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Abstract

Building on counterfactual theories of causal-selection, ac-
cording to which humans intuitively evaluate the causal re-
sponsibility of events, we developed an experimental paradigm
to examine the effect of causal-selection explanations on ab-
ductive causal inference. In our experiment, participants at-
tempted to infer the rule responsible for winning outcomes
of random draws from urns with varying sampling probabil-
ities. Participants who were provided with causal-selection
judgments as explanations for the outcomes made significantly
closer inferences to the rule than those relying on observations
alone, or on other explanations of causal relevance. We mirror
these empirical results with a computational model of infer-
ence from explanation leveraging the theories of causal selec-
tion.

Keywords: causal inference, causal selection, counterfactual
theories of causation

Introduction
Humans form elaborate causal models of the world, which
allow them to understand, forecast, and influence the events
around them. A central puzzle in cognitive science concerns
how these causal beliefs are learned. Extracting causal con-
clusions from observations of events is a notoriously hard
problem (Bareinboim et al., 2022; Bramley et al., 2015), and
everyday inference settings often provide few opportunities to
perform the interventions (or experiments) needed to reliably
infer the causal structure behind a distribution of events.

To mitigate these limitations, it seems plausible that people
should frequently rely on social learning, to piggyback on the
causal knowledge of one another in order to achieve an un-
derstanding of the world more efficiently. This lines up with
the ubiquity of causal explanations in everyday discourse.
From infancy, we frequently ask our peers for explanations
for “why” things occur the way they do. As an everyday ex-
ample, one might ask a neighbor ‘Why did your flowers grow
so well?’ and learn something new from the explanation one
receives (e.g. ‘Because I used fertilizer’).

†These authors contributed equally.

A complicating feature of such everyday causal discourse
is that explanations rarely lay out a complete mechanism suf-
ficient to reproduce the explanandum, as we might expect
from scientific textbook explanation. Rather, they tend to
highlight one or a few of the causal factors involved and claim
these as the cause of the event. You might point to fertilizer
as the cause for the growth of these flowers, rather than for
example the presence of the sun or water. This explanation
seems reasonable in spite of the knowledge that sun and wa-
ter are also prerequisites for flowers to grow, and would cer-
tainly have their place in an exhaustive causal theory of flower
growth. Judgments of this kind, which single out a particular
subset of causal variables as holding particular importance,
are known in the psychological literature as causal selection
(Quillien & Lucas, 2023), or causal responsibility judgments
(Lagnado et al., 2013).

On the face of it, such selective explanations may appear
to be poor conveyors of causal knowledge: by singling out a
subset of variables in a system that often contains many more
interrelated parts, they run the risk of reflecting only the ex-
plainer’s preference for one kind of explanation. As such they
might impoverish, rather than enrich, a requester’s causal un-
derstanding. Yet, the psychological literature on causal selec-
tion has shown that people hold very consistent intuitions as
to which of several events in a causal model is the most im-
portant cause of an outcome (Morris et al., 2018). This seems
to unlock the possibility that people reverse engineer aspects
of an explainer’s beliefs about a causal system from the causal
factors they choose to highlight in their explanations of spe-
cific outcomes.

We propose a novel experiment design to test this possibil-
ity. We put experimental subjects through a task of abduc-
tive causal inference, where they have to retrieve the causal
structure underlying a dataset from a mixture of observa-
tional and explanatory evidence. Our design allows us to
control the main known drivers of causal selection judgments.
Our results show that causal-selection explanations help sub-
jects generalize more adequately from limited data than when
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they are provided with observational data alone, or with other
causal explanations that do not point at the main causes tar-
geted by causal-selection judgments.

Theoretical Background
Recovering what structures and functional relationships un-
derlie a system based on observations of the states of that
system can be a particularly difficult task.

The crux of the challenge lies in the fact that all too often
multiple distinct causal hypotheses might be equally compat-
ible with a set of observations. Observing for example that an
event E regularly follows the occurrence of two events A and
B doesn’t help me decide whether the underlying structure
is one where the conjunction of A and B causes E to occur
(E ← A∧B), of one where either one of A and B would have
caused it to occur (E ← A∨B) — here restricting the focus
only to rules involving Boolean variables and connectives, for
simplicity. A greater variety of observations might help nar-
row down the possibilities: if A occurs but B doesn’t, while
E still follows, I can exclude the possibility that A and B are
both necessary for E to occur. I would still need additional
observations however to rule out other possibilities, such as
E← A∨B or simply E← A, or any other rule consistent with
this limited set of observations.

