
UC Irvine
ICS Technical Reports

Title
MultiView : a methodology for supporting multiple view schemata in object-oriented
databases

Permalink
https://escholarship.org/uc/item/77r7f7sk

Author
Rundensteiner, Elke A.

Publication Date
1992

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/77r7f7sk
https://escholarship.org
http://www.cdlib.org/

M'lllti Vie'lQ:'._ A Methodology for Supporting
- Multiple View Sche1nata in

Object-Oriented Databases

Elke A. Rundensteiner
v -:;::;.---

Department of Information and Computer Science
University of California, Irvine

January, 1992

Technical Report 92-07

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

z_

6f 9
C_3

() , A 'J YI 0 I I d- -- u !

MultiView: A Methodology for Supporting Multiple View
Schemata in Object-Oriented Databases

ELKE A. RUNDENSTEINER

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92717-3425
e-mail: rundenst@ics.uci.edu

telephone: (714) 856-4101
fax: (714) 856-4056

January /1992

Abstract

It has been widely recognized that object-oriented database (OODB) technology needs to be
extended to provide a mechanism similar to views in relational database systems. We define an
object-oriented view to be an arbitrarily complex virtual sche:r;na graph with possibly restructured
generalization and decomposition hierarchies - rather than just one virtual class as has been pro­
posed in the literature. In this paper, we propose a methodology, called Multi View, for supporting
multiple such view schemata. MultiView breaks the schema design task into the following indepen­
dent and well-defined subtasks: (1) the customization of type descriptions and object sets of existing
classes by deriving virtual classes, (2) the integration of all derived classes into one consistent global
schema graph, and (3) the definition of arbitrarily complex view schemata on this augmented global
schema. For the first task of MultiView, we define a set of object algebra operators that can be
used by the view definer for class customization. For the second task of MultiView, we propose an
algorithm that automatically integrates these newly derived virtual classes into the global schema.
We solve the third task of MultiView by first letting the view definer explicitly select the desired
view classes from the global schema using a view definition language and then by automatically
generating a view class hierarchy for these selected classes. In addition, we present algorithms ·that
verify the closure property of a view and, if found to be incomplete, transform it into a closed,
yet minimal, view. In this paper, we introduce the fundamental concept of view independence and
show Multi View to be view independent. We also outline implementation techniques for realizing
Multi View with existing OODB technology.

Index Terms: Multiple view schemata, object-oriented views,. view closure property, view consis­
tency, view independence, view definition language, object algebra, schema design support.

~i CONTENTS

Contents

1 INTRODUCTION 1

2 BASIC DEFINITIONS 3
2.1 The Object Data Model . 3
2.2 Object-Oriented Views . 6
2.3 The Validity Criterion of the Generalization Hierarchy of a View 7
2.4 The Closure Criterion of the Property Decomposition Hierarchy of a View . 9

3 THE MultiView METHODOLOGY 11

4 CLASS CUSTOMIZATION USING OBJECT ALGEBRA 13
4.1 The Type versus Set Aspect of a Class . 13
4.2 The Hide Operator . 14
4.3 The Refine Operator . 15
4.4 The Select Operator 16
4.5 The Union Operator 16
4.6 The Intersection Operator 17
4. 7 The Difference Operator . 19

5 CLASS INTEGRATION INTO THE GLOBAL SCHEMA 20

6 VIEW SCHEMA DEFINITION 22

7 AUTOMATIC GENERATION OF A CLOSED VIEW SCHEMA 25
7.1 Basic Concepts . 25
7 .2 Closed-View Generation: Algorithm and Examples 27
7 .3 Correctness and Complexity of the Close~-View Generation Algorithm 30

8 THE VIEW INDEPENDENCE OF MultiView 33
8 .1 The View Independence Concept . . . 33
8.2 Proving Multi View View Independent . ·. . . . 35

8.2.1 Preservation of View Classes 35
8.2.2 Preservation of View is-a Relatiqnships 38

9 REALIZATION OF MultiView 39

10 RELATED WORK 39

11 CONCLUSIONS 42

References 43

A Object Algebra Derivation Operators: Syntax, Semantics and Class Relation-
ships 44

-!.'.
,,I

LIST OF FIGURES

List of Figures

1 Examples of Base, Global and View Schemata.
2 Examples of Valid and Invalid View Generalization Hierarchies.
3 Examples of Closed and Non-Closed Views.
4 The Multi View Approach: From Base over Global to View Schematas.
5 The Hide Class Operator. . . .
6 The Refine Class Operator. . .
7 The Selection Class Operator.
8 The Union Class Operator. . .
9 The Intersection Class Operator.
10 The Difference Class Operator.
11 Integrating the Virtual Class Women Into the Global Schema.
12 The BNF Syntax Of the View Definition Language
13 From Base over One Integrated Global Schema To Multiple View Schemata.
14 The Closed-View Generation Algorithm
15 Examples of Applying the Closed-View Generation Algorithm.
16 Two Approaches for Type Determination of a View Class
17 Centralized versus Distributed Realization

11

7
8

10
12
14
16
17
18
18
19
21
22
24
28
29
36
40

'; r 1 INTRODUCTION 1

1 INTRODUCTION

Many databases developed for advanced application domains, such as, Computer-Aided Design
and Manufacturing, are now being build using object-oriented database (OODB) models. These
applications require customized interfaces to the global information suitable for different types of
user groups and tasks. We therefore need to develop a technology for OODBs - similar to the
view mechanism in relational databases - that would support the construction of various (possibly
conflicting) interfaces to the schema by hiding irrelevant portions of the data, by augmenting it, or
by restructuring it.

While the concept of views has been studied extensively in the context of the relational model,
it is largely unexplored for the newly emerging more powerful OODBs. Some initial proposals of
views on OODBs have emerged that define a view to be a virtual class derived by an object-oriented
query [5, 14, 7]. Note however that an object-oriented data schema is a complex structure of classes
interrelated via various relationships, such as, the orthogonal generalization and decomposition
hierarchies °[7, 8], whereas a relational schema is simply a set of 'unrelated' relations [3]. An object­
based view thus should be defined to be a virtual, possibly restructured, subschema graph of the
global schema [17] rather than just one individual virtual class - disjoint from all other classes of
the schema. We call this concept of an object-oriented view a view schema. The construction of
these view schemata raises a number of challenging research issues in terms of how to restructure
view schema graphs and how to relate them with the global schema structure.

In this paper, we propose a methodology, called MultiView, for supporting multiple such view
schemata that successfully solves these problems. There are three aspects to MultiView: first,
it provides mechanisms to the user for specifying a view, second, it helps the user to enforce
the consistency of the view schema structure while defining the view, and third, it offers general
guidelines on how to implement and maintain these view schemata, once specified. MultiView is
anchored on the following complementary ideas: (1) customization and derivation of virtual classes,
(2) integration of derived classes into one consistent global schema graph and (3) the specification of
arbitrarily complex view schemata on this augmented global schema. Multi View builds on existing
work in as much as it is independent of the class derivation operators chosen from the set of proposed
operators in the literature [5, 7, 14, 10]. For the purpose of this work, we formally define a set of
object-oriented query operators that can be used; for the derivation of virtual classes (Section 4).

One of the problems to be tackled is the issue of how a virtual class relates to the remaining
classes in the complete schema. This is accomplished by the second task of MultiView. Note that
in the relational model, where each relation is physically independent from all other relations, the
integration of a virtual relation with the global schema corresponds to simply adding it to the
list of existing relations (the data dictionary). In the context of OODBs, however, this is less
straightforward. A class in an object schema is interrela~ed with other classes via an is-a hierarchy
(for property inheritance and subsetting) and via a property decomposition hierarchy (for forming
complex objects). In this paper, we present validity criteria that have to be guaranteed by class
integration algorithms in order to preserve the consistency of the global schema graph. We then
describe an algorithm for the integration of these newly derived virtual classes into the global
schema that preserves the consistency of the views.

We cannot simply modify the existing global object schema so that it suits the requirements
of one particular user. Instead, we need to support a number of different, potentially conflicting,

1 INTRODUCTION 2

view schemata of the same data model. each of which supporting a particular user's point of
view. Consequently, we are concerned here with the virtual restructuring for each given view while
maintaining all other view schemata; rather than with permanently changing the global database
as is done in schema evolution [2].

Not just individual virtual classes but complete (possibly conflicting) view schemata have to
. be integrated with another and with the underlying global schema into one consistent whole. This
integration has to maintain the difference in the generali~ation and decomposition hierarchies of
the view schemata. The proposed Multi View methodology solves this problem by separating the
definition of view schemata into two independent steps, namely, one, the integration of virtual
classes into one consistent global schema graph and, two, the definition of view schemata composed
of both base and virtual classes on top of this augmented global schema. View schemata are
consistently integrated with one another simply by being consistently integrated with the same
underlying global schema. An additional requirement is that the originally specified object schema
(with stored rather than derived classes) remains intact so that it can be used by other users, if so
desired. The Multi View methodology accomplishes this by treating the original base schema as a
special non-modifiable view schema.

We solve the third task of MultiView, namely, the specification of arbitrarily complex view
schemata on the augmented global schema, by dividing it into the following two subtasks: first the
explicit selection of view classes from the global schema and second the generation of a view class
hierarchy for these selected classes. For the former, we have ,developed a view definition language
that can be used by the view definer to specify the desired view classes. For the latter, we have
developed algorithms that automatically generate a consistent view schema generalization hierarchy
[12]. In addition, we have developed consistency criteria for the property decomposition and the
generalization hierarchies of a view schema in terms of their completeness and consistency with the
underlying global object schema. MultiView will not only verify the consistency of a specified view
schema but, if it is found to be inconsistent, will;augment the view schema such as to generate a
consistent and closed view schema. In this paper, we give algorithms for the automatic generation
of the correct property decomposition hierarchy for an initially given set of view classes (Section 7).
We present proofs of correctness and a complexity analysis for the closed-view generation algorithm.

In summary, this paper makes the following contributions. First, we extend the concept of
an object-oriented view from an individual virtuhl class to a complete view schema. This requires
the introduction of new concepts, such as, the view validity, the view closure property, and the
view independence concept. This clearly represents a step towards the development of a much
needed object-oriented database theory. Second, we present a general methodology for supporting
multiple (possible contradicting) view schemata in OODBs, called Multi View. MultiView supports
all necessary functionalities of an object-oriented view support system, such as, (1) the virtual
modification of the type structure and of the object membership of existing classes, (2) the sharing
of property functions and object instances among stored and derived classes without unnecessary
duplication, (3) the virtual restructuring of the generalization and the property decomposition
hierarchy, (4) the sharing of classes, property functions, and objects among different view schemata,
(5) the construction of an arbitrary complex view schema as required by a particular user task,
and (6) the integration of each view schema with all other s~hemata into one 'consistent whole'.
Third, we present solutions to the relevant subtasks of proposed view methodology. In particular, we
define an object algebra for the derivation of virtual classes and outline an algorithm for integrating
these derived classes into one global schema. We have also developed a language for view schema

11
r 2 BASIC DEFINITIONS 3

specification. We present an algorithm for checking the closure property of a view schema specified
using the view definition language. Given a non-closed view schema, this algorithm is guaranteed
to transform the non-closed view into a closed, yet minimal, view schema. Lastly, we introduce
the concept of view independence, which we argue to be a fundamental requirement for any view
mechanism developed for object-oriented databases - similar in notion to the well-known concept
of data independence. In Section 8, we show the MultiView methodology to be view independent.

The paper is organized as follows. In Section 2, we introduce object-oriented concepts required
for supporting multiple view schem·ata. In Section 3, we outline the MultiView methodology. The
object algebra is given in Section 4, while class integration is discussed in Section 5. In Section 6,
we introduce the view definition language and in Section 7 we present algorithms for generating a
closed view. Multi View is shown to be view independent in Section 8. We present initial ideas of
the realization of MultiView in Section 9, compare MultiView to related work in Section 10, and
conclude with Section 11.

2 BASIC DEFINITIONS

2.1 The Object Data Model

Below, we introduce the basic concepts of OODB models needed for the remainder of the paper.
Let 0 be an infinite set of object instances. Each element o E 0 is an instance of an abstract
data type (ADT), i.e., it can be manipulated only by means of the interface of the respective
ADT. Let P be an infinite set of property functions. Each property function p E P can be a value
from a predefined enumeration type, an object instance from some class, or an arbitrarily complex
function. Each property function p E P has a name and signature (i.e., domain types). Without loss
of generality, we assume that the name of a prop~rty corresponds to a unique property identifier.
Let C be the set of all classes. A class Ci E C has a unique class name, a type description and a set
membership. The type associated with a class corresponds to a common interface for all instances
of the class, that is, the collection of applicable property functions. We refer to the name of the
type as8ociated with a class C by type(C) and to the set of property functions defined for C by
properties(type(C)), or short properties(C). If p E P is a property function defined for C, i.e.,
p E properties(C), then we refer to the domain/of the property function p for C by domainp(C).
A class is also a container for a set of objects. The collection of objects that belong to a class C
is denoted by extent(C) := {o I o EC} with the member-of predicate "E" defined based on the
object identities of the object instances [11]. We can now define the class relationships.

Definition 1. For two classes Cl and C2 E C, Cl is called a subset of C2, denoted by Cl ~ C2,
if and only if (Vo E OJ ((oECl) ===?- (oEC2)).

Definition 2. For two classes Cl and C2 E C, Cl is called a subtype of C2, denoted by Cl :S C2,
if and only if (properties{Cl) 2 properties(C2)) and (V p E properties(C2)) {domainp(Cl)
~ domainp(C2)).

;;

t
l.',

·' 2 BASIC DEFINITIONS 4

The first condition of Definition 2 states that a subtype must have the same attribute as
its supertype and possibly additional ones. The second condition states that the domains of the
attributes of a subtype must be contained within the domains of the attributes of the supertype,
but that they could possibly be restricted.

Definition 3. For two classes CJ and C2 E C, CJ is called a subclass of C2, denoted by Cl is-a
C2, if and only if (Cl ~ C2) and (Cl ~ C2}.

Informally, we say that Cl is is-a related to C2 if (1) every member of Cl is a member of
C2 (the subset relationship) and (2) every property defined for C2 is also defined for Cl (the
subtype relationship). The three class relationships are reflexive, antisymmetric and transitive. By
reflexivity, the is-a relationship (Ci is-a Ci) holds for all Ci. By antisymmetry, the is-a relationships
(Ci is-a Cj) and (Cj is-a Ci) imply (Ci=Cj)· By transitivity, the is-a relationships (Ci is-a Cj)
and (Cj is-a Ck) imply (Ci is-a Ck)·

Next, we introduce operations on type descriptions which form a new type based on the type
descriptions of two classes.

