Sethumadha-

van. Side-channel vulnerability factor: A metric for measuring

information leakage. In Proceedings of the 39th Annual Inter-

national Symposium on Computer Architecture, ISCA ’12,

pages 106–117, Washington, DC, USA, 2012. IEEE Com-

puter Society.

[10] D. E. Denning and P. J. Denning. Certification of programs

for secure information flow. Communications of the ACM,

20(7):504–513, 1977.

[11] J. A. Goguen and J. Meseguer. Security policies and security

models. In Security and Privacy, 1982.

[12] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,

T. Mudge, and R. B. Brown. Mibench: A free, commercially

representative embedded benchmark suite. In WWC, 2001.

[13] S. T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, and

Y. Zhou. Designing and implementing malicious hardware.

In Proceedings of the 1st Usenix Workshop on Large-Scale

Exploits and Emergent Threats, LEET’08, pages 5:1–5:8,

Berkeley, CA, USA, 2008. USENIX Association.

[14] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,

P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Nor-

rish, T. Sewell, H. Tuch, and S. Winwood. seL4: Formal

verification of an os kernel. In Proceedings of the ACM

SIGOPS 22Nd Symposium on Operating Systems Principles,

SOSP ’09, pages 207–220, New York, NY, USA, 2009. ACM.

[15] J. Kong, O. Aciiçmez, J.-P. Seifert, and H. Zhou. Deconstruct-

ing new cache designs for thwarting software cache-based

side channel attacks. In Proc. of the 2nd ACM workshop on

Computer security architectures, 2008.

[16] M. Krohn and E. Tromer. Noninterference for a practical difc-

based operating system. In Security and Privacy, 2009.

[17] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek,

E. Kohler, and R. Morris. Information flow control for stan-

dard os abstractions. In Proceedings of Twenty-first ACM

SIGOPS Symposium on Operating Systems Principles, SOSP

’07, pages 321–334, New York, NY, USA, 2007. ACM.

[18] X. Li, M. Tiwari, J. K. Oberg, V. Kashyap, F. T. Chong,

T. Sherwood, and B. Hardekopf. Caisson: A hardware

description language for secure information flow. In Proceed-

ings of the 32Nd ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’11, pages 109–

120, New York, NY, USA, 2011. ACM.

[19] R. Martin, J. Demme, and S. Sethumadhavan. Timewarp:

Rethinking timekeeping and performance monitoring mech-

anisms to mitigate side-channel attacks. In Proceedings of the

39th Annual International Symposium on Computer Architec-

ture, ISCA ’12, pages 118–129, Washington, DC, USA, 2012.

IEEE Computer Society.

[20] A. C. Myers, N. Nystrom, L. Zheng, and S. Zdancewic.

Jif: Java information flow. Software release.

http://www.cs.cornell.edu/jif, 2001.

[21] A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing

robust declassification and qualified robustness. J. Comput.

Secur., 14(2):157–196, Apr. 2006.

[22] B. Parno, J. R. Lorch, J. R. Douceur, J. Mickens, and J. M.

McCune. Memoir: Practical state continuity for protected

modules. In Proceedings of the IEEE Symposium on Security

and Privacy, 2011.

[23] C. Percival. Cache missing for fun and profit. In Proc. of

BSDCan, 2005.

[24] I. Roy, D. E. Porter, M. D. Bond, K. S. McKinley, and

E. Witchel. Laminar: Practical fine-grained decentralized

information flow control. In Proceedings of the 2009 ACM

SIGPLAN Conference on Programming Language Design and

Implementation, PLDI ’09, pages 63–74, New York, NY,

USA, 2009. ACM.

[25] A. Sabelfeld and A. C. Myers. Language-based information-

flow security. IEEE Journal on Selected Areas in Communi-

cations, 21(1), Jan. 2003.

[26] A. Sabelfeld and D. Sands. Dimensions and principles of

declassification. In Proceedings of the 18th IEEE workshop

on Computer Security Foundations, 2005.

[27] V. Simonet. Flow Caml in a nutshell. In Proceedings of the

first APPSEM-II workshop, 2003.

