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Abstract of the Dissertation

An Explicit Construction for Homotopy Monoidal Structure

By

Adrian Ferenc

Doctor of Philosophy in Mathematics
University of California, Irvine, 2015

Professor Vladimir Baranovsky, Chair

In this paper, we begin with the bar construction of a (noncommutative) dg-

algebra. We go over the concept of a Hirsch associative algebra, turning the bar

construction into a bialgebra. We move on to the bar construction of a module over

that algebra. Using the Hirsch algebra, we introduce a twisted tensor product using

techniques from [15] in order to construct a tensor product for left modules over

our algebra and show that in the case when our algebra is commutative, our tensor

product is quasi-isomorphic to the Tor functor. From [19], we introduce the concepts

of a dg-nerve of a category and monoidal ∞-categories and use these constructions

as guidelines to prove that left modules over a Hirsch associative form a monoidal

∞-category.
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Introduction

Drinfeld’s approach with Quantum groups, given in [2], is to start with a vector

space L that has both a bracket and cobracket. Ignoring the cobracket, we can

construct the universal enveloping algebra U(L), which has noncommutative product

and cocommutative coproduct. Reintroducing the cobracket, our coproduct should

deform to match with this cobracket. However, describing these formulas is messy and

Drinfeld introduced the idea of defining the coproduct through monoidal structure on

modules. If we are not so lucky and L doesn’t have an honest Lie bracket, but only

an L-∞ bracket, it’s difficult to describe the product on U(L). However, since the A-

∞ product on U(L) still agrees with the standard coproduct on U(L), by Drinfeld’s

approach, it may be worthwhile to look at the homotopy monoidal structure on

modules. From this point of view, we aim to construct a homotopy monoidal structure

on modules over an algebra.

If A is a commutative algebra over a field k and M1 and M2 are left A modules, we

can consider, for example, M1 to actually be a right module by defining m · a := am.

In this way we can take the tensor product of these modules over A, getting M1⊗
A
M2.

This object is well-defined and is in fact an A module itself with a · (m1 ⊗ m2) =

m1a ⊗ m2 = m1 ⊗ am2. If A is not commutative, trying to turn a left module M1
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into a right module is not possible. So the best we can do is take our tensor product

over k, M1 ⊗
k
M2. In this case we are left with a left A module, where the action is

given by a · (m1⊗m2) = am1⊗m2. As a module, this only utilizes information from

M1, meaning we only use M2 for its vector space structure.

Our goal is to try to construct a structure that allows us to turn the category

of modules over an algebra into a monoidal category as best we can. We know

we are unable to do this honestly, so we look for a concession. Instead we create

a structure where the tensor product does not obey monoidal properties, such as

having identity or being associative, but these properties hold only up to higher

homotopies. We begin with a dg algebra and consider its bar construction. On

page 7 we introduce the concept of associative Hirsch algebras that turn the bar

construction into a bialgebra. There are several examples of these, the easiest being

when the algebra is commutative. Kadeishvili offers other examples, specifically when

the algebra is cochain complex of a topological space as given in Theorem 1 of [10]

and when the algebra is in fact a bialgebra as given in Remark 1 in [11]. Gerstenhaber

showed in Corollary 1 of [6] that the algebra may be the Hochschild cohomology of

an associative algebra. This fact is often called Deligne’s conjecture.

We use left modules over our algebra to create comodules over the bar construction

and use these to construct a sort of product on these modules. We show in proposition

2.1 on page 15 that if our algebra is commutative, this product agrees with the normal

tensor product using the Tor functor. Also, in proposition 2.2 we show that A acts

as the identity on our product, as desired. We show explicitly in proposition 2.3 that

we get associativity of this product in the derived category.

The structure that facilitates us generalizing these explicit constructions to all

products comes from Lurie in[18], a paper over 1,000 pages that is not explicit. We

use his construction of a monodial ∞-category, defined on page 31. A monoidal ∞-

category is a structure like a monoidal category where the conditions on our tensor

product that should normally hold, such as associativity, hold only up to homotopy.

We accomplish this by constructing a simplicial set, called a monoidal dg-nerve, along

with a nice map to ∆, the simplicial complex, on page 46. This all leads to our main

2



result, theorem 3.1, proving that this monoidal dg-nerve is in fact a monoidal ∞-

category.
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Chapter 1

The Bar Construction as a

Bialgebra

1.1 Notation and Foundations

Fix a field k. Unless otherwise stated, all tensor products are over k. The following

A differential graded algebra, or dg-algebra, over a field k is a vector space A over k

with an associative, though not necessarily commutative, multiplication µ, unit map

ηA : k → A, differential dA, and grading A =
⊕

i≤0Ai such that µ : Ai ⊗ Aj → Ai+j,

dA : Ai → Ai−1, d2
A = 0 and dA respects the graded Leibniz Rule, dA(a · b) =

dA(a) · b+ (−1)|a|a · dA(b), where |a| is the degree of a, i.e. the i such that a ∈ Ai.

Note that Ā denotes
⊕

i 6=0Ai

A differential graded coalgebra, or dg-coalgebra, over a field k is a vector space

C over k with a coassociative comultiplication ∆ : C → C ⊗ C, counit ε : C → k,

differential dC , and grading C =
⊕

iCi such that dC : Ci → Ci−1, d2
C = 0 and dC

satisfies the relation ∆dC = (dC ⊗ id + id⊗ dC)∆.

A differential graded bialgebra, or dg-bialgebra, over a field k is a vector space C

over k that is both a dg-algebra with product µ and dg-coalgebra with coproduct ∆,

sharing differential dC such that µ : C ⊗ C → C is a morphism of dg-coalgebras,
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meaning this diagram commutes:

C ⊗ C µ //

∆⊗∆
��

C
∆ // C ⊗ C

C ⊗ C ⊗ C ⊗ C id⊗T⊗id // C ⊗ C ⊗ C ⊗ C

µ⊗µ

OO

where T is the linear map T (x⊗ y) = (−1)|x|·|y|y ⊗ x.

1.2 The Bar Construction

Let A be a dg-algebra over k. The bar construction of A, denoted B, is the set

T (s−1A) =
⊕

i≥0A
⊗i

, where A = kerεA, where εA is the projection εA : A → k. By

s−1Ā we mean the desuspension of A, i.e. (s−1A)n = An+1. An element of the form

s−1a1 ⊗ s−1a2 ⊗ · · · ⊗ s−1ak will be denoted [a1, a2, · · · , ak]. On this set we define a

standard comultiplication ∆ : B → B ⊗B,

∆([a1, · · · , ak]) = 1⊗ [a1, · · · , ak] +
k∑
i=1

[a1, · · · , ai]⊗ [ai+1, · · · , ak] + [a1, · · · , ak]⊗ 1.

We can define a counit ε : B → k defined as projection onto k. If we define d : B → B,

d([a1, · · · , ak]) =
k∑
i=2

(−1)i[a1, · · · , ai−1ai, · · · , ak] +
k∑
i=1

[a1, · · · , dA(ai), · · · , ak],

then B becomes a dg-coalgebra where the degree of [a1, · · · , ak] is −k +
∑k

i=1 |ai|.

We would like to endow B with a multiplication so that it becomes a dg-bialgebra.

The naive hope that the simple product of µ([a1, · · · , am]⊗[b1, · · · , bn]) = [a1, · · · , am, b1, . . . , bn]

unfortunately does not work. To see this, ignoring sign, consider [a1, a2]⊗ [b1, b2]. If

we apply the above µ to this, we are left with [a1, a2, b1, b2]. Using the coproduct on

this yields

(1)

1⊗[a1, a2, b1, b2]+[a1]⊗[a2, b1, b2]+[a1, a2]⊗[b1, b2]+[a1, a2, b1]⊗[b2]+[a1, a2, b1, b2]⊗1.

If instead we first apply ∆⊗∆, we get

(
1⊗ [a1, a2] + [a1]⊗ [a2] + [a1, a2]⊗ 1

)
⊗
(
1⊗ [b1, b2] + [b1]⊗ [b2] + [b1, b2]⊗ 1

)
.
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Then applying (µ⊗ µ)(id⊗ T ⊗ id) to this gives us

1⊗ [a1, a2, b1, b2] + b1⊗ [a1, a2, b2] + [b1, b2]⊗ [a1, a2] + a1⊗ [a2, b1, b2] + [a1, b1]⊗ [a2, b2]

(2) +[a1, b1, b2]⊗ a2 + [a1, a2]⊗ [b1, b2] + [a1, a2, b1]⊗ b2 + [a1, a2, b1, b2]⊗ 1.

Equations (1) and (2) are not equal. To make B into a bialgebra, we need to find a

product that agrees with the standard coproduct.

1.3 Bialgebra Structure on the Bar Construction

1.3.1 Shuffle Product

In the case when A is commutative, we can construct such a product without too

much difficulty. The shuffle product, an associative product µ0 : B ⊗ B → B, is

defined as

µ0([a1, a2, · · · , ak], [ak+1, · · · , ak+l]) =
∑
σ∈Sk,l

sgn(σ)[aσ−1(1), aσ−1(2), · · · , aσ−1(k+l)],

where Sk,l is the subset of the symmetric group Sk+l such that

σ(1) < σ(2) < · · · < σ(k), σ(k + 1) < · · · < σ(k + l).

If we endow B with this multiplication, then we do have that (B, µ0,∆) is a dg-

bialgebra. When A is commutative, µ0 respects Leibniz’s rule with respect to d, so

(B, µ0,∆, d) is in fact a dg-bialgebra. Note that if A is not commutative, µ0 does not

respect Leibniz’s rule. For instance, (ignoring the differential from A which indeed

does cancel out)

d(µ0([a1, a2], a3)) = d([a1, a2, a3]− [a1, a3, a2] + [a3, a1, a2]) =

[a1a2, a3]− [a1, a2a3]− [a1a3, a2] + [a1, a3a2] + [a3a1, a2]− [a3, a1a2]

µ0(d([a1, a2]), a3)+µ0([a1, a2], d(a3)) = µ0(a1a2, a3)+µ0([a1, a2], 0) = [a1a2, a3]−[a3, a1a2].
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1.3.2 Associative Hirsch Algebras

From this point on, we will assume A is over Z/2Z to avoid signs.

Let (C,∆, dC) be a dg-coalgebra and (A, µ, dA) be a dg-algebra. A twisting cochain

is a degree 1 morphism τ : C → A such that the Maurer-Cartan equation is satisfied.

That is, that dA ◦ τ + τ ◦ dC + µ ◦ (τ ⊗ τ) ◦∆ = 0.

If C is a dg-coalgebra, then so is C⊗n with comultiplication ∆⊗n = Tn◦(∆C⊗· · ·⊗

∆C). If V1, . . . , V2n are k-vector spaces, the map Tn : V1⊗· · ·V2n → Vσ(1)⊗· · ·⊗Vσ(2n),

given by Tn(v1⊗· · ·⊗v2n) = vσ(1)⊗· · ·⊗vσ(2n), is defined by the permutation σ ∈ S2n,

σ(i) =

 i+1
2

if i is odd,

i
2

+ n if i is even.

The differential on C⊗n is
∑n

i=1 id⊗i ⊗ dC ⊗ id⊗n−i−1. In particular, this makes

B ⊗B a coalgebra.

In [11], Kadeishvili shows that to endow B with a multiplication µ that turns B

into a dg-bialgebra, it is equivalent to defining a twisting cochain E : B ⊗ B → A,

which can be defined component-wise as Ep,q : A⊗p ⊗ A⊗q → A for p, q = 0, 1, 2, . . . ,

where Ep,q acting on [a1, · · · , ap] ⊗ [b1, · · · , bq] is denoted Ep,q(a1, . . . , ap; b1, . . . , bq).