Definition 4. Let CJ and C2 be two classes with the types tl and t2 in T, respectively. Then
LJ is a function from T2 ---+ T that defines a new type t3 by, t3 : = t1 U t2. The property func­
tions of the new type t3, properties(t3), are defined by properties(t3} := properties(tl) U
properties(t2.). For each property function p E properties(t3), the domain domairip(t3} :=

domainp(t1) n domainp(t2} is defined.

Definition 5. Let CJ and C2 be two classes with the types t1 and t2 in T, respectively. Then n
is a function from T2 ---+ T that defines a new type t3 by t3 := tl n t2. The property functions
of t2 are defined by properties(t3) := properties(tl) n properties(t2). For each property p E
properties(t3), the domain domainp(t3) := domainp(tl) U domainp(t2} is defined.

Definition 4 defines t3 := t1 LJ t2 to be the greatest common subtype of tl and t2, and Definition
5 defines t3 := t1 n t2 to be the lowest common ,supertype of t1 and t2.

Given a collection of classes for a particular database application, we want to organize them in a
fashion such that these class relationships are explicitly represented rather than having to recompute
them continuously. The subset class relationship can be used to determine the containment of the
object instances associated with one dass within the extent of another class. This may for instance
be useful for query processing where we need to build the union of two classes. If it is known that
one of the two classes is a subset of the other, then the union result corresponds simply to the
larger of the two classes. No actual query processing is required. The maintenance of the subtype
relationship on the other hand is useful for the reuse of property function code; this feature is
commonly known as property inheritance.

Let S = {Ci Ii = 1, ... , n} be a set of classes. We call C1 a direct subclass of Cn and Cn a direct
superclass of C1 if (C1 is-a Cn) and (C1 f. Cn) and there are no other classes Cki E S (with j=l,
... , m) for which the following is-a relationships hold: (C1 is-a Ck1) and (Ck1 is-a CkJ and ... and
(Ckm is-a Cn). C1 is called an (indirect) subclass of Cn and Cn an (indirect) superclass of C1 if there
are one or more classes Cki E S (with j= 1,2, ... , m) for which the above is-a relationships hold.

;; .t 2 BASIC DEFINITIONS 5

This indirect subclass relationship between C1 and Cn is denoted by (C1 is-a* Cn) for (j2:0) and
by (C1 is-a+ Cn) for (j2: 1). A graph-theoretic representation of a set of classes S that explicitly
represents all direct subclass relationships among the classes in terms of edges is defined below.

Definition 6. An object schema is a directed acyclic graph1 S=(V,E), where Vis a finite set of
vertices and E is a finite set of directed edges. Each element in V corresponds to a class Ci, while
E corresponds to a binary relation on V x V that represents all direct is-a relationships between all
pairs of classes in V. In particular, each directed edge e from C1 to C2 , denoted bye = <C1, C2 >,
represents the direct is-a relationship between the two classes (C1 is-a C2).

We refer to the collection of is-a relationships of a set of classes as the generalization hier­
archy of the object schema. Since the is-a relationship is reflexive, antisymmetric and transitive,
the generalization hierarchy graph (or schema graph) is a directed acyclic graph without any loops.
Furthermore, since we only store the direct subclass relationships, there will be no self-loops in a
schema graph. An edge e=<Ci, Cj> is called a self-loop if its source node Ci and its sink node Cj
are identical, i.e., i=j. The schema graph also has no multi-edges, since each direct subclass rela­
tionship is stored but once. Two or more edges are called multi-edges if they ~ave the same source
and the same sink node, respectively. For instance, the edges el=<Ci, Cj> and e2=<Ck, Cz> with
(i=k) and (j=l) are multi-edges.

Once these class relationships are compiled and maintained in this graph format, we can read
them directly from the structure of the graph without having to repeatedly compute the subclass
relationships. For instance, C1 is a direct subclass of Cn if the edge e = <C1, Cn> exists in E. C1 is
an indirect subclass of Cn, denoted by (C1 is-a* Cn), if there is a path through the class hierarchy
of length one or longer connecting C1 and Cn. More formally, if there are one or more classes Cki
E V (with j=l,2, ... , m) with the edges ei = <C1, Ck1 >, e2 = <Ckp Ck2 >, ... , em+1 = <Ckm, Cn>
in E. Finally, a path of length two or larger repre~ents the subclass relationship (C1 is-a+ C2).

A schema has one designated root node, the class called Object, which is the superclass for all
classes in the schema. This Object class contains all object instances of the database and its type
description is empty. All edges in a schema are directed from the desigrn1ted root node Object to
the leaf nodes of the graph. This assures that the schema graph is one DAG rather than consisting
of multiple possibly disconnected subgraphs.

As discussed earlier in this section, a class is related to other classes via property relationships.
For example, if the class Cl has defined a property function p with the domainp(Cl):=C2, then
we say that there is a property decomposition arc between Cl and C2 labeled 'p'. We refer to the
set of all property relationships among the classes of a schema as its property decomposition
hierarchy.

Definition 7. Let S=(V, E) be an object schema as defined above. Let L be a set of labels that
correspond to the names of the property functions in P. Then the property decomposition hier­
archy of the schema Sis defined to be a directed graph PD={V,A,L) with V the set of vertices and
A the set of arcs. A is a ternary relation on V x V x L, called_ the (labeled) property decomposition
edges. An edge a = (Cl, C2, l) E A if and only if there is a property function defined for class Cl
with the property label l and the domain class C2.

1 A schema without multiple inheritance corresponds to a tree rather than a DAG.

f
N,

,
1

;, 2 BASIC DEFINITIONS 6

A property decomposition hierarchy consists of one or more disconnected subgraphs with possi­
bly loops, self-loops, and multi-edges. The latter are distinguished based on their associated labels.
An object schema has both a property decomposition hierarchy and a generalization hierarchy and
thus could be defined to be a graph G = (V ,E,A,L) with V, E, A, and 1 given in Definition 7.

2.2 Object-Oriented Views

We distinguish between base and virtual classes. Base classes are defined during the initial
schema definition. Object instances that are members of base classes are explicitly stored as base
objects. Virtual classes are defined during the lifetime of the database using some object-oriented
queries, i.e., their definitions are dynamically added to the existing schema. A virtual class has an
associated membership derivation function that will determine its exact membership based on the
state of the database. The extent of a virtual class is generally not explicitly stored, but rather
computed upon demand.

Definition 8. The base schema (BS) is an object schema S={V,E), where all nodes in V corre­
spond to base classes with stored rather than derived object instances.

Definition 9. Let BS be a base schema. The global schema (GS) is an extension of the base
schema that is augmented by the collection of all virtual classes defined during the lifetime of the
database as well as is-a relationships among this extended set of classes.

A subgraph of the global schema which contains only virtual classes and their is-a relationships is
commonly called a virtual schema [17].

Definition 10. Given a global schema GS={V,E), then a view schema (VS), or short, a view,
is defined to be a schema VS= (VV, VE) with the following properties:

1. VS has a unique view identifier denoted by < VS >,

2. VV ~ V, and

3. VE ~ transitive-closure (E).

The first condition states that each view schema is uniquely identifiable. The second property
states that all classes of VS also have to be classes in GS, i.e., they have been properly integrated
with the global information. The third property states that the view schema maintains only is~a
relationships among its view classes that are directly derivable from GS. In other words, an edge
< Ci, Cj > can only exist in VE if either < Ci, Cj > exists directly in E or if it is indirectly
derivable via the transitivity of the is-a relationship, i.e., only if (Ci isa* Cj) in GS. A view schema
is a special case of an object schema. Therefore all properties of a general schema defined in Section
2.1. must also hold. We call the classes in a view schema (both the base and the virtual ones) view
classes and the is-a relationships among these view classes view is-a relationships.

f
,J},

•' 2 BASIC DEFINITIONS

C1

@ 0 ct''\
C3 :·vcs:

. ·· ··

er
~ (vcs} ·. ·

(a) Base schema BS. (b) Global schema GS. (c) View schema VS1. (d) View schema VS2.

Figure 1: Examples of Base, Global and View Schemata.

7

Example 1. Figure 1 shows the relationship between (a) the base schema, (b) the global schema,
and (c) and (d) two different view schemata. We depict base and virtual classes by circles and
dotted circles, respectively. The global schema in Figure 1. b is derived from the base schema in
Figure 1. a by adding virtual classes, namely, VC4 and VC5, and by interconnecting them with the
remaining classes to create a valid schema. The vif~w schematas in Figure 1.c and 1.d are derived
from the global schema by selecting a subset of its classes and interconnected them into a valid
schema using view is-a arcs.

Note that the base schema is a special case of a view schema that consists exclusively of all
base classes and no virtual classes. We will maintain the base schema as a view schema, i.e., there
will be a view object table (or base table) that lists all base classes and their is-a relationships (See
Section 9). This is important so that users of the data model can see the original data model of
the application domain without having to consider derived information. This base table is a special
view table in as much as it is predefined and not modifiable.

2.3 The Validity Criterion of the Gen~ralization Hierarchy of a View

Next, we introduce criteria for evaluating the consistency of view schemata with the underlying
global schema. An object schema is composed of two orthogonal hierarchies, namely, the class
generalization hierarchy and the property decomposition hierarchy. The validity of a view schema
thus has to assure the consistency of both hierarchies. This section addresses the consistency of the
generalization hierarchy, called is-a validity, while the next section will discuss the consistency of
the property decomposition hierarchy, called closure. These two consistency criteria are orthogonal
concepts similar to their underlying class relationship hierarchies. Hence a view can be closed
without being is-a valid, and vice versa.

Next, we introduce criteria that indicate whether the class generalization hierarchy of a view
schema is consistent with the class generalization hierarchy of the underlying global schema.

Definition 11. Given a view ~chema VS=(VV, VE) defined on the global schema GS=(V,E).

t

~; r 2 BASIC DEFINITIONS 8

a. For all classes C1 ,C2 in VV, an is-a arc from source C1 to sink C2 is required in VS, if (C1

is-a* C2) in GS and there is no Cx in VV such that {C1 is-a* Cx) in GS and (Cx is-a* C2)
in GS.

b. For all classes C1 ,C2 zn VV, an is-a arc from source C1 to sink C2 is redundant m VS, if
there is a class Cx in VV such that (C1 is-a* Cx) in GS and (Cx is-a* C2) in GS.

c. For all classes C1 ,C2 in VV, an is-a arc from source C1 to sink C2 in VS is inconsistent if
the edge <C1,C2> is in VE and not(C1 is-a* C2) in GS.

d. The view schema VS=(VV, VE) is is-a valid (or valid) if the set VE of all its view zs-a
relationships contains all required and no redundant and no inconsistent arcs in VS.

An is-a valid view schema is complete since, by Definition 11.a, two classes C1 and C2 in VS
are is-a related in VS if and only if they are also is-a related in GS. An is-a valid view schema
is minimal since, by Definition 11.b, there is no direct is-a arc between two classes if if there is
already an indirect is-a path between them. Lastly, an is-a valid view schema is consistent since,
by Definition 11.c, an is-a arc from source C1 to sink C2 exists in VS if and only if the two classes
are is-a related in GS. We demonstrate these concepts with the example given below.

(b) View schema VS1 (c) View schema VS2
(a) Global schema GS. is not minimal. is not complete.

(d) View schema VS3
is not consistent.

Figure 2: Examples of Valid and Invalid View Generalization Hierarchies.

Example 2. Figures 2.b, 2.c, and 2.d depict three different view schemata defined on the global
schema GS depicted in Figure 2.a. The view VSl in Figure 2.b is not a valid view schema, since
it contains the redundant edge e4,I = < C4,C1 >. The edge e4,I can be removed from VSJ without
losing the information that (C4 is-a C1), since by transitivity, the relationships (C4 is-a C2) and
(C2 is-a C1) imply the relationship (C4 is-a* C1). The view VS2 in Figure 2.c is not is-a valid,
since the required edge e4,5 = < C 4 , Cs > is missing. Edge e4,s has to be added to the schema to
indicate the information that (C4 is-a C5). The view VS3 in Figure 2.d is not is-a valid, since
it violates the consistency criterion. The edge e315 = < C3, C5 > is inconsistent in VS, since the
relationship {C3 is-a* Cs) does not hold in GS.

t
. .s .. \

~i ·' 2 BASIC DEFINITIONS 9

2.4 The Closure Criterion of the Property Decomposition Hierarchy of a View

The type closure concept has been proposed in the literature as a criterion for the validity of a
property decomposition hierarchy of a view schema (17, 5]. Here, we define a variation of this
closure criterion suitable for our underlying object model and the MultiView methodology. In
Section 7, we present an algorithm for (1) checking a view schema for the closure property and (2)
transforming a non-closed view into a closed view.

Let the function Uses(C) represent the set of classes that are used by C's type interface, i.e.,
the domain classes used by the property functions p defined for the class C. For example, if p
corresponds to an object pointer defined by domainp(C):=C2, then Uses(C} contains the domain
class C2 of the property p. Below, we define the Uses{) function in graph-theoretic terms based on
Definition 7.

Definition 12. Let G=(V,E) be an object schema as defined in Definition 6 and PD=(V,A,L} be
the matching property decomposition hierarchy of G as defined in Definition 7. Let C be a finite
set of classes. Then Uses: C2 ~ C2 is a function defined as follows:

For all Ci, Cj E C and for all property labels pk E L,

Uses(Ci) := { Cj EC I aij =< Ci,Cj,pk >EA}.

For sets of classes S ~ C,

Uses(S} := UciES Uses(Ci).

We define the unary closure operator * on the Uses relationship by

Uses* (Ci) := UciES Usesi (Ci)

with

Uses1 (Ci) := Uses(Ci)

and

Usesi (Ci) := Uses(Usesi- 1 (Ci}) for j > 1.

Uses(Ci) corresponds to the domain classes of property functions that are directly used by
Ci, while Uses* (Ci} corresponds to the domain classes of property functions that are directly or
indirectly via transitive closure used by Ci. For the following we assume that a Uses(Ci) set is
explicitly associated with each class Ci.

foformally, we define a view VS to be closed if it defines all classes that it uses, i.e., if it
contains all classes that are in the Uses* (CJ sets of its view classes. A formal definition of the
closure criterion of a view is given next.