The problem becomes all the more acute in settings where
crucial observations occur infrequently. Whenever some of
the events relevant to a causal system have very high or very
low probabilities of occurrence, one rarely gets the chance to
observe crucial event combinations. If A is always present, I
cannot learn what the effect of its absence would be. Yet this
is crucial information to infer A’s causal relationship to E.

Remarkably enough, it is in those situations where the
available observations are rather poor at covering the space
of causal systems that causal-selection judgments are going
to be particularly sharp, and exhibit strong preference in fa-
vor of certain variables.

Causal selection judgments
Causal selection judgments have been shown to be sensi-
tive to two main factors: the causal rule that links candidate
causes with the relevant outcome, on the one hand, and the
normality associated with the different variables, on the other
(Morris et al., 2019; Icard et al., 2017; Quillien & Lucas,
2023).

For example, in a situation where several different vari-
ables are each individually necessary for an outcome to oc-
cur (for example, when both water and fertilizer are required
for my flowers to grow), subjects tend to think of the most
unusual variables (the fertilizer) as ‘the cause’, and compara-
tively disregard the importance of the most expected ones (the
water), a pattern of judgment known as abnormal inflation.
By contrast, in a situation where each variable is individu-
ally sufficient, people tend to favor the most probable events
as explanations. This latter pattern of judgment is known as
abnormal deflation (Icard et al., 2017).

Counterfactual theories
Two successful theories of these patterns of causal judgment
to date involve the notion of counterfactual sampling (Icard
et al., 2017; Quillien & Lucas, 2023). According to coun-
terfactual theories, causal-selection judgments involve a two-
step process. First, one uses one’s causal model to gener-
ate a sample of counterfactual situations, where the values of
causal variables differ from what has actually occurred and
the outcome potentially differs too. The frequency of each
event across counterfactuals is a function of their prior prob-
abilities, and whether or not the event effectively happened
in the real world. The outcome of interest is determined by
the events sampled, following subjects’ causal models of the
situation. Empirically, it seems that people consider counter-
factuals that are both likely under the causal model of the sit-
uation, and close to the observations they have made. From a
sample of counterfactuals one can compute a causal responsi-
bility score, as some measure of the covariation between the
states of causal variables and the outcome (different across
models). The variables with the highest causal responsibility
score are those that subjects are expected to favor in causal-
selection judgments (Quillien, 2020).

Inference from explanations
Not only do subjects show a lot of consistency in these pat-
terns of judgments, they are also eager to assume that others
follow similar patterns of judgments, and derive pragmatic
inferences out of such assumptions. As shown by Kirfel et al.
(2022), in a situation where two causes A and B are known to
impact an event E, subjects told that E happened ‘because of
A’ will infer that the underlying causal structure is E← A∧B
when A is the more expected variable, and E← A∨B when A
is the more unexpected variable (in a situation where they are
to choose between just those two structures). More broadly, it
has also been shown that certain types of explanation serve as
a guide to property generalization for both children and adults
(Lombrozo & Gwynne, 2014; Vasil et al., 2022).

Experiment
Here we present a novel experiment design, to show that this
capacity to derive inferences from causal selection judgments
can also help abductive causal inference in conditions closer
to everyday life, where the causal structure to be guessed
is of relative complexity, the space of possibilities open-
ended, and the available observational data too limited to
infer the rule with deductive certainty. This extends previ-
ous accounts of causal inference from explanation (Nam et
al., 2023; Lampinen et al., 2021) by focusing on the role of
causal-selection judgments specifically, rather than just con-
sidering the role of any causal explanations in inference.