These maps must satisfy the following conditions:

1. To guarantee that B has a unit element, we require that

(1.1) E0,1 = E1,0 = id;E0,k = Ek,0 = 0 for k > 1.

2. To guarantee that our multiplication is a dg-coalgebra map, we require that on

7



A⊗m ⊗ A⊗n

dEm,n(a1, . . . , am; b1, . . . , bn) +
m∑
i=1

Em,n(a1, . . . , d(ai), . . . , am; b1, . . . , bn)

+
n∑
i=1

Em,n(a1, . . . , am; b1, . . . , d(bi), . . . , bn) =

a1 · Em−1,n(a2, . . . , am; b1, . . . , bn) + Em−1,n(a1, . . . , am−1; b1, . . . , bn) · am

+b1 · Em,n−1(a1, . . . , am; b2, . . . , bn) + Em,n−1(a1, . . . , am; b1, . . . , bn−1) · bn

+
m−1∑
i=1

Em−1,n(a1, . . . , aiai−1, . . . , am; b1, . . . , bn)

+
n−1∑
i=1

Em,n−1(a1, . . . , am; b1, . . . , bibi+1, . . . , bn)

+
m−1∑
p=1

n−1∑
q=1

Ep,q(a1, . . . , ap; b1, . . . , bq) · Em−p,n−q(ap+1, . . . , am; b1+q, . . . , bn).

(1.2)

3. To guarantee that our multiplication is associative, we require that on A⊗k ⊗

A⊗l ⊗ A⊗m

l+m∑
r=1

∑
l1+···+lr=l

m1+···+mr=m

Ek,r

(
a1, . . . , ak;El1,m1(b1, . . . , bl1 ; c1, . . . , cm1), . . . ,

Elr,mr(bl1+···+lr−1+1, . . . , blr ; cm1+···+mr−1+1, . . . , cmr)
)

=
k+l∑
s+l

∑
k1+···+ks=k,
l1+···+ls=l

Es,m

(
Ek1,l1(a1, . . . , ak1 ; b1, . . . , bl1), . . . ,

Eks,ls(ak1+···+ks−1+1, . . . , aks ; bl1+···+ls−1+1, . . . , bls); c1, . . . , cm

)
.

(1.3)

If A is an algebra endowed with multioperations E satisfying the above criteria, A is

called an associative Hirsch algebra.
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Kadeishvili further shows that if A is an associative Hirsch algebra, B becomes a

dg-bialgebra via the multiplication µE : B ⊗B → B defined by

µE =
∑
i

(E ⊗ · · · ⊗ E)∆i
B⊗B,

where ∆i
B⊗B : B ⊗B → (B ⊗B)⊗i is the i-fold iteration of

∆B⊗B = (id⊗ T ⊗ id)(∆⊗∆) : B ⊗B → (B ⊗B)⊗2.

If we reduce to the case that all Ep,q = 0 except E0,1 and E1,0, equation (1.2) on

A⊗ A shows that

0 = dE1,1(a; b) + E1,1(d(a); b) + E1,1(a; d(b)) = ab+ ba,

i.e. that A is commutative. In this case, our multiplication µE becomes exactly the

shuffle product µ0 described above.

With this in mind, we can see that any product on the bar construction must

come from deforming the shuffle product, i.e. adding nontrivial maps of Ep,q not all

zero for p, q ≥ 1, so that the product still obeys equations 1.1, 1.2, and 1.3.

9



Chapter 2

Comodules over the Bar

Construction

2.1 Comodule Construction

A left differential graded comodule, or left dg-comodule, over a dg-coalgebra C is a vec-

tor space N over k along with a coaction ∆N : N → C⊗N satisfying coassociativity,

i.e. that the following diagram commutes:

N

∆N

��

∆N // C ⊗N
id⊗∆N

��
C ⊗N ∆⊗id // C ⊗ C ⊗N

Also equipped is a differential dN satisfying the condition ∆Nd = (dC⊗id+(−1)degid⊗

dN)∆N . A right comodule is defined similarly.

Similar to how starting with an algebra A we constructed a bialgebra B, given

a left dg-module M over a dg-algebra A, we can construct the bar construction of

a left module over B, denoted B(M), as follows. B(M) as a set is B ⊗M , where

the element [a1, . . . , ak] ⊗ m will be denoted [a1, . . . , ak,m]. The coaction ∆B(M) :

B(M)→ B ⊗B(M) is defined by

∆B(M)([a1, . . . , ak,m]) = 1⊗ [a1, . . . , ak,m]

10



+
k−1∑
i=1

[a1, . . . , ai]⊗ [ai+1, . . . , ak,m] + [a1, . . . , ak]⊗m.

Lastly, the differential dB(M) is defined as

dB(M)([a1, · · · , ak,m]) =
k∑
i=2

[a1, · · · , ai−1ai, · · · , ak,m] + [a1, · · · , ak ·m]

+
k∑
i=1

[a1, · · · , dA(ai), · · · , ak,m] + [a1, · · · , ak, dM(m)].

In the future, all mention of modules over A will imply left dg-modules over A,

unless otherwise stated.

2.1.1 Product of Comodules

Given left dg-comodules L1 and L2 over B, L1 ⊗ L2 is a comodule over B ⊗ B via

the action (id ⊗ T ⊗ id) ◦ (∆L1 ⊗ ∆L2) and the differential is given by dL1⊗L2 =

dL1 ⊗ id + id⊗ dL2 . Thus, given left A dg-modules M and N , we can construct a left

dg-comodule B(M)⊗B(N) over the coalgebra B ⊗B.

Let L be a left C dg-comodule with comodule coaction ∆L and let M be a right A

module with right module action mM . If τ is a twisting cochain τ : C → A, a twisted

tensor product M ⊗
τ
L, is the chain complex M ⊗ L with new differential dτ defined

as

dτ = dM ⊗ id + id⊗ dL + (mM ⊗ id) ◦ (id⊗ τ ⊗ id)⊗ (id⊗∆L).

This last operation (mM ⊗ id) ◦ (id⊗ τ ⊗ id) ◦ (id⊗∆L) is the map

M ⊗ L id⊗∆L //M ⊗ C ⊗ L id⊗τ⊗id //M ⊗ A⊗ L mM⊗id //M ⊗ L.

We can equally construct L ⊗
τ
M where L is a right C comodule and M is a left

A module, switching from left and right as necessary in the above operations.

Given a twisting cochain τ : C → A, in Lemma 2.2.2.6 in [15] Lefèvre-Hasegawa

showed that, by considering A and C as (co)modules over themselves, respectively,

the functors A ⊗
τ

and C ⊗
τ

are adjoint. Specifically, given an A module map f ∈

HomA(A⊗
τ
N,M), we have a C comodule map f̃ ∈ HomC(N,C ⊗

τ
M), where

f̃ = (id⊗ f) ◦ (id⊗ (ηA ⊗ id)) ◦∆,

11



where ηA : k → A is the unit map. The map ηA ⊗ id maps N(∼= k ⊗N)→ A⊗N .

Alternately, given a C comodule map g̃ ∈ HomC(N,C⊗
τ
M), we have an A module

map g ∈ HomA(A⊗
τ
N,M), where

g = mM ◦ (id⊗ εC ⊗ id) ◦ (id⊗ g̃),

where mM is module multiplication and εC : C → k is the counit map. The map

id⊗ εC ⊗ id maps A⊗C ⊗M → (A⊗ k⊗M ∼=)A⊗M . Moreover, in the case where

C = B ⊗ · · · ⊗ B and we have a C comodule N there is a quasi-isomorphism of C

comodules

(2.1) i : N → C ⊗
τ
A⊗

τ
N,

where i = (id⊗ ηA ⊗ id) ◦∆. Similarly in this case, if M is a left A module, there is

a quasi-isomorphism of A modules

(2.2) p : A⊗
τ
C ⊗

τ
M →M,

where p = mM ◦ (id⊗ ε⊗ id).

We define the map τ1 : B → A as projection. This map is a twisting cochain.

With this notation, we can now write B(M) as B ⊗
τ1
M .

The map E : B ⊗ B → A is also a twisting cochain. Therefore, considering

A as a right dg-A module and given left dg-modules M and N over A, we can, as

above, think of B(M) ⊗ B(N) as a comodule over B ⊗ B. Using τ1, we have a

twisting cochain τ1 ⊗ ε + ε ⊗ τ1 : B ⊗ B → A ⊗ A, which we will denote abusing

some notation as τ1 ⊗ τ1. We can then write B(M)⊗B(N) as (B ⊗B) ⊗
τ1⊗τ1

M ⊗N ,

understanding which coalgebra matches with which module. Then, using our twisting

cochain E : B ⊗B → A, we can create a left A dg-module A⊗
E

(B(M)⊗B(N)). We

will denote this as [M,N ] and, to avoid confusing shuffling of terms for our twisting

cochains, we will write [M,N ] as

A
⊗
E

B M

⊗
k

⊗
τ1⊗τ1

⊗
k

B N

.
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The differential works as:

d

a⊗
[b1, . . . , bj] m

⊗ ⊗ ⊗

[c1, . . . , ck] n

 = d(a)⊗
[b1, . . . , bj] m

⊗ ⊗ ⊗

[c1, . . . , ck] n

+a⊗
d([b1, . . . , bj]) m

⊗ ⊗ ⊗

[c1, . . . , ck] n

+a⊗
[b1, . . . , bj] m

⊗ ⊗ ⊗

d([c1, . . . , ck]) n

+a⊗
[b1, . . . , bj] d(m)

⊗ ⊗ ⊗

[c1, . . . , ck] n

+a⊗
[b1, . . . , bj] m

⊗ ⊗ ⊗

[c1, . . . , ck] d(n)

+ab1 ⊗
[b2, . . . , bj] m

⊗ ⊗ ⊗

[c1, . . . , ck] n

+ ac1 ⊗
[b1, . . . , bj] m

⊗ ⊗ ⊗

[c2, . . . , ck] n

+a⊗
[b1, . . . , bj−1] bjm

⊗ ⊗ ⊗

[c1, . . . , ck] n

+ a⊗
[b1, . . . , bj] m

⊗ ⊗ ⊗

[c1, . . . , ck−1] ckn

.

In addition to [M,N ] acting as an A module, if A is commutative, it is also a

B̂(A) module, where B̂(A) is the double-sided bar construction, B̂(A) := A⊗
τ1
B⊗

τ1
A.

The action is given by

(a1 ⊗ [b1, . . . , bi]⊗ a2) ·

a⊗
[c1, . . . , cj] m

⊗ ⊗ ⊗

[c′1, . . . , c
′
k] n



=
i∑

p=0

a⊗
µ0([bp, . . . , b1], [c1, . . . , cj]) a1m

⊗ ⊗ ⊗

µ0([bp+1, . . . , bi], [c
′
1, . . . , c

′
k]) a2n

,

where µ0 is the shuffle product.

2.1.2 The Tor Complex

If A is commutative and M is a left A module, we may equally consider it as a right

A module via the action a ·m = ma. Let M and N be left dg-modules over A, where

13



we consider M as a right A module. The Tor complex of M and N is the vector

space Tor(M,N) = M ⊗
τ1
B ⊗

τ1
N . To comply with our layout of [M,N ], we will write

this as:

Tor(M,N) = B̂(A)
⊗
A⊗A

M

⊗
k

N

,

where the tensor product
⊗
A⊗A

applies to the outer A’s.