Definition 13. A view schema VS=(VV, VE) is defined to be a type-closed {or closed) view if

the following holds: VV = (UciEvv(Uses*(Ci))) U VV.

';
,J .. \

" 2 BASIC DEFINITIONS 10

The closure criterion assures that all classes that are explicitly being used in a view schema
(i.e., whose class names are visible in the Uses* set of a view class) are also defined within the vie\v
(i.e., they themselves are view classes). This closure property can be checked by determining for
each class C in the view whether all classes that it uses (i.e., Uses* (CJ) are also in the view. If this
test returns true, then the view is closed. If the test fails for one or more classes, then the view is
not closed.

Figure 3: Examples of Closed and Non-Closed Views.

Example 3. In Figure 3, we present examples of closed and non-closed view schemata defined
on the global schema GS modeling a CAD application. In this figure, the is-a and property de­
composition relationships are depicted by bold dark arrows without labels and by regular arrows
with labels, respectively. The labels for the later correspond to the property names of the rep­
resented property functions. A (view) schema is denoted by encircling its (view) classes by a
dotted line. The view VS1 = { Statenodel, Statetransl} is type-closed, since the domains of
the properties defined for its view classes Statenodel and Statetransl are members of the view
schema. The view VS2 = {Statenode2, Statetrans2} is not type-closed. As can easily be seen,
the 'actions-in-state' property defined for the view class Statenode2 has the domain class Datafiow,
which is not contained in the view VS2. This is graphically depicted in Figure 3 by the dan­
gling property relationship arrow labeled 'actions-in-state' leaving the view VS2. The view VS2' =
{Statenode2, Statetrans2, Dataf low, Structural} is type-closed. Note that the view VS2' contains
all view classes of VS2, and thus is a superset of VS2. We will show {n a later section that VS2'
is the unique minimal view that is both a superset of VS2 and that is type-closed.

.

~;

l
:" 3 THE MULTIVIEHI AIETHODOLOGY 11

3 THE MultiView METHODOLOGY

In this section, we outline our approach for supporting multiple view schemata in OODBs, called
the Multi View methodology. Multi View is anchored on the following complementary ideas:

1. customization of existing type structures and object sets by deriving virtual classes via object­
oriented queries,

2. integration of derived classes into one consistent global schema graph, and

3. the specification of arbitrarily complex view schemata composed of both base and virtual
classes on top of this augmented global schema.

The separation of the view schema design process into a number of well-defined subtasks has
several adv~ntages. First, it simplifies the view specification and maintenance process, since each of
the subtasks can be solved independently from the others. Second, it increases the level of schema
design support that can be provided to the view definer by allowing for the automation of some of
the subtasks. In .s~ction 7, we present, for instance, algorithms that automate the second subtask
of integrating derived classes into one consistent global schema graph. Similarly, we have proposed
algorithms for the automatic generation of the view schema hierarchy. The later reduces the third
subtask of view schema specification to the simple task of selecting classes to be included in the view
schema. Furtheremore, the integration of virtual into one global schema assures the consistency
of all views with the global schema and with one another. Lastly, the definition of an arbitrary
view schema on top of the augmented global schema provides the flexibility to define practically
any desired view schema.

The first subtask of Multi View supports the virtual customization of existing classes by deriving
new virtual classes with a possibly modified type 'description and membership extent. Multi View
uses these class derivatiop. mechanisms for a number of different purposes, e.g., to customize type
descriptions, to limit the access to property functions, to collect object instances into groups mean­
ingful for the task at hand, and so on. For this we assume that virtual classes are derived. from
the global schema using object-oriented queries. This fulfills the first feature required for a view
support system listed in Section 1.

While there is no generally agreed-upon object algebra, there are a number of proposals for
object algebras in the literature (e.g., see (7, 5, 14]). For the purpose of this work (and for the first
prototype implementation of MultiView), we define our own object algebra, which is similar in flavor
to the ones proposed in the literature. (see Section 4). Our treatment of the object algebra focuses
on the subset, subtype and subclass relationships among the source and result classes, since this
is the foundation for successfully addressing the class integration problem. This issue is generally
ignored in the literature on o_bject algebras. We want to stress that Multi View is independent from
the particular choice of operators.

Multi View supports the integration of virtual classes into one underlying global schema. This
integration takes care of the maintenance of explicit relationships between stored and derived
classes in terms of type inheritance and subset relationships. This is useful for sharing property
functions and object instances consistently among classes without unnecE'.ssary duplication. It also
is a necessary basis for the third subtask of MultiView, namely, for the formation of arbitrarily

-;
f

r 3 THE MULTIVIEW METHODOLOGY 12

complex view schema graphs composed of both base and virtual classes. If the virtual classes are
not integrated with the classes in the global schema, then a view schema would correspond to a
collection of possibly 'unrelated' classes rather than a generalization schema graph as defined in
Definition 10. Details of the class integration process are given in Section 5.

The third subtask of Multi View utilizes this augmented global schema graph for the selection
of both base and virtual classes and for arranging these view classes in a consistent dass hierarchy,
called a view schema. This phase handles all remaining requirements for a view support system
listed in Section 1. It supports for instance the virtual restructuring of the is-a hierarchy by allowing
to hide from and to expose classes within a view schema. For the explicit selection of view classes
from the global schema, we have developed a view schema definition language that can be used by
the view definer to specify the classes required for a particular view schema (see Section 6).

In addition, we present in this paper an algorithm for checking the closure property of a view
schema graph. Given a non-closed view schema, the algorithm will automatically generate a closed
view schema that contains the minimal number of view classes required to make the view closed
(Section 7). Lastly note that the is-a relationships among the set of selected view classes of a view
schema are dictated by their subset and subtype relationships as defined in Section 2. Inserting
arbitrary is-a relationships between classes in a view schema may result in an incorrect schema in
terms of property inheritance and subset relationships. Therefore, rather than requiring the manual
insertion of view is-a arcs by the view definer, we have developed algorithms that automatically
augment the set of selected view classes to generate a valid vi~w schema class hierarchy [12].

To make the presented ideas more concrete we now give an example of the steps involved in
constructing a view schema in MultiView.

:··... . ·.
· ~VC4!

·· .. :.·:·. ·····~··

.... •,, o o '•• o • .. ·\I..;,.~~·~":
·· ··

(a) Common Global (b) Class Derivation (c) Class Integration (d) View Class Extraction (e) View Schema
Schema GS. for Type Customization. into underlying GS. for Hiding Information. Generation.

Figure 4: The Multi View Approach: From Base over Global to View Schematas.

Example 4. This example of the vieu· schema construction process is based on Figure 4. In this
figure we depict base and virtual classes by circles and dotted circles, respectively. Given the global
schema GS in Figure 4-a, the view definer first specifies the two virtual classes VC4 and VCS
using object-oriented queries (Figure 4.b). Class VC4, for in.stance, is derived based on the two
source classes Cl and C3 as depicted by the dotted arrows pointing from Figure 4.a to Figure 4.b.
The integration of the virtual classes VC4 and VCS into GS is given in Fig1f,re 4.c. View schema
definition now proceeds by selecting a subset of classes from the augmented schema GS. As depicted
in Figure 4.d, the selected view classes can be both base and virtual classes. Lastly, the chosen view

4 CLASS CUSTOJ\!IIZATION USLVG OBJECT ALGEBRA 13

classes are inte1·connected into one schema graph. The resulting virtual schema graph, called a view
schema, is given in Figure 4.e.

4 CLASS CUSTOMIZATION USING OBJECT ALGEBRA

4.1 The Type versus Set Aspect of a Class

The MultiView methodology is independent from the object algebra chosen for the class derivation
subtask. However, since there is no agreed-upon standard for object algebra, we present below a
representative set of algebra operators. The result of a class derivation using an algebra operator is
a virtual class VC which has a possibly derived type description and a derived membership extent.
We have shown the distinction between the type a.nd the set aspect of classes to be a valuable
tool for characterizing the semantics of query operators on object-based data models [10]. In this
paper, we will also utilize this distinction for the definition of the object algebra operators. As
defined in Section 2, a type description of a class determines which property functions can be used
to accessthe instances associated with the class. A set aspect of a class refers to the set_ of objects
that are members of this class. In the section, we describe the semantics of object algebra opera.tors
by defining their effect on the type and the set aspect of the resulting virtual class.

\Ve distinguish between type and set manipulating query operators. Type nwnip1tlating opera­
tors restrict or elaborate on the type description of an existing class and determine which property
functions can be applied to the set of objects associated with the class. They thus limit the visibility
of property functions and the access rights to the underlying object instances. A typical exam­
ple is the hide operator, which is simila.r to the project operator used in relational algebra. Set

manipulating operators group sets of objects into smaller constrained sets or combine several sets
into larger sets of objects. A typical example is the select operator, also called a predicate-based
query [7], which is similar to the selection operator used in relational algebra. Some operators
manipulate both the type a.nd the set properties of classes. The set operators, such as, union,
intersection, and difference, fall into this category.

Note that the 'derivation relationship' between the source classes (arguments to a query oper­
ator) and the derived class (the result class of the query operation) do not necessarily correspond
to is-a relationships between these classes. As W<f will demonstrate in this section, the resulting
class relationships depend on the type of the query operator. The determination of these subclass
relationships is a necessary basis for the integration of virtual classes into the global schema; and
thus is generally not covered by object algebra proposals presented in the literature.

CLASS CUSTOMIZATION USING OBJECT ALGEBRA 14

4.2 The Hide Operator

The hide operator modifies the type description of a class by hiding some of its property functions.
It is similar to the project operator in the classical relational algebra, which projects some columns
from a relation. It has the following syntax:

<virtual-class> := hide [<prop-functions>] from (<source-class>);

with <prop-functions> being one or more property functions defined for the class <source­
class>. The semantics of the hide operator are to remove the property functions listed in the set
<prop-functions> from the source class while preserving all other property functions visible in the
class. More formally stated,

type(<virtual-class>) := {p E P Ip E properties(<source-class>) Apr/ <prop-functions>},

By Definition 2, the type of the <virtual-class> is a supertype of the type of the <source­
class>, since some of the property functions defined for the <source-class> are not defined for the
<virtual-class>. This is denoted by <source-class> :::5 <virtual-class>. The extent of the result
class is equal to the extent of the source class, denoted by

extent(< virtual-class>) := extent(<source-class>).

By default, this means that <source-class> ~ <virtual-class>. By Definition 3, this implies that
the <source-class> is a subclass of the <virtual-class>, denoted by <source-class> is-a <virtual­
class>.

C1'=hide [af] from C1

(a) GS before the hide operation. (b) GS after the hide operation.

Figure 5: The Hide Class Operator.

Example 5. An example of the hide class operator is given in Figure 5. In this figure, we only
represent the properties that are explicitly defined for a class and not those that are inherited from
other classes. The following query is used to derive the virtual class CJ' from the source class Cl:

~i
r 4 CLASS CUSTOMIZATION USING OBJECT ALGEBRA 15

Cl':= hide [al} from (Cl). As discussed above, we have extent(Cl') := extent(Cl), i.e., Cl~
Cl'. Also type(Cl) := {aO,al, ... }, type(Cl') := {aO, ... }, and Cl ::S Cl'. The is-a relationship
(Cl is-a Cl') is indicated in the figure by the edge from Cl to Cl'. In this example, the virtual
class C 1' has been integrated into the global schema by placing Cl' as direct superclass above Cl.

Note that if the property function al is not directly defined for the class Cl but inherited from
another class, then this integration of the virtual class Cl' into the global schema may create other
intermediate classes up to the class where the attribute al has been originally defined. A discussion
of this is beyond the scope of the paper.

4.3 The Refine Operator

The refine operator is a type manipulating operator that adds additional property functions to a
type rather than removing existing ones. It is similar in flavor to calculating a derived value for
each tuple of a relation and then adding (joining) this derived value to the relation in the form of
an additional column. It has the following syntax:

<virtual-class> := refine [<prop-function-clefs>] for (<source-class>);

with <prop-function-def> being the definition of a new ,property function in form of a new
property name and a function body with the latter a legal arithmetic, boolean or set expression.
For instance, the expression "age := today-date - birth-date" is an example of a legal <prop­
function-defs>. The property functions in <prop-function-clefs> are assumed to be distinct from
all other property functions in the global schema; and we therefore associate a unique property
identifier with them. The semantics of the refine operator are to refine the type description of
the source class by adding one or more new derived attributes to the source class, namely, those
listed in <prop-function-clefs>. All other attributes visible in the source class are preserved. More
formally stated,

type(< virtual-class>)
def>}.

{p E P I p E properties(<source-class>) V p E <prop-function-

The type of the <virtual-class> is a subtype,:of the type of the <source-class>, since all of the
property functions defined for the <source-class> are also defined for the <virtual-class> (Definition
2), i.e., <virtual-class> ::S <source-class>. The content of the result class is again equal to the
content of the source class,

extent(<virtual-class>) := extent(<source-class>).

By default, <virtual-class> ~ <source-class>. By Definition 3, this implies <virtual-class>
is-a <source-class>.

Example 6. An example of the refine class operator is given in Figure 6. The following query is
used to derive the virtual class C2' from the source class C2: C2' :=refine {ml :=Jct} for (C2).
We have extent (C2') :=extent (C2), i.e., C2' ~ C2. The type of C2' has been extended by the
new method ml, type(C2) := {aO,al, ... }, type{C2') := {aO,al,ml, ... },and C2' ::S C2. In this
example, the virtual class C2' is integrated into the global schema by placing C2' below C2 as direct
subclass. This is-a relationship (C2' is-a C2) is indicated in the figure by the edge from C2' to C2.

f
,J .. ', ,,

1; 4 CLASS CUSTOMIZATION USING OBJECT ALGEBRA 16

C2' =refine [m1] for C2
~
-;;

~3~4

•''•.

&~~~~:::~1

(a) GS before the refine operation. (b) GS after the refine operation.

Figure 6: The Refine Class Operator.

4.4 The Select Operator

The Select operator is a set manipulating operator that selects a subset of object instances from a
given set of objects - similar to the selection operator defined for relational algebra [3). The select
operator has the following syntax:

<virtual-class> := select from (<source-class>) where (<predicate>);

with the <predicate> being some possibly complex function on the source class and its type
description. Its semantics are to return a subset of object instances of the source class based on
the evaluation of the associated predicate, namely, all object instances that satisfy the predicate
are collected into the virtual class. More formally :stated,

extent(<virtual-class>) := {o E 0 Io E <source-class> /\ <predicate>(o) =true}.

