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ABSTRACT

In many materials processing and manufacturing situations such as steel, aluminum, ce-

ramics and glass, gas bubbles can form in liquid and solid phases. The presence of such

bubbles affects the thermophysical properties and radiation characteristics of the two-phase

system and hence the transport phenomena. This paper presents a general formulation of

the radiation characteristics of semitransparent media containing large gas bubbles (bubble

radius is much larger than the wavelength of radiation). Sample calculations for the spectral

absorption and extinction coefficients and single scattering albedo of soda-lime silicate glass

containing bubbles are discussed. Particular attention is paid to the effect of the volumetric

void fraction and the bubble size distribution. Results clearly show that the presence of

bubbles strongly affects the radiation characteristics of the semitransparent media contain-

ing entrapped gas bubbles, particularly if bubbles, void fractions, and spectral absorption

coefficient of the continuous phase are small.

NOMENCLATURE

a bubble radius

c0 speed of light in vacuum

D Deirmendjian’s correction factor

F azimuth-averaged scattering phase function

fv bubble void volume fraction

g specific gravity or van de Hulst’s absorption parameter, arctan[kdλ/(n
d
λ − 1)]

I radiation intensity
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Ib blackbody radiation intensity

I0 incident intensity of collimated radiation

Q efficiency factor

k imaginary part of the complex index of refraction

l thickness of the slab

m complex index of refraction, n− ik

NT total number of bubbles per unit volume

n real part of the complex index of refraction

r reflectivity of the interface

ŝ spatial coordinate vector

x local depth of the slab (Figure 1)

Greek symbols

χ size parameter, 2πa/λ

β extinction coefficient, Equation (7)

γ Surface tension

κ absorption coefficient, Equation (5)

σ scattering coefficient, Equation (6) or Stefan-Boltzmann constant

λ wavelength of the incident radiation

η wavenumber of the incident radiation, ν/c0

ν frequency of the incident radiation

Ω̂ line-of-sight direction

ω single scattering albedo, σλ/(κλ + σλ)
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Φ effective scattering phase function, Equation (9)

φ scattering phase function of the single bubble

ϕ azimuth angle

ρ Density or phase shift, 2|m− 1|χ

ρ’ van de Hulst’s normalized size parameter, 2(n− 1)χ

Θ scattering angle

τ optical depth,
∫ x
0 (κλ + σλ)dx

Subscripts

λ refers to wavelength-dependent quantity

abs refers to absorption

c refers to continuous phase

d refers to dispersed phase

ext refers to extinction

sca refers to scattering

Superscripts

d refers to dispersed phase (gas bubble)

c refers to the continuous phase
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1 INTRODUCTION

In many materials processing and manufacturing situations such as steel, aluminum, ceramics

and glass, gas bubbles can form in liquid and solid phases. The presence of such bubbles

affects the thermophysical properties and radiation characteristics of the two-phase system

and hence the transport phenomena. In glass melting furnaces, for example, a large number

of bubbles are formed by chemical reactions during melting of the batch and the thermal

decomposition of refining agents. Bubbles that are large enough rise at the surface of the

glass melt while small bubbles are trapped in the flowing molten glass. The quality of

glass products is degraded if gas bubbles and unfused silica grains remain in the molten

glass as it is being pulled from the furnace [2, 3]. The quality of the glass produced is

significantly affected by the flow pattern and the temperature of the glass melt. Both depend

strongly on the heat transfer from the combustion space to the batch and to the molten glass.

The high temperatures and the oxidizing environment in the furnace make experimental

measurements very difficult and unreliable. Therefore, numerical simulations constitute

appropriate alternatives for better design and control of the glass melting furnaces. General

models for predicting the flow and the temperature fields have been reviewed by Viskanta [14].

All the models use the Rosseland diffusion approximation for radiative heat transfer in the

molten glass. Recently, Cheong et al. [4] questioned this assumption and showed that the

diffusion approximation for radiative transfer is not recommended when the depth of the

glass layer is less than 0.5 m. Instead, they suggested the use of the P-1 approximation not

only for shallow glass melt layers but also for deep ones.

The analyses reported in the literature have neglected the presence of numerous gas
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bubbles of different sizes in the melt that may affect the radiation heat transfer. The presence

of the bubbles will affect the radiation characteristics of the glass melt since the radiation

is scattered by the bubbles. Approximate and rigorous treatements of radiative transfer

in glass require spectral radiation characteristics of glass melt which contains gas bubbles.