Design
The game Participants are invited to participate in a game
where they must infer a hidden rule based on examples of
winning and losing outcomes. The game involves four urns,
each containing a mix of colored and uncolored balls, with
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Any Cause
Explanations

Causal Selection
Explanations

i)

ii)

iii)

iv)
{A, D, A&D, A&C, 

A&C&D}  

{C,D}  

{A&C}  

{A, D, A&D, 
A&C,C&D, A&C&D}

{C}

{C}  

{C&D}  

{C}

Here you won because you drew a 
colored ball from urns A and C!

Here you lost because you drew 
a gray ball from urn C!

Here you lost because you drew 
gray balls from urns A and C!

Here you won because you drew a 
colored ball from urn A!

Observation history Here you won because you drew a 
colored ball from urn C!

Here you won because you drew a 
colored ball from urn C!

Here you lost because you drew 
a gray balls from urns C and D!

Here you lost because you drew 
a gray ball from urn C!

Observation history

Any causeObservation Causal Selection

Predict

Figure 1: The experiment design; (i) shows a sequence of draws with all four samples in the experiment along with respective
explanations. To the right of the samples is the entire history of observations once all 10 samples are drawn; (ii) shows the
urns participants sample from and a visual example of the sampling process; (iii) shows the table of samples participants are
tasked with predicting (not showing all 16). Participants have access to their observational history when making predictions.
(iv) shows a comprehensive list of the observations and explanations given in the experiment.

each urn having a distinctive ball color, as in Figure 1-(ii). A
round of the game involves drawing a ball at random from
each of the four urns, with the result of these draws deter-
mining whether the player wins or loses the round. Whether
a given draw from the urns corresponds to a win or a loss is
determined by a fixed rule, but subjects are not told what the
rule is. Their task in the experiment is to guess it.

The conditions The experiment involved three between-
participants conditions, two of which are depicted and de-
scribed in Figure 1-(i).

In one condition, not depicted in Figure 1-(i) for reasons
of space, participants only have access to observational data:
they get to draw several times from the four urns and observe
the outcome of each draw. To illustrate, on one particular
draw, they might draw a colored ball from urns A, and C,
a white ball from urns B and D, and then observe that this
particular draw corresponds to a win, as in the first row of
Figure 1-(i), minus the dotted squares. Such an observation
gives them some information about the rule that links draws
to outcomes. For example, it tells them that drawing a colored
ball from urn D is not necessary for one to win in this game.
We call this condition observation only or OBS.

In the other two conditions, participants see the same ob-
servations, but on top of that, they also have access to some
explanations which tell them, for each draw that they observe,

why they won or lost in that particular round of the game.
These explanations point to a subset of the balls drawn as be-
ing responsible for the outcome of the game. These are the
dotted squares around balls drawn from urns in Figure 1-(i).

In the causal selection condition, or CS, participants
are given explanations that correspond to intuitive causal-
selection judgments that a person knowing the causal rule
would have been expected to make. We chose the relevant
judgments for each observation by computing the predictions
of two models known to provide a good approximation to hu-
man causal-selection judgments (see details below on causal-
selection explanations).

In the any cause condition, or AC, participants are also
given causal explanations for each observation, but these do
not match intuitive causal-selection judgments. Instead, they
point to any subset of the variables featured in an observation
that played an active causal role, except for the one subset
of variables which our best theories of causal-selection judg-
ments predict to be the most important causes. The rationale
behind this condition was to make sure that causal-selection
judgments did not help subjects just by virtue of the fact that
they point to any variable that made a contribution to the out-
come, which could have provided a first step towards recon-
structing the causal rule.
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Materials
The observations that subjects saw consisted of random draws
from the four urns represented in Figure 1-(ii). Probabil-
ity acted as a proxy for normality in our design. Each urn
contained a different mixture of colored and white balls, in-
dicating the following probabilities of drawing colored balls
from urns: P(A) = 0.9, P(B) = 0.6, P(C) = 0.4, P(D) = 0.1.
The position of the urns was randomized across subjects,
but for ease of exposition we will refer to those urns by
the names in Figure 1-(ii). The use of urns allowed us to
have a direct handle on participants’ subjective probabilities,
a paradigm that has proved effective in past experiments on
causal-selection judgments (Morris et al., 2018; Quillien &
Lucas, 2023; Konuk et al., 2023).