As we have the tensor product over A⊗ A, we can consider

a⊗ [b1, . . . , bk]⊗ c⊗
a1

⊗

a2

= 1⊗ [b1, . . . , bk]⊗ 1⊗
aa1

⊗

ca2

and we may define all terms using 1’s in these places. Notice in particular that the

differential works as:

d

1⊗ [b1, . . . , bk]⊗ 1⊗
m

⊗

n

 = 1⊗ d([b1, . . . , bk])⊗ 1⊗
m

⊗

n

+1⊗ [b1, . . . , bk]⊗ 1⊗
d(m)

⊗

n

+ 1⊗ [b1, . . . , bk]⊗ 1⊗
m

⊗

d(n)

+1⊗ [b2, . . . , bk]⊗ 1⊗
b1m

⊗

n

+ 1⊗ [b1, . . . , bk−1]⊗ 1⊗
m

⊗

bkn

.

A being commutative is necessary for d to act as a differential.

We can consider Tor(M,N) as a B̂(A) module, where the module action is given

by

(a1 ⊗ [b1, . . . , bi]⊗ a2) ·

1⊗ [b′1, . . . , b
′
j]⊗ 1⊗

m

⊗

n



14



= 1⊗ µ0

(
[b1, . . . , bi], [b

′
1, . . . , b

′
j]
)
⊗ 1⊗

a1m

⊗

a2n

.

Consider the map ψ : Tor(M,N)→ [M,N ], where

ψ

1⊗ [a1, . . . , ak]⊗ 1
⊗
A⊗A

m

⊗
k

n



=
k∑
i=0

1
⊗
E

[ai, . . . , a1] m

⊗
k

⊗
τ1⊗τ1

⊗
k

[ai+1, . . . , ak] n

.

Effectively, this map ψ just applies the coproduct to the B term and reverses the

order of the first of the B ⊗ B terms. As we are supposing A is commutative, this

reversing causes no issues with the differential. Also, as A is commutative in this

case, the E map is 0 except for E0,1 and E1,0.

2.1.3 Proposition 2.1

Proposition 2.1. The map ψ is an isomorphism of B̂(A) modules in the derived

category.

Proof of Proposition 2.1. We must show that (1) ψ is a chain map and (2) that ψ is

a quasi-isomorphism.

(1) We first show that ψ is a chain map, meaning dψ = ψd.

Consider first dψ

1⊗ [a1, . . . , ak]⊗ 1
⊗
A⊗A

m

⊗
k

n



= d


k∑
i=0

1
⊗
E

[ai, . . . , a1] m

⊗
k

⊗
τ1⊗τ1

⊗
k

[ai+1, . . . , ak] n


15



=
k∑
i=0

1
⊗
E

d([ai, . . . , a1]) m

⊗
k

⊗
τ1⊗τ1

⊗
k

[ai+1, . . . , ak] n

+
k∑
i=0

1
⊗
E

[ai, . . . , a1] m

⊗
k

⊗
τ1⊗τ1

⊗
k

d([ai+1, . . . , ak]) n

+
k∑
i=0

1
⊗
E

[ai, . . . , a1] d(m)

⊗
k

⊗
τ1⊗τ1

⊗
k

[ai+1, . . . , ak] n

+
k∑
i=0

1
⊗
E

[ai, . . . , a1] m

⊗
k

⊗
τ1⊗τ1

⊗
k

[ai+1, . . . , ak] d(n)

+
k∑
i=0

1
⊗
E

[ai, . . . , a2] a1m

⊗
k

⊗
τ1⊗τ1

⊗
k

[ai+1, . . . , ak] n

+
k∑
i=0

1
⊗
E

[ai, . . . , a1] m

⊗
k

⊗
τ1⊗τ1

⊗
k

[ai+1, . . . , ak−1] akn

+
k∑
i=1

E1,0(ai, 1)
⊗
E

[ai−1, . . . , a1] m

⊗
k

⊗
τ1⊗τ1

⊗
k

[ai+1, . . . , ak] n

+
k−1∑
i=0

E0,1(1, ai+1)
⊗
E

[ai, . . . , a1] m

⊗
k

⊗
τ1⊗τ1

⊗
k

[ai+2, . . . , ak] n

Notice first that the last two rows of the above sum cancels out. When i = j+1,

we have ai = E1,0(ai, 1) = E0,1(1, aj+1) = aj+1.

Now consider ψd

1⊗ [a1, . . . , ak]⊗ 1
⊗
A⊗A

m

⊗
k

n



= ψ

(
1⊗ d([a1, . . . , ak])⊗ 1⊗

m

⊗

n

+ 1⊗ [a1, . . . , ak]⊗ 1⊗
d(m)

⊗

n

+1⊗ [a1, . . . , ak]⊗ 1⊗
m

⊗

d(n)

+ 1⊗ [a2, . . . , ak]⊗ 1⊗
a1m

⊗

n
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+1⊗ [a1, . . . , ak−1]⊗ 1⊗
m

⊗

akn

)
.

That this is equal to dψ follows since the coproduct and d obey the Leibniz

Rule. All remaining terms are identical.

(2) To see that ψ is a quasi-isomorphism, we first show that Tor(A,A) and [A,A]

are quasi-isomorphic.

Consider the map q1 : Tor(A,A)→ A defined by

q1 : 1⊗ [b1, . . . , bi]⊗ 1⊗
a1

⊗

a2

7→ a1a2ε([b1, . . . , bk]).

The map q1 is a chain map as q1 = 0 if i ≥ 1 and just multiplication otherwise.

Consider the map q2 : [A,A]→ A defined by

q2 : a⊗
[b1, . . . , bi] a1

⊗ ⊗ ⊗

[c1, . . . , cj] a2

7→ aa1a2ε([b1, . . . , bi])ε([c1, . . . , cj]).

The map q2 is also a chain map as q2 = 0 if i + j ≥ 1 and just multiplication

otherwise.

As the coproduct mapsA⊗i to
∑

p+q=iA
⊗p⊗A⊗q, we then have that the following

diagram commutes

A

��

Tor(A,A)
q1oo

ψ

��
A [A,A]

q2oo

Both q1 and q2 are quasi-isomorphisms due to [15], therefore q2 can be reversed

in the derived category.

That ψ is a quasi-isomorphism of B̂(A) modules follows since ψ is effectively the

coaction map ∆ on B and (B,∆, µ0) is a bialgebra, meaning ∆ is a B algebra

morphism.
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Both [A,A] and Tor(A,A) are A-A bimodules, where [M,N ] = M ⊗
A

[A,A]⊗
A
N

and Tor(M,N) = M⊗
A

Tor(A,A)⊗
A
N . This makes ψ a bimodule morphism. As

[A,A] and Tor(A,A) are flat as they are just tensor products of A, we have that

the quasi-isomorphism of ψ extends as a quasi-isomorphism from Tor(M,N) to

[M,N ].

2.2 Left Modules Begin to Form a Monoidal Cat-

egory

If A is commutative, the category of modules over A is monoidal with tensor product

⊗
A

. We go back to the case where we are not assuming commutativity and obtain

some weaker though similar results in our case.

2.2.1 Proposition 2.2

Proposition 2.2. A acts quasi-isomorphically as the identity object on [, ], i.e. in

the derived category M is isomorphic to both [A,M ] and [M,A].

Proof. We will show thatM is quasi-isomorphic to [M,A]. ThatM is quasi-isomorphic

to [A,M ] is virtually identical. In the commutative case the statement becomes

Tor(M,A) is quasi-isomorphic to M . As A is free over itself, we obtain the well-

known result that Tor(M,A) is quasi-isomorphic to M ⊗
A
A ∼= M .

When A is not necessarily commutative, we start by considering k as a comodule

over B, where the coaction is c 7→ 1 ⊗ c = c ⊗ 1. By the quasi-isomorphism i, we

have a quasi-isomorphism, i : k → B ⊗
τ1
A ⊗

τ1
k. As τ1 is 0 on k, this is the same as

k → B ⊗
τ1
A⊗ k ∼= B ⊗

τ1
A.

As all of these objects (and therefore their tensor products) are vector spaces over
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k, they are flat over k, so this extends to a quasi-isomorphism

f : A
⊗

(B ⊗
τ1
M)⊗ k → A

⊗ B M

⊗
k

⊗
τ1⊗τ1

⊗
k

B A

using the usual tensor product differential dA⊗ id + id⊗ d. It remains to show we

still have a quasi-isomorphism when we throw in the twisted tensor product
⊗
E

. As the

above map is a quasi-isomorphism, the mapping cone C(f) = (A⊗B(M))[1]
⊕

(A⊗

B(M) ⊗ (B ⊗ A)) is acyclic. C(f) and its homology are trivially quasi-isomorphic,

so we may employ the perturbation lemma between C(f) and its homology using the

perturbation made up of the twisting cochain E on both chain complexes, i.e. by the

perturbation(
(µA ⊗ id⊗ id) ◦ (id⊗ E ⊗ id⊗ id) ◦ (id⊗∆B(M)⊗k)

)⊕
id

+id
⊕(

(µA ⊗ id⊗ id) ◦ (id⊗ E ⊗ id⊗ id) ◦ (id⊗∆B(M)⊗(B⊗A))

)
.

As H(C(f)) is 0, so too is its perturbation, meaning the perturbed mapping cone

is quasi-isomorphic to 0, meaning it’s acyclic. Therefore there is a quasi-isomorphism

A
⊗
E

(B ⊗
τ1
M)⊗ k → A

⊗
E

B M

⊗
k

⊗
τ1⊗τ1

⊗
k

B A

.

As A⊗
E

(B ⊗
τ1
M)⊗ k ∼= A⊗

τ1
(B ⊗

τ1
M), we have the quasi-isomorphism

A⊗
τ1

(B ⊗
τ1
M)→ A

⊗
E

B M

⊗
k

⊗
τ1⊗τ1

⊗
k

B A

= [M,A].

Using the map p from diagram 2.2, we have a quasi-isomorphism p : A⊗
τ1

(B⊗
τ1
M)→

M . This leaves us with maps of quasi-isomorphisms

M ← A⊗
τ1
B ⊗

τ1
M → [M,A].

In the derived category the first map is invertible, which gives the desired isomor-

phism.
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2.2.2 Proposition 2.3

Proposition 2.3. For left dg-modules L,M , and N over A, [L, [M,N ]] and [[L,M ], N ]

are isomorphic A-modules in the derived category.

To prove this proposition, we require a lemma:

Lemma 2.1. If M and N are left dg-modules over A, then B(M) ⊗ B(N) is a dg-

comodule over B via the action ∆B(M)⊗B(N) = (µE⊗ id⊗ id)◦ (id⊗T ⊗ id)◦ (∆B(M)⊗

∆B(N)), where the map is

B(M)⊗B(N)

∆B(M)⊗∆B(N)

��

∆B(M)⊗B(N) // B ⊗B(M)⊗B(N)

(BM ⊗B(M))⊗ (BN ⊗B(N))
id⊗T⊗id // BM ⊗BN ⊗B(M)⊗B(N)

µE⊗id⊗id

OO

where BM and BN are just B and the subscripts are only for bookkeeping.

Proof of Lemma 2.1. We will show 1. ∆B(M)⊗B(N) is actually a coaction and 2. that

dB(M)⊗B(N) is a comodule differential.

1. For ∆B(M)⊗B(N) to be a coaction, it must satisfy the equation

(
∆⊗ id

)
∆B(M)⊗B(N) =

(
id⊗∆B(M)⊗B(N)

)
∆B(M)⊗B(N).

We will apply each of these maps to [a1, . . . , ak,m] ⊗ [b1,⊗, bl, n] and see we

get the same result. We will compare the terms ending in [ai+1, . . . , ak,m] ⊗

[bj+1, . . . , bl, n]. Applying (∆⊗ id)∆B(M)⊗B(N) and looking at the terms in ques-

tion, we get

∆(µE([a1, . . . , ai], [b1, . . . , bj]))⊗ [ai+1, . . . , ak,m]⊗ [bj+1, . . . , bl, n]

Since (B, µE,∆) is a bialgebra, we have that ∆µE = (µE ⊗ µE) ⊗ (id ⊗ T ⊗

id)(∆⊗∆). Therefore, our left hand side becomes

i∑
p=1

j∑
q=1

µE([a1, . . . , ap], [b1, . . . , bq])⊗ µE([ap+1, . . . , ai], [bq+1, . . . , bj])

⊗[ai+1, . . . , ak,m]⊗ [bj+1, . . . , bl, n].

