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Competitive Equilibrium Bitrate Allocation for
Multiple Video Streams

Mayank Tiwari, Student Member, IEEE, Theodore Groves, and Pamela C. Cosman, Fellow, IEEE

Abstract—We consider the problem of simultaneous bitrate
allocation for multiple video streams. Current methods for mul-
tiplexing video streams often rely on identifying the relative
complexity of the video streams to improve the combined overall
quality. In such methods, not all the videos benefit from the
multiplexing process. Typically, the quality of high motion videos
is improved at the expense of a reduction in the quality of low
motion videos. In our approach, we use a competitive equilibrium
allocation of bitrate to improve the quality of all the video streams
by finding trades between videos across time. A central controller
collects rate-distortion information from each video user and
makes a joint bitrate allocation decision. Each user encodes and
transmits his video at the allocated bitrate through a shared
channel. The proposed method uses information about not only
the differing complexity of the video streams at every moment but
also the differing complexity of each stream over time. Using the
competitive equilibrium bitrate allocation approach for multiple
video streams, simulation results show that all the video streams
perform better or at least as well as with individual encoding. The
results of this research will be useful both for ad hoc networks that
employ a cluster head model and for cellular architectures.

Index Terms—Competitive equilibrium, Edgeworth box, H.264/
AVC, Pareto optimality, rate control, video compression.

I. INTRODUCTION

W ITH the advancement of digital video technology in re-
cent years, there has been an enormous surge in the

amount of video data shared across networks. In many cases, a
transmission link is shared by more than one video stream. Ap-
plications where multiple compressed video streams are trans-
mitted simultaneously through a shared channel include direct
broadcast satellite (DBS), cable TV, video-on-demand services,
and video surveillance. Some more common applications are
YouTube and instant video streaming by content providers, such
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as Netflix, where multiple streams are transmitted simultane-
ously, and in many cases, these streams share a common trans-
mission channel. In such cases, it has been shown that joint bi-
trate allocation schemes for multiple streams can perform better
than an equal bitrate allocation.

For some existing methods of transmitting multiple video
streams [1]–[4], improving the overall or average quality is
the goal. Overall quality improvement can be achieved by
exploiting the relative complexity of different video streams
at every moment. However, not all video streams may benefit
from the multiplexing process. Generally, the quality of high
complexity videos improves at the expense of reduced quality
of low complexity videos. Three transform domain multi-
plexing methods were discussed in [1]: MINAVE, MINVAR,
and S-MINVAR. The overall quality when averaged across
all the videos was maximized in the MINAVE method but
at the expense of reducing the quality for some videos. At
the cost of a peak signal-to-noise ratio (PSNR) reduction, the
MINVAR method in [1] was proposed to reduce the frame level
video quality variance between various video streams. Further,
using an encoder buffer, S-MINVAR in [1] was proposed to
reduce the quality variance across both videos streams and
across frames. While the bit allocation algorithm in [1] is a
good method for minimizing the quality variance between the
videos, it comes at the expense of substantially reducing the
average video quality, and also not all the users improve their
individual video quality.

Mechanism-based resource allocation for multiple video
streams was studied in [5] and [6]. These methods use a central
controller for resource allocation. In [5], a Groves mechanism
was used to control a network comprised of selfish users.
Under the mechanism, a user’s cost for receiving his share
of resources depends on the information transmitted to the
central controller, and it was shown that a user will report
his true values for receiving his allocated share of resources.
However, the overall quality of the system was improved at
the expense of reductions of video quality for some users. A
bandwidth resource allocation procedure using the Nash and
Kalai-Smorodinsky bargaining solutions was proposed in [6]
for multiple collaborative users, and some important prop-
erties of the bargaining solution were presented for effective
multimedia resource allocation. It was shown in [6] that the
utility of all the users increased compared to a disagreement
point defined by an initial resource allocation such that the
initial utility is zero for all users. However, not all the available
resource is allocated at this disagreement point. However, if
the disagreement point is defined by any arbitrary allocation of
the total available resource, then the method given in [6] will
converge only to the disagreement point.

1057-7149/$26.00 © 2010 IEEE
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All the above methods use a central controller for resource al-
location. Some decentralized resource allocation methods were
proposed in [7] and [8]. The Vickrey-Clarke-Groves mechanism
was used to allocate resources in [7] and a pricing mechanism
for resource allocation was used in [8]. In both these methods,
the emphasis was on inducing truth-telling behavior from var-
ious users based on a mechanism that adjusts the trade-off be-
tween the value of additional resources and a cost levied to in-
duce honest information transmittal. It is interesting to note that,
in [8], a very special utility function is assumed for all users
where a user’s utility is a linear function of the video quality
and “money”, which implies every user values an incremental
change in his video quality exactly the same—a very strong and
arguably unrealistic assumption. Moreover, in [8], an improve-
ment in each user’s utility was shown compared to the initial
utility of zero, however, not all users would improve their utility
if the total amount of resources were initially allocated, similar
to [6].

None of the methods discussed above aims to improve the
quality of all the users individually. If the alternative is an equal
distribution of the total available resource, a user may see his
video quality degrade if he participates in any one of the re-
source allocation methods described above. Thus, it is reason-
able to expect that a user might choose not to participate in a
specific resource allocation process if he is unsure of his video
quality improvement. The user might decide he will be better
off acting individually and receive a fixed share of the resource.