The rule The rule that determined the outcome, across all
conditions, was as follows. To win, one must either draw a
colored ball from both the high-probability urn A and the low-
probability urn D, or from the intermediate probability urn C.
In logical notation, this corresponds to

WIN← (A∧D)∨C. (1)

We chose this rule because its logical form involves both con-
junction and disjunction, so that we expect causal-selection
judgments to be sensitive to both the abnormal inflation and
deflation effects, as well as complex combinations of the two,
depending on the target observation.

The Observations In order to guess the rule in (1), sub-
jects were provided with the 10 observations in Figure 1-(i).
Participants drew observations successively from the urns by
clicking the ‘Draw sample’ button above the urns. The order
in which they appeared was randomized across subjects, but
all participants saw functionally identical observations. Many
of these observations were repeated, so that subjects only saw
four unique observations in total, listed in Figure 1-(iv).

The choice of observations was constrained by four
desiderata: (1) they had to be consistent with the probabili-
ties implied by the urns, avoiding observations that the pri-
ors made too unlikely; the repetitions made sure that the fre-
quency with which each color is drawn is proportional to its
probability; (2) subjects had to draw a colored ball and a
white ball from each urn at least once (to convey the idea
that for each draw they observed, the alternative draw was a
live possibility); (3) the two models of causal-selection judg-
ments that we used as benchmarks had to agree as to the most
important cause of the outcome for each observation (see next
section for details); (4) for each observation, there had to be
at least one active cause for the outcome (this mattered for the
any Cause condition, see below).

Causal selection explanations. The causal strength of ex-
planations presented in the CS and AC conditions were com-
puted using two models of causal-selection judgments, the
Counterfactual Effect Size Model (CESM; Quillien & Lucas,
2023) and the Necessity and Sufficiency Model (NSM; Icard
et al., 2017).

We considered these two theories because they have been
shown to provide good predictions of subjects’ judgments in a
variety of documented cases (Quillien & Lucas, 2023). How-
ever, our goal in this study was not to commit to one partic-
ular model of causal-selection judgments. Rather, we meant
to probe whether explanations can help subjects in a causal-
inference task without assuming a particular theory of how
these explanations are generated.

In both theories, the causal responsibility of each event that
influenced an outcome is a function of three main parame-
ters: (1) the prior probabilities of drawing a colored ball from
each urn, (2) the balls that were actually drawn in the case
under consideration, (3) the causal rule that determines the
outcome. They also include a sampling parameter s, which
represents the extent to which the counterfactual worlds from
which the causal impact of an event is computed are anchored
to the actual world of reference. We reused the values of
that parameter that had been previously fit to behavioral data
(Quillien & Lucas, 2023), namely s = 0.73 for the CESM and
s = 0.15 for the NSM.

Both models were run on each of the possible selections
of variables. This includes the conjunctions of these indi-
vidual candidate causes, (such as A∧C) or ‘plural causes’,
as humans also hold consistent intuitions about such causal
combinations, which are sensitive to the same factors as those
driving judgments for singular events (Konuk et al., 2023).

Given causal scores computed in this way, we selected the
subset of draws whose causal score was highest as the expla-
nation to be given to participants as explanations in the CS
condition. Both models agreed on each of the four observa-
tions as to which event had the highest causal responsibility.
The highest scoring events were highlighted with grey dotted
boxes as in the Causal Selection Explanations table of Fig-
ure 1-(i). The explanations were also delivered linguistically
to subjects for each observation as they drew them, as illus-
trated in the same figure.

Any cause explanations. In the AC condition, the explana-
tions we gave to subjects were sampled at random from any
of the active causes of the outcome except for the one that
was selected for causal selection judgments (see the full list
in Figure 1-(iv)). Once an explanation had been provided for
a given observation, we kept the same explanation for every
repetition of that observation that a subject drew. The expla-
nations were displayed in exactly the same way as in the CS
condition. We took advantage of the fact that the locution ‘X
because Y’ is one that can be used both for causal selection
and for more generic causal attributions (Copley, 2020).