The extent of the virtual class derived by selection thus is a subset of the extent of the source
class, denoted by <virtual-class> ~ <source-class>. Furthermore, the type description defined for
the derived class is unchanged, i.e., we have

type(<virtual-class>) := type(<source-class>).

By default, <virtual-class> :S <source-class>. By Definition 3, this implies <virtual-class>
is-a <source-class>.

Example 7. An example of the select class operator is given in Figure 1. The query "C2' :=

select from (C2} where (<pred>)" is used to derive the virtual class C2' from the source class
C2. Then C2' ~ C2, and type(C2'} := type(C2). The is-a relationship (C2' is-a C2} has been
added to Figure 7. b as indicated by the edge from C2' to C2.

4.5 The Union Operator

Set operators, like the union operator, manipulate both the type description and the set member­
ship of their two source classes. A detailed analysis of these set operators for OODBs can be found

4 CLASS CUSTOMIZATION USING OBJECT ALGEBRA 17

a1

C2' = select from C2 where (P)
~
:;:;:-'

.....

~~~c2.'.) 
(a) GS before the select operation. (b) GS after the select operation. 

Figure 7: The Selection Class Operator .. 

in [10]. For the purpose of this work, we use simple semantics (rather than utilizing a more flexible 
scheme for property inheritance proposed in [10]). The union operator has the following syntax: 

<virtual-class> := union( <source-classl> ,<source-class2> ). 

Its semantics are to return a set of object instances composed of the members of both source 
classes. More formally stated, 

extent( <virtual-class>) := { o E 0 I o E <source-classl> V o E <source-class2> }. 

The semantics of the union operator imply the following subset relationships <source-classl> 
C <virtual-class> and <source-class2> ~ <virtu~l-class>. Furthermore, the type description of 
the virtual class is equal to the lowest common slipertype of the two sources classes as defined in 
Definition 5. This is denoted by 

type( <virtual-class>) :=type( <source-classl>) n type( <source-class2> ). 

This implies the following two subtype relationships <source-classl> j <virtual-class> and 
<source-class2> j <virtual-class>. This then implies the subclass relationships <source-classl> 
is-a <virtual-class> and <source-class2> is-a <virtual-class>. 

Example 8. An example of the union class operator is given in Figure 8. The query "Cx' := 

union{C2,C5}" is used to derive the virtual class Cx' from the source classes C2 and CS. Then 
extent (Cx') := extent {C2} U extent {CS). Hence C2 ~ Cx' and CS ~ Cx'. Also type(Cx') := 
type{C2) n type(C5). Hence C2 j Cx' and CS j Cx'. The is-a relationships {C2 is-a Cx') and 
{CS is-a Cx') are indicated in Figure 8 by the edges from C2 to Cx' and from CS to Cx', respectively. 

4.6 The Intersection Operator 

The intersect operator manipulates both the type description and the set membership of the two 
source classes. It has the following syntax: 

<virtual-class> :=intersect( <source-classl>,<source-class2> ). 



CLASS CUSTONIIZATION USING OBJECT ALGEBRA 

a1 ~as 
Cx' = union(C2,C5) 

~ 

~ 

,.·· .. · "., contents(Cx') 
:. Cx' .: = C2 or cs. 

(a) GS before the union operation. (b) GS after the union operation. 

Figure 8: The Union Class Operator. 

18 

Its semantics are to return a set of object instances that are members of both source classes. 
More formally stated, 

extent( <virtual-class>) := {o E 0 Io E <source-classl> /\ o E <source-class2> }. 

The semantics of the intersection operator imply the following subset relationships, <virtual­
class> ~ <source-classl> and <virtual-class> ~ <source-class2>. Furthermore, the type descrip­
tion of the virtual class is equal to the greatest common subtype of the two sources classes as 
defined in Definition 4. This is denoted by 

type( <virtual-class>) := type( <source-class;J.>) LJ type( <source-class2> ). 

This implies the subtype relationships <virtual-class> =:; <source-classl> and <virtual-class> 
=:; <source-class2>, and finally also the subclass relationships <virtual-class> is-a <source-classl> 
and <virtual-class> is-a <source-class2>. 

a1 ~as 
Cx' = intersect(C2,C5) 

~ 

~ 

contents(Cx')= 
C2andC5. 

(a) GS before the intersection operation. (b) GS after the intersection operation. 

Figure 9: The Intersection Class Operator. 



;i 

f 
J .. ', 

;, 4 CLASS CUSTOlvlIZATION USING OBJECT ALGEBRA 19 

Example 9. The intersection class operator is used in Figure 9 to derive the virtual class Cx' 
from the source classes C2 and CS, namely, the query Cx' := intersect{C2,CS}. Thenextent(Cx') 
:= extent(C2} n extent{CS). Hence Cx' ~ C2 and Cx' ~ CS. Also type(Cx') := type{C2) U 

type(CS). Hence Cx'::; C2 and Cx' ~ CS. The is-a relationships (Cx' is-a C2) and (Cx' is-a CS} 
are indicated in Figure 9 by the edges from Cx' to C2 and from Cx' to C5, respectively. 

4. 7 The Difference Operator 

The difference operator has the following syntax: 

<virtual-class> := diff( <source-classl>,<source-class2> ). 

Its semantics are to return a set of object instances that are members of the first but not of 
the second source class. More formally stated, 

extent(< virtual-class>) := { o E 0 I o E <source-classl > /\ o ¢ <source-class2>}. 

The following subset relationship holds <virtual-class> ~ <source-class 1 >. Furthermore, the 
type description of the virtual class is equal to the type description of the first source class, i.e., 

type( <virtual-class>) := type( <source-classl> ). 

By default, <virtual-class> ::; <source-classl>. This then implies the subclass relationship 
<virtual-class> is-a <source-classl>. No subset, subtype or subclass relationships hold between 
the second <source-class2> and the <virtual-class>. 

a1 ~as 

~3 8--a4 

Cx' = diff (C2,C5) 

--~ 
7 

(a) GS before the difference operation. 

a1 ~as 

(b) GS after the difference operation. 

Figure 10: The Difference Class Operator. 

Example 10. An example of the difference class operator is given in Figure 10. The query "Cx' 
:= diff(C2,CS)" is used to derive the virtual class Cx' from the source classes C2 and CS. We 
have extent(Cx') := extent(C2} - extent{C5) and Cx' ~ C2. Also type(Cx') := type(C2}, 
and thus Cx' ~ C2. The is-a relationship (Cx' is-a C2) is indicated in the Figure 10 by the edge 
from Cx' to C2. 



f 
~ .. \ 

~ 1 ,, 5 CLASS INTEGRATION INTO THE GLOBAL SCHEMA 20 

In this section, we have shown how the virtual classes created by the schema operators are 
integrated with their source schema. A more thorough treatment of how to integrate them with 
the complete global schema rather than only the source subschema is presented in the next section. 

5 CLASS INTEGRATION INTO THE GLOBAL SCHEMA 

MultiView integrates all virtual classes derived using the algebra operator defined in the previ­
ous section into the global schema in order to explicitly represent the generalization relationships 
between virtual and base classes. Algorithms for special classification subproblems have been pro­
posed in the literature. For instance, Schmolze and Lipkis [13] describe a classifier for 'concepts' 
in the KL-ONE Knowledge Representation System. Scholl et al. [14] sketch the class integration 
process for a selected subset of the operators of the query language COOL. In [10], we describe 
the integration of virtual classes derived using set operations into the underlying schema graph. In 
this section we sketch an overall approach for the class integration problem. A detailed treatment 
of this problem is, however, beyond the scope of this paper. 

Class integration is concerned with finding the most appropriate location in the schema graph 
for a given virtual class with the term 'appropriate' meaning correct in terms of property inheritance 
and subset relationships between classes. We exploit the subtype, subset and is-a relationships 
between the virtual class and the classes in the global schema to solve this classification problem. 
The classifier determines the is-a relationships between the virtual class VC and all other classes 
in the global schema by comparing both their type descriptions and their membership predicates. 
This comparison then deduces the correct location of VC by placing VC between its most direct 
sub- and superclasses. Note that the requirements of a valid generalization hierarchy as defined in 
Section 2.3 are met by the resulting schema graph. 

The algorithm for finding the correct position 'for the class VC in the schema G=(V,E) can be 
summarized as follows. First, we find all classes in G that subsume VC, i.e., they are the direct 
superclasses ofVC defined by direct-parents(VC) :={Ci I (VG is-a Ci)/\(~Cj E V)(j # i)((VCis-a 
Cj) /\ (Cjis-a Ci))}. Similarly, we find all classes in G that VC subsumes, i.e., they are the direct 
subclasses of VC defined by direct-children(VC) := {Ci I (Ciis-a VG)/\ (~Cj E V)(j # i)((Ciis­
a Cj) /\ ( Cj is-a V C))}. VC then is placed ditectly below all classes in the direct-parents set 
and directly above all classes in the direct-children set. Edges connecting classes in the direct­
children(VC) set with classes in the direct-parents(VC) set are removed, since these relationships 
are now represented indirectly via VC. In general, the classification problem is not decidable since 
it may involve the comparison of arbitrary functions and predicates. In the worst case, if some is-a 
relationship is not discovered, then this means that the virtual class is placed higher in the class 
hierarchy than would theoretically be possible. This would still be a correct but possibly not the 
most informative class arrangement. 

Note that the above described algorithm is inefficient since it always searches through all classes 
in the schema graph. This process can be optimized by fine-tuning it for each query operator. For 
instance, for the refine operator, which produces a virtual class with a new property function 
distinct from all existing ones in the schema, this algorithm can be reduced to a simple 0(1) 
algorithm requiring no search. As shown in Section 4.3, the refined virtual class is always a (direct 
or indirect) subclass of its source class. Furthermore, it cannot be placed any lower in the class 
hierarchy for. the following reason: it has a type description distinct from all other existing types 



f 

f' 
~; 5 CLASS INTEGRATION INTO THE GLOBAL SCHEMA 21 

due to the newly defined function and therefore it would be incorrect for any of the existing classes 
to inherit this new property. For the same reason, it cannot have any subclasses itself. We can thus 
conclude that the refined virtual class always has to be placed as direct subclass of its source class 
with no children of its own, i.e., direct-parents( <refined-virtual-class>) := { <source-class> } and 
direct-children( <refined-virtual-class>) := { }. This customization of the classification algorithm 
for particular operators allows us to limit the search to a smaller portion of the global schema based 
on the semantics of the operator and the position of the respective source classes. 

Rather than presenting detailed classification algorithms here, we demonstrate this process on 
an example. 

Predicates: ~ 
(Sex•Female) : 

······ .. 

Figure 11: Integrating the Virtual Class Women Into the Global Schema. 

Example 11. In Figure 11, the virtual class Women is derived by the query ''Women :=select 
from (People) where (Sex= "female")". Women contains a subset of the object instances that 
are members of the source class People, i.e., Women ~ People. Furthermore, Women inher­
its the type description from its source class People, while constraining the domain of the 'Sex' 
property function. Hence the subtype relationship; Women :::5 People holds. From these two class 
relationships we can conclude that (Women is-a People). We therefore insert the edge (Women 
is-a People) into the global schema. The classification process is however not complete. Instead, 
we now traverse the schema graph downwards from the source class to find the most specialized 
classes - lowest in the is-a hierarchy - that are still is-a related with the Women class. Since the 
Employees class has a more refined type definition than the Women class, the type relationship 
(Employees :::5 Women) holds. We can however not determine any subset relationship between 
these two classes. Hence, neither (Women is-a Employees) nor (Employees is-a Women) is 
true. However, the type relationship (Female-Professor :::5 Women) holds, because the Female­
Professor class inherits the additional property function 'Position' from the Employees class. 
We can also establish a subset relationship between these two classes based on their associated pred­
icates. Namely, the predicate "(Sex=Female)" of the Women class clearly subsumes the predicate 
"{Sex=Female) and {Position=Professor )" of the Female-Professor class. Thus, we can infer 
the subset relationship (Female-Professor ~ Women). By Definition 3, this implies (Female­
Professor is-a Women) and we add an is-a edge between the two classes as depicted in Figure 
11. 



f 

J> 
~1 6 VIEW SCHEMA DEFINITION 22 

In terms of the algorithm outlined above, we would have direct-parents(Women) := {People} 
and direct-children(Women) := { Female-Professor }. The Women class is indeed placed 
between these two classes in the global schema. 

6 VIEW SCHEMA DEFINITION 

In this section, we assume that the first two tasks of Multi View, namely, the definition of virtual 
classes and their integration into one underlying global schema, have been taken care of. We are 
now concerned with the third task of MultiView, namely, the definition of a view schema on top of 
the augmented global schema. For this we define a view definition language that can be utilized by 
the view definer for the specification of view schemata. In Figure 12, we present the BNF syntax 
of this view definition language. Note that the view definition language is concerned only with the 
manipulation of view classes and not with view is-a relationships. Rather than specifying is-a arcs 
manually, Multi View will automatically generate the set of view is-a arcs that has to be inserted 
in order to make the view schema valid. This is the topic of [12]. 

<view-definition> ::=<view-creation>; I <view-modification>; 
<view-creation> : := 

DEFINE-VIEW <view-name> 
<class-creations> I <view-schema-manipulation>, 
<view-manipulation> 

END-VIEW 
<view-modification> : := 

MODIFY-VIEW <view-name> 
<class-creations>, I <view-schema-manipulation> 
<view-manipulation> 

END-VIEW 
<view-manipulation>::= SAVE-VIEW; DELETE-VIEW; 
<view-schema-manipulation> : := 

ADD-CLASS (<class-name>); 
I ADD-CLASS-DAG( <class-name>) ; 
I ADD-VIEW-SCHEMA(<view-name>); 
I REMOVE-CLASS (<class-name>); 
I REMOVE-CLASS-DAG( <class-name>); 
I REMOVE-VIEW-SCHEMA(<view-name>); 
I RENAME-CLASS (<old-class-name>) by (<new-class-name>); 

<class-creations> ::= 
<class-name> : = <class-derivation-operator>; 

Figure 12: The BNF Syntax Of the View Definition Language. 

The following operators either initiate or terminate a transaction on a view schema: 
DEFINE-VIEW, MODIFY-VIEW, SAVE-VIEW, DELETE-VIEW and END-VIEW. The DEFINE-VIEW command 
initializes a new empty view schema and assigns a unique view, identifier to it. The creation of vir­