20



We apply (id⊗∆B(M)⊗B(N))∆B(M)⊗B(N) to [a1, . . . , ak,m]⊗[b1,⊗, bl, n]. We first

just apply ∆B(M)⊗B(N) and since our aim is the terms ending in [ai+1, . . . , ak,m]⊗

[bj+1, . . . , bl, n], we first look at terms

i∑
p=1

j∑
q=1

µE([a1, . . . , ap], [b1, . . . , bq])⊗ [ap+1, . . . , ak,m]⊗ [bq+1, . . . , bl, n]

Now applying id ⊗ ∆B(M)⊗B(N) to this and looking only at our desired terms,

we see they are

i∑
p=1

j∑
q=1

µE([a1, . . . , ap], [b1, . . . , bq])⊗ µE([ap+1, . . . , ai], [bq+1, . . . , bj])

⊗[ai+1, . . . , ak,m]⊗ [bj+1, . . . , bl, n],

as desired.

2. That d2
B(M)⊗B(N) = 0 follows since both dB(M), dB(N) are differentials and

(dB(M)⊗ id) ◦ (id⊗dB(N)) = (id⊗dB(N)) ◦ (dB(M)⊗ id). It remains to show that

∆B(M)⊗B(N)dB(M)⊗B(N) = (d⊗ id + id⊗ dB(M)⊗B(N))∆B(M)⊗B(N).

Let us consider the left hand side.

∆B(M)⊗B(N)dB(M)⊗B(N) = (µE ⊗ (id⊗ id)) ◦ (id⊗ T ⊗ id)

◦(∆B(M) ⊗∆B(N)) ◦ (dB(M) ⊗ id + id⊗ dB(N))

As dB(M) is a differential on the coalgebra (B(M),∆B(M)) we have ∆B(M)dB(M) =

(d⊗ id+ id⊗dB(M))∆B(M) and the same goes for the same operations on B(N).

Therefore we can reorder the last two maps to give us

= (µE ⊗ (id⊗ id)) ◦ (id⊗ T ⊗ id)◦

(d⊗id⊗id⊗id+id⊗dB(M)⊗id⊗id+id⊗id⊗d⊗id+id⊗id⊗id⊗dB(N))◦(∆B(M)⊗∆B(N))

Now the middle two maps can be reordered simply by applying the involution

(id⊗ T ⊗ id)

= (µE⊗(id⊗id))◦(d⊗id⊗id⊗id+id⊗id⊗dB(M)⊗id+id⊗d⊗id⊗id+id⊗id⊗id⊗dB(N))
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◦(id⊗ T ⊗ id) ◦ (∆B(M) ⊗∆B(N))

Since d is a differential on the algebra (B, µE), µE obeys Leibniz’s rule, i.e.

µE ◦ (d ⊗ id + id ⊗ d) = d ◦ µE. Therefore we can reorder the first two maps

above to give us

= (d⊗ id⊗ id + id⊗ dB(M) ⊗ id + id⊗ id⊗ dB(N)) ◦ (µE ⊗ (id⊗ id))

◦(id⊗ T ⊗ id) ◦ (∆B(M) ⊗∆B(N)).

This is exactly (d⊗ id + id⊗ dB(M)⊗B(N))∆B(M)⊗B(N), as desired.

Proof of Proposition 2.3. We construct a quasi-isomorphism

q : A⊗
E

((B(L)⊗B(M))⊗B(N))→ [[L,M ], N ],

where we consider B(L)⊗B(M) as a B module via the coaction given in Lemma 2.1.

Similarly, we construct a quasi-isomorphism

q′ : A⊗
E

(B(L)⊗ (B(M)⊗B(N)))→ [L, [M,N ]],

where we consider B(M)⊗B(N) as a B module.

That A⊗
E

((B(L)⊗B(M))⊗B(N)) = A⊗
E

(B(L)⊗ (B(M)⊗B(N))) follows from

the coassociativity in B and the associativity of E, as in equation 1.3.

In the derived category, our quasi-isomorphism of associativity follows from q−1◦q′.

By symmetry it suffices to show that q is a quasi-isomorphism.

Denote by K

K =

B L

⊗
k

⊗
τ1⊗τ1

⊗
k

B M

.

By construction K is a B ⊗ B comodule. By lemma 2.1, K can be thought of as

a B comodule by using the coaction ∆′ = (µE ◦ id) ◦ ∆. As the following diagram
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commutes, we have that A ⊗
τ1
K is equal to A ⊗

E
K using the appropriate comodule

action:

B ⊗B ⊗K

µE⊗id

��

E⊗id // A⊗K

=

��

K
∆

99

∆′

%%
B ⊗K τ1⊗id // A⊗K

Therefore, by prepending B onto our tensor product using the twisting cochain

τ1, we have that

B ⊗
τ1
A⊗

τ1
K = B ⊗

τ1
A⊗

E
K.

Diagram 2.1 gives a quasi-isomorphism i : K → B ⊗
τ1
A ⊗

τ1
K. By what we’ve just

shown, i′ : K → B ⊗
τ1
A⊗

E
K is then also a quasi-isomorphism.

By an argument identical to that in the proof of Proposition 2.2, the above quasi-

isomorphism extends to a quasi-isomorphism

A⊗
E

(
B(L)⊗B(M)

)
⊗B(N) = A⊗

E
K⊗B(N)→ A⊗

E

(
B⊗
τ1
A⊗
E
K
)
⊗B(N) = [[L,M ], N ].

This is our quasi-isomorphism q.
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Chapter 3

∞-Categories

As the isomorphisms that usually hold for a monoidal category only hold up to

quasi-isomorphism in the previous section, it is much easier to deal instead with

∞-categories.

An ∞-category is like a category, except composition is not uniquely defined.

Instead of only containing objects, which we call 0-morphisms, and morphisms, which

we call 1-morphsims, there are also n-morphsims between (n−1)-morphisms for n ≥ 1.

These higher morphisms are all somewhat invertible, in the sense that the maps are

invertible up to homotopy.

Formally, let S = {Sn}n≥0 be a simplicial set, where we think of each Sn as

the set of all continuous maps from the n-simplex ∆n into a topological space X.

The specifics of X are unimportant. For i = 0, 1, 2, . . . , n, define the i-horn of ∆n,

denoted Λn
i (S), to be the maps of Sn whose domain is the faces of ∆n containing

the ith vertex. There is a restriction map Sn → Λn
i (S), given by the formula σ 7→

(d0σ, d1σ, . . . , di−1σ, di+1σ, . . . , dnσ), where dj is the jth face map.

A simplicial set S = {Sn} is a Kan complex if the restriction map Sn → Λn
i (S) is

surjective for all 0 ≤ i ≤ n. That is, every map containing the ith vertex must come

from an n-simplex of S.

A simplicial set S is called a weak Kan complex, or an ∞-category if, for each

0 < i < n, the map Sn → Λn
i (S) is surjective.

To see why we are interested only in this weaker condition, consider a map f :
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x→ y. We can construct the Λ2
2(S) horn:

x
f

  
y

idy // y.

If we were able to complete this horn to a 2-simplex, i.e. there was a 2-simplex that

mapped onto this horn, we would be giving f a right inverse, which is too strong an

assumption in most cases.

For an∞-category, in the 2-dimensional case, given maps f : x→ y and g : y → z,

we can complete the horn below with h : x→ z to construct a 2-simplex

y
g

  
x

f
??

h // z.

As the definition of ∞-category makes no mention of uniqueness, there’s no assump-

tion on h being the only way of completing this horn, so there may be another map

h′ which defines a 2-simplex

y
g

  
x

f
??

h′ // z.

To see how h and h′ are related, notice we also naturally have the 2-simplex

x
f

��
x

idx

??

f // y

Using these 2-simplices, we can construct the horn Λ3
2(S):

x

f

��
h′

��

y

g
��

x

idx

II

f

??

h
// z
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which can be filled in to give us the 2-simplex of the x, x, z side, which is a homotopy

between h and h′. Now this homotopy is not necessarily unique, which starts to give

you an idea of why this is called an ∞-category.

3.1 The C⊗ Category

To show all the monoidal coherence conditions by dealing explicitly with maps is

extremely cumbersome as shown in the proofs of Propositions 2.2 and 2.3. Even in

the much simpler case of showing associativity of tensor product of vector spaces for

example, to give an explicit isomorphism (U ⊗ V ) ⊗ W → U ⊗ (V ⊗ W ) requires

making choices of bases. It is easier and more straightforward instead to show the

existence of a canonical isomorphism. We proceed then using this reasoning. This

requires a certain construction.

The following construction comes from Lurie in [16] as an alternate to operads.

If C is a monoidal category, such as complexes of k-vector spaces with usual tensor

product over k, we construct a new category C⊗ as follows:

1. An object of C⊗ is a finite, possibly empty, sequence of objects of C, denoted

[C1, . . . , Cn].

2. A morphism from [C1, . . . , Cn] to [C ′1, . . . , C
′
m] is given by a nonstrictly order-

preserving map f : [m] → [n], and a collection of morphisms Cf(i−1)+1 ⊗ · · · ⊗

Cf(i) → C ′i for 1 ≤ i ≤ m, where [n] = {0, . . . , n} and [−1] is the empty set.

3. Composition in C⊗ is determined by composition of order preserving maps,

composition in C, and the associativity and unit constraints of the monoidal

structure on C.

Let ∆ denote the category of simplices, where the objects are the ordered sets [n],

with n ≥ 0 and the morphisms are non-strictly increasing maps of linearly ordered

sets. This means that a map [m] → [n] embeds an m-simplex as a face on an n-

simplex. In the category ∆op, which we will focus on, a map [n] → [m] specifies an

m-simplex face from the n-simplex [n].
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We then have a forgetful functor ρ : C⊗ →∆op, which sends an object [C1, . . . , Cn]

to [n], which has the following properties:

(A) For every object [C1, . . . , Cn] in C⊗ and every morphism f : [n] → [m] in ∆op,

there exists a morphism f : [C1, . . . , Cn] → [C ′1, . . . , C
′
m] which covers f and is

universal in composing with f to induce a bijection to the fiber product

HomC⊗([C ′1, . . . , C
′
m], [C ′′1 , . . . , C

′′
k ])→

HomC⊗([C1, . . . , Cn], [C ′′1 , . . . , C
′′
k ])×Map∆([k],[n]) Map∆([k], [m])

for every [C ′′1 , . . . , C
′′
k ] in C⊗. This is done by choosing f so that the maps

Cf(i−1)+1 ⊗ · · · ⊗ Cf(i) → C ′i are isomorphisms for 1 ≤ i ≤ m.

(B) Let C⊗[n] denote the fiber of ρ over the object [n] ∈ ∆op. Then C⊗[1] is equivalent

to C and C⊗[n] is equivalent to an n-fold product of copies of C using the inclusion

[1] ∼= {i− 1, i} ⊂ [n] for all i.

The category C is determined up to canonical equivalence by C⊗. To see this,

suppose we have a category D and there is a functor ρ : D →∆op obeying conditions

(A) and (B) above. We identify D[1] =: C. Keeping in mind that maps from ∆op

reverse, the inclusion [1] ∼= {0, 2} ↪→ [2],

(3.1) 0

��

2(A1 ⊗ A2)

&&
0 1(A1) 2(A2),

where elements in parentheses correspond to objects of C determines a functor C×C →

C, which we denote ⊗. Associativity follows from this diagram where all maps are

inclusion

{0, 3}

��

// {0, 1, 3}

��
{0, 2, 3} // {0, 1, 2, 3}.
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This corresponds to the diagram

D[1] D[2]
oo

D[2]

OO

D[3],oo

OO

which, after we use the equivalenceD[n]
∼= Cn, we get the isomorphism (A1⊗A2)⊗A3

∼=

A1 ⊗ (A2 ⊗ A3).