[28] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure pro-

gram execution via dynamic information flow tracking. In

Proceedings of the 11th International Conference on Archi-

tectural Support for Programming Languages and Operating

Systems, ASPLOS XI, pages 85–96, New York, NY, USA,

2004. ACM.

[29] M. Tiwari, X. Li, H. M. G. Wassel, F. T. Chong, and T. Sher-

wood. Execution leases: A hardware-supported mechanism

for enforcing strong non-interference. In Proceedings of

the 42Nd Annual IEEE/ACM International Symposium on

Microarchitecture, MICRO 42, pages 493–504, New York,

NY, USA, 2009. ACM.

[30] M. Tiwari, J. K. Oberg, X. Li, J. Valamehr, T. Levin, B. Hard-

ekopf, R. Kastner, F. T. Chong, and T. Sherwood. Crafting a

usable microkernel, processor, and i/o system with strict and

provable information flow security. In Proceedings of the 38th

Annual International Symposium on Computer Architecture,

ISCA ’11, pages 189–200, New York, NY, USA, 2011. ACM.

[31] M. Tiwari, H. M. Wassel, B. Mazloom, S. Mysore, F. T.

Chong, and T. Sherwood. Complete information flow track-

ing from the gates up. In Proceedings of the 14th Interna-

tional Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS XIV, pages 109–

120, New York, NY, USA, 2009. ACM.

[32] J. Valamehr, M. Chase, S. Kamara, A. Putnam, D. Shumow,

V. Vaikuntanathan, and T. Sherwood. Inspection resistant

memory: Architectural support for security from physical

examination. In Proceedings of the 39th Annual International

Symposium on Computer Architecture, ISCA ’12, pages 130–

141, Washington, DC, USA, 2012. IEEE Computer Society.

[33] A. Vasudevan, J. McCune, J. Newsome, A. Perrig, and L. van

Doorn. CARMA: A hardware tamper-resistant isolated execu-

tion environment on commodity x86 platforms. In Proceed-

ings of the ACM Symposium on Information, Computer and

Communications Security (ASIACCS), 2012.

[34] D. Volpano, C. Irvine, and G. Smith. A sound type system for

secure flow analysis. J. Comput. Secur., 4, 1996.

[35] A. Waksman and S. Sethumadhavan. Tamper evident micro-

processors. In Security and Privacy, 2010.

[36] A. Waksman and S. Sethumadhavan. Silencing hardware

backdoors. In Security and Privacy, 2011.

[37] Z. Wang and R. B. Lee. New cache designs for thwarting

software cache-based side channel attacks. In Proceedings

of the 34th Annual International Symposium on Computer

Architecture, ISCA ’07, pages 494–505, New York, NY, USA,

2007. ACM.

[38] Z. Wang and R. B. Lee. A novel cache architecture

with enhanced performance and security. In Proceedings

of the 41st Annual IEEE/ACM International Symposium on

Microarchitecture, MICRO 41, pages 83–93, Washington,

DC, USA, 2008. IEEE Computer Society.

[39] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières.

Making information flow explicit in HiStar. In Proceedings

of the 7th USENIX Symposium on Operating Systems Design

and Implementation - Volume 7, OSDI ’06, pages 19–19,

Berkeley, CA, USA, 2006. USENIX Association.

[40] D. Zhang, A. Askarov, and A. C. Myers. Language-based con-

trol and mitigation of timing channels. In Proceedings of the

33rd ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI ’12, pages 99–110, New

York, NY, USA, 2012. ACM.

[41] Z. Zhou, V. D. Gligor, J. Newsome, and J. M. McCune. Build-

ing verifiable trusted path on commodity x86 computers. In

Proceedings of the IEEE Symposium on Security and Privacy,

2012.

A. Proof of Noninterference

A.1 Assumptions

We make the following assumptions on Sapper programs

(each of these are easily enforced by a syntactic pass over

the program):

• For each fallℓ, the subscript ℓ must be the label of the

state containing that fall command. A leaf state cannot

contain a fall.

• For each gotoℓ1
ℓ2, subscript ℓ1 must indicate the state

containing that goto command, and ℓ2 must a state in the

same group and at the same depth.

• Either both branches of an if command must execute a

goto or fall or neither of them do. All paths through a

state end in either a goto or a fall.

• Each if statement is given a unqiue label.