Therefore, it is of particular interest to understand the effect of bubbles on the radiation

characteristics of the molten glass in order to better predict radiation heat transfer in glass

melting furnaces, improve the glass quality and the energy efficiency of the processes.

2 ANALYSIS

Consider heat transfer within an horizontal layer of continuous condensed phase containing

bubbles as shown in Figure 1. In general, convection (due to the motion of bubbles), conduc-

tion, and radiation heat transfer are present and should be considered. We further assume

that the continuous condensed phase is a solid or a slowly moving liquid and is essentially

isothermal. Then, the first two modes of heat transfer can be safely neglected in compar-

ison to heat transfer by radiation. When gas bubbles are moving with the liquid phase, a

time-averaged void fraction and bubble size distribution should be used. In addition, we

assume the following: (1) all bubbles are spherical, (2) the scattering of a single bubble is

not affected by the presence of its neighbors (independent scattering); and (3) the radiation

field within the liquid layer is incoherent (i.e., scattering centers are randomly distributed

with zero-phase correlation). Then, radiative transfer within an absorbing, emitting, and

independently scattering medium is governed by the integro-differential equation expressed
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in dimensionless optical coordinates [10,15],

dIλ
dτλ

= [1− ωλ(ŝ)]Ibλ[T (ŝ)]− Iλ(ŝ, Ω̂) +
ωλ(ŝ)

4π

∫

Ω̂′=4π
Iλ(ŝ, Ω̂

′)Φλ(ŝ, Ω̂
′ → Ω̂)dΩ̂′ (1)

Here, ŝ is the local spatial coordinate unit vector, Ω̂ is a line-of-sight direction, and Ibλ is

Planck’s blackbody function. The spectral optical thickness τλ and single scattering albedo

ωλ are defined, respectively, as

τλ =
∫ s

0
(κλ + σλ)ds =

∫ s

0
βλds (2)

and ωλ =
σλ

κλ + σλ
=
σλ
βλ

(3)

where κλ, σλ, and βλ (= κλ + σλ) are the absorption, scattering, and extinction coefficients,

respectively. The scattering phase function Φλ(ŝ, Ω̂
′ → Ω̂) represents the probability of

scattering of the radiation from a beam propagating in the direction Ω̂′ to the direction Ω̂,

and it is normalized such that

1

4π

∫

Ω̂′=4π
Φλ(ŝ, Ω̂

′ → Ω̂)dΩ̂′ = 1 (4)

Equation (1) indicates that the extinction, absorption, and scattering coefficients together

with the scattering phase function and the single scattering albedo are major parameters of

the radiation transfer. Thus, the following subsections of the paper are devoted to charac-

terization of the continuous phase layer with dispersed gas bubbles and to the development

of detailed models for its effective radiation characteristics.

The objective of this work is to explore the effect of the bubble radius, the bubble size

distribution, and the void fraction on the radiation characteristics of glass containing spher-

ical gas bubbles with different bubble size distributions and to gain understanding of their

importance on radiative transfer in glass.
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Let md
λ = ndλ− ik

d
λ and m

c
λ = ncλ− ik

c
λ be the spectral complex indices of refraction of the

dispersed phase (i.e., gas bubbles), and of the continuous phase, respectively. The following

sections present the formulations for predicting the spectral radiation characteristics of glass

containing monodispersed and polydispersed bubbles.

2.1 Prediction of Spectral Radiation Characteristics for Monodis-

persed Bubbles

We assume here that all the bubbles entrapped in the glass melt have a uniform radius

a. Then, the effective extinction coefficients (due to absorption and scattering) and the

scattering phase function for the layer can be expressed as [7]

κλ = πQd
abs(a)a

2NT +
[

κcλ − πQ
c
abs(a)a

2NT

]

= κcλ − π[Q
c
abs(a)−Q

d
abs(a)]a

2NT (5)

σλ = πQd
sca(a)a

2NT (6)

βλ = (κλ + σλ) = κcλ − π[Q
c
abs(a)−Q

d
ext(a)]a

2NT (7)

where Qabs(a), Qsca(a), and Qext(a) denote the absorption, scattering, and extinction effi-

ciency factors and scattering phase function, respectively, for a sphere of radius a, while the

superscripts “d” and “c” refers to the dispersed and the continuous phase, respectively. NT

is the total number of bubbles per unit volume, that can be expressed as a function of the

void fraction fv and of the foam and continuous densities, ρf and ρc, respectively:

NT =
3fv
4πa3

=
3

4πa3

(

1−
ρf
ρc

)

(8)
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Moreover, for independent scattering, the phase function in a cloud of uniform bubbles Φλ(Θ)

is the same as that for a single particle φ(a,Θ) [10], it is also the same for a bubble cloud,

i.e.,

Φλ(Θ) = φ(a,Θ) (9)

Note that the absorption coefficient of the continuous phase κcλ in Equation (5) can be

calculated from the imaginary part (kcλ) of the complex index of refraction (m
c
λ) as

κcλ = 4πη0k
c
λ (10)

where η0 = ν/c0 = 1/(n
c
λλ) is the wavenumber of the wave with a frequency ν and phase

velocity equal to a speed of light in vacuum c0.

2.2 Spectral Radiation Characteristics for Polydispersed Bubbles

Figure 1 shows a schematic diagram of layer of continuous condensed phase containing bub-

bles of different sizes. In glass melt these bubbles may be generated during the batch fusion

and fining reactions [3]. Suppose that all bubbles are spherical (in the case of distorted

bubbles one can define an equivalent sphere which preserves the gas void volume) and their

size (radius a) distribution is given by the so-called modified gamma function (Ref. [10], pp.

393-394):

n(a) = A× aγ × exp
(

−B × aδ
)

, 0 ≤ a <∞ (11)

The distribution function vanishes at a = 0 and a → ∞ and it reaches its maximum at

the bubble radius amax = (γ/δB)
1/δ. The four constants A, B, γ and δ are taken positive

and real, and they must be determined from measurable quantities such as total number of
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bubbles per unit volume,

NT =
∫

∞

0
n(a)da = A

∫

∞

0
aγ × exp

(

−B × aδ
)

da =
AΓ

(

γ+1
δ

)

δB(γ+1)/δ
(12)

and the bubble density (i.e., the total volume of bubbles per unit volume or the bubble

volume fraction) is given by

fv =
∫

∞

0

4

3
πa3n(a)da =

4πAΓ
(

γ+4
δ

)

3δB(γ+4)/δ
(13)

Here, Γ(z) is the gamma function (=
∫

∞

0 e−ttz−1dt), and it is tabulated by Abramowitz and

Stegun [1]. Note also that the constants γ and δ are usually chosen to be integers.

In the present case, we also assume that all bubbles have the same optical properties

throughout the layer and their size distribution function n(a) is known. Then, the effective

extinction coefficients (due to absorption and scattering) and the scattering phase function

for the medium containing bubbles can be expressed as [7]

κλ = π
∫

∞

0
Qd

abs(a)a
2n(a)da+

[

κcλ − π
∫

∞

0
Qc

abs(a)a
2n(a)da

]

= κcλ − π
∫

∞

0
[Qc

abs(a)−Q
d
abs(a)]a

2n(a)da (14)

σλ = π
∫

∞

0
Qd

sca(a)a
2n(a)da (15)

βλ = (κλ + σλ) = κcλ − π
∫

∞

0
[Qc

abs(a)−Q
d
ext(a)]a

2n(a)da (16)

and

Φλ(Θ) =
π

σλ

∫

∞

0
Qd

sca(a)φ(a,Θ)a
2n(a)da (17)

In calculating the spectral coefficients, most of the computer time is used in evaluating

the efficiency factors Qabs, Qsca and Qext from the Mie theory. In multidimensional and

spectral radiative transfer analysis this type of approach becomes impratical. Therefore,
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it is desirable to have simple approximations for the efficiency factors. The changes in the

scattering pattern due to changes in the bubble size should be accounted for in the prediction

of the radiation characteristics of the layer containing bubbles. Figure 2 shows the different

limiting cases in the ρ− χ domain where simple analytical expressions for Qabs(a), Qsca(a),

Qext(a) and φ(a,Θ) are available in the literature. For spheres with index of refraction close

to 1, the ρ− χ domain can be divided into two limiting cases [13]:

• The Rayleigh-Gans scattering domain corresponds to a near-dielectric sphere with (1)

k ≈ 0, (2) a refractive index of refraction close to unity i.e., |m − 1| ¿ 1, and such

that (3) the phase lag suffered by the central ray that passes through the sphere along

a full diameter is small i.e., ρ = 2χ|m− 1| ¿ 1. Then, reflectivity is negligible and the

radiation passes through the sphere unattenuated and unrefracted [13]. The Rayleigh-

Gans scattering domain can itself be divided into two limiting cases namely, χ → 0

(Rayleigh scattering) and χ→∞ (“intermediate regime”).