tual classes or the modification of a view schema VS can be done only in the context of a view 
definition transaction of the particular view schema. Within this transaction, which is marked by 
a DEFINE-VIEW command at the beginning and the END-VIEW command at the end, changes can be 
made to this one view schema only. 



/ 
"' ~ 1 6 VIEW SCHE1VIA DEFINITION 23 

The MODIFY-VIEW command is similar to DEFINE-VIEW, except it is applied to an already 

defined view schema rather than creating a new one. It thus prepares an existing view schema 

VS for modification. All operators specified within this view definition transaction, i.e., after this 
MODIFY-VIEW command and before the terminating END-VIEW command, will modify only VS and 

no other view schema. Since the existing view schema VS already has a unique identifier, no new 

view identifier is allocated. 

The view definers concludes the view definition phase by issuing the SAVE-VIEW command. 
This command establishes a view 'table for the view schema which lists all classes that are part of 

this view (See Section 9). In addition, the system determines the set of view is-a arcs that have to 

be inserted into this view schema and of course also into the view table [12]. 

Lastly, a view definer can remove a view schema with the DELETE-VIEW command. This 
command not only deletes the view table and view is-a arcs, but it also removes all virtual classes 
from the global schema that were created for the definition of that view schema, whenever possible. 

Virtual classes can no longer be removed when they are already (directly or indirectly) utilized by 

other view schemata. 

The view schema manipulation operators ( <vie"tN-schema-manipulation> in Figure 12) mod­
ify one designated view VS by either adding or deleting view classes. They assume that a view 

schema VS has already been created and opened for manipulation by either a DEFINE-VIEW or a 
MODIFY-VIEW command. The "ADD-CLASS(<class-name>)" command adds a class with the name 

<class-name> in GS to the view schema VS. The "ADD-CLASS-DAG( <class-name>)" command 

adds all classes to the view schema VS that are classes in the subschema of GS rooted at the class 

with the name <class-name>. Finally, the "ADD-VIEW-SCHEMA <view-name>" command adds 

all classes of the view schema with the view identifier <view-name> to the current view schema 
VS. The three commands, REMOVE-CLASS, REMOVE-CLASS-DAG, and REMOVE-VIEW-SCHEMA, do 

the same as the just described operators but rat~er than adding they are deleting the respective 

classes. Lastly, the "RENAME-CLASS <old-class-name> by <new-class-name>" command renames 
an existing view class of the view schema VS by replacing its name <old-class-name> by the new 

name <new-class-name> . We assume scoping here; hence this is a local change that is only visible 

from within the current view schema. 

Below, we demonstrate the above mentioned commands of the view definition language based 

on the example views shown in Figure 13. 

Example 12. In this example, we discuss the definition of the view schema VS1 in Figure 13.d 
on top of the global schema GS depicted in Figure 13. a. Below, we give one possible view creation 
script for the specification of VS1. 

View Creation Script For VSl: 
DEFINE-VIEW VS1 

VC4 =SELECT Ci where <predicate>; 
ADD-CLASS (Ci); 
ADD-CLASS (C3); 
SAVE-VIEW; 

END-VIEW 

We start the view definition transaction by issuing the DEFINE- VIEW VSJ command, which 
creates an empty view schema with the identifier VSJ. We then define and insert the virtual class 



'i 
f 

f· 6 VIEW SCHEZvIA DEFINITION 24 

(a) Base schema BS. (b) Global schema GS. 

.............. -<~~~=-
{-

(d) View schema VS1. 

(c) Global schema GS . 

vlew~hema 
eX\rilctlon 

f .. ..-·· 

(e) View schema VS2. 

Figure 13: From Base over One Integrated Global Schema To Multiple View Schemata. 

VC4 into the global schema GS. As discussed above, VC4 is also automatically added to the view 
schema VS1. Then the commands ADD-CLASS{Cl} and ADD-CLASS{C3} are issued to insert the 
classes Cl and C3 into VS1. VS1 now has the classes(VS1} = { VC4, Cl, C3}. Lastly, VSl is 
saved with the command SAVE-VIEW. MultiView then automatically creates the view is-a arcs for 
VS1 [12}. The result of this view generalization hierarchy creation is shown in Figure 13. d. 

Example 13. The second view schema VS2 in Figure 13.e is defined on top of the global schema 
GS depicted in Figure 13. b. A possible view creation script for VS2 is given below. 

View Creation Script For VS2: 
DEFINE-VIEW VS2 

VCS =SELECT VC4 where <predicate>; 
ADD-VIEW-SCHEMA (BS); 
SAVE-VIEW; 

END-VIEW 

First, the DEFINE-VIEW VS2 command creates an empty view schema with the identifier 
VS2. Then the virtual class VC5 is defined and integrated into the global schema GS. Then the 
three classes { Cl, C2, C3} are added to ·vs2, i.e., we now have classes(VS2} = { VC5, Cl, C2, 
C3 }. This could be done by either issuing three ADD-CLASS commands, or equivalently, we can add 
the base schema BS to VS2 using the command ADD-VIEW-SCHEMA (BS), since the base schema BS 
is composed of exactly the three desired classes. When VS2 is saved, the is-a arcs shown in Figure 
13.d are derived automatically by MultiView {12}. 



~1 7 A.UTOlvIATIC GENERATION OF A CLOSED VIEW SCHEMA 25 

Important to note here is that the restructuring of the underlying global schema GS due to the 
creation of VS2 did not have any effect on the existing view schema VSl. In section 8, we show that 
this is in general true, namely, existing view schemata remain valid after the creation of additional 
view schemata. We refer to this property of MultiView as the view independence property. The 
interested reader is referred to [12] for a more detailed discussion on the view definition language 
and related issues. 

7 AUTOMATIC GENERATION OF A CLOSED VIEW 
SCHEMA 

7 .1 Basic Concepts 

Unlike the class generalization relationships, the property decomposition relationships are not ex­
plicitly (nor independently from the actual classes) inserted into a schema. Instead, they are 
implicitly determined by the specification of a derived class. Recall that the definition of a virtual 
class automatically determines its type, i.e., all its property relationships with other classes in the 
view schema. For example, we create a property decomposition arc labeled p between the classes 
Cl and C2, a = <Cl,C2,p>, by defining the class Cl to have a property function p with the 
domainp(Cl):=C2. This implies that any customization of this property decomposition hierarchy 
by the view definer is taken care of during the class derivation phase of MultiView. Nonetheless, 
the verification of the closure criterion of a view schema can only be performed after the selection 
of all view classes, the third task of MultiView, has been completed. This is so since the closure 
property is a function of the complete schema (the relationships among all classes in the schema) 
rather than of an individual class. 

As indicated in Section 2.4, instead of just checking whether a given view is closed or not, it 
is more useful to transform a view that is found to be not closed into a type-closed view schema. 
In this section we present an algorithm, called Closed-View Generation algorithm, that solves this 
problem. In particular, the algorithm automatically determines the minimal 2 set of classes by whkh 
the view schema VS has to be extended in order for the view to be type-closed. Before describing 
the algorithm, we present a theorem that describes what this minimal set is. This theorem also 
shows that this set is a necessary and sufficient addition to a view to assure the closure of the 
resulting view. 

Theorem 1. (Correctness) Given a view schema VS={VV, VE) defined on the global schema 

GS={V,E). Then MIN:= (UciEvv(U ses*(Ci)))- VV is the minimal subset of classes from V that 
have to be added to the view VS to make it closed. 

Proof: We prove Theorem 1 in two parts. In part I, we show the sufficiency of the set MIN = 
UciEvv(Uses*(Ci)) - VV for closure, namely, we show. that a view VS becomes closed if we add 
the set MIN to its view classes VV. In part II, we show the necessity of MIN for closure, namely, 
we show that MIN is the minimal set required to make VS closed. These two facts together imply 
the correctness of the theorem. 

2 We assume that all classes initially selected for the view are indeed required, i.e., none of the view classes can be 
dropped in order to make the view type-closed. . 



f 
~" ;1 

,i 7 A UT01\IATIC GENERATION OF A CLOSED VIEW SCHElvIA 26 

Part I: Adding the set MIN = (LJciEvv(Uses*(Ci))) - VV to the view VS will make the view 
closed. 

Case I.a: Let VS=(VV,VE) be a view that is already closed. By Definition 13, VV = VV U 

(UciEvv(U ses*(Ci))). By subtracting the set VV from both sides of the equation, we derive that 
UciEvv(Uses*(Ci)) - VV = 0. This implies MIN= (UciEvv(Uses*(Ci))) - VV = 0. Since the 
view VS is assumed to be closed, no classes need to be added to the view, i.e., adding the set MIN 
= 0 trivially makes the view closed. 

Case I.b: Let VS=(VV,VE) be a view that is not closed. Then create a new view 
VS'=(VV',VE') with VV' the set of classes created by adding MIN to VV, i.e., VV' := VV U MIN. 
Then VV' = VV UMIN= VV U (LJciEvv(Uses*(Ci))) - VV) = VV u (LJciEvv(Uses*(Ci))). We 
now need to show that VS' is closed. By Definition 13, VS' is closed if and only if VV' = VV' U 

(LJciEVV'(U ses*(Ci))). We prove this as follows: 

UciEVV'(U ses*(Ci)) 

= UciE(VVuLJckevv(Uses•(Ck))) (U ses*(Ci)) 

= u(CiEVV)v(CiEUckevv(Uses•(Ck)))) (Uses*( Ci)) 

= UciEvv(Uses*(Ci)) U Ucie(LJckevv(Uses•(Ck)))(Uses*(C1)) 

= UciEvv( Uses*( Ci)) 

~ VV U (UciEvv(Uses*(Ci))) 

= VV'. 

Finally, UciEvv1(Uses*(C1)) ~ VV' implies ;VV' = VV' U (Ucievv1(Uses*(C))). We thus 
have shown that the addition of the set MIN to the non-closed view VS creates the closed view 
VS'. q.e.d. 

Part II: The set MIN = (Ucievv( Uses* (Ci))) r VV is the minimal set of classes that has to be 
added to a view VS to make it closed. 

Case II.a: Let VS=(VV ,VE) be a view that is already closed. Then by part I.a, MIN = 0. 
The empty set is obviously the equal to the smallest possible set of classes that has to be added to 
make the view closed. 

Case II.b: Part II follows directly from Definition 13 for a view VS=(VV ,VE) that is not 
closed. By Definition 13, all classes that are in the transitive closure of the Uses* relationship 
of VS, UciEvv(Uses*(Ci)), must also be part of VS in order for VS to be closed. On the other 
hand, classes that are already part of VS do not have to be added again. Therefore, all classes in 
UciEvv(Uses*(Ci)) - VV must be added to VV. Note that Ucievv(Uses*(Ci)) - VV is equal to 
MIN. q.e.d. 



t 
,N, 

" ~ 1 7 AUTOMATIC GENERATION OF A CLOSED VIEW SCHEMA 27 

7 .2 Closed-Vie·w Generation: Algorithm and Examples 

The Closed-View Generation algorithm ( CVG) is given in Figure 14. CVG determines whether a 
given view is closed or not. If the view is not closed then the algorithm automatically determines 
the minimal set of classes by which the view schema VS has to be extended in order for the view to 
be type-closed. This is done by recursively exploring the Uses relationships of classes. Note that the 
uses relationships of a class are independent from which other class of the schema we have reached 
the current class. Therefore, we only need to calculate the simple form of a transitive closure of the 
uses relationship. This observation reduces the complexity of the algorithm considerably, namely, 
from cube to linear complexity. Once we process a class Ci by checking its Uses relationships, it 
need not be processed anymore. In order to avoid unnecessary repetitive processing, the algorithm 
maintains a list of all classes that do not have to be checked anymore, called CVG-done. In addition, 
it maintains a list of all classes reached via the Uses relationship that still have to be processed, 
called CVG-tmp. 

The algorithm proceeds as follows. While there are any classes left to be processed in the 
CVG-tmp set, the algorithm picks one of them, say Ci. The processing of the class Ci entails the 
following. If Ci is not in the view, then the view is not closed and the flag Closed is set to false. 
The algorithm also adds Ci to the CVG-done set which serves the following two purposes: first, 
it assures that Ci will not be processed again, and second, it collects all classes that need to be 
added to the view to make it closed. Next, the algorithm che'cks for all classes Ck in the Uses(Ci) 
set, whether they have to be processed for closure. They do not have to be processed for closure, 
if either they already have been processed (i.e., are in CVG-done) or if they are guaranteed to be 
processed at some later time (i.e., are in VV or in CVG-tmp ). If they still have to be processed 
then they are added to CVG-tmp. The algorithm terminates when all classes reachable from the 
view classes of the view VS have been processed, i.e., when CVG-tmp is empty. If the view is 
closed, then the algorithm returns the flag "Closed=true" and the set "CVG-done=0". If the view 
is not closed, then the algorithm returns the flag ''Closed=false" and the set "CVG-donei 0". The 
latter contains all classes that have to be added to the view schema in order to make it closed, i.e., 
CVG-done = MIN with MIN defined in Theorem 1. Below, we discuss examples of applying the 
CVG algorithm to the view schemata shown in Figure 15. 

Example 14. The view VSJ in Figure 15. b is• defined on top of the global schema GS depicted 
in Figure 15.a. The CVG algorithm first initializes CVG-done := 0, CVG-tmp :={Cl, C3}, and 
Closed := true. For the first iteration of the while-loop, the iteration variable Ci is equal to Cl. 
The first if-statement evaluates to false, since {Cl E VV}, and thus is skipped. Uses{ Cl} := { C3} 
due the 'state-transition' property defined for Cl. Therefore, the for-loop is executed but once with 
the iteration variable Ck := C3. The if-statement in the body of the for-loop evaluates to false, 
since {C3 E VV). For the second iteration of the while-loop, the iteration variable Ci is set to C3. 
The first if-statement is again skipped. Uses(C3} := {Cl} due to the two properties 'prv-state' 
and 'nxt-states' defined for C3. The for-loop is executed with Ck := Cl. The if-statement in the 
loop body again evaluates to false, since {Cl E VV). CVG-tmp is now empty, and therefore the 
algorithm terminates. CVG returns the parameters {Closed=true) and (CVG-done=0). VSJ has 
been shown to be closed. 



~1 7 AUTOMATIC GENERATION OF A CLOSED VIEW SCHElvIA 

Data Structures and Variables: 

Set of classes: CVG-tmp, CVG-done; 
Classes: Ci, Ck; 
Boolean flag: Closed; 

Procedures and Functions: 

get-next( set-of-classes) --t class; 
not-element( class,set-of-classes) --t boolean; 
add-to-set( class,set-of-classes); 

Input: 

Global Schema GS= (V,E} and View Schema VS=(VV, VE) 
Output: 

The flag Closed indicates whether the view is closed. 
The. set of classes CVG-done contains all missing classes required to make the view closed. 