By condition (B), D[0] has a single object, which we denote k. The surjection

[1] � [0]

(3.2) 0

��

1(k)

~~
0

gives a functor D[0] → D[1] = C, which produces our unit in C.

Using diagrams 3.1 and 3.2, we see that k ⊗A and A⊗ k are isomorphic to A by

using two different diagrams of the maps: {0, 2} → {0, 1, 2} → {0, 2}:

0

��

2(k ⊗ A)

%%

0

��

2(A⊗ k)

$$
0

��

1(k)

{{

2(A)

yy

and 0

��

1(A)

��

2(k)

zz
0 2(A) 0 2(A).

The triangle identity, meaning the commutativity of the diagram

(A1 ⊗ k)⊗ A2

''

// A1 ⊗ (k ⊗ A2)

ww
A1 ⊗ A2
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is satisfied by these two diagrams

0

��

3((A1 ⊗ k)⊗ A2)

''
0

��

2(A1 ⊗ k)

''

3(A2)

$$
0

��

1(A1)

��

2(k)

ww

3(A2),

zz
0 2(A1) 3(A2)

0

��

3(A1 ⊗ (k ⊗ A2))

((
0

��

1(A1)

��

3(k ⊗ A2)

%%
0

��

1(A1)

��

2(k)

vv

3(A2)

yy
0 2(A1) 3(A2)

along with the fact that the top two rows (including arrows) of the first diagram

can be replaced by the first two rows of the second and realizing this is exactly the

associativity diagram.

Lastly, that the pentagon axiom, meaning the commutativity of the diagram

(A1 ⊗ A2)⊗ (A3 ⊗ A4)

**
((A1 ⊗ A2)⊗ A3)⊗ A4

44

��

A1 ⊗ (A2 ⊗ (A3 ⊗ A4))

(A1 ⊗ (A2 ⊗ A3))⊗ A4
// A1 ⊗ ((A2 ⊗ A3)⊗ A4)

OO

is satisfied follows from the commutativity of this inclusion diagram from [1] ∼=
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{0, 4} → [4]:

{0, 4}

ww �� ''
{0, 1, 4}

�� ''

{0, 2, 4}

ww ''

{0, 3, 4}

ww ��
{0, 1, 2, 4}

''

{0, 1, 3, 4}

��

{0, 2, 3, 4}

ww
{0, 1, 2, 3, 4}

These coherence conditions show that D determines C as a monoidal category.

We will attempt to replicate something similar to this to define something called a

monoidal∞-category. Of course we don’t expect to have a true tensor product, so our

result will not be exactly this. To begin this process, we need to define the dg-nerve

of a category.

3.2 The Nerve and dg-Nerve of a Category

The following definitions come from Lurie in [19].

The nerve of a category C, denoted N(C), is the collection of sets {Cn}n≥0 where

Cn is the set of all composable chains of morphisms C → · · · → C of length n. This

has the structure of a simplicial set. The nerve also determines C up to isomorphism

as the objects of C are C0 and the morphisms are the elements of C1.

If C is a differential graded category, we can associate to C a simplicial set Ndg(C)

called the differential graded nerve of C, or dg-nerve of C. For each nonnegative

n, Ndg(C)n ∼= Hom(∆n, Ndg(C)) to be the set of all ordered pairs ({Xi}0≤i≤n, {fI}),

where:

1. For 0 ≤ i ≤ n, Xi denotes an object of C.

2. For every subset I = {i− < im < im−1 < · · · < i1 < i+} with m ≥ 0, fI is an

element of the group MapC(Xi− , Xi+)m, satisfying the equation

(3.3) d ◦ fI + fI ◦ d =
∑

1≤j≤m

fI−{ij} + f{ij<···<i1<i+} ◦ f{i−<im<···<ij}
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Note that we have forgone using signs so this is a simplified version.

If α : [m] → [n] is a nondecreasing function, the induced map Ndg(C)n →

Ndg(C)m is given by

({Xi}0≤i≤n, {fI}) 7→ ({Xα(j)}0≤j≤m, {gJ}),

where

gJ =


fα(J) if α | J is injective,

id if J = {j, j′}, with α(j) = α(j′) = i,

0 otherwise.

3.3 Monoidal ∞-Categories

In [16], with some unwinding coming from [18] and [8], Lurie defines a monoidal ∞-

category is a map of simplicial sets p : C⊗ → N(∆op) that adhere to the following

properties below, making p a cocartesian fibration. That the maps below are defined

in terms of pop is to avoid further confusion on mapping ∆n and its subsets to N(∆)

. The properties are:

1. pop has the right lifting property with respect to all inner horn inclusions, that

is for all diagrams with 0 < i < n,

Λn
i

//

��

C⊗op

pop

��
∆n

;;

// N(∆).

Figure 3.1: Diagram for an inner fibration

there exists a dotted arrow as indicated which makes the diagram commuta-

tive. This condition on pop is the same as saying pop is an inner fibration. By

Proposition 2.3.1.5., Example 1.1.2.5., and the last paragraph of section 1.2.1

all from [18], this is equivalent to saying that C⊗ is an ∞-category.
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2. For every edge f ′ : x′ → y′ of N(∆), i.e. a map ∆1 → N(∆), and every vertex y

of C⊗op with pop(y) = y′, there exists an edge f : x← y, i.e. f : ∆1 → C⊗op where

pop(x) = x′, such that pop(f) = f ′ and for every n ≥ 2 and every commutative

diagram

∆{n−1,n}
� _

��

f

%%

f ′

		

Λn
n� _

��

// C⊗op

pop

��
∆n

99

// N(∆)

Figure 3.2: Diagram for a p-cocartesian edge

there exists a dotted arrow as indicated which makes the diagram commutative.

Such a diagram with f exists is equivalent to saying that f is a p-cocartesian

edge.

3. For each n ≥ 0, the associated functors C⊗[n] → C
⊗
{i,i+1} determine an equivalence

of ∞-categories

C⊗[n] → C
⊗
{0,1} × · · · × C

⊗
{n−1,n}

∼= (C⊗[1])
n.

Using this equivalence above, considering the three embeddings of [1] into [2], specifi-

cally {0, 1}, {1, 2}, and {0, 2}, we get an equivalence C⊗{0,1}×C
⊗
{1,2} ← C

⊗
[2]. There is also

the map C⊗[2] → C
⊗
{0,2}. Identifying C⊗{a,b} as C, where a, b are 0, 1, 2, a < b and taking

the homotopy inverse of the first map given above, we are left with a map C ×C → C.

We have obtained a tensor product. Using the diagrams in Lurie’s construction of

C⊗ in section 3.1, we can similarly obtain associativity up to homotopy as well as all

other required coherence conditions.

We are nearing our main result. Our first step is introducing what our maps

will look like. This will require a few lemmas. We begin by defining new maps
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B(M1)⊗ · · · ⊗B(Mk)

∆⊗k

��

φ // B(M)

∆
��

B⊗k ⊗B(M1)⊗ · · · ⊗B(Mk)
µkE⊗φ // B ⊗B(M)

Figure 3.3: Comodule diagram

µnE : B⊗n → B, specifically,

µnE(β1, . . . , βn) = µE(β1, µE(β2, . . . , µE(βn−1, βn) . . . )),

which is unambiguous by the associativity of µE. This map is comultiplicative. Note

that µ2
E = µE and µ1

E = id. We use this to introduce twisting cochains τn : B⊗n → A,

where τn = τ ◦ µnE. Our definition of τ1 from above agrees with this definition and

τ2 = E. Given left A dg-modules M1, . . .Mn over A, we use the twisted tensor product

to construct a module

A⊗
τn

(
B(M1)⊗ · · · ⊗B(Mn)

)
.

In the proof of proposition 2.3 we wrote A ⊗
E

(
(B(L) ⊗ B(M)) ⊗ B(N)

)
and A ⊗

E(
B(L)⊗ (B(M)⊗B(N))

)
, explaining that they were equal. With this notation, it is

clear that both may be written as A⊗
τ3

(
B(L)⊗B(M)⊗B(N)

)
.

3.3.1 Lemma 3.1

Lemma 3.1. Given a map of A modules, φ̃ : A⊗
τk

(
B(M1)⊗· · ·⊗B(Mk)

)
→M , where

M1, . . . ,Mk are modules over A, we have a map φ : B(M1) ⊗ · · ·B(Mk) → B(M)

such that the following diagram commutes:

Proof of Lemma 3.1. By the adjoint functors that gave us diagrams 2.1 and 2.2, given

φ̃ ∈ HomA

(
A⊗

τk
(B(M1)⊗ · · · ⊗B(Mk)),M

)
, we have a corresponding

φ̃′ ∈ HomB⊗k

(
B(M1) ⊗ · · · ⊗ B(Mk), B

⊗k ⊗
τk
M
)
, meaning φ̃′ is a map of comodules

over B⊗k.
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This yields a commutative diagram

B(M1)⊗ · · · ⊗B(Mk)
φ̃′ //

∆⊗k

��

B⊗k ⊗
τk
M

∆⊗k⊗id

��
B⊗k ⊗B(M1)⊗ · · · ⊗B(Mk)

id⊗φ̃′ // B⊗k ⊗B⊗k ⊗
τk
M

Moreover, as (B, µE,∆) forms a bialgebra, we have a commutative diagram

B⊗k ⊗
τk
M

∆⊗k⊗id

��

µkE⊗id
// B ⊗

τ1
M

∆⊗id

��
B⊗k ⊗B⊗k ⊗

τk
M

µkE⊗µ
k
E⊗id

// B ⊗B ⊗
τ1
M.

That this is a chain map is perhaps not obvious by the presence of our twisted tensor

products. As we have a dg-bialgebra, the only issue that could arise would be from

the twisted differential. For this map to be a chain map then, we require that the

following diagram commutes:

B⊗k ⊗M

∆⊗k⊗id
��

µkE⊗id
// B ⊗M

∆⊗id
��

B⊗k ⊗B⊗k ⊗M
id⊗τk⊗id
��

B ⊗B ⊗M
id⊗τ1⊗id

��
B⊗k ⊗ A⊗M

id⊗mM
��

B ⊗ A⊗N
id⊗mM

��
B⊗k ⊗M

µkE⊗id
// B ⊗M

These down arrows are exactly the twisted part of the differential. To see that this

commutes, the path that goes right and then down is given by:

(id⊗mM) ◦ (id⊗ τ1 ⊗ id) ◦ (∆⊗ id) ◦ (µkE ⊗ id).

As B is a bialgebra, we can rearrange the two rightmost terms as

(id⊗mM) ◦ (id⊗ τ1 ⊗ id) ◦ (µkE ⊗ µkE ⊗ id) ◦ (∆⊗k ⊗ id).

We can commute the left µkE of the (µkE ⊗ µkE ⊗ id) function to the end of this

composition to get

(µkE ⊗ id) ◦ (id⊗mM) ◦ (id⊗ τ1 ⊗ id) ◦ (id⊗ µkE ⊗ id) ◦ (∆⊗k ⊗ id).
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Using the fact that τk = τ1 ◦ µkE, this becomes

(µkE ⊗ id) ◦ (id⊗mM) ◦ (id⊗ τk ⊗ id) ◦ (∆⊗k ⊗ id),

which is exactly the path of going down and then right, as desired.

Therefore, we may combine the first two diagrams and, by defining φ := (µkE ⊗

id) ◦ φ̃′, we obtain our desired diagram.