• The anomalous-diffraction domain is characterized by χ → ∞ and m → 1 corre-

sponding to a straight transmission and subsequent diffraction according to Huygens’

principle [13]. The anomalous-diffraction domain can also be divided into two limiting

cases, namely, ρ → 0 (“intermediate regime”) and ρ → ∞ (“geometrical optics +

diffraction regime”).

Note that the Rayleigh-Gans domain and the anomalous diffraction domain overlap in the

so-called “intermediate regime”.

The present work is concerned with relatively large bubbles and wavelengths between

0.4 µm and 10µm for which the anomalous diffraction is valid. In this region of the ρ − χ
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domain, the large gas bubbles are relatively weak absorbers of radiation and mostly act

as the strong radiation scatterers. In this case, the approximate analytical expressions for

extinction (absorption and scattering) efficiency factors for a weakly absorbing sphere of

arbitrary size can be used as derived by van de Hulst (see Ref. [13], p. 179),

Qext(ρ
′,m) = 2 − 4

cos(g)

ρ′
×
[

e−ρ
′ tan(g)sin(ρ′ − g)

]

+ 4

(

cos(g)

ρ′

)2

×
[

cos(2g)− e−ρ
′ tan(g)cos(ρ′ − 2g)

]

(18)

where ρ′ = 2(n − 1)χ = 2(n − 1)(2πa/λ) and g = arctan[k/(n − 1)] are the van de Hulst’s

normalized size and absorption parameters, respectively, such that ρ
′d × tan(g) gives the

energy absorbed along the axial ray within the sphere. Because of the assumptions of the

van de Hulst’s theory, the expression overestimates the extinction factor for small spheres

and underestimates it for larger spheres. To correct this, Deirmendjian [5] proposed to use

a correction factor (1+Di). The approach was remarkably successful in improving accuracy

of extinction coefficient defined by Equation (18), and the specific expressions for Di can

be found in reference [5] (pp. 29-30). The absorption and scattering contributions to the

extinction efficiency factor of a single gas bubble are given by the following asymptotic

formulae (Ref. [5], p. 35):

Qabs(ρ
′,m) = 1 +

e−2 ρ′ tan(g)

ρ′ tan(g)
+
e−2 ρ′ tan(g) − 1

2 [ρ′ tan(g)]2
(19)

and

Qsca(ρ
′,m) = Qext(ρ

′,m)−Qabs(ρ
′,m) (20)

respectively.

Comparison of the absorption and scattering efficiencies generated using the approximate
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expressions given by Equations (19) and (20) with numerical results obtained from the exact

Mie theory (Ref. [5], pp. 30-32) have demonstrated the power of this approach, especially

when precise directional scattering pattern and polarizing properties are not desired. Specif-

ically, the results obtained via the corrected van de Hulst’s formula (1 + Di) × Qext are

accurate within about ±0.05Qext for a wide range of sphere sizes and indices of refraction.

Note that the magnitude of the error increases with an increase in a value of the real part

(ndλ) of the complex index of refraction for both absorbing and non-absorbing spheres ( [5],

p. 32). Of course, if the complex index of refraction of the continuous phase (mc
λ) lies within

accuracy limits of the van de Hulst’s theory, then Equation (19) can be successfully used for

calculation of the absorption efficiency factor Qc
abs(a) of the sphere made of the continuous

phase as well.

3 RESULTS AND DISCUSSION

The input parameters for the model include the spectral index of refraction and the spectral

absorption coefficient of both the continuous and dispersed phases along with the bubble

size distribution and the total number of bubbles per unit volume NT or the void fraction

fv. Clear soda-lime silicate glass (window glass) is used for the sample calculations, and

the spectral variation of the real (ncλ) and imaginary part (k
c
λ) of its refractive index (m

c
λ =

ncλ − ikcλ) are taken from the literature [11]. The gas mixture contained inside the gas

bubbles is transparent to the incident radiation and its complex index of refraction (md
λ) is

assumed to be independent of the wavelength and equal to 1.003 − i · 1.0 × 10−10. In this

section we review the different scattering domains for which simple analytical expressions

for the extinction efficiency factors exist. Then, the absorption and extinction coefficients
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as well as the single scattering albedo of soda-lime silicate glass containing monodispersed

and polydispersed bubbles with different size distribution and different void fraction are

calculated in the case of anomalous diffraction (large bubbles). Finally, results giving the

apparent reflectance, transmittance and absorptance of glass layers of different thickness are

discussed.