In this paper, the goal is that no video stream will suffer
quality degradation by participating in the multiplexing process,
compared to independent encoding. As we will see later, while
the method does not offer a guarantee that no video will suffer a
quality degradation from multiplexing compared to individual
encoding, in practice a quality degradation is extremely un-
likely, and did not occur at all in our experimental cases. We use
a competitive equilibrium approach for bitrate allocation among
various video users based on their video complexity. A compet-
itive equilibrium consists of an allocation and a price vector at
which (a) each user’s allocated consumption vector maximizes
his utility given a budget constraint defined by the equilibrium
prices and his initial wealth, and (b) at the equilibrium prices,
the aggregate supply of each resource that was endowed initially
to the users equals the aggregate demand for it.

For video multiplexing, we define the utility in terms of mean
squared error (MSE), and the resource at any time-slot is the
available bitrate. If the video complexity is high then more of
the resource is required to attain some level of utility compared
to the amount required for achieving the same level of utility
for a less complex video. The equilibrium price is the rate of
exchange between current bitrate and expected future bitrate.
As will be discussed later, it reflects the number of current bits
a user must give up to get one expected bit some time in the
future or equivalently, how many current bits a user can get by
giving up one expected bit some time in the future. The price
varies with the relative video complexity between the current
time-slot and future time-slots. If the average complexity of all
the videos in the current time-slot is greater than the expected
average complexity in the future, then the bits at the current
time-slot are more valuable and the price will be greater, and
vice versa if the average complexity of all the videos in the cur-

Fig. 1. Bitrate allocation for multiple video streams using a central controller.

rent time-slot is less than the expected average complexity of
the videos in the future.

The general equilibrium approach views the economy as a
closed and interrelated system in which the equilibrium values
for all the variables are determined simultaneously. Our method
for implementation of competitive equilibrium selects an ex-
pected efficient, or Pareto optimal, allocation of bitrate for mul-
tiple videos. At a Pareto optimal solution, there is no alterna-
tive way of allocating resources that makes some users better
off without making some other users worse off. By computing
the expected competitive allocation in the Edgeworth box, a
common tool in economics for equilibrium analysis, we find a
point where all users, in expectation, perform better or at least
as well as what they could achieve independently. This method
exploits gains in quality that can be achieved by trading bits
across time rather than merely reallocating bits among the video
streams at any time, as is done with current methods of multi-
plexing. In our preliminary work [9], the competitive equilib-
rium at any time-slot was solved by reducing the entire video
sequence to two equal length time-slots, one for the current
time-slot and one for the average of all the remaining time-slots.
In this paper, we trade the bits for the current time-slot against
all the remaining time-slots [with the same expected rate-distor-
tion (RD) curve] and this gives more flexibility in trading.

Fig. 1 shows a general block diagram for joint bitrate al-
location for multiple video users. Each user passes RD infor-
mation to a central controller. The central controller computes
the competitive equilibrium for the users simultaneously and
sends the allocated bitrate information to the corresponding en-
coder. Each encoder uses this information to encode his video.
Encoded bitstreams are multiplexed and transmitted through a
shared channel to the decoder. At the decoder, the bitstreams
are demultiplexed and sent to the corresponding decoder to de-
compress the bitstream and display. We operate the competitive
equilibrium bitrate allocation at the level of a group of pictures
(GOP). However, it can be operated at other granularities.

In this work, we ignore any incentive the users might have
to communicate false information in order to acquire additional
resources. For example, a user with low complexity video in the
current time-slot and high complexity in the next time-slot might
overstate his current complexity relative to the next time-slot,
thereby lowering the relative bitrate price in the next time-slot,
and, thus, enabling more favorable allocations in the current and
next time-slots. The mechanism we discuss here is susceptible
to this type of strategic manipulation.

However, such incentive issues are not relevant for applica-
tions in which separate users share the same objective (i.e., form
a team [10], for example, as in a military scenario). Also, as is
extensively discussed in the economic literature, the advantages
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to such strategic manipulation become vanishingly small as the
number of users being multiplexed increases. The larger the
number of users, the less any individual user can affect the com-
puted competitive equilibrium prices. Therefore, we assume all
the users inform the controller of their true video RD charac-
teristics. The controller then uses the competitive equilibrium
approach to determine the bitrate allocation.

The rest of the paper is organized as follows. Section II
describes the Edgeworth box for illustrating competitive equi-
libria. Section III describes competitive equilibrium bitrate
allocation methods for multiple video streams. Results are
given in Section IV, and Section V concludes the paper.

II. EDGEWORTH BOX FOR COMPETITIVE EQUILIBRIUM

In this section, we briefly describe a competitive equilibrium
and its Edgeworth box representation. Interested readers are en-
couraged to read [11] for further details.

The Edgeworth box [12] is a graphical tool for exhibiting
Pareto optimal allocations and illustrating a competitive (Wal-
rasian) equilibrium in a pure exchange economy [11], in which
no production is possible and the commodities that are ulti-
mately consumed are those that individual users possess as
initial endowments. The users trade these endowments among
themselves in a market for mutual advantage. For the compet-
itive equilibrium analysis, we start with an example using two
users who exchange quantities of two goods with each other
for their mutual advantage. This simple case is amenable for
graphical analysis using the tool known as an Edgeworth Box.
Later, for multiplexing many video streams, we will apply the
theory of competitive equilibrium for exchanging bitrate to
improve the quality of all the video streams.