Scoring inference After subjects see the full ten observa-
tions, they are asked to make predictions for each of the 16
possible draws from these four urns. They are presented with
a full table of possible draws as the one in Figure 1-(iii), with
the boxes corresponding to the outcomes left blank. They
should click on the boxes to turn them green or red, depend-
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Fixed Effects log-odds ratio Standard Error p-value

Intercept (OBS) 1.11562 0.07304 < 2e-16
AC -0.29284 0.10178 0.00401
CS 0.31959 0.10707 0.00284

Random Effects Variance Std. Deviation

Participant 0.1972 0.4441

Table 1: Results of Mixed-Effects logistic regression: Sam-
ple-Accuracy ∼ 1 + Condition + (1| Participant)

ing on what they think the outcome would be for each partic-
ular draw. We recorded the accuracy of each prediction made
in this way, with subjects scoring 1 for a row if they gave
a prediction matching what the outcome that the rule in (1)
determines for that row, and 0 otherwise.

Procedure
We recruited 298 participants on Prolific from the United
States, United Kingdom, and Canada. Each participant was
randomly assigned to one of the 3 conditions (AC: 98, CS:
97, OBS: 103).

First we explained the mechanics of urn sampling and the
relationship between the number of colored balls in an urn
and the probability of drawing one. We had participants play
a much simplified version of the game, involving just two
urns, to illustrate how a rule mediated the relation between
draws and outcomes, and the workings of the testing proce-
dure that would follow. In the relevant conditions, we also
gave them examples of explanations, making sure to pick ex-
amples were CS and AC couldn’t differ, so as not to prime
their interpretation of subsequent explanations one way or the
other.

Participants were then invited to make ten “dry” draws
from the urns, as in Figure 1-(ii) (right), where they weren’t
provided with any outcomes, so as to get them to internal-
ize the probabilities associated to each urn. The draws were
randomized so as to reflect the probabilities.

They then drew the ten observations with outcomes from
Figure 1-(i), accompanied with explanations depending on
the condition, and subsequently offered their predictions for
all 16 possible samples. Finally, participants completed a
brief questionnaire, where they had the opportunity to de-
scribe the rule they had in mind in prose if they so wished,
and were asked some demographics questions, before being
redirected to Prolific for payment. The experiment was pro-
grammed using the JsPsych JavaScript library (de Leeuw et
al., 2023).

Results
CS explanations helped subjects reach more accurate gen-
eralizations, while AC explanations made them less accu-
rate Participants’ accuracy across all 16 samples is summa-
rized in Figure 2. As suggested by the plot, subjects in the CS
condition were overall more accurate than in either the OBS
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Figure 2: Prediction accuracy per condition. The blue dots
represent the means per condition 12.76 (CS), 11.93 (OBS),
11.01 (AC). Error bars represent the standard error around the
means. Solid black lines mark the medians and quartiles.
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Figure 3: Most common rules inferred by the participants.
The numbers in the bars represent the total number of partic-
ipants in each group.

or AC conditions. A three-way ANOVA confirmed that the
difference between the means of each condition was highly
significant (Df = 2, t = 15.65, p < 4e-07).

To further assess the effect of condition on subjects’ ac-
curacy, we ran a mixed-effects model using the accuracy of
predictions for each row as dependent variable, the condition
as fixed effect, and individual subjects as random effects. Re-
sults are summarized in Table 1. They confirmed the trend
suggested by the figure: while CS taken as a factor had a pos-
itive effect on the correctness of guesses, AC had negative
effect (compared to the OBS condition as baseline).

Removing the condition factor from the model resulted in a
significantly worse fit to the data (Df = 2,−LogLik= 2674.0,
BIC = 5381.791 for the full model; Df = 4, −LogLik =
2690.1, BIC = 5397.057 for the Intercept-only model; χ2 =
32.205; p < 1.017e-07), confirming that the condition sub-
jects were placed in significantly affected their generaliza-
tions in the expected direction.
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Subjects converged towards certain high-scoring rules
Because subjects gave an answer for all 16 observations pos-
sible with the available four urns, we were able to reconstruct
the rule that guided their choices by looking at the truth table
of their responses. Figure 3 plots the most popular patterns of
responses per condition, translated into logical propositions
that matched the contents of their responses. An outstanding
pattern was the simple rule C, which was very popular in both
the OBS and CS condition, although not in the AC condition.