3.1 Model Validity for Glass Containing Bubbles

3.1.1 Scattering Domains

In defining the limiting cases of the Mie theory for which simple analytical solutions are

known, we used the qualitative criteria ρ ¿ 1 for Rayleigh-Gans scattering and χ À 1 for

anomalous diffraction. For our particular application the different scattering regimes are

delimited arbitrarily as follows,

• Anomalous scattering approximation is assumed to be valid for χ ≥ 100. This condition

leads to

a ≥
100λ

2π
(21)

• The Rayleigh-Gans scattering approximation is assumed to be valid for ρ ≤ 0.01. For

the gas bubbles, this condition is equivalent to

a ≤
λ

400π
√

(nλ − 1)2 + (kλ)2
(22)

Note that unlike the index of refraction of the gas contained in the bubbles, that of

the soda-lime silicate glass depends on the wavelength and must be accounted for in

defining the scattering domains. The Rayleigh-Gans scattering approximation can be
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made when the condition expressed by Equation (22) is valid for both the dispersed

and continuous phase.

• A subdomain of the Rayleigh-Gans scattering approximation is the Rayleigh scattering

assumed to be valid when ρ ≤ 0.01 and χ ≤ 0.01. For the gas bubbles and glass spheres,

these conditions are expressed by Equation (22) and

a ≤
λ

200π
(23)

According to Equations (5), (6), and (9) one needs to consider the absorption efficiency

factor for both gas bubbles and the corresponding glass spheres, and the scattering efficiency

factor and the scattering phase function for the gas bubbles in order to predict the effective

radiation characteristics of the glass slab containing bubbles. Figures 4 indicates the theory

or limiting cases to be used to predict the extinction efficiency factors for both the glass

spheres and the gas bubbles in the wavelength-radius domain. From Figures 3 and 4, one

can conclude that for bubbles with a ≤ 0.1 mm, the radiation characteristics of the glass

layer can be predicted from the anomalous diffraction theory. For bubbles less than 1 nm

in diameter, the same radiation characteristics of the glass layer can be estimated from the

Rayleigh-Gans scattering theory. However, for bubbles having radii between 1 nm and 0.1

mm and/or if the void fraction is larger than 0.006 the use of the Mie theory and/or the

consideration of dependent scattering is required for wavelengths between 0.4 µm and 10

µm, making the computation of the apparent absorptance, reflectance and transmittance

of the layer considerably more involved. Unfortunately, undertaking the task of solving

the Mie theory and/or accounting for dependent scattering is beyond the scope of this work.

Therefore, only large bubbles for which the anomalous diffraction theory and the independent
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scattering assumption are valid will be considered further.

3.1.2 Ranges of Interest

The above representation for the effective radiation characteristics is valid only if the scatter-

ing by the ensemble of bubbles is independent, i.e., scattering by one particle is not affected

by the presence of surrounding particles. Tien and Drolen [12] presented a scattering regime

map which uses the size parameter (χ = 2πa/λ) and the volume fraction (fv) as the co-

ordinate axis. They showed that the dependent scattering effects may be ignored as long

as fv < 0.006 or c/λ < 0.5. Assuming a cubic lattice of bubbles of pitch p, the condition

c/λ < 0.5 can be expressed in terms of the void fraction as fv < (32π/3)(a/λ) = 16χ/3.

Figure 3 shows the maximum void fraction fv for independent scattering as a function of

the bubble radius a. It suggests that for bubbles larger than 1 µm in diameter, independent

scattering can be safely assumed.

It can be shown [8] that bubbles are spherical if their radius a is small compared to the

capillary length lc (a¿ lc) where the capillary length for gas bubbles surrounded by liquid

is defined as:

lc =

√

2γ

(ρc − ρd)g
(24)

Here, γ is the surface tension (=300 mN/m), and ρc (=2350 kg/m3 at around 1400 K [9])

and ρd (=1.2 kg/m3) are the densities of the molten glass and the air, respectively. For

soda-lime silicate glass the capillary length is about 4 mm. We assumed that bubbles are

spherical for bubble radii up to the capillary length lc/4 = 1 mm.