3.3.2 Proposition 3.1

Proposition 3.1. Given a B⊗k comodule N , we have a chain map:

α : N → B ⊗
τ1
A⊗

τk
N,

such that the following diagram commutes

N
α //

∆⊗k

��

B ⊗
τ1
A⊗

τk
N

∆

��
B⊗k ⊗N

µkE⊗α // B ⊗B ⊗
τ1
A⊗

τk
N

In particular, given A modules M1, . . . ,Mk, we have a chain map

B(M1)⊗ · · · ⊗B(Mk)→ B ⊗
τ1
A⊗

τk

(
B(M1)⊗ · · · ⊗B(Mk)

)
satisfying the above diagram. This map in a sense turns a B⊗k comodule into a B

comodule.

Proof of Proposition 3.1. Using the map i from diagram 2.1, we have a chain map

such that this diagram commutes:

N
i //

∆⊗k

��

B⊗k ⊗
τ1
A⊗

τk
N

∆⊗k

��
B⊗k ⊗N id⊗k⊗i // B⊗k ⊗B⊗k ⊗

τ1
A⊗

τk
N
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From the proof of lemma 3.1, we get the following commutative diagram

B⊗k ⊗
τk

(A⊗
τk
N)

∆⊗k⊗id

��

µkE⊗id
// B ⊗

τ1
(A⊗

τk
N)

∆⊗id

��
B⊗k ⊗B⊗k ⊗

τk
(A⊗

τk
N)

µkE⊗µ
k
E⊗id

// B ⊗B ⊗
τ1

(A⊗
τk
N).

We define α = (µkE ⊗ id) ◦ i : N → B ⊗
τ1
A⊗

τk
N to obtain the commutative diagram

N

∆⊗k

��

(µkE⊗id)◦i
// B ⊗

τ1
A⊗

τk
N

∆⊗id

��
B⊗k ⊗N

(µkE⊗µ
k
E⊗id)◦(id⊗k⊗i)

// B ⊗B ⊗
τ1
A⊗

τk
N,

where we identify the map across the top as α and the map across the bottom as

µkE ⊗ α.

We will be using the map α often and will not distinguish which coalgebra the

comodule is over unless it is unclear. Moreover, we may reinterpret that a map f

satisfies figure 3.3 by using the following commutative diagram:

X

α

��

(µkE⊗id)◦∆⊗k

��

f // Y

α

��

∆
��

B ⊗X

id⊗η
��

id⊗f // B ⊗ Y

id⊗η
��

B ⊗
τ1
A⊗

τk
X

id⊗2⊗f // B ⊗
τ1
A⊗

τ1
Y

As the map id⊗ η has a left inverse, namely the counit map εA, if a map f satisfies

figure 3.3, it is equivalent to α ◦ f = (id⊗2 ⊗ f) ◦ α.

Corollary 3.1.

1. Given comodules N1, N2, N3 over B⊗ki for i = 1, 2, 3 respectively, and a map

f : N1⊗N2⊗N3 → B(M) for an A module M so that α◦f = (id⊗2⊗f)◦α, there

exists a map f̃ : N1⊗ (B⊗
τ1
A ⊗
τk2

N2)⊗N3 → B(M) so that α◦ f̃ = (id⊗2⊗ f̃)◦α
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such that the following diagram commutes:

N1 ⊗N2 ⊗N3

id⊗α⊗id
��

f // B(M)

N1 ⊗ (B ⊗
τ1
A ⊗

τk2

N2)⊗N3

f̃

66

2. Given comodules N1, . . . , Nn over B⊗ki for i = 1, . . . , n respectively, a map

f : N1 ⊗ · · · ⊗ Nn → B(M) where f satisfies α ◦ f = (id⊗2 ⊗ f) ◦ α, and a

sequence of integers {j1, . . . , jl} such that 1 < j1 < j2 < · · · < jl < n, there

exists a map

f̃ :

N1⊗· · ·⊗(B⊗
τ1
A ⊗
τkj1

Nj1)⊗Nj1+1⊗· · ·⊗(B⊗
τ1
A ⊗
τkj2

Nj2)⊗· · ·⊗(B⊗
τ1
A⊗
τkjl

Njl)⊗· · ·⊗Nn

→ B(M),

such that α ◦ f̃ = (id⊗2 ⊗ f̃) ◦ α such that the following diagram commutes:

N1 ⊗ · · · ⊗Nn

idj1−1⊗α⊗idj2−j1−1⊗···⊗α⊗idn−jl

��

f // B(M)

N1 ⊗ · · · ⊗ (B ⊗
τ1
A ⊗

τkj1

Nj1)⊗Nj1+1 ⊗ · · ·

f̃

33

⊗(B ⊗
τ1
A ⊗

τkj2

Nj2)⊗ · · · ⊗ (B ⊗
τ1
A ⊗

τkjl

Njl)⊗ · · · ⊗Nn

Proof of Corollary 3.1. 1. We make reference to this diagram:

N1 ⊗N2 ⊗N3

id⊗α⊗id

((

f //

id⊗µ2
E◦∆

⊗k2⊗id

��

B(M)

∆
��

i

vv

N1 ⊗B ⊗N2 ⊗N3

id⊗2⊗η⊗id⊗2

��

f◦(µk1+1+k3
E ◦(∆⊗k1⊗id⊗2⊗∆⊗k3 ))

// B ⊗B(M)

id⊗η⊗id
��

N1 ⊗B ⊗ A⊗N2 ⊗N3
f ′ // B ⊗ A⊗B(M)

As f satisfies figure 3.3, by the associativity of µE, the top rectangle in the above

diagram commutes. The second rectangle commutes as we are just inserting 1 in
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the appropriate places, where we’ve written f ′ to avoid the messiness of dealing

with a map almost identical to that above it except with some permutation.

The composition of the down arrows are given. What we need to finish our

proof then, is an inverse of i.

In general, given a B comodule L, there is not a comodule map B⊗
τ1
A⊗

τ1
L→ L

(the usual map goes in the opposite direction). However, for a module M , we

do have a map p : A⊗
τ1
B ⊗

τ1
M → M . Prepending this with B⊗

τ1
, we get a map

B ⊗
τ1

(A⊗
τ1
B ⊗

τ1
M)→ B ⊗

τ1
M = B(M). This map is a dg-comodule map. More-

over, the composition B(M) i // B ⊗
τ1
A⊗

τ1
B ⊗

τ1
B(M)

id⊗p // B ⊗
τ1
M = B(M)

is the identity map. This follows from the fact that in a bialgebra the unit and

multiplication compose to the identity as do comultiplication and the counit.

Therefore, by defining f̃ = (id⊗ p) ◦ f ′, we obtain the desired result.

This proposition is malleable. For instance, by setting N1 = k or N3 = k, we

can apply our α map to the first or last term, respectively.

2. The proof proceeds by induction on l. The case when l = 1, j1 = 2, is given

as part 1 above. Assuming the result holds for l − 1, we start by defining a

comodule N ′ = Njl−1+1 ⊗ · · · ⊗ Nn, which is a comodule over B⊗jl−1+1+···+n.

Regrouping our last comodules this way does not change f in any meaningful

way. Our tensor product looks like N1 ⊗ · · ·Njl−1
⊗ N ′. We can apply our

α action to the applicable l − 1 comodules between 1 and jl−1 and using the

induction hypothesis obtain a commutative diagram

N1 ⊗ · · · ⊗Njl−1
⊗N ′

idj1−1⊗α⊗idj2−j1−1⊗···⊗α⊗idjl−1−jl−2+1⊗α⊗id

��

f // B(M)

N1 ⊗ · · · ⊗ (B ⊗
τ1
A ⊗

τkjl−1

Njl−1
)⊗N ′

f̃1

44

where f̃1 satisfies figure 3.3. We now reconsider N1⊗· · ·⊗(B⊗
τ1
A ⊗
τkjl−1

Njl−1
)⊗N ′

as N ′′ ⊗Njl ⊗N ′′′, where N ′′ = N1 ⊗ · · · ⊗ (B ⊗
τ1
A ⊗

τkjl−1

Njl−1
)⊗ · · ·Njl−1 and

N ′′′ = Njl+1 ⊗ · · ·Nn, where N ′′ and N ′′′ are comodules over the appropriate

38



tensor products of B with itself. Notice that relabeling our objects this way

does not change how f̃1 works, so we can use part 1 above directly to obtain a

map f̃ satisfying figure 3.3 where the following diagram commutes:

N1 ⊗ · · · ⊗Njl−1
⊗N ′

idj1−1⊗α⊗idj2−j1−1⊗···⊗α⊗idjl−1−jl−2+1⊗α⊗id

��

f // B(M)

N1 ⊗ · · · ⊗ (B ⊗
τ1
A ⊗

τkjl−1

Njl−1
)⊗N ′

id

��

f̃1

44

N ′′ ⊗Njl ⊗N ′′′

id⊗α⊗id

��
N ′′ ⊗ (B ⊗

τ1
A ⊗

τkjl

Njl)⊗N ′′′

f̃

==

The composition of down arrows is the same as the one given in the statement

of the corollary, thus completing the proof.

3.3.3 Lemma 3.2

Lemma 3.2. For a positive integer n and for all 1 ≤ i ≤ n, if fi : Ni → N ′i and

g : N ′1 ⊗ · · · ⊗ N ′n → N ′′ are chain maps such that α ◦ fi = (id⊗2 ⊗ fi) ◦ α and

α ◦ g = (id⊗2 ⊗ g) ◦ α, where each Ni is a B⊗ki comodule, for some positive ki and

each N ′i and N ′′ is a B comodule, where we then think of N ′1 ⊗ · · ·N ′n as a B⊗n

comodule, we have that the map g ◦ (f1⊗ · · · ⊗ fn) : N1⊗ · · · ⊗Nn → N ′′ satisfies the

condition that

α ◦ (g ◦ (f1 ⊗ · · · ⊗ fn)) = (id⊗2 ⊗ (g ◦ (f1 ⊗ · · · ⊗ fn))) ◦ α,

where we think of N1 ⊗ · · · ⊗Nn as a B⊗k1+···+kn comodule.

Proof of Lemma 3.2. By induction on n, we show that ∆⊗n ◦ (f1⊗ · · ·⊗ fn) = (µk1
E ⊗

· · ·µknE )⊗ (f1⊗ · · · ⊗ fn) ◦∆⊗k1+···+kn . In the case when n = 1, the result is the same
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as the assumption on f1. The following diagram is then commutative:

N1
f1 //

∆⊗k1

��

N ′1
g //

∆
��

N ′′

∆
��

B⊗k1 ⊗N1

µ
k1
E ⊗f1 // B ⊗N ′1

id⊗g // B ⊗N ′′

where the second rectangle is due to the assumption on g. The composition of across

arrows proves our initial claim.

If we assume the result holds for n − 1, the first rectangle below commutes. By

what we are given about Nn and fn, the second rectangle commutes:

N1 ⊗ · · · ⊗Nn

f1⊗···⊗fn−1⊗id

��

∆⊗k1+···+kn−1⊗∆⊗kn
// B⊗k1+···kn−1 ⊗B⊗kn ⊗N1 ⊗ · · · ⊗Nn

µ
k1
E ⊗···⊗µ

kn−1
E ⊗id⊗kn⊗f1⊗···⊗fn−1⊗id

��
N ′1 ⊗ · · · ⊗N ′n−1 ⊗Nn

∆⊗n−1⊗∆⊗kn

//

id⊗n−1⊗fn
��

B⊗n−1 ⊗B⊗kn ⊗N ′1 ⊗ · · ·N ′n
id⊗n−1⊗µknE ⊗id⊗n−1⊗fn

��
N ′1 ⊗ · · · ⊗N ′n ∆⊗n

// B⊗n ⊗N ′1 ⊗ · · · ⊗N ′n

This proves our induction. We add to the bottom of that diagram

N ′1 ⊗ · · · ⊗N ′n
g

��

∆⊗n
// B⊗n ⊗N ′1 ⊗ · · · ⊗N ′n

µnE⊗g
��

N ′′ ∆ // B ⊗N ′′

By compacting much of this information, we get the following commutative dia-

gram:

N1 ⊗ · · · ⊗Nn

g◦(f1⊗···⊗fn)
��

∆⊗k1+···+kn // B⊗k1+···kn−1+kn ⊗N1 ⊗ · · · ⊗Nn

µ
k1+···+kn
E ⊗g◦(f1⊗···⊗fn)

��
N ′′ ∆ // B ⊗N ′′

proving our lemma.