Consider two users ( , 2) and two goods ( , 2).
User ’s consumption vector is , i.e., user ’s
consumption of good is . Each user is initially en-
dowed with an amount of good . The total endow-
ment of good in the economy is denoted by ,
assumed to be strictly positive. An allocation is an
assignment of a non-negative consumption vector to each user:

. We say that an allocation
is nonwasteful and feasible if for all goods (the
total consumption of each good is equal to the economy’s ag-
gregate endowment of it).

In the Edgeworth box, user 1’s quantities are measured with
the southwest corner as the origin , shown in Fig. 2. User
2’s quantities are measured using the northeast corner as the
origin . For both the users, the horizontal dimension mea-
sures quantities of good 1 and the vertical dimension measures
quantities of good 2 from their respective origins. The width
and height of the box are and , the economy’s total endow-
ment of goods 1 and 2. The initial endowment point is given by

. Any point in the box represents a di-
vision of the total endowment between users 1 and 2, as shown
in Fig. 2.

User ’s wealth is defined by the market value of his goods
endowed initially. Suppose users can buy or sell these goods in
the market for prices and . In general equilibrium theory,
the wealth of a user is derived internally by the value of the

Fig. 2. Edgeworth box for two users and two goods.

Fig. 3. Budget sets in an Edgeworth box for two users and two goods.

prices. For any price system and initial endowment,
the budget set for user is

(1)

The budget set for user is the set of all consumption vectors
which user can afford at price . The budget sets for two

users in an Edgeworth box are shown in Fig. 3. A line drawn
through the initial endowment with a slope of is the
budget line. User 1’s budget set (denoted by ) consists of
all the non-negative vectors below and to the left of the budget
line. The area on the other side of the budget line is the budget
set for user 2 (denoted by ). Any total allocation of the
two goods on the budget line will be affordable at price system

to both the users simultaneously.
Given , user can calculate his utility ,

which is a measure of “goodness” or satisfaction with the con-
sumption vector . The locus of all yielding the same utility

is called an indifference curve of user . The family
of all indifference curves is the collection of level sets of the
utility function , as shown in Fig. 4. As we move away
from his origin, the utility associated with successive indiffer-
ence curves for user increases, as more of both goods increases
utility. In Fig. 4, considering the indifference curves for user 1,
the utility for user 1 that is associated with the indifference curve
that passes through is higher than the utility associated with
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Fig. 4. Preferences in the Edgeworth box.

the indifference curve through . The same is true for user 2.
For the purpose of explaining the Edgeworth box, we assume
that these curves are convex. For the problem of allocating bi-
trate among multiple video streams, we will discuss the validity
of this assumption in the next section.

Consider the family of indifference curves for each user, con-
sisting of all indifference curves through every allocation. Under
our assumptions of convexity and smoothness, each indifference
curve for a user will be tangential to one indifference curve of
the other user at some point. The points where the indifference
curves for both users are tangential to each other are Pareto op-
timal allocations. At these allocations, it is not possible to in-
crease the utility of one user without decreasing the utility of
the other user. The set of all Pareto optimal allocations is the
Pareto set. It is a curve that connects all the Pareto optimal allo-
cation points in the Edgeworth box from one origin to the other
origin. The part of the Pareto set where both users do at least as
well as at their initial endowments is called the contract curve
(Fig. 5). The contract curve lies between the indifference curves
for both the users passing through the initial endowment. Free
and unfettered bargaining between the users might be expected
will result in some point on the contract curve as these are the
only points at which both users do at least as well as at their
initial endowments and for which there is no alternative further
trade that can make both users better off [11]. This is shown in
Fig. 5.

Given a price vector , a user demands his most preferred
allocation in his budget set. The most preferred point is the
point where the budget line is tangential to one of his preference
curves. As is varied, the budget line pivots around the initial
endowment point , and the quantity demanded by a user will
be a set of points where different budget lines are tangent to dif-
ferent preference curves. The locus of the user ’s optimal choice
given current price (which defines current wealth) is known as
the offer curve and is shown in Fig. 6. The offer curve
always passes through the endowment point because, for any ,
the initial endowment is affordable for the user and the tangent
to the indifference curve through the endowment point defines a
price at which the endowment is the most preferred allocation
in the corresponding budget set.

Fig. 5. Pareto set and the contract curve in the Edgeworth box.

Fig. 6. Offer curve for user 1. Budget line � , � , and � are tangential to
various indifference curves at � , � , and � , respectively.

A competitive equilibrium for an Edgeworth box economy is
a price vector and an allocation such that

(2)

and

(3)

At an equilibrium, each user ’s demanded bundle at price
vector is and each user’s net demand for a good is exactly
matched by the other’s net supply. The intersection of a budget
line and contract curve, where the budget line is also tangential
to the indifference curve for both the users on the contract
curve, defines a competitive equilibrium. At this point, the offer
curves for both the users intersect at a point on the contract
curve (Fig. 7). At an equilibrium point, both users are better off
compared to their initial endowment. Under our assumptions,
at least one competitive equilibrium will exist for every initial
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Fig. 7. Competitive equilibrium allocation. The offer curves for both the users
intersect at the competitive equilibrium allocation. One of the indifference
curves for both the users is tangential to a budget line at this allocation.

endowment allocation. More details about the Edgeworth box
and competitive equilibrium can be found in [11].