Algorithm CVG: The Closed-View Generation Algorithm. 

algorithm CVG( GS, VS) return (CVG-done: set-of-classes, Closed: boolean-flag) is 
CVG-done := 0; 
CVG-tmp := VV; 
Closed := true; 
while (Ci := get-next(CVG-tmp )) do 

if (not-element(Ci,VV)) then 
Closed := false; 
add-to-set( Ci,CVG-done ); 

end if; 
for all Ck in Uses(Ci) do 

28 

if ( not-element(Ck,CVG-done) and not-element(Ck,CVG-tmp) and not-e/ement(Ck,VV)) then 
add-to-set(Ck,CVG-tmp); ,, 

endif; 
endfor; 

end while 
return (CVG-done,Closed); 

end algorithm; 

Figure 14: The Closed-View Generation Algorithm. 



~i 7 AUTOMATIC GENERATION OF A CLOSED VIEW SCHE1\JA 29 

a. The global schema GS. 

actions-in-state 

b. The view VS 1 is closed. c. The view V 52 is not closed. 

bound-to 

d. The view VS2' is closed (derived from VS2 by the CVG algorithm). 

Figure 15: Examples of Applying the Closed-View Generation Algorithm. 



~1 7 AUTOMATIC GENERATION OF A CLOSED VIEW SCHENIA 30 

Example 15. In this example, we describe how CVG is applied to the view VS2 depicted in Figure 
15.c with VS2 defined on GS shown in Figure lS.a. CVG initializes the variables as follows: CVG­
tmp := 0, CVG-tmp := { C2, C4}, and Closed := true. For the first iteration of the while-loop, 
the iteration variable Ci is set equal to C2. The first if-statement eval'Uates to false and is skipped. 
Since Uses{C2) := { C4, C5}, the for-loop has two iterations. For the iteration with Ck := C4, 
the if-statement is skipped. For the second iteration with Ck := CS, the ~/-statement evaluates to 
true and CS is added to CVG-tmp for further processing. For the second iteration of the while-loop 
with the iteration variable Ci:=C4, the first if-statement is again skipped. The for-loop has two 
iterations since Uses(C4) := { C2, C5}. For both iterations, the if-statement is skipped. For the 
third iteration of the while-loop with the iteration variable Ci:=C5, the first if-statement evaluates 
to true since CS ¢ VV. Therefore, CS is added to CVG-done and the flag Closed is set to false. 
Since Uses(C5) := { C2, C8}, the for-loop has two iterations. For the second iteration of the for-loop 
with Ck: =CB, the if-statement evaluates to true and CB is added to CVG-tmp. For the fourth and 
last iteration of the while-loop with the iteration variable Ci:=CB, the first if-statement evaluates to 
true and CB is added to CVG-done. Since Uses{C8} := {}, the for-loop is not executed. CVG-tmp 
is now empty and the CVG algorithm terminates with (Closed=false) and {CVG-done={C5, C8}). 
CVG thus has shown that the view VS2 is not closed. In addition, the algorithm has determined the 
set of classes that have to be added make a complete view out of VS2, namely, the set CVG-done. 
The resulting augmented and thus closed view VS2' is shown in Figure lS.d. 

7 .3 Correctness and Complexity of the Closed-View Generation Algorithm 

Theorem 2. (Correctness) Given a view schema VS=(VV, VE) defined on the global schema 
GS={V,E), then the closed-view generation algorithm CVG in Figure 14 correctly generates a closed 
view VS'. In particular, CVG returns the value .. Closed=true if the view schema VS is closed, 
and the value Closed=false, otherwise. If the view VS is not closed, then CVG also generates 
the minimal set of classes that have to be added to VS to make it closed, namely, CVG-done = 
(UciEvv(U ses*( Ci))) - VV. 

Proof: We prove Theorem 2 in two parts. In the first part, we show that the algorithm returns 
the correct value for the Closed flag. In the second part, we show that the CVG-done set returned 
by the algorithm is equal to (UciEvv(U ses*(Ci))) - VV. 

Part I: (Closed=true) ~ (VS is closed). 

In part I.a, we show "(Closed=true) ==> (VS is closed)". In part I.b, we show "(VS is closed) 
==> ( Closed=true )". These together imply the desired equivalence of part I. 

Part I.a: ( Closed=true) ==> (VS is closed). 

Assume that the algorithm CVG returned the flag Closed=true. This means that the first 
if-statement with the condition (Ci tJ. VV) never evaluated to true. This implies that CVG did 
not find a single class Ci in the transitive closure of the uses relationship of VV (or Ci E VV U 

UciEvv(Uses*(Ci))) for which the following holds: Ci¢ VV. We can therefore conclude that for 
all classes Ci, Ci E VVU UciEvv(Uses*(Ci)) also implies Ci E VV. Hence, (UciEvv(Uses*(Ci))) 



L 7 AUTOMATIC GENERATION OF A CLOSED VIEW SCHEi'vIA 31 

U VV ~ VV. This implies the relationship VV = (LJciEvv(U ses*(Ci))) U VV. By Definition 13, 
the view VS is closed. q.e.d. 

Part Lb: (VS is closed) ===? (Closed=true). 

Assume that the view VS is closed. Then by Definition 13, the relationship UciEvv( Uses*( Ci)) 
~ VV holds. This means that there is not a single class Ci in the transitive closure of the uses 
relationship of VV that is not also in VV, i.e., ( ,ll Ci in V) ( (Ci ~ VV) A (Ci E Uci EVV (Uses* (Ci))). 
Therefore, for all classes Ci processed by the algorithm CVG the condition "Ci (j. VV" of the first 
if-statement will always evaluate to false. Since the body of this first if-statement is never executed, 
the variable Closed is never modified and the initial value Closed=true remains. q.e.d. 

Part II: The algorithm generates the set CVG-done = (LJciEvv(Uses*(Ci))) - VV .. 

The while-loop recursively traverses the transitive closure of the uses relationship of all view 
classes of VS. Initially it starts with all classes in VS, since CVG-tmp is initialized to VV. Later 
the for-loop recursively adds all classes that can be reached from a class in CVG-tmp via the uses 
relationship. Hence, over the duration of the CVG execution, the while-loop will process all classes 
in (VV U (LJciEvv(Uses*(Ci)))) at least once. The algorithm adds all classes in the above set to 
the CVG-done set for which the condition "Ci {j. VV'' of the first if-statement evaluates to true. 
Therefore, CVG-done will be equal to the set (UciEvv(U ses* (Ci))) - VV. By Theorem 1, the set 
CVG-done thus corresponds to the minimal set of classes that has to be added to the non-closed 
view VS to create the closed view VS'. q.e.d. 

Theorem 3. (Complexity) Given a view schema VS=(VV, VE) defined on the global schema 
GS=(V,E) with PGS={V,A,L) the matching property decomposition hierarchy of GS as defined in 
Definition 7. The complexity of the closed-view generation algorithm CVG for the view VS is equal 
to O~AIJ with IAI the number of property decomposition arcs in PGS. 

Proof: We prove Theorem 3 in three parts. 

Part I: First, we show that all functions used by CVG have constant complexity. 

We assume that each class in GS has a unique index in the range from 1 to I GS I· Then we can 
implement the set-of-classes data structure by a bit-vector oflength IGSI as follows: the i-th bit is 
true if the class Ci is in the set, and false, otherwise. To check whether a class Ci is or is not an 
element in a set using the not-element() function is done by checking the value of the corresponding 
bit. This takes constant time. To add or to remove an element using the functions add-to-set() 
and get-next(), respectively, corresponds to flipping a bit. Both functions thus take constant time. 
CVG-done and VV are assumed to be implemented using this scheme. 

Assume the variable CVG-tmp is implemented by both a linked list and a bit-vector repre­
sentation. The linked list representation is used to get the next element in the list in constant 
time by the get-next() function, while the bit-vector representation is used by the not-element() 



t t! 
7 AUTOMATIC GENERATION OF A CLOSED VIEW SCHEMA 32 

function to assure that the element is not already present in the list in constant. time. The add-to­
set(Ck, CVG-tmp) function flips the corresponding bit for Ck in the vector representation to true 
and it also appends Ck to the matching linked list representation of CVG-tmp. Similarly, the get­
next() function first removes the next element Ci from the linked list representation of CVG-tmp 
and then updates the CVG-tmp's bit-vector representation of Ci by setting the appropriate bit to 
false. These functions can each be done in constant time. q.e.d. 

Part II: Next, we show that each class of GS will be placed at most once into the CVG-tmp set. 

When a class Ci is processed using the while-loop, it is first removed from CVG-tmp using 
the function get-next(). It is then placed into CVG-done using the first if-statement (assuming 
that it is not an element of VV). Once a class Ci is in the CVG-done set or in VV, Ci will · 
never be placed back into CVG-tmp for the following reason. The second if-statement is the only 
statement that adds elements to the CVG-tmp set, and the condition of this if-statement, which 
is "(not-element(Ck,CVG-done)" and not-element(Ck,VV)) and ... ",assures that a class Ci with 
the above characteristics is not placed back into CVG-tmp. q.e.d. 

Part III: Lastly, an analysis of the overall algorithm is conducted using part I and II. 

• By part I shown above, all functions used by the CVG algorithm have constant complexity. 
Therefore, the two if-statements can be executed in constant time each. 

• By part II shown above, we know that each node of the global schema GS is placed at most 
once in the CVG-tmp set. This implies that the while-loop is executed at most once for each 
node in GS, i.e., there are in the worst case jGSj iterations. 

• For each class Ci in the CVG-tmp list (i.e., for each iteration of the while-loop), the for-loop 
has exactly one iteration for each class Ck in the Uses(Ci) set. jUses(Ci)j, which denotes the 
number of distinct classes with which the class Ci in GS maintains direct property decomposi­
tion relationships, is smaller than or equal tq the number of outgoing property decomposition 
arcs for the class Ci, denoted by #arcs( Ci). This is true since there may be two properties 
arcs labeled by the property names pl and p2 defined for Ci with the same domain class Cj, 
e.g., al= <Ci,Cj,pl> and a2 = <Ci,Cj,p2>. And, for each class Cj E jUses(Ci)j, there must 
be at least one arc ak with the domain class Cj, i.e., ak_= <Ci,Cj,pk> for some label pk. 

The overall complexity of the closed-view generation algorithm CVG can now be computed as 
follows: complexity(CVG) ~ O(L:ciEV(IUses(Ci)I)) ~ O(l:ciEv(#arcs(Ci))) = O(jAj). q.e.d. 

Theorem 4. (Complexity) Given a view schema VS=(VV, VE) defined on the global schema 
GS=(V,E) with PVS={VV, VA, VL) the matching property decomposition hierarchy of VS as defined 
in Definition 7. If the view schema VS is closed, then the closed-view generation algorithm CVG 
has the complexity of onv Al} with IV Al the number of property decomposition arcs in PVS. 



f' 
;; 8 THE VIEW INDEPENDENCE OF MULTIVIEW 33 

Proof: Assume that the view schema VS is closed. By Definition 13, a closed view defines all 
classes that it uses. Therefore, the tc,•t of the second if-statement "not-element( C,VV)" will always 
evaluate to false. Therefore, no classes are added to the CVG-tmp set besides the initial set VV, 
and the while-loop has ex.actly IVVI iterations. Similarly, by Definition 13, the Uses set of a class 
in VS consists only of classes that are defined in VS. Therefore, the size of a Uses set for a view 
class of a closed view is equal to all outgoing arcs of the class; with these arcs being contained in 
the property decomposition hierarchy of VS. The for-loop for a class Ci has at most #arcs(Ci) 

iterations. We thus have complexity(CVG):::; O(l:ciEVv(#arcs(Ci))) = O(IV Al). q.e.d. 

Since the chosen set representation used in the algorithm is a bit-vector of length jGSj, the 
initialization of these vectors has a comp+exity of jGSj. Therefore, the complexity of the CVG 
algorithm including initialization would be complexity(CVG) = 0( min(jGSj, IV Al) ). 

8 THE VIEW INDEPENDENCE OF MultiView 

8.1 The View Independence Concept 

The concept of data independence developed for the relational mode_l is defined as the "immunity of 
applications to change in storage structure and access technique" [3]. This is achieved by separating 
the interface to the database (the conceptual data model) from the actual implementation (the 
physical data model). Physical data independence addresses the independence of users and user 
programs from the physical structure of the stored data, while logical data independence addresses 
the independence of users and user programs from the logical structure of the data. A system 
provides physical data independence by supporting an implementation-independent interface (a 
logical data schema) that the users can utilize i:r;i. place of operating directly on the underlying 
storage structure and access paths. A system provides logical data independence by supporting a 
view definition mechanism that lets the users define their own view schema on top of the common 
logical schema. The concept of data independence thus addresses the immunity of users from 
changes of the underlying data model. It does, however, not preclude from having to update the 
specification of possibly all existing view schemata when the underlying data model is extended 
and/or reorganized. 

The MultiView methodology is based on the actual restructuring of the global schema for 
generating new view schemata. Therefore, we introduce the concept of view independence to be 
the immunity of view schema definition and semantics to changes of the underlying global schema. 

Definition 14. A database system provides view independence if the specification and the se­
mantics of existing view schemata are not affected by the definition of new view schemata. 

This concept of view independence is a necessary and important requirement for object-oriented 
database systems, since the underlying base schema is restructured with possibly each new view 
schema definition. A redefinition of all existing view schemata for whenever a new view schema is 
introduced would be an unacceptable overhead. The concept of view independence does not have 
any significance in relational database theory where the definition of new views ha.s no affect on 
the underlying base schema. In fact, the relational model is by default view independent. 



~i 8 THE VIEW INDEPENDENCE OF MULTIVIEW 34 

For the Multi View methodology to be view independent would mean that the integration of new 
virtual classes into the global schema does not require the redefinition of the existing view schemata 
nor does it modify their semantics. The latter means that in spite of the restructuring of the global 
schema the following must hold: (1) the view classes of a view defined on the global schema do 
not change their type description nor their set membership and (2) the is-a relationships between 
the view classes of a given view are preserved. A more precise definition of the view independence 
concept for MultiView.is given below. 

Definition 15. Let G* be the set of all schemata, C* the set of all classes, 0 the set of all object 
instances, and P the set of all properties. Let GS={V,E) be a global schema and VS=(VV, VE) a 
view schema defined on GS. Let VS* be the set of all view schemata defined on GS. Let IT: G * 
--+ G* be a function that applies a class derivation operator to GS and then restructures GS by 
integrating the resulting virtual class into Gs6. Let GS' = {V',E') be the global schema GS and 