Computational Modelling
To help interpret the results from the experiment, we con-
structed a Bayesian model that makes inferences about possi-
ble rules from the observations and explanations. The model
is comprised of two elements:

i) A prior probability distribution over all rules one could
represent with four urns. We only retained deterministic rules
consisting of Boolean combinations of colored and white
balls from each of the four urns, giving us a total of 216 dis-
tinct rules up to equivalence. A simplicity prior was applied
to this probability distribution, which penalized rules whose
definition depended on a greater number of different variables
(Lu et al., 2008; Lucas et al., 2015).

ii) A likelihood function to update one’s probability as a
function of new observations and explanations. Observations
simply update the probability by excluding rules incompati-
ble with a given observation O and renormalizing probabili-
ties over the remaining rules. For explanations, the model first
computes a causal score for every possible explanation Em ∈
E = {E1, . . . ,En} and rule Rm ∈ R = {R1, . . . ,R216}, by tak-
ing the square of the causal responsibility score κ(Em,O,Rm)
that Em would get for O, under the assumption that the cor-
rect rule is Rm, using the CESM model. Then, the model uses
that causal score as the basis for the likelihood P(E | O,R) of
each explanation by normalizing over the causal score of all
possible explanations, following equation (2).

P(E | O,R) = κ(E,O,R)2

(
∑

Ei∈E
κ(Ei,O,R)2

)−1

(2)

The posterior distribution over rules is then updated based on
how well these likelihoods predict the explanation that the
learning model sees in each condition.

Model Results and Analysis
We compare model results in each condition on three di-
mensions: i) The Maximum A Posteriori hypothesis (MAP):
which rule has the highest posterior after the four distinct ob-
servations; (ii) the position of the intended rule (A∧D)∨C
in the posteriors’ rankings; (iii) the weighted score of each
distribution, i.e. the score that each rule in R gets in our ex-
periments’ test, weighted by their posterior probability.

As shown in Table 2, CS explanations reliably rank the in-
tended rule among the most probable candidate generaliza-
tions for the observed data, compared to the observation-only
condition and the AC explanations on average. Additionally,

OBS AC CS

Obs. 1 323 15684±182 22
Obs. 2 43 5985±52 6
Obs. 3 37 2577±23 4
Obs. 4 67 952±10 14
MAP rule C — C
MAP score 14.00 10.6±0.037 14.00
Weighted score 10.00 10.36±0.013 11.65

Table 2: Upper section: the posterior probability ranking of
the intended rule (A∧D)∨C after each observation. Below:
the rule that has the highest posterior probability (MAP) after
the fourth observation in each condition, and the weighted
score of the respective final probability distributions.

the weighted score of the CS condition is significantly greater
than that of both other conditions. Finally, it appears that
the model accurately captures the attractiveness of the rule C,
which stood out as the MAP in both the OBS and CS con-
ditions, especially compared with the AC conditions, which
favored a greater diversity of rules as MAP (with 5/60 AC
configurations choosing C), in line with the distribution of
that strategy across conditions, as reported above.

Another takeaway from the model results is that, even in
the CS condition, the intended rule didn’t come out as the
MAP. Later iterations of this design will address this by ex-
amining cases in which we can expect CS explanations to
guarantee the exact ground-truth rule underlying the game
assuming optimal inferential abilities. In any event, these
results concur with our experimental results in that the CS
explanations bring the intended rule as the MAP much more
reliably in light of new observations than the other two con-
ditions.

Discussion and Conclusions
Our findings indicate that causal selection judgments serve as
valuable cues when inferring causal structures from limited
observational data. Our experiment is the first to provide ev-
idence of this in a context where the causal rule underlying
the data is of relative complexity and the space of possible
hypotheses open ended.

Individuals not only demonstrate improved generalization
from the data when causal-selection judgments are provided
as explanations, they also exhibit notably poorer performance
when presented with true but less selective causal explana-
tions. These findings, in conjunction with the results from our
computational model, strongly suggest that causal-selection
judgments can aptly tap into humans’ shared set of intuitions
about causality to convey elaborate causal knowledge via rel-
atively simple explanations.
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