III. COMPETITIVE EQUILIBRIUM APPROACH

FOR VIDEO MULTIPLEXING

In this section, we explain the competitive equilibrium ap-
proach for bitrate allocation among various video streams. Sup-
pose there are video users. The video stream of each user is
divided into time-slots (TS). In this work, we consider one TS
to be one GOP, but a TS can be larger or smaller than a GOP. We
will use the terms GOP and TS interchangeably. We assume that
the videos are synchronized at the GOP level. Such synchroniza-
tion can be achieved by a small amount of buffering of the input
videos at the expense of a small amount of delay. The problem
of synchronization does not exist when a TS is of a frame size.

We extend the concept of the Edgeworth box from two users
to users and from two goods to TS. The quantity of each
good is represented by the number of bits available in each TS.
A user in TS is initially endowed with bits. Therefore, the
total number of bits available in TS is

(4)

The users compete to receive bits from the pool of bits in
TS . Let be the utility for user . Therefore,
the optimization problem for user is given by

(5)

and the constraint over all users is

(6)

where are the competitive equilibrium prices.
The solution obtained from (5) and (6) is the competitive
equilibrium bitrate allocation.

The above method would work for archived videos where the
utility function over all TS is available in advance. However,
for real-time applications, a limited amount of video is available

and it is generally not possible to achieve a global competitive
equilibrium solution. Thus, we reduce the problem to a sequence
of problems, each of which solves for a competitive equilibrium
for the current TS and a representative of all future TS. For video
streams, we define the utility to be the negative of MSE. We
generate the RD curve for each TS by calculating the MSE at
different bitrates. Note that the complexity of generating the RD
curve can be reduced by using the method described in [13].

Suppose that, in a two user system, user 1 and user 2 each has
an initial endowment of 500 bits in TS 1 and in TS 2. Therefore,
a total of 1000 bits are available in each TS. If the RD curves
for the two users are such that giving 600 bits to user 1 in TS
1 and 400 in TS 2 (and vice versa for user 2) produces a more
favorable total MSE than the equal initial endowment, then the
Edgeworth box approach would favor this allocation over the
initial one.

While trading across TS is the basic idea behind our approach,
often adjacent TS have similar RD curves. Therefore, little ben-
efit can be gained by trading bits between adjacent TS for any
two users. One would like to trade between the current encoding
TS and some other TS widely separated in time. But, since the
specific RD curve for a distant TS is typically not known in a
real-time application, we consider trades between the current
encoding TS and an expected or representative RD curve for all
the future TS.

Specifically, for our method, in each TS for each user, the
central controller will reoptimize the decision for the current
and all future TS using estimated values for future RD curves.
Assuming future TS are identical in expectation (the future en-
vironment is perceived as stationary), then each TS’s decision
problem is just an optimization problem with two decisions
only—the allocation for the current TS and , the common
allocation for each of the remaining TS. We start at the
first TS and sequentially process each TS in the same manner.
Using the estimated utility for the future TS, the optimization
problem for user becomes

(7)

where is the equilibrium price for the current TS and is
the estimated equilibrium price of the remaining TS. is the
average initial endowment for user for TS to .

As given in [14], the RD curve for user in TS is fitted by

(8)

where is the number of bits and is the MSE distortion
for TS in video stream . We use the unconstrained nonlinear
minimization approach to find , , and , the coefficients for
generating this curve-fitting model. Other curve-fitting models
are available in the literature [13]. Note that the model used in
(8) is convex. The convexity of the RD curves is an empirical
observation. Frequently in the previous literature, convexity is
either empirically observed or is assumed to hold. All the videos
investigated in this paper exhibit this property. Were it not to be
the case, the computed competitive equilibrium solution in the
Edgeworth box would not necessarily be an efficient solution
for bitrate allocation.
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Using (8), the utility function is represented by

(9)
that is, the negative sum of the MSE in TS and the estimated
weighted MSE for the remaining TS. Then the indiffer-
ence curve through the initial endowment at TS can be derived
as

(10)

for different combinations of and . Since the RD curves
for both current TS and average for future TS are convex; these
indifference curves are also convex in nature.

A competitive equilibrium is found by solving

(11)

The Lagrangian expression for user is

(12)

The constraints on the total available bits in each TS are given
by

(13)

(14)

By differentiating with respect to , , and , equating
the results to 0 and solving for , and substituting in (13), we
get

(15)
To determine the competitive equilibrium, we need to find the

equilibrium prices, and that solve (15). Since the solution
of (15) is homogeneous of degree 0 in prices, we only need to
find an equilibrium price ratio . Therefore, without loss of
generality, we may take and solve (15) numerically for

. With , we find and which comprise a competitive
equilibrium.

To predict the future average RD function, we consider sev-
eral alternatives that differ in the information assumed to be held
by the user at the time he makes the forecast. In all cases, the user
will use the competitive equilibrium approach to calculate the
allocated bitrate for the current TS with respect to the forecasted

average RD function for the future. Suppose we have informa-
tion about the average RD function for a video user over all
TS (1 to ). Then we can use such information to calculate the
bitrate demand at a competitive equilibrium for a user in the cur-
rent TS by trading the bits with the average RD function for all
the TS. We call this method of bitrate allocation ALL_TS which
assumes knowledge of the average RD function over all the TS
for a user. The average RD curve in ALL_TS is approximated
by averaging the individual coefficients ( , , and ) separately
for a user over all TS. The coefficients generated by actually av-
eraging the RD curves for all the TS of a video are extremely
close to the average coefficients.