The spectral region where the thermal radiation is the most important is considered.

The wavelength interval from 0.4 µm to 10 µm is chosen since it covers nearly 88% of the
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thermal radiation emitted by a blackbody at the source temperature of 5800 K and 94.5%

at 1200 K. In summary, our study is restricted to the size parameters (χ = 2πa/λ) ranging

from χmin = 0.0 to χmax = 3.15 × 10
6 and a phase shift, ρ = 2χ|m − 1|, that can take

values from 0 (|m-1| ¿ 1 and χ¿ 1) to infinity (|m-1| ¿ 1 and χ→∞). The volume void

fraction fv defined as the ratio of the volume of gas to the total volume can vary between 0

and 0.74 corresponding to the maximum packing of spheres of uniform size, provided that

the assumption of dependent scattering is valid.

3.2 Radiation Characteristics of the Glass Containing Bubbles

In this section we first discuss the effect of the void fraction and of the bubble radius on

the radiation characteritics of soda-lime silicate glass containing bubbles of uniform size.

Then, polydisperse bubble clouds are considered and the results on the effect of their size

distribution are presented.

3.2.1 Uniform Distribution: Effect of bubble radius and void fraction

As a concrete example, the spectral absorption and extinction coefficients as well as the

single scattering albedo have been predicted for clear soda-lime silicate glass containing

monodispersed bubbles for a volumetric void fraction of 0.2. Three different radii a were

considered, 0.2 mm, 0.8 mm, and 1.6 mm. Note that in the limiting case when fv = 0, i.e.,

for dense glass, the scattering coefficient σλ and the single scattering albedoωλ vanish. Table

I summarizes the simulations for monodispersed bubbles and the corresponding number of

bubbles contained per cubic centimeter of glass.

From Figure 5 one can see that the presence of bubbles reduces the absorption coefficient
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in the spectral region of 0.4 to 4.5 µm where the absorption coefficient of the glass is relatively

small. In this same region, the extinction coefficient is strongly affected by the presence and

the size of the bubbles. The scattering is particularly important for smaller bubbles and

the single scattering albedo is close to unity. This indicates that the radiative transfer is

dominated by scattering rather than by absorption for 0.4 < λ < 4.5 µm. In the spectral

region 4.5 to 10 µm, however, the absorption coefficient of the dense glass is large and the

presence and the size of the bubbles have little effect of the effective absorption coefficient

of the glass layer. In other words, the scattering coefficient is negligible compared with the

absorption coefficient and the radiative transfer is dominated by absorption.

Moreover, the absorption coefficient decreases significanlty as the void fraction increases and

can be reduced by up to one order of magnitude for void fractions fv varying from 0.2 to 0.6

(Figure 6). In contrast, the extinction coefficient and the single scattering albedo increase

as the void fraction or the number of bubbles increase. This can be explained by the fact

increasing the void fraction increases the number of scatterers, while the absorption by the

two-phase mixture decreases.

3.2.2 Effect of bubble size distribution

So far, the bubble size distribution was assumed to be uniform. However, in reality bubbles

entrapped in the glass melt are of different diameters. Sample calculations were performed

for the spectral radiation characteristics of glass containing different bubble size distributions

but with a constant void fraction. Table II summarizes the conditions simulated. The effect

of the maximum radius amax and of γ are assessed while the parameter δ is taken to be

unity (gamma function). Figure 8 shows the absorption and extinction coefficients and the
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single scattering albedo for different bubble size distributions at void fractions of 0.2, 0.4,

and 0.6. In general, one can see that the bubble size distribution has a strong influence on

the extinction coefficient and single scattering albedo of glass containing bubbles but very

little on the absorption coefficient. It is interesting to note that the void fraction seems to

affect the extinction coefficient significantly for the wavelength range of 0.4µm ≤ λ ≤ 4.5µm.

Indeed, increasing in the void fraction from 0.2 to 0.6 leads to an increase of the extinction

coefficient by a factor three while the relative effect of the distribution at fv = 0.6 is similar

to that at fv = 0.2.