• The root state is fixed.

A.2 L-equivalence

Our noninterference theorem uses the notion of L-equivalence

between configurations, which we define in this section.

For a given security level t, let L = {t′ | t′ ⊑ t} and

H = {t′ | t′ /∈ L}. We use this definition in the rest of the

section. We then have the following L-equivalence defini-

tions:

• Store: Two stores are L-equivalent if all L-tagged reg-

isters have the same value in both stores, i.e., σ1 ∼L

σ2 ⇐⇒ ∀x. x is a register ∧x ∈ dom(σi=1,2)∧θ(x) ∈
L ⇒ σ1(x) = σ2(x)

• Stack: Two stacks are L-equivalent, i.e.., sc1 :: Σ1 ∼L

sc2 :: Σ2, if both the following conditions hold: (1)

sc1 ∈ L ∨ sc2 ∈ L ⇒ sc1 = sc2 ∧ Σ1 = Σ2,

(2) Let ζL(S) return a new stack obtained by popping

out elements from S until its top element ∈ L, then

sc1 ∈ H ∧ sc2 ∈ H ⇒ ζL(Σ1) = ζL(Σ2).

• FallMap, TagMap: Two pairs of FallMap and TagMap

are L-equivalent, i.e.., 〈ρ1, θ1〉 ∼L 〈ρ2, θ2〉, if both the

following conditions hold: (1) If one FallMap maps to

a L-tagged state, then the other FallMap maps to the

same state, i.e.., ∀l. θ1(ρ1(ℓ)) ∈ L ∨ θ2(ρ2(ℓ)) ∈ L ⇒
ρ1(ℓ) = ρ2(ℓ) (2) If in one TagMap, a TaggedEntity is

tagged L, then it is tagged L in the other TagMap too,

i.e.., ∀u. θ1(u) ∈ L ⇐⇒ θ2(u) ∈ L.

• Configuration: Let C1 = 〈p1, ρ1, σ1, θ1, sc1 :: Σ1, δ1〉
and C2 = 〈p2, ρ2, σ2, θ2, sc2 :: Σ2, δ2〉. Two configura-

tions C1 and C2 are L-equivalent, i.e.., C1 ∼L C2, if

the following conditions hold: (1) p1 and p2 are either

syntactically equivalent or sc1 ∈ H ∧ sc2 ∈ H , (2)

〈ρ1, θ1〉 ∼L 〈ρ2, θ2〉, (3) σ1 ∼L σ2, (4) sc1 :: Σ1 ∼L

sc2 ::Σ2, (5) δ1 = δ2

In effect, two L-equivalent configurations are indistin-

guishable to an observer at a security level in L.

A.3 Lemmas

We provide two Lemmas in this subsection, which are used

in the proof of noninterference in the next subsection. The

Simple Security Lemma states that L-tagged expressions are

made up of L-tagged subexpressions only. The Confinement

Lemma states that program steps taken with security context

in H preserves L-equivalence.

Lemma 1 (Simple Security). φ(e) ∈ L ⇒ (∀e′. e′ is a

subexpression of e ⇒ φ(e′) ∈ L)

Proof. By induction on definition of φ in Figure 6(c).

Lemma 2 (Confinement). Let C1 = 〈p1, ρ1, σ1, θ1, sc1 ::
Σ1, δ1〉 and C2 = 〈p2, ρ2, σ2, θ2, sc2 :: Σ2, δ2〉. Then if

C1 C2∧ sc1 ∈ H ∧ sc2 ∈ H ⇒ σ1 ∼L σ2∧〈ρ1, θ1〉 ∼L

〈ρ2, θ2〉.