A user is assumed to always know the actual RD function for
the current TS and all past TS (1 to ). Given the average
RD function for all TS, he can calculate the average RD function
for the remaining TS (REM_TS). With the information on the
current RD function and average RD function for the remaining
TS, the central controller uses (15) to calculate the competitive
equilibrium price and bitrate allocation for the current TS. The
average RD curve in REM_TS is approximated by averaging
the individual coefficients ( , , and ) separately for a user
over all the remaining TS. Both ALL_TS and REM_TS are ex
ante approximation models where we assume some information
about the future video in advance.

Suppose a user has no knowledge about future TS (ex post) (as
is the real-time case) but assumes that the video is a stationary
process at the GOP level. Future TS properties (for example,
complexity) can be estimated by looking at the past. We cal-
culate the bitrate demand for the current TS using the average
of all previous TS (PRE_TS) as the estimate of future TS. This
method would be expected to work well for long videos but may
not work for short videos if the previous TS are very different
from the future TS. If averaged over a sufficiently long interval,
the complexity for most video streams can be assumed to be al-
most stationary. The assumption about stationarity is important
for PRE_TS to work well. The average RD curve in PRE_TS is
approximated by averaging the individual coefficients ( , , and

) separately for a user over all the past TS.
To approximate an upper bound on video quality improve-

ment, we consider a method in which each user has full infor-
mation about his RD curves in all TS, and proposes to divide the
bits among all the TS based on his relative complexity. This can
only be done for archived videos where the coefficients of the
RD curves are calculated offline. Each video stream uses this
criterion for bit allocation among its TS independently. Since
the total number of bits in each TS is given by the initial en-
dowment, we normalize the number of bits allocated to each
video stream by the total available bits for a TS (FUL_TS). Note
that, for this method, each user attempts to allocate bits across
TS but does not trade with other users. FUL_TS is, of course,
not the real upper bound. The real upper bound would be given
by computing the competitive equilibrium for all TS simultane-
ously [(5) and (6)], an extremely large computational problem
if there are many users and many TS.

To compare the improvement in video quality of competi-
tive equilibrium bitrate allocation using the various multiplexing
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Fig. 8. PSNR variation with bitrate for four multiplexed video streams. (a) g8 video stream; (b) g9 video stream; (c) g10 video stream; (d) g11 video stream.

schemes, we consider the equal bitrate allocation for each user
in every TS (EQL_TS). Here, each user in every TS receives
an equal number of bits to encode his video. Note, for a TS of
GOP length, the rate control algorithms used in conjunction with
most of the video standards strive to achieve equal bitrate allo-
cation for all GOPs, similar to EQL_TS. We use equal bitrate
allocation as an initial endowment for our competitive equilib-
rium allocation.

IV. RESULTS

The simulation was performed using the baseline profile of
H.264/AVC [15] reference software JM 11.0 [16]. The GOP
size is 15 frames (I-P-P-P). The frames inside a TS are encoded
using H.264 rate control [17]. The test video sequences were
taken from travel documentaries at a resolution of 352 240
pixels (SIF) and at 30 frames per second. We chose 12 test se-
quences (denoted by g1 to g12) and each sequence was 250 sec-
onds (7500 frames) in length. The coding parameters such as
resolution, GOP size or structure can be changed for any appro-
priate application as our multiplexing method is independent of
such parameters. We considered a lossless channel for transmit-
ting multiple video streams.

Each video sequence contained various types of scenes with
varying camera motions such as zooming and panning. The high
motion scenes included dancing, bike racing, and a vegetable
market. The low motion scenes showed buildings, maps, sculp-
tures, scenery, etc. Other types of scenes included a flying air-
plane, showing flowers, people talking, farming, cooking, chil-
dren playing chess, etc. The videos also had scenes with varying
spatial content such as a crowded market, bird’s eye view of a
city, sky, still water, etc. Each video sequence contained many
types of scenes and motions.

Fig. 8 shows the results of multiplexing four video streams.
The five curves in each plot represent the various bitrate al-
location methods for multiplexing video streams as described
previously. Each plot shows PSNR versus bitrate (ranging from
95–145 kbits per TS (190–290 kbps) per user). We calculate the
MSE of each frame and average across all frames of a video,
then convert it to PSNR. The performance of EQL_TS is worst
in all the videos. This is the method used in most video stan-
dards for GOP level rate control. For archived videos, the RD
curves for all TS are available and we see that FUL_TS per-
forms better than the other methods for most of the videos.
The PSNR gain over EQL_TS varies from 0.62–0.87 dB for
g11 to 0.94–1.44 dB for g8. However, this method cannot be
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used for real-time video multiplexing. The bitrate allocation
of EQL_TS is considered to be the initial endowment for the
competitive equilibrium bitrate allocation methods (ALL_TS,
REM_TS, and PRE_TS). If we consider that a user knows the
average RD curve for all the TS, then the competitive equilib-
rium bitrate allocation method, ALL_TS, is used to improve the
video quality of all the video streams individually. We found
that ALL_TS performs 0.67–1.00 dB for g9 to 0.88–1.17 dB
for g8 better than EQL_TS. We see that even a small amount of
information such as the average RD curve for the entire video is
useful to improve the quality of all the videos.