VS'={VV', VE') the view schema VS after the the integration of virtual classes into GS using the 
function II, i.e., GS':= IT(GS) and VS':= IT{VS). 

(a) The view classes VV of the view schema VS are defined to be preserved through the 
application of the function II to GS iff the following holds: 

• ~ a one-to-one mapping m: C* --+ C*, such that, 
(t/Ci E C*){(Ci E VV) ==? ~!Ci' E VV)(Ci '=m(Ci)), and vice versa, 
(t/Cf E C*){(Cl E VV') ~ (3!Ci E VV){Ci=m-1 (Ci))4. 

• (t/Ci E VV) (Vo E 0) ((o E Ci) in VV ~ (o E m(Ci)) in VV'). 

• (tip E P)(l/Ci E VV) {(p E properties(Ci) in VS)~ {p E properties(m(Ci)) in VS')). 

(b) The view is-a relationships VE among the view classes VV are defined to be preserved 
through the application of the function II to GS iff the following holds: 

• (t/Ci,Cj E VV) (((Ci is-a* Cj} E VE)~ ((m(Ci) is-a* m(Cj)) E VE')). 

with the mapping mas defined in (a). 

( c) The view schema VS is defined to be preserved through the restructuring of GS using the 
function II iff the type description and set membership of the view classes VV are preserved as 
defined in (a) and the view is-a relationships VE among the view classes VV are preserved as 
defined in (b). 

( d) The Multi View methodology is defined to be view independent if all view schemata in 
VS* are preserved as defined in ( c). 

3 For this report, we assume that the function II corresponds to the relational algebra operators and the integration 
algorithm presented earlier in this paper. Without loss of generality, other operators or integration algorithms could 
be substituted. 

4This mapping mis simply the equality operator on the class identifiers, since each class has a unique identifier. 



x· 
,i 8 THE VIEW INDEPENDENCE OF MULTIVIEW 35 

8.2 Proving Multi View View Independent 

Below, we prove the view independence property of Multi View in two steps. First, we show that 
view classes (Definition 15.a) and then that the is-a relationships among view classes (Definition 
15.b) are not affected by the restructuring olthe global schema5 . 

8.2.1 Preservation of View Classes 

As specified in Definition 15.a, a view class needs to preserve both its type description and its set 
membership through possible restructuring of the underlying global schema in order for Multi View 

to be view independent. There are two design choices for determining the type description of a 
view class: 

• First, we can determine the type of a view class based on the type descriptions of classes visible 
in the view schema. 

• Second, we can determine the type of a view class based on the complete underlying global 
schema, which may be partially invisible in the view. 

The former offers the advantage that a property is only visible in a view schema, if the class 
that defines this property is also visible. This would thus guarantee a unique location (class) in the 
view hierarchy for the definition of any property that is visible in the view. schema. Unfortunately, 
this approach violates the view independence property as we will show below. 

Example 16. In this example we demonstrate the two approaches for type determination of a 
view class based on Figure 16. In this figure we use the following graphical convention: For a given 
class, we depict attributes that are directly defined for that class (for that view schema) by an arrow. 
Attributes that are inherited (for that view schema) are depicted by a dotted arrow. 

Figures 16.a and 16.b show the global schema before and after the derivation and integration of 
the two virtual classes CO' and Cl'. Figures 16.c and 16.d demonstrate the type determination of 
a view class using approach 1. Approach 1 deter'TT}ines types based on the classes visible in the view 
schema. For instance, attribute al is defined in class Cl in the global schema, and since class Cl is 
not visible in the view schema VSl, the attribute al is also not visible in VSl. Therefore, the -class 
C2 in Figure 16. c does not have the attribute al defined. As shown in Figure 16. d, both classes CO 
and C2 change their types due to the restructuring of the base schema. Class CO, for instance, has 

the type properties(CO)= { aO,ax} before and the type properties(CO)= { aO} after the global 
schema restructuring. Consequently, approach 1 does not guarantee view independence. 

5 Note that we define the type of a class to be the union of its defined and inherited property functions. Turning a 
defined property into an inherited property (as done for instance in Figure 16.e for property al) is not considered to 
be a change of the class type. We define the set membership of a class, denoted by extent( C) = { o I o E C}, to be the 
union of its direct and indirect instances; and it is this combined membership of direct and indirect members that we 
require to stay invariant with view creation. The direct membership conte.nt of a class C, defined by direct-extent(C) 
= extent(C) - LJ7=l extent(Ci) with Ci (with i = 1, ... , k) the direct subclasses of C, or the indirect membership of C, 
defined by indirect-extent(C) = extent(C)- direct-extent(C), may of course be modified by the creation of a new view. 
For instance, the creation of additional subclasses of a class C may diminish C's direct membership and increase C's 
indirect membership. 



t 
i' 

:;1 8 THE \lIEW INDEPENDENCE OF lvf ULTIVIEW 

before 
the 
hide 

operation 

after 
the 
hide 

operation: 
C1'= 

hide[ax] 
from C1. 

Global Schema 
Restructuring: 

(a) GS. 

. .+. .. 

Approach1: Determine Approach2: Determine 
Types using VS. Types using GS. 

(c) VS1 ={CO,C2}. (e) VS2={CO,C2} . 

( Co')__..ao 
" . 

(b) GS. (d) VS1 ={CO,C2}. (f) VS2={CO,C2}. 

Figure 16: Two Approaches for Type Determination of a View Class 

;35 



'i 8 THE VIEW INDEPENDENCE OF MULTIVIEW 37 

Figures 16.e and 16.f demonstrate the second approach that determines types based on the class 
hierarchy in the global schema. Hence, the class C2 in Figure 16. e has defined the attribute al, 
even though in the global schema attribute al is defined in a class that is not visible in the view 
schema VS2. Note that methods inherited from classes invisible in the view schema are displayed 

as defined methods for the first class that inherits them. For example, attribute al is displayed as 
being defined rather than inherited for class C2 in VS2. Figure 16.f shows that the view schema is 
not affected by the restructuring of the global schema, i.e., all classes maintain their original types. 
Approach 2 thus guarantees view independence for this example. 

Theorem 5. Approach 1 for type determination of view classes does not preserve the view inde­
pendence property. 

Proof (by Counterexample): Theorem 5 can be shown by giving one example for when the 
view independence property is indeed violated by approach 1. Example 16, in particular, Figures 
16.c and 16.d, are such a counterexample. Namely, the integration of the virtual class Cl' into GS 
affected the type description of the existing view classes in the view VSl. q.e.d. 

We have thus shown that approach 1 may lead to type description changes of view classes when 
is-a restructuring the global schema for a new view. This violates the view independence property 
and thus is clearly unacceptable. This is one reason for why we have adopted the second approach 
in Multi View. Approach 2, namely, the determination of the type description of view classes based 
on the global schema rather than on the view schema, poses the obvious constraint on the global 
schema to maintain the type description of all classes during schema restructuring. We have thus 
reduced the problem of type preservation from the view schemata to the global schema. 

Theorem 6. Let VS* be the set of all view schemata defined on the global schema GS. The Multi­
View methodology preserves the view classes of all view schemata in VS* through the restructuring 
of GS using the function II with the term preserves defined in Definition 15.a. 

Proof: (Intuitive) 

We now give the intuitive reasoning for Theorem 6. As explained earlier, mapping m given 
in Definition 15 corresponds to the equality operator on the class identifiers. Class identifiers are 
unique and the set of view classes is always a subset of the set of global classes. Hence, the mapping 
m is a one-to-one function (Part I of Definition 15.a). 

The class derivation of a virtual class creates a new class with possibly a new type description 
and a new content; !t does obviously not modify the semantics of existing classes. Hence, we are 
only concerned with the integration part and not the class derivation part of the function II. As 
discussed above, Multi View determines the type description and the set membership of a view class 
directly from the global schema. Therefore, we can reduce the problem of view class preservation 
from the view schemata to the global schema. We thus only need to show that all classes Ci of GS 
are preserved when integrating new virtual classes into GS. 

Recall that the integration algorithm of virtual classes (even if fine-tuned for particular query 
operators) follows the principle explained in Section 5. Namely, the virtual class VC is in­
serted below its direct superclasses called direct-parents(VC) and above its direct subclasses in 



r 
N, 

~i ·' 8 THE \/JEHr INDEPENDENCE OF MULTIVIEW 38 

GS called direct-children(VC) with (V Ci E direct-parents(VC)) (VG is-a Ci) and (V Cj E direct­
children(VC)) (Cj is-a VC). Due to (1) VC being is-a related to both sets of classes and (2) the 
transitivity of the is-a relat~onship, we can deduce that classes in these sets were is-a related to 
one another before the insertion of VC. In particular, (VCi E direct-parents(VC)) (VCj E direct­
children(VC)) ( Cj is-a * Ci). Clearly, the insertion of VC does not modify the content of any of 
the existing classes, i.e., part II of Definition 15.a holds. The insertion of VC also does not modify 
the type description of any of the existing classes. All classes that are made subclasses of VC in 
the modified GS are also subtypes of VC; i.e., they will not inherit any new property functions and 
their types will be preserved. This shows part III of Definition 15.a. d q.e . . 

8.2.2 Preservation of View is-a Relationships 

Theorem 7. Let GS be a global schema and VS* be the set of all view schemata defined on GS. 
The MultiView methodology preserves the view is-a relationships among the view classes of each 
view in VS* through the restructuring of GS using the function IT with the term preserves as 
defined in Definition 15. b. 

Proof: (Intuitive) As sp~cified in Definition 11, we derive the is-a relationships of view classes 
directly from the is-a relationship found in the underlying global schema, i.e., (\:/ Ci ,Cj E VV) ( (Ci 
is-a* Cj. E GS) ~ (Ci is-a* Cj E VS)). Consequently, if we can show that the relative is-a 
relationships are maintained for all pairs of classes in GS, then we have also shown that they are 
maintained for all pairs of classes in VS. 

The integration algorithm of virtual classes (even if fine-tuned for the particular query opera­
tors) follows the general approach explained in Section 5. Namely, the virtual class VC is inserted 
below its direct superclasses and above its direct :subclasses in GS called direct-parents(VC) and 
direct-children(VC), respectively. As shown in Theorem 6, we can deduce that these sets of classes 
had to be is-a related before the insertion of VC. In particular, (VCi E direct-parents(VC)) (VCj 
E direct-children(VC)) ( Cj is-a * Ci)· Therefore, the insertion of VC does not add any new is-a 
relationships. It is obvious that the insertion of the virtual class VC does not remove any is-a 
relationships. We have thus shown the preservat~on of all is-a relationships in GS. q.e.d. 

Theorem 8. The MultiView methodology is view independent. 

Proof: Theorems 6 and 7 show respectively that the MultiView approach preserves the view 
classes and the view is-a relationships of all view schemata defined on a global schema GS through 
the restructuring of GS. By Definition 15 these two theorems together prove the view independence 
of MultiView. q.e.d. 



11 9 REALIZATTON OF i'v!ULTIVIEW 39 

9 REALIZATION OF MultiView 

While steps one and two ofMultiView (Figures 4.b and 4.c) are real in as much as they actually 
-modify the underlying global schema, steps three and four (Figures 4.d and 4.e) are virtual since 
they leave the underlying global schema intact (Section 3). This is supported by maintaining 
information on view schemata, such as, their view classes and their view is-a relationships, in 
separate view object tables as described in this section. There are two equivalent ways in which to 
maintain the information about multiple view schemata: a centralized or a distributed approach. 
An example of these two approaches is given in Figure 17.b and 17.c, respectively, while Figure 
17.a depicts the schemata in the graphical form used throughout the paper. 

The centralized approach (Figure 17.b) maintains one view schema table for each view schema 
(similar to a data dictionary in the relational model). The base schema table and the global schema 
table are two special schema tables kept for the base and the global schema, respectively. Such a 
view schema table contains the following information: a list of class names of classes that belong to 
the schema, their internal class identifiers, and their direct sub- and superclasses. Figure 17.b, for 
instance, shows how the schemata of Figure 17.a are captured by the centralized approach. There 
are three view (schema) tables, one for the global schema and one for each view schema. The view 
table for Viewl, for instance, has been assigned the view identifier < V Sl >. The table enumerates 
all classes that belong to Viewl, which are Objects, Components, FuncUnits, and Storage Units, as 
well as their direct sub- and superclasses in the view. 

The second approach distributes the above described schema information across the classes of 
the global schema. More precisely, each class of the global schema would be extended with a list of 
view identifiers of the view schemata to which that class belongs. For each such view identifier, it 
would enumerate the direct sub- and superclasses visible within the respective view. Figure 17.c, 
for instance, shows how the schemata of Figure 17.a are captured by the distributed approach. In 
Figure 17.c, for instance, the Components class belongs to both views Viewl and View2. Hence, 
the class definition of the Components class lists their view identifiers < VSl> and < VS2>. It also 
lists sub- and superclasses of the Component class for each view. For instance, the Components 
class has two is-a related subclasses for Viewl and none for View2. 

We have chosen the centralized approach oyer the distributed one for the following reasons. 
First, this does not require any extension of the ~lass concept. Hence, we can directly use existing 
object-oriented database technology for an implementation of MultiView. Also, no modification of 
a class description is required due to the insertion of the class into and deletion of the class from 