Proof. By induction on p1

A.4 Noninterference

The noninterference theorem states that if an L-observer can-

not distinguish between two configurations at the beginning

of a cycle, then she cannot distinguish between them at the

beginning of the next cycle either. We assume that an L-

observer can observe changes to L-tagged registers only at

the beginning of each cycle, not during the cycle itself. This

assumption is valid because we are designing synchronous

hardware—changes to register values come into effect only

at the end of a cycle. Two computations can take a differ-

ent number of semantic steps within a single cycle, but the

hardware is timed such that the two computations still com-

plete at exactly the same time. We measure time in number

of cycles and thus the theorem of noninterference we provide

is timing-sensitive. The formal statement of noninterference

is as follows:

Theorem 1 (Noninterference). Let

C1 = 〈Froot, ρ1, σ1, θ1,Σ1, δ〉, C
′
1
= 〈Froot, ρ

′
1
, σ′

1
, θ′

1
,Σ′

1
, δ+1〉,

C2 = 〈Froot, ρ2, σ2, θ2,Σ2, δ〉, C
′
2
= 〈Froot, ρ

′
2
, σ′

2
, θ′

2
,Σ′

2
, δ+1〉

and ∗ be the reflexive transitive closure of .

Then C1
∗
C

′
1
∧ C2

∗
C

′
2
∧ C1 ∼L C2 ⇒ C

′
1
∼L C

′
2

Proof. Basis: C1 ∼L C2, because the ∗ is reflexive, the

case holds trivially.

Inductive Step: Let

• Ca = 〈pa, ρa, σa, θa, sca ::Σa, δ〉

• Cb = 〈pb, ρb, σb, θb, scb ::Σb, δ〉

• C
′
a = 〈p′a, ρ

′
a, σ

′
a, θ

′
a, sc

′
a ::Σ

′
a, δ〉

• C
′
b = 〈p′b, ρ

′
b, σ

′
b, θ

′
b, sc

′
b ::Σ

′
b, δ〉

Also, let Ca ∼L Cb, Ca C
′
a and Cb C

′
b. Then we

need to prove C
′
a ∼L C

′
b. We divide this proof sketch into 2

cases:

(1) When pa = pb. We prove this by induction on pa. Due

to the lack of space, we only sketch the proof for a subset of

what pa can stand for:

• When pa = r := e and r is a enforced register (refer

rule ASSIGN-ENF-REG): The register r has the same tag

in both θa and θb. If the tag ∈ L, then the register r
is mapped to n in both the stores (when the dynamic

check, that the tag of the register is ⊒ tag of e join the

current security context, succeeds in both cases), or both

the stores remain the same (if dynamic check in one fails,

it fails in the other), using Lemma 1. If the tag ∈ H ,

then taking this step does not modify L-observable store.

Hence this case holds.

• When pa = ifℓ e then c else c; endif (refer rule IF): If

sca, scb ∈ L, then executing the if statement will push

the same tag onto the security context stack (hence sc′a =
sc′b). Also, both θa, θb are modified in the same way,

because Fcd is a constant function (note that we update

all registers that are control dependent on the if statement

to handle implicit flows due to branches not taken). The

tag of e is ℓ in both cases (in which case p′a = p′b),

or H in both cases (in which case sc′a, sc
′
b ∈ H). If

sca, scb ∈ H , then from Lemma 2, L-equivalence is

preserved by taking this step. Hence this case holds.

• When pa = skip; endif (refer rule ENDIF): This state-

ment pops the top of the security context stack. Based

on the definition of the L-equivalence of stacks, and our

assumption that if one branch of an if does not have a

goto or fall, the other branch does not either, this case

holds.

• When pa = gotoℓ1
ℓ2 and ℓ2 is a enforced state (refer

rule GOTO-ENFORCED): In the step taken in both con-

figurations, the security context stack is set to the tag of

the root state. If sca, scb ∈ L, either the dynamic check

(that tag of state ℓ2 ⊒ the current security context) suc-

ceeds in both cases or fails in both cases, modifying the

fall map in the same way. If sca, scb ∈ H , then they do

not modify the fall map for any states with tag ∈ L. Thus

this case holds.

(2) When sca, scb ∈ H: for the cases where neither

pa, pb is endif or goto, proof follows from Confinement

Lemma. Hence this case holds. Consider the case where one

command is a goto and the other is not: since all program

paths must end in goto, the other command will eventually

be goto. Since the cycle length is enforced, both gotos are

executed only at the end of each cycle. Hence even if they

take different number of semantic steps to reach there, they

take the same time. For the case where one command is a

endif and other is not, because of the assumption that either

both branches contain fall or goto, or neither of them do, the

other command will eventually become endif (during which

L-equivalence is preserved throughout, using Confinement

Lemma)

This completes the proof sketch.