If a user knows the average RD curve for future TS, this infor-
mation can be used to improve the video quality, as shown by
REM_TS. This method finds a competitive equilibrium point
for the current TS when compared to its average RD of the re-
maining TS. This method improves the quality of each video
stream from 0.77–0.94 dB for g10 to 0.87–1.17 dB for g8 over
the EQL_TS method. As this allocation method uses the knowl-
edge of the average RD curve for all the future TS, in general,
its performance is slightly better than the ALL_TS method.

Finally, we assume that we have no prior knowledge about
the video and we estimate the future RD curves by looking at
the previous TS. Again we compute the competitive equilibrium
for the current TS and the estimated average RD information
for future TS based on the average of the previous TS (PRE_TS
curve in the figure). This method improves the PSNR from
0.56–0.81 dB for g11 to 0.86–1.08 dB for g8 over EQL_TS.
All the competitive equilibrium bitrate allocation methods
improve the quality of all the video streams. We see that, even
with absolutely no knowledge about the future video RD char-
acteristics in PRE_TS, we are able to improve the quality of
all the video streams by calculating a competitive equilibrium
bitrate allocation. The PSNR improvement over EQL_TS using
this allocation method is in the vicinity of other competitive
equilibrium bitrate allocation methods described in this paper.

Our competitive equilibrium bitrate allocation method aims
at improving the video quality of each user. If we calculate the
MSE averaged across all the users, then our method may per-
form worse than the methods for minimizing the MSE across all
the videos [1], [2], [4]. For example, consider the case for the
four videos used in Fig. 8 at 95 kbits per TS per user. If we max-
imize the quality averaged over all the videos at each TS using
MINAVE from [1] applied to time-domain RD curves, then we
achieve 32.91 dB as the average PSNR. On the other hand, the
average video quality for the ALL_TS, REM_TS, and PRE_TS
methods is 32.65, 32.71, and 32.55 dB, respectively. Clearly, our
multiplexing method does not minimize the average distortion.
For improving the video quality for each user individually, we
incur some performance penalty when compared to the method
that explicitly has as its goal the minimization of average dis-
tortion over all videos.

Estimates of MSE for future TS by our various estimation
methods are shown in Fig. 9 for the g11 video sequence at a bi-
trate of 100 kbits per TS. On the x-axis is the TS index and on
the y-axis is the actual MSE and three types of estimated MSE
for the future TS. We encode each TS at the given bitrate and
this is shown as the “Actual” curve in the figure. When the RD
curve is averaged over all the TS (ALL_AVG), then the MSE

Fig. 9. Actual MSE and estimates of MSE for future TS by our various esti-
mation methods for g11 video sequence at 100 kbits per TS.

remains constant. When the RD curve is averaged over the re-
maining video at any TS then the calculated MSE is the same
as ALL_AVG initially, then deviates, and finally converges with
the actual MSE of the last TS. When the average RD curve is es-
timated from the past TS (PRE_AVG), then the calculated MSE
starts with the actual MSE at the beginning and then converges
to the ALL_AVG at the end. We compare the actual MSE vari-
ation at any TS with the MSE of these averages. The impor-
tant conclusion that can be derived from this figure is the low
variation of all the types of averaging methods compared to the
variation in the actual MSE at any TS. When a user calculates
his bitrate requirement for the current TS, then the user actu-
ally calculates the usefulness of the bits currently compared to
the future. If the video is less complex in the current TS than
the average of the future, then the user demands fewer than the
average bits for the current TS in anticipation that he will re-
ceive more bits in the future when his complexity is expected
to be higher. By trading the bits across time, a user is able to
improve his video quality. At any given TS, the demands from
some users are less than their average allocation of bits while
other users’ demands are greater. At a competitive equilibrium
allocation for the current TS and the average of their future TS,
the expected video quality of all the users is improved.

Similarly, Fig. 10 shows the results for six video streams that
are multiplexed together using the methods described above.
The PSNR of all the six videos improves for a wide range
of bitrates. For the competitive equilibrium bitrate allocation
methods in these six videos, g8 and g9, in general, produce most
PSNR improvement. The improvement is as high as 1.5 dB.
The least PSNR improvement is seen for g11 but it is still in
the range of 0.60–1.08 dB above EQL_TS. A similar result
is shown in Table I when ten video streams are multiplexed
together at an average bitrate of 100 kbits per TS per user. The
table shows the PSNR improvement over EQL_TS by various
multiplexing methods.

We note that the largest PSNR gain is achieved by finding
the competitive equilibrium when there is a lot of fluctuation in
the video motion, for example g9. Conversely, the PSNR gain
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Fig. 10. PSNR variation with bitrate for six multiplexed video streams. (a) g7 video stream; (b) g8 video stream; (c) g9 video stream; (d) g10 video stream; (e) g11
video stream; (f) g12 video stream.

is low if the motion fluctuation in a video stream is low, for
example g1. Most of the video streams have significant mo-
tion fluctuation and scene changes, so multiplexing them by
computing the competitive equilibrium should improve their
quality.