of a view schema. In addition, an operation to remove an obsolete view schemata or to copy one 
view schemata into another view schemata could easily be accomplished by manipulating the class 
dictionaries used in the centralized approach (without requiring any search through all the classes 
distributed throughout the global schema). 

10 RELATED WORK 

Most initial efforts of defining views for OODBs suggest the use of the query language defined 
for their respective object model to derive a virtual class. For instance, the work by Heiler and 
Zdonik [5] an.cl the work by Scholl et al. [14] fall in this category. Multi View can use any of these 



RELATED WORK 

a.1. Global Schema GS. 

a.2. View Schema <VS1>. a.3. View Schema <VS2>. 
a. Graphical Representation of Global and View Schemata.· 

Globe~ <GS> 

Classes Superclasses Subclasses ; 

Object -- Components Connections 
Components Object FuncUnits StorageUnits 
FuncUnits Components --
StorageUnits Components --
Connections Object Buses Wires 
Buses Connections -
Wires Connections --

Vlew11 <VS1> 

Classes Superclasses Subclasses 
Object - Components 
Components Object FuncUnits StorageU nits 
FuncUnits Components --
StorageUnits Components --

View21 <VS2> 

Classes Superclasses Subclasses 
Object - ~omponents Buses Wires 
Components Object --
Buses Object --
Wires Object --

b. Centralized Approach: Schema Representation using 
a separate View Table for each Schema. 

40 

/'Class: Object ~ 

GlobalSchema (<GS>): 
Superclasses: -
Subclasses: Components, Connections 

Vlew1 (<VS1>): 
Superclasses: --
Subclasses: Components 

Vlew2 (<VS2>): 
Superclasses: --

\.. Subclasses:Components,Buses,Wires ~ 

Class: Components 

GlobalSchema (<GS>): 
Superclasses: Object 
Subclasses: FuncUnits StorageUnits. 

Vlew1 (<VS1>): 
Superclasses: Object 
Subclasses: FuncUnits StorageUnits 

Vlew2 (<VS2>): 
Superclasses: Object 
Subclasses: none 

Class: FuncUnits 

GlobalSchema (<GS>): 
Superclasses: Components 
Subclasses: none 

Vlew1 (<VS1>): 
Superclasses: Components 
Subclasses: none 

~lass: StorageUnits 

GlobalSchema (<GS>): 
Superclasses: Components 
Subclasses: none 

Vlew1 (<VS1>): 
Superclasses: Components 

\.. Subclasses: none 

l'Cl&Ss: Connections 

GlobalSchema (<GS>): 
Superclasses: Object 

\... Subclasses: Buses, Wires 

/'class: Buses 

GlobalSchema (<GS>): 
Superclasses: Connections 
Subclasses: none 

View2 (<VS2>): 
Superclasses: Object 

\... Subclasses: none 

,-Class: Wires "' 

GlobalSchema (<GS>): 
Superclasses: Connections 
Subclasses: none 

Vlew2 (<VS2>): 
Superclasses: Object 

\.. Subclasses: none ~ 

c. Distributed Approach: Distributing 
Schema Information across Classes. 

Figure 17: Centralized versus Distributed Realization 



f 
J_.', ,, 

~i 10 RELATED WORK 41 

proposed class derivation mechanisms to implement the first phase of view schema generation, i.e., 
the customization of individual classes. It thus is a superset of these approaches. 

Most of these approaches do not discuss the integration of derived classes into the global 
schema. Instead, the derived classes are treated as "stand-alone" objects [5], or they are attached 
directly as subclasses of the schema root class [7]. Scholl et al.'s recent work [14] is an exception; 
they discuss the classification of virtual classes derived by a selected subset of the operators of the 
query language COOL into one schema. They do however not consider the problem of generating 
multiple view schemata, and hence MultiView can be considered to be a compatible extension of 
their work. 

Tanaka et al. present an early work on schema virtualization [17). Their work does not dis­
tinguish between the task of integrating derived classes into a common schema and the task of 
generating view schemata. The interplay between these tasks is not well-defined in their approach. 
Also, they allow for the arbitrary addition of is-a edges in a virtual schema, which in many cases 
will lead to an inconsistent schema, rather than supporting the automatic generation of the class 
hierarchy of a view schema as done in Multi View. Their approach thus does not assure the va­
lidity of a view schema. They point out that work is needed for developing a definition language 
for view schemata. In this paper, we have provided a solution for this. In fact, by breaking the 
view schemata definition process into a number of distinct phases, we were able to reduce the view 
definition language to an extremely simple language. In summary, MultiView is a more systematic 
solution approach compared to their rather ad-hoc proposal. 

Shilling and Sweeney [15] present an alternative approach for supporting views for object­
oriented systems. Namely, they extend the conventional concept of a class object from having one 
type (one ADT interface) to having multiple interfaces. The purpose is to limit the access rights 
to property functions and to control the visibility of instance variables. We accomplish the same 
goal by using the type refinement capability of the; generalization hierarchy to differentiate between 
different combinations of property functions defined for a collection of objects. Our work is simpler, 
since it does not require the extension of the traditional class concept. Furthermore, Shilling and 
Sweeney approach the problem from the programming language point of view, and thus they are 
not concerned with the sets of objects attached to a class, i.e., the class extent. Consequently, they 
do not address the derivation of new classes by restricting the membership of a class via a select-like 
query. Lastly, their approach focuses on one clas$ only, and the effects of multiple interfaces on the 
class generalization hierarchy are not addressed. 

Gilbert's proposal [4], similar to [15], is also based on the idea of defining multiple interfaces for 
a class object. MultiView does not require the extension of the traditional class concept, and thus 
can be implemented directly with the existing object-oriented database technology, while Gilbert's 
approach could not. Nonetheless, MultiView is as powerful as the multi-interface approach; any 
view schema that can be defined using the multi-interface approach can also be defined using our 
strategy. In addition, our work allows for the direct application of the class derivation mechanisms 
proposed in the literature. The use of general query operators is currently not handled by [4]. 



11 CONCLUSIONS 

In this paper, we have defined an object-oriented view to be a virtual, possibly restructured, sub­
schema graph of the global schema rather than just one individual virtual class. We have presented 
a novel approach for supporting these multiple view schemata in OODBs, called MultiView. This 
approach is simple yet powerful; it allows for instance for the customization of a view schema by 
virtually restructuring both the generalization and the property decomposition hierarchies of the 
underlying global schema. 

In this paper, we have also presented solutions to specific subtasks related to the proposed 
view methodology. First, we have formally defined a set of object algebra operators that can be 
used to customize the type structure and object membership of virtual classes. Second, we have 
proposed an algorithm that solves the integration of these newly derived virtual classes into the 
global schema. Third, we have developed a view definition language that can be used by the view 
definer to select the desired view classes from the global schema. MultiView provides support for 
schema design in term~ of automating some parts of the specification process (see subtask two 
mentioned above) and in terms of enforcing the consistency of a view schema. For instance, in this 
paper we have presented an algorithm that does. only verify the closure property of a view schema 
but, if the view is found to be incomplete, will transform the view schema into a minimal yet closed 
view. In this paper, we have also introduced the concept of view independence, which we argue to 
be a fundamental requirement for any view mechanism developed for object-oriented databases. We 
prove Multi View to be view indepen~ent. Finally, we have outlined some implementation techniques 
for realizing MultiView with existing OODB technology. 

Note that the MultiView methodology is not specific to a particular OODB model. This 
generality allows the MultiView approach to be incorporated into most existing OODBs. Multi View 
would then enrich these systems by allowing them .to support a more powerful notion of views. Our 
paradigm builds on existing work in as much as it is independent of the class derivation operators 
chosen from the set of proposed operators in the literature [5, 7, 14, 10]. A major contribution of 
the proposed approach lies in its simplicity compared to alternative proposals [4], and hence the 
potential ease in adapting it for existing database systems and in implementing it with existing 
OODB technology. 

We are currently implementing a first prototype of MultiView. Based on this prototype, we 
want to explore alternative implementation strategies for Multi View. In particular, the development 
of efficient query processing techniques for queries issued to view schemata needs to be further re­
searched. Furthermore, the design of a graphical interface for the incremental view definition phase 
would be a useful feature for application domains. It would open the avenue for non-database 
experts to utilize MultiView to define their desired application-specific views. Indeed, the devel­
opment of MultiView has been driven by our need to provide multiple design views for CAD tools 
workjng on a central database, and we are planning to apply Multi View to address this problem. 

Acknowledgements. I would like to thank Professor °Lubomir Bic and Professor Daniel 
Gajski for providing me with support and encouragement. Without their help, his work would not 
have come about. 



References 

[1] Aho, A. V., Hopcroft, J.E., and Jeffrey, D. U., The Design and Analysis of Computer Algo­
rithms, Addison-Wesley Pub. Company, 1974. 

[2] Banerjee, J., Kim, W., Kim, H.J., and Korth, F., "Semantics and Implementation of Schema 
Evolution in Object-Oriented Databases", Proc. of ACM SIMOD'87, May 1987, pp. 311- 322. 

[3] Date, C. J., An Introduction to Database Systems, Vol. I, Fifth Edition, Addison-Wesley 
Publishing Company, Inc., 1990. 

[4] Gilbert, J.P., "Supporting User Views", OODB Task Group Workshop Proceedings, Ottawa, 
Canada, Oct. 1990. 

[5] Heiler, S., and Zdonik, S. B., Object views: Extending the vision, In Proc. IEEE Data Engi­
neering Conj., Los Angeles, Feb. 1990, pg. 86 - 93. 

[6] Khoshafian, S. N. and Copeland, G. P., "Object Identity," in Proc. OOPSLA '86, ACM, Sep. 
1986, pp. 406-416. 

[7] Kim, W., A model of queries in object-oriented databases, In Proc. Int. Conj. on Very Large 
Databases, pp. 423 - 432, Aug. 1989. 

[8] Maier, D., Stein, J., Otis, A., and Purdy, A., "Development of an Object-Oriented DBMS," 
in Proc. OOPS LA '86, Sep. 1986, pp. 4 72-482. 

[9] Mylopoulos, J., Bernstein, P. A., and Wong, H.K.T., "A Language Facility for Designing 
Database-Intensive Applications," in ACM Trans. on Database Systems, vol. 5, issue 2, pp. 
185-207, June 1980. 

[10] Rundensteiner, E. A., and Bic, L., "Set Operations in Object-Based Data Models", in IEEE 
Transaction on Data and Knowledge Engineering, to appear in June 1992. 

[11] Rundensteiner, E. A., Bic, L., Gilbert, J., <ind Yin, M. L. "Set-Restricted Semantic Group­
ings," in IEEE Trans. on Data and Knowledge Engineering, to appear in April 1993. 

[12] Rundensteiner, E. A. and Bic, L., "Automatic View Schema Generation in Object-Oriented 
Databases", Univ. of Cal., Irvine, Technical Report #92-15, Jan. 1992. 

[13] Schmolze, J. G., and Lipkis, T. A., Classification in the KL-ONE Knowledge Representation 
System, The Eigth Int. Joint Conj. on Aftificial Intelligence, -(IJCAI'83), Aug. 1983, vol.1, 
pg. 330 - 332. 

[14] Scholl, M. H., Laasch, C. and Tresch, M., Updatable Views in Object-Oriented Databases, 
Proc. 2nd DOOD Conj., Muenich, Dec. 1991. 

[15] Shilling, J. J ., and Sweeney, P. F ., Three Steps to Views: Extending the Object-Oriented 
Paradigm, in Proc. of the Int. Conj. on Object-Oriented Programming, Systems, Languages, 
and Applications (OOPSLA '89), New Orleans , Sep. 1989, 353 - 361. 

[16] Shipman, D. W., "The Functional Data Model and the Data Language DAPLEX," in ACM 
Trans. on Database Systems, vol. 6, issue 1, pp. 140-173, Mar. 1981. 

[17] Tanaka, K., Yoshikawa, M., and Ishihara, K., Schema Virtualization in Object-Oriented 
Databases, In Proc. IEEE Data Engineering Conj., Feb. 1988, pg. 23 - 30. 



11/ll llllll lllJlll~ll llll llll II llll lllll Ill llllll llll Ill llllll 
3 1 !}70 00882 8052 

A Object Algebra Derivation Operators: Syntax, Semantics and 
Class Relationships 

hide 
syntax <virtual-class> := hide [<prop-functions>) from (<source-class>) 
semantics type( <virtual-class>) := {p E P I p E properties( <source-class>} 

/\. p ¢ <prop-functions>} 
extent( <virtual-class>) := extent( <source-class>) 

class rels <source-class> ::::; <virtual-class> 
<source-class> ~ <virtual-class> 
<source-class> is-a <virtual-class> 

refine 
syntax <virtual-class> := refine [<prop-function-clefs>] for (<source-class>) 
semantics type( <virtual-class>) := TP E P I p E propertiesT <source-class>) 

V p E <prop-function-def>} 
extent( <virtual-class>) := extent( <source-class>) 

class rels <virtual-class> ::::; <source-class> 
<virtual-class> ~ <source-class> 
<virtual-class> is-a <source-class> 

select 
syntax <virtual-class> := select from (<source-class>) where (<predicate>) 
semantics type( <virtual-class>) := type( <source-,class>) 

extent(< virtual-class>) := { o E 0 I o E <source-class> 
/\. <predicate>( o) = true} 

class rels <virtual-class> ::::; <source-class> 
<virtual-class> ~ <source-class> 
<virtual-class> is-a <source-class> 

union 
syntax <virtual-class> := union( <source-classl>,<source-class2>) 
semantics type( <virtual-class>) := type( <sottrce-classl>) n type( <source-class2>) 

extent(<virtual-class>) := {o E 0 Io E <source-classl> 
V o E <source-class2>} 

class rels <source-classl> ::::; <virtual-class> /\. <source-class2> :::S <virtual-class> 
<source-classl> ~ <virtual-class> /\. <source-class2> ~ <virtual-class> 
<source-classl> is-a <virtual-class> /\. <source-class2> is-a <virtual-class> 

intersect 
syntax <virtual-class> := intersect( <source-classl>,<source-class2>) 
semantics type( <virtual-class>) := type( <source-classl>) U type( <source-class2>) 

extent( <virtual-class>) := {o E 0 I o E <source-classl> 
/\ o E <source-class2>} 

class rels <virtual-class> ::::; <source-classl> /\.<virtual-class>::::; <source-class2> 
.<virtual-class> ~ <source-classl> /\. <virtual-class> ~ <source-class2> 
<virtual-class> is-a <source-classl> /\.<virtual-class> is-a <source-class2> 

cliff 
syntax <virtual-class> := cliff( <source-classl>,<source-class2>) 
semantics type( <virtual-class>) := type( <source-classl>) 

extent( <virtual-class>) := { o E 0 I o E <source-classl> 
/\ o ¢ <source-class2>} 

class rels <virtual-class> ::::; <source-classl > 
<virtual-class> ~ <source-classl> 
<virtual-class> is-a <source-classl> 