Definition 3.1 (Simplicial coaction map). If we take g to be the identity and we have

that a map f defined so that f = f1 ⊗ · · · ⊗ fn, each satisfying the above condition,

then we get that α ◦ f = (id⊗2) ◦ f . All of the lemmas above are to aid us in defining

maps that behave in this way, meaning are a tensor product of maps each from a

product of comodules to a comodule, specifically B(L) for some module L. Such a

map will be called a simplicial coaction map.
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3.4 Comodules as a Simplicial Set

We now must introduce some more lemmas to define our simplicial set C⊗ using Lurie’s

definition of a dg-nerve as a guideline, at which point the map p : C⊗ → N(∆)op will

be clear.

3.4.1 Lemma 3.3

Lemma 3.3. Given an n simplex where the ith vertex is the tensor product of comod-

ules Ni for i = 1, . . . , n, over the coalgebra B⊗ji respectively, and N0 = B(L0) for an

A module L0 at the 0th vertex. All maps are simplicial coaction maps and are given

by f{i1,...,ik} : Nik → Ni1, where i1 < i2 < . . . , < ik, i1, . . . , ik ∈ {0, . . . , n}. If we set

Li = A⊗
τji

Ni we can create an inner n-simplex using corollary 3.1 where the ith vertex

is B(Li) and maps are now given by ˜α ◦ f{i1,...,ik} except in the case when i1 = 0 in

which case our map is f̃{i1,...,ik}.

We fix a set {0, i1, . . . , ik}. If we assume that f̃{0,i1,...,ik} is a homotopy map,

meaning that

df̃{0,i1,...,ik} =
∑

1≤j≤k−1

f̃{0,i1,...,îj ,...,ik} + f̃{0,i1,...,ij} ◦ ˜α ◦ f{ij ,...,ik}

where df = d ◦ f + f ◦ d, then the map f{0,i1,...,ik} is also a homotopy.

Proof of Lemma 3.3. Before we prove this, consider what this actually looks like in

the case of a triangle, where all outer triangles and quadrilateral commute, aside from

the maps f{0,1,2} and f̃{0,1,2}:
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N2

α

��
f{0,1,2}

��

f{0,2}

��

f{1,2}

��

B(L2)
˜α◦f{1,2}

$$

f̃{0,1,2}

��

f̃{0,2}

zz

B(L1)

f̃{0,1}ss
B(L0) N1

α

gg

f{0,1}

oo

Figure 3.4: Reduction of B⊗ji modules to B comodules

Back to our general case. If a map g that maps to B(L0) produces g̃, we have

g̃ ◦ α = g if or g maps to something other than B(L0) and produces α̃ ◦ g, we have

α̃ ◦ g ◦ α = α ◦ g. If f̃{0,i1,...,ik} behaves as in the lemma, then

d(f{0,i1,...,ik}) = d(f̃{0,i1,...,ik}◦α) =

( ∑
1≤j≤k−1

f̃{0,i1,...,îj ,...,ik}+f̃{0,i1,...,ij}◦ ˜α ◦ f{ij ,...,ik}
)
◦α

=
∑

1≤j≤k−1

f̃{0,i1,...,îj ,...,ik} ◦ α + f̃{0,i1,...,ij} ◦ ˜α ◦ f{ij ,...,ik} ◦ α

=
∑

1≤j≤k−1

f{0,i1,...,îj ,...,ik} + (f̃{0,i1,...,ij} ◦ α) ◦ f{ij ,...,ik}

=
∑

1≤j≤k−1

f{0,i1,...,îj ,...,ik} + f{0,i1,...,ij} ◦ f{ij ,...,ik}.

Therefore f{0,i1,...,ik} acts as the required homotopy.

3.4.2 Proposition 3.2

Proposition 3.2. If we have multiple of the simplices defined in Lemma 3.3, say

{Li0, N i
j , {f iI}} for i = 1, . . . , k, having the property that all of the maps f iI are ho-

motopies, , in the sense of the definition of Lurie’s dg-nerve, then in the simplex

{
⊗k

i=1 B(Li1),
⊗k

i=1N
i
j , {
⊗k

i=1 f
i
I}}, for any set I0, we can find a map fI0 that acts

as a homotopy.
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Proof of Proposition 3.2. When we have multiple simplices {Li0, N i
j , {f iI}} for i =

1, . . . , n such that all maps behave as homotopies, we create a homotopy on the n-

fold tensor product iteratively. That is, we show how to do it for two simplices and the

rest follows from induction. Let {L1
0, N

1
j , {f 1

I }} and {L2
0, N

2
j , {f 2

I }} be two simplices

and we fix a set I0 = {0, i1, . . . , ik}. We then have that

d(f 1
{0,i1,...,ik}) =

∑
1≤j≤k−1

f 1
{0,i1,...,îj ,...,ik}

+ f 1
{0,i1,...,ij} ◦ f

1
{ij ,...,ik}.

d(f 2
{0,i1,...,ik}) =

∑
1≤j≤k−1

f 2
{0,i1,...,îj ,...,ik}

+ f 2
{0,i1,...,ij} ◦ f

2
{ij ,...,ik}.

We want to find a map f 1⊗2
{0,i1,...,ik} so that

d(f 1⊗2
{0,i1,...,ik}) =

∑
1≤j≤k−1

f 1⊗2

{0,i1,...,îj ,...,ik}
+ f 1⊗2

{0,i1,...,ij} ◦ f
1⊗2
{ij ,...,ik},

where these other maps are defined similarly.

To simplify a bit, we replace our set {0, i1, . . . , ik} with {0, 1, . . . , k}. The easiest

case is when we are considering an edge, i.e. we have maps f 1
{0,1} and f 2

{0,1}. Then

f 1⊗2
{0,1} = f 1

{0,1} ⊗ f 2
{0,1}.

In the next case up, a triangle, meaning we have f 1
{0,1,2} and f 2

{0,1,2} along with all

edges, we define

f 1⊗2
{0,1,2} = f 1

{0,2} ⊗ f 2
{0,1,2} + f 1

{0,1,2} ⊗ f 2
{0,1} ◦ f 2

{1,2}.

This is in no way canonical as we’ve made a choice and we could have equally

defined

f 1⊗2
{0,1,2} = f 1

{0,1} ◦ f 1
{1,2} ⊗ f 2

{0,1,2} + f 1
{0,1,2} ⊗ f 2

{0,2}.

For the general case we use induction. We define 〈k〉 = {1, . . . , k − 1}. Then our

map is

f 1⊗2
{0,1,...,k} =

∑
{j1,...,jl}

f 1
{0,j1,...,jl,k} ⊗ f

2
{0,...,j1} ◦ f

2
{j1,...,j2} ◦ · · · ◦ f

2
{jl,...,k},

where the sum is taken over all subsets {j1, . . . , jl} ⊂ 〈k〉, j1 < · · · < jl, including the

empty set and 〈k〉 itself. This definition agrees with f 1⊗2
{0,1} and f 1⊗2

{0,1,2} given above.
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Once again, here we have made the choice to put the composition of maps on the

right of the tensor product when we could just as easily, and just as correctly, made

the maps from the first simplex the compositions.

To see that this map behaves as a homotopy on the tensor product, i.e. that

d(f 1⊗2
{0,1,...,k}) =

∑
1≤j≤k−1

f 1⊗2

{0,1,...,̂j,...,k} + f 1⊗2
{0,1,...,j} ◦ f

1⊗2
{j,...,k},

we consider both sides of this equation. The left hand side is:

d
(
f 1⊗2
{0,1,...,k}

)
= d

( ∑
{j1,...,jl}

f 1
{0,j1,...,jl,k} ⊗ f

2
{0,...,j1} ◦ f

2
{j1,...,j2} ◦ · · · ◦ f

2
{jl,...,k}

)

=
∑
{j1,...,jl}

df{0,j1,...,jl,k} ⊗ f
2
{0,...,j1} ◦ f

2
{j1,...,j2} ◦ · · · ◦ f

2
{jl,...,k}

+
l∑

i=0

f{0,j1,...,jl,k} ⊗ f
2
{0,...,j1} ◦ f

2
{j1,...,j2} ◦ · · · ◦ df

2
{ji,...,ji+1} ◦ · · · ◦ f

2
{jl,...,k}

(1) =
∑
{j1,...,jl}

( l∑
i=1

f 1
{0,...,ji−1,ji+1,...,jl,k} ⊗ f

2
{0,...,j1} ◦ · · · ◦ f

2
{jl,...,k}

(2) +f 1
{0,...,ji} ◦ f

1
{ji,...,jl,k} ⊗ f

2
{0,...,j1} ◦ · · · ◦ f

2
{jl,...,k}

(3) +

( ji+1−1∑
p=ji+1

f 1
{0,j1,...,jl,k} ⊗ f

2
{0,...,j1} ◦ · · · ◦ f

2
{ji,...,p−1,p+1,...,ji+1} ◦ · · · ◦ f

2
{jl,...,k}

(4) +f 1
{0,j1,...,jl,k} ⊗ f

2
{0,...,j1} ◦ · · · ◦ f

2
{ji,...,p}, f

2
{p,...,ji+1} ◦ · · · ◦ f

2
{jl,...,k}

))

(5) +

( j1−1∑
q=1

f 1
{0,j1,...,jl,k} ⊗ f

2
{0,...,p−1,p+1,...j1} ◦ · · · ◦ f

2
{jl,...,k}

(6) +f 1
{0,j1,...,jl,k} ⊗ f

2
{0,...,p} ◦ f 2

{p,...,j1} ◦ · · · ◦ ◦f
2
{jl,...,k}

)
Rows (1), (4), and (6) above cancel out. To see why, notice that for a subset {j1, . . . , jl}

and an i such that 1 ≤ i ≤ l, the element f 1
{0,...,ji−1,ji+1,...,jl,k} ⊗ f

2
{0,...,j1} ◦ · · · ◦ f

2
{jl,...,k}
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from row (1) is the same as the element in row (4) corresponding to the subset

{j1, . . . , ĵi, . . . , jl} and p = ji. If i = 1, the the element comes from rows (6). Con-

versely, given a subset {j1, . . . , jl} fixing an integer m and an element p, where jm <

p < jm+1 corresponding to the element f 2
{0,...,j1}◦· · ·◦f

2
{jm,...,p}, f

2
{p,...,jm+1}◦· · ·◦f

2
{jl,...,k}

from row (4) (or row (6) if m = 0), by defining the subset {j1, . . . , jm, p, jm+1, . . . , jl}

along with setting i = m + 1, we get the same element in row (1). For the left hand

side, we are then left with:

(2)
∑
{j1,...,jl}

( l∑
i=1

f 1
{0,...,ji} ◦ f

1
{ji,...,jl,k} ⊗ f

2
{0,...,j1} ◦ · · · ◦ f

2
{jl,...,k}

(3) +

( ji+1−1∑
p=ji+1

f 1
{0,j1,...,jl,k} ⊗ f

2
{0,...,j1} ◦ · · · ◦ f

2
{ji,...,p−1,p+1,...,ji+1} ◦ · · · ◦ f

2
{jl,...,k}

))