The performance of PRE_TS depends on the accuracy of the
estimation of future TS from past TS. Suppose we have a video
whose complexity is monotonically decreasing. Therefore, it
would be desirable if the bitrate demanded in the current TS
would be higher than the bitrate demanded in any future TS.
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TABLE I
PSNR (db) OF EQL_TS AND IMPROVEMENT OVER EQL_TS BY USING VARIOUS MULTIPLEXING METHODS WHEN

TEN VIDEO STREAMS ARE MULTIPLEXED TOGETHER AT AN AVERAGE BITRATE OF 100 kbits PER TS PER USER

Using PRE_TS, the competitive equilibrium bitrate allocation
will compare the RD function for the current TS and estimated
RD function for the future TS. However, since the estimated
RD curve for future TS is based on the past TS, the bitrate allo-
cation for current TS at competitive equilibrium for this video
will be less than the average allocation for the future TS. In the
REM_TS method, the allocation for the current TS will be more
than the average allocation for the future since fewer bits are ac-
tually required for the future TS. In such a case, REM_TS and
FUL_TS will perform much better than EQL_TS but it is pos-
sible that EQL_TS might perform better than PRE_TS. How-
ever, in real video examples, we rarely encounter such patho-
logical cases, and our multiplexing methods were found to im-
prove the quality of all of the video streams studied.

As can be seen from Figs. 8 and 10, all the video streams
gain from the multiplexing process. The multiplexing method
using the competitive equilibrium borrows bits from a low mo-
tion TS of a video and gives these bits to another video in the
same TS with the expectation of getting back later when the
need arises. Thus, the multiplexing method exchanges bits be-
tween video streams as well as across the TS. This leads to
another observation that the quality fluctuation for each video
stream is slightly reduced compared to EQL_TS because the
high motion TS get more bits than the low motion TS instead
of getting the same number of bits for all TS. Fig. 11 shows
the PSNR fluctuation for g9 for all the multiplexing methods.
The EQL_TS method has the highest PSNR fluctuation (20.
31–44.83 dB) and FUL_TS has the lowest (24.29–42.50 dB).
Among the competitive equilibrium bitrate allocation methods,
REM_TS has minimum PSNR fluctuation (22.15–42.50 dB)
compared to ALL_TS or PRE_TS. The quality fluctuation can
further be reduced by imposing a constraint on maximum and
minimum video quality. However, any method of reducing the
quality variance comes at the cost of reduction in overall quality
as can be seen in [1]. In our paper, reduction in the quality vari-
ance is achieved by trading the bits across time. Further work
can be done in reducing the quality variance for a video while
maintaining the overall video quality. Perceptually, we see a
huge improvement in the subjective quality by our multiplexing
method compared to EQL_TS.

Depending on the prices at every TS, the videos might re-
ceive unequal total numbers of bits in the multiplexing process,
but all the videos benefit from these multiplexing methods. By
changing the encoding technique inside a GOP (e.g., using mul-
tiple reference frame prediction or using hierarchical B-frames),
along with these multiplexing methods, the overall video quality
can be expected to further improve. The PSNR gains are negli-
gible if the videos have similar complexity at every TS. In such

Fig. 11. Variation of PSNR with TS for g9 video at 100 kbits per TS.

a case, the bitrate requirements for all the videos are similar for
the current TS and future TS and so very little trading will take
place. Similarly, if each individual video has nearly identical
complexity in each one of its TS compared to any other TS, then,
even if the videos differ hugely in complexity compared to one
another, the competitive equilibrium bitrate allocation would re-
sult in negligible PSNR improvement over EQL_TS. This is be-
cause the bitrate requirement for each video at the current TS
is nearly the same as that for the future TS; no user would be
willing to trade bits for the current TS with respect to the future
TS. Then, all the videos receive almost the same number of bits
at each TS. Thus, the competitive equilibrium bitrate allocation
would result in negligible PSNR improvement.

The utility function for this paper was defined in terms of
MSE. However, the proposed competitive equilibrium bitrate
allocation method can be applied to any other utility function
provided that it is convex. The interpretation would vary since
users would have to communicate their individual subjective
utility information instead of objective RD information about
their videos.

A. Video Users With Variable Start and End Times

The results presented above are for users who are simul-
taneously transmitting their videos. All the users are present
during all TS. This is the same condition used in previous work
on video multiplexing [1]–[6], [8]. We now consider video
streams with different start and end times, so there are different
numbers of users involved in the multiplexing at different times.
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Let and be the start and end times for user . The utility
function for user at TS such that is given by

(16)
A competitive equilibrium at TS is found by solving

(17)

The constraint on the total available bits in TS is given by

(18)

The equilibrium prices can be found by solving

(19)

Thus, the competitive equilibrium bitrate allocation can be
calculated using these prices.

There are two scenarios for the system involving users with
different start and end times. In the first, we consider that each
user is offered some fixed dedicated bitrate but then chooses to
add their allocation into the communal pool and join a compet-
itive equilibrium allocation process. The total bitrate at any TS,
therefore, scales up with the number of users in that TS. In the
second scenario, users also start and end their video transmis-
sion at different times, but the shared channel has a bitrate that
may be constant or variable over time, but in any case does not
scale with the number of users. These scenarios are briefly dis-
cussed below.