4 CONCLUDING REMARKS

This paper has presented an analysis of radiative transfer in a semitransparent glass layer

containing gas bubbles with application to glass processing and manufacturing. The results

of sample calculations performed lead to the following conclusions:

• For gas bubbles less than 10 µm in diameter and void fractions larger than 0.006, the

Mie theory should be used and/or considerations of dependent scattering are required.

• For gas bubbles larger than 0.1 mm in radius the analysis developed for glass foams

by Fedorov and Viskanta [6, 7] can be extended over the entire range of void fractions

(from 0 to 0.74).

• Even small void fractions affect the total apparent radiation characteristics of the glass

layer containing large bubbles. The effect of the void fraction is even more significant for

large glass thicknesses and where the bubble size distribution is not uniform. Therefore,

in modeling the radiative heat transfer in glass melting furnaces one should consider the
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effects of gas bubbles on the radiation characteristics of the molten glass since bubbles

are always present in industrial glass melting furnaces where they can be found in large

numbers.

• The model combined could be used as a non-intrusive method for measuring void

fraction and bubble size distribution in two-phase flows by using infrared spectroscopy

and inverse methods in spectral regions where the liquid phase is slightly absorbing.
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Figure Captions

Figure 1. Schematic of the idealized liquid layer containing bubbles and the coordinate sys-

tem.

Figure 2. Survey of the limiting cases in the ρ− χ domain.

Figure 3. Scattering regime map for independent and dependent scattering due to spherical

bubbles.

Figure 4. Map of the scattering theories and approximations used for determining the extinc-

tion efficiency factors of the soda-lime silicate containing gas bubbles, i.e, Qabs, Qsca, and

Qext in Equations (5) to (7).

Figure 5. Effect of bubble radius on the spectral absorption, extinction coefficients, and single

scattering albedo for soda-lime silicate glass with fv = 0.2.

Figure 6. Effect of void fraction on the spectral extinction coefficient and single scattering

albedo for soda-lime silicate glass containing uniform size bubbles 1 mm in diameter.

Figure 7. Typical bubble size distributions as summarized in Table 1 for fv = 0.2.

Figure 8. Effect of size distribution on the spectral absorption, extinction coefficients, and

single scattering albedo of soda-lime silicate glass with fv = 0.2.

Figure 9. Effect of void fraction on the spectral extinction coefficient and single scattering

albedo for soda-lime silicate glass containing gas bubbles for modified gamma distribution

function 1.
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Table Captions

Table I. Parameters and major characteristics of the bubble size distribution functions.

Table II. Parameters and major characteristics of the bubble size distribution functions.
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Figure 1: Schematic of the idealized liquid layer containing bubbles and the coordinate system.
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Qext in Equations (5) to (7).
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Figure 5: Effect of bubble radius on the spectral absorption, extinction coefficients, and single

scattering albedo for soda-lime silicate glass with fv = 0.2.
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Figure 6: Effect of void fraction on the spectral extinction coefficient and single scattering

albedo for soda-lime silicate glass containing uniform size bubbles 1 mm in diameter.
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Figure 7: Typical bubble size distributions as summarized in Table 1 for fv = 0.2.
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Figure 8: Effect of size distribution on the spectral absorption, extinction coefficients, and

single scattering albedo of soda-lime silicate glass with fv = 0.2.
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Figure 9: Effect of void fraction on the spectral extinction coefficient and single scattering

albedo for soda-lime silicate glass containing gas bubbles for modified gamma distribution

function 1.
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Table I. Major characteristics of the uniform bubble size distributions.

fv =0.2 fv =0.4 fv =0.6

Distribution a NT NT NT

[mm] [#/cm3] [#/cm3] [#/cm3]

Uniform1 0.2 5.97× 103 1.19× 104 1.79× 104

Uniform2 0.8 93.3 186.5 279.8

Uniform3 1.6 11.7 23.3 35.0

Table II. Parameters and major characteristics of the bubble size distribution

functions.

fv =0.2 fv =0.6

Distribution γ δ A B amax NT amax NT

[mm] [#/cm3] [mm] [#/cm3]

Modified Gamma 1 4 1 1.59× 1010 80 0.5 116.4 0.5 349.2

Modified Gamma 2 4 1 6.2× 107 40 1.0 14.6 1.0 43.7

Modified Gamma 3 8 1 8.22× 1013 80 1.0 24.7 1.0 74.1
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