(5) +

( j1−1∑
q=1

f 1
{0,j1,...,jl,k} ⊗ f

2
{0,...,p−1,p+1,...j1} ◦ · · · ◦ f

2
{jl,...,k}

)
Now we look at the right hand side:∑

1≤j≤k−1

f 1⊗2

{0,1,...,̂j,...,k} + f 1⊗2
{0,1,...,j} ◦ f

1⊗2
{j,...,k}

(a) =
k−1∑
j=1

( ∑
{j1,...,jl}⊂〈k〉−{j}

f 1
{0,j1,...,jl,k} ⊗ f

2
{0,...,j1} ◦ · · · ◦ f

2
{jl,...,k}

)

(b)

+
∑

{j′1,...,j′l′}⊂〈j〉,
{j′′1 ,...,j′′l′′}⊂〈k〉−〈j〉

f 1
{0,j′1,...,j′l′ ,j}

◦f 1
{j,j′′1 ,...,j′′l′′ ,k}

⊗f 2
{0,··· ,j′1}

◦· · ·◦f 2
{j′

l′ ,··· ,j}
◦f 2
{j,··· ,j′′1 }

◦· · ·◦f 2
{j′′

l′′ ,··· ,k}

We first show that rows (2) and (b) are equal. Given a subset {j1, . . . , jl} of 〈k〉 and

an integer i between 1 and l, this yields the element f 1
{0,...,ji}◦f

1
{ji,...,jl,k}⊗f

2
{0,...,j1}◦· · ·◦

f 2
{jl,...,k} from row (2). By fixing j = ji and setting {j′1, . . . , j′l′} = {j1, . . . , ji−1} ⊂ 〈j〉

and {j′′1 , . . . , j′′l′′} = {ji+1, . . . , jl} ⊂ 〈k〉 − 〈j〉, we get the same element in row (b).

Conversely, by picking an element j and subsets {j′1, . . . , j′l′} ⊂ 〈j〉 , {j′′1 , . . . , j′′l′′} ⊂
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〈k〉−〈j〉, we get the element f 1
{j,j′′1 ,...,j′′l′′ ,k}

⊗f 2
{0,··· ,j′1}

◦· · ·◦f 2
{j′

l′ ,··· ,j}
◦f 2
{j,··· ,j′′1 }

◦· · ·◦f 2
{j′′

l′′ ,··· ,k}

from row (b). By setting our set {j1, . . . , jl} = {j′1, . . . , j′l′ , j, j′′1 , . . . , j′′l′′} ⊂ 〈k〉 and

i = l′ + 1, we get the same element in row (2).

It now remains to show that row (3) + row (5) is equal to row (a). Fixing an

integer i, and given a subset {j1, . . . , jl} ⊂ 〈k〉 and an integer p between ji + 1 and

ji+1−1 (or between 1 = j0+1 and j1−1), this yields the element f 1
{0,j1,...,jl,k}⊗f

2
{0,...,j1}◦

· · · ◦ f 2
{ji,...,p−1,p+1,...,ji+1} ◦ · · · ◦ f

2
{jl,...,k} from row (3). Then the element from row (a)

corresponding to integer j = p between 1 and k−1 and the set {j1, . . . , jl} ⊂ 〈k〉−{p}

is exactly the same as that from row (3). Conversely, fixing an integer j and a subset

{j1, . . . , jl} ⊂ 〈k〉 − {j}, we get the element f 1
{0,j1,...,jl,k} ⊗ f 2

{0,...,j1} ◦ · · · ◦ f
2
{jl,...,k}

from row (a). Now looking at the element in row (3) corresponding to the subset

{j1, . . . , jl} ⊂ 〈k〉 and p = j is this exact same element.

Therefore this formula for f 1⊗2 is a homotopy. By induction, this result can be

extended to n different simplices tensored together.

3.5 Modules of an Algebra as a Modoidal∞-Category

Definition 3.2 (C⊗). We can now begin to use these results to construct our simplicial

set C⊗, what we will call a monoidal dg-nerve. We begin by assuming our algebra is

an associative Hirsch algebra, making B a bialgebra.

A vertex of our set is, for every nonnegative integer n, a finite sequence of A

modules (M1, . . . ,Mn).

An edge from (M1, . . . ,Mn) to (L1, . . . , Lk) consists of a ∆ map f ′ : [k] → [n]

along with simplicial coaction maps fi : B(Mf ′(i−1)+1)⊗ · · · ⊗B(Mf ′(i))→ B(Li) and

a map finally f = f1⊗ · · · fk. If a map f ′ in ∆ is not injective, say f ′(j) = f ′(j+ 1),

then the map fj would not map to the B(M ′
j+1) component. In this case we artificially

insert a B(A) so our map fi+1 is the map B(A) → B(M ′
i+1). This loosely imitates

Lurie’s construction of a monoidal category C given a category C⊗ and a functor to

∆. Similarly, for a map f : [m] → [n] if f(0) > 0 or f(m) < m, there are certain
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comodules, specifically B(M1), . . . , B(Mf(0)) and B(Mf(n)+1), . . . , Bn that just map to

k. This doesn’t change any of our maps, so for simplicity, we will assume f(0) = 0

and f(m) = n.

Vertices and edges are enough to define a category, but we do not expect this to

work so nicely. As this is a simplicial set, we must define higher n simplices.

Much as a vertex of C⊗ has associated to it an object from ∆ and an edge a

morphism from ∆, an n simplex has associated to a chain of n composable morphisms

in ∆, meaning [m0]
f ′1→ [m1]

f ′2→ · · · f
′
n→ [mn] is an element of N(∆). However, our maps

will not exactly be over this chain of morphisms. Instead we split this chain into m0

different chains. We do this by splitting up [m0] as {0, 1}∪{1, 2}∪· · · {m0−1,m0} and

splitting up all subsequent sets in the following way. First, we define F ′i = f ′i ◦ · · · ◦f ′1,

F ′0 = id. Then we define our new sets as mj
i = {F ′i (j−1), . . . , F ′i (j)}, where 0 ≤ i ≤ n,

1 ≤ j ≤ m0. Then we limit our view to maps f ′i |mj
0

by fixing j and letting i go from

1 to n. As an example, consider when n = 4.

m0 : 0

��

1

��

2

&&

3

&&
m1 : 0

��

1

��

2

��

3

&&

4

))

5

))m2 : 0

��

1

��

2

��

3

��

4

��

5

��

6

&&

7

��

8

��
m3 : 0 1 2 3 4 5 6 7 8 9

This splits up as

m1
0 : 0

��

1

��
m1

1 : 1

��

2

��
m1

2 : 1

��

2

��

3

��
m1

3 : 2 3 4
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m2
0 : 1

��

2

&&
m2

1 : 2

��

3

&&

4

))m2
2 : 3

��

4

��

5

��

6

&&

7

��
m2

3 : 4 5 6 7 8

m0 : 2

&&

3

&&
m1 : 4

))

5

))m2 : 7

��

8

��
m3 : 8 9

For convenience we will always relabel so our initial vertex of every mj
i is 0.

A face of an n simplex, where we have reduced and simplified so our vertices are

labeled {0, . . . , n}, corresponding to the vertices {i0, . . . , ik} is a simplicial coaction

map. This map, denoted f{i0,...,ik} is a map from the ik-th vertex to the i0-th ver-

tex, encoded by the appropriate chain of morphisms from ∆ and having the further

property that

d ◦ f{i0,...,ik} + f{i0,...,ik} ◦ d =
∑

0<j<k

f{i0,...,̂ij ,...,ik} + f{i0,...,ij} ◦ f{ij ,...,ik}

In the future we use the notation of differential on maps, so d ◦ f + f ◦ d will be

denoted df .

If we reverse all our maps, there is the forgetful map pop : C⊗op → N(∆). We aim

to show that pop is a cocartesian fibration.

3.5.1 Theorem 3.1

Theorem 3.1. The category C⊗ described above comprised of A modules is a monoidal

∞-category.
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Proof of Theorem 3.1. 1. First we show that pop is an inner fibration. We will look

at maps in C⊗, meaning they will be in the opposite direction of maps in ∆.

Given a Λn
j horn for 1 ≤ j ≤ n− 1, we may lift this horn into our monoidal dg-

nerve which then affords us all maps f{0,...,̂i,...,n} for 0 ≤ i ≤ n, i 6= j, along with

all maps f{i1,...,ik}, i1 ≥ 0, ik ≤ n and i1 < i2 < · · · < ik ∈ {0, . . . , n}. To show

this horn can be completed to ∆n, we must find faces f{0,...,ĵ,...,n} along f{0,...,n}.

By the definition of higher simplices in C⊗, we are able to write df{0,...,ĵ,...,n} as

we have all lower maps. Similarly, for any other homotopy g in our j-horn we

are able to write dg. As d2 = 0, we have

0 = d2f{0,...,n} =
∑

1≤i≤n−1

df{0,...,̂i,...,n} + d
(
f{0,...,i} ◦ f{i,...,n}

)
Therefore if we set

f{0,...,ĵ,...,n} =
∑

1≤i≤n−1
i 6=j

f{0,...,̂i,...,n} + f{0,...,i} ◦ f{i,...,n} + f{0,...,j} ◦ f{j,...,n},

we get that f{0,...,ĵ,...,n} obeys its necessary homotopy property. Moreover, as it

is a sum and composition of simplicial coaction maps, it itself is a simplicial

coaction map.

Moreover, defining f{0,...,ĵ,...,n} in this way allows us to define f{0,...,n} = 0 as we

get

0 =
∑

1≤i≤n−1

f{0,...,̂i,...,n} + f{0,...,i} ◦ f{i,...,n},

as required.

2. Next we show that pop is a cocartesian fibration. This is less straightforward.

What this looks like is we are given an edge f ′ : [l] → [m] and modules

M1, . . . ,Mm. We lift f ′ to a map we call f{n−1,n} in C⊗op from B(M1) ⊗ · · · ⊗

B(Mm) to a particular lift of [l], based on a morphism f ′ from ∆. We then

fill this out to a lift of Λn
n horn, placing it as the edge between the n− 1th and

nth vertices, hence its name. This horn contains all n+ 1 vertices as well as all

maps f{i0,...,ik} for 0 ≤ i0 < i1 < · · · < ik ≤ n except for the faces f{0,...,n−1} and
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f{0,...,n}. We aim to use what we know about f{n−1,n} to finds these last two

maps so we have completed our horn to a lift of ∆n.

Now we come to constructing our cocartesian edge. Given a map F ′ : [s]→ [t]

and a corresponding set of A modules M1, . . . ,Mt, we lift this to the map

F : B(M1)⊗ · · · ⊗B(Mt)→

B(M1)⊗ · · · ⊗
(
B ⊗

τ1
A ⊗

τF ′(1)−F ′(0)+1

B(MF ′(0)+1)⊗ · · · ⊗B(MF ′(1))

)
⊗ · · ·

⊗
(
B ⊗

τ1
A ⊗

τF ′(s)−F ′(s−1)+1

B(MF ′(s−1)+1)⊗ · · · ⊗B(MF ′(s))

)
⊗ · · · ⊗B(Mt),

which we showed in corollary 3.1 is a simplicial coaction map.

As an example consider the map F ′:

0 1 2 3 4 5

0

OO

1

@@

2

@@

3

77

along with modules M1,M2,M3,M4,M5. Then our map F is

B(M1)⊗B(M2)⊗B(M3)⊗B(M4)⊗B(M5)

F

��
B
(
A⊗

τ2
B(M1)⊗B(M2)

)
⊗B(M3)⊗B

(
A⊗

τ2
B(M4)⊗B(