Suppose we have a system where a user is assigned a specific
bitrate when he enters. There are two options available for such
users: (a) the user can transmit his video at his given bitrate and
(b) the user can collaborate with other users, adding his alloca-
tion into the communal pool and achieving a competitive equi-
librium bitrate allocation, with the expectation that he will be
better off in terms of video quality by doing so. The overall bi-
trate depends on the number of users present at any TS and their
initial endowments. Our competitive equilibrium bitrate alloca-
tion method was easily extended to such systems to improve the
quality of all the users. Using the simulation results for such sys-
tems, it was found that the quality improvement using the com-
petitive equilibrium bitrate allocation depends on the amount of
time that the users overlap with each other. As one would ex-
pect, the case of large overlaps among large numbers of users
produces higher quality improvement. As the number of such

users increases in the system for the competitive equilibrium al-
location, the performance improvement for collaborating (com-
pared to retaining one’s own equal initial endowment) increases
since more trading takes place between the users for mutual ad-
vantage. The results are largely the same as the case of same
start and end times. Current users of the system know that any
additional users who join in will bring their own equal allocation
with them for the communal pool, so there is, on the average, a
slight improvement when new users join (because of the advan-
tages of having more people involved in trades), and there is a
slight disadvantage when people leave.

We now consider the second case, where the shared channel
has a bitrate that does not depend on the number of users present.
This may be a Constant Bitrate (CBR) channel or a Variable Bi-
trate (VBR) channel. In either case, users enter and leave the
system at different times, and the average bitrate at any TS de-
pends on both the total bitrate at that TS and on the number
of users present. Therefore, the initial endowment to each user
varies, and is performed at that TS. In such a case, the com-
petitive equilibrium bitrate allocation depends on the number of
users present at any TS for trading and the total available bi-
trate at that TS. If there are many users present, since the total
bitrate does not scale up with the numbers of users, everyone’s
quality will be worse on the average compared to if there were
fewer users, regardless of whether equal allocation or competi-
tive equilibrium allocation is used. However, as in the previous
case, the improvement for collaborating compared to equal al-
location generally increases with the number of users present at
any TS. However, if there are many users present, the quality
of most of them (unless they have a very low complexity TS) is
lower than their expected quality for the future, and users would
then be unwilling to give away bits in that TS in exchange for
future bits. In such a case, little or no trading will take place
between the users. Table II shows the results for multiplexing
10 video streams with different start and end times for a shared
constant bitrate of 500 kbits per TS. The start and end times for
each user are given in Fig. 12. At some TS, there are as many as
six video streams, and at other times, there are as few as three.
To estimate the average video quality for future TS, we assume
that the users know the average bitrate. At any TS, the compet-
itive equilibrium is achieved for those users who are present at
that TS. Even with different start and end times, all users im-
prove their video quality compared to EQL_TS, as shown in
Table II. Fig. 12 and Table II provide one example of differing
start and end times. The results, in general, depend on the dis-
tributions of start times and end times, as well as on what users
know about these distributions when they forecast their future
bitrate demands.

We note also that our competitive equilibrium model for
bitrate allocation is intended to be an approximation to a “large”
system in which fluctuations in the number of users on the
shared channel at any one time will be “close” to some average
number. In that case, variable starting and ending times present
no problem because the number of bits allocated to each user
initially can be considered to be constant per TS. For all these
different scenarios, the computations we make are exactly the
same—each user is trading off bits between the current TS and
an average of all future TS (which may be different for different
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TABLE II
PSNR (db) IMPROVEMENT OVER EQL_TS BY USING VARIOUS MULTIPLEXING METHODS WHEN TEN VIDEO STREAMS

WITH DIFFERENT START AND END TIMES ARE MULTIPLEXED TOGETHER AT A CONSTANT BITRATE OF 500 kbits PER TS

Fig. 12. Start and end times of ten video users.

users, depending on the length of their video and when they
started).

V. CONCLUSION

We discussed various methods for multiplexing video streams
for improving the quality of each individual video. Note that be-
cause this technique is applicable to both ad hoc networks that
employ cluster heads and cellular architectures, it is relevant
to both military and commercial scenarios. We considered the
competitive equilibrium approach for allocating bitrate among
various video streams. Using an Edgeworth box solution, we
graphically showed the process of bitrate allocation at a com-
petitive equilibrium. A central controller collects rate-distortion
information from all the users. The central controller performs
the competitive equilibrium calculation for a bitrate allocation
to all the users simultaneously. The final bitrate allocation is
a Pareto optimal solution and all the users do at least as well
as they would with an individual allocation. The bitrate alloca-
tion information is sent to the video users, and the users use this
information to encode their video streams. We proposed three
different methods for estimating the future RD information for
a video stream. The estimation of future RD information was
used to trade bits for the current TS with respect to the expected
bitrate requirement in the future. All the estimation methods
work well for the competitive equilibrium allocation. The re-
sults show PSNR improvement for all the video streams. Com-
paring the decoded videos after multiplexing, we found that the
subjective quality was improved by using the competitive equi-
librium bitrate allocation when compared with EQL_TS. Typ-
ically, the video quality improvement is clearly visible in high
motion parts of a video stream where more bits are allocated in
the competitive equilibrium bitrate allocation methods. Gener-
ally, the PSNR improvement depends on the accuracy of esti-
mating the RD information for future TS. The PSNR improve-

ment is greater for the videos with higher motion fluctuation,
even though their estimation of the future TS is almost stationary
over time. Such videos have varying demand for the current TS
with respect to the almost constant demand for the future TS,
and so, are willing to trade away bits for now in anticipation of
gaining bits at some future TS or vice versa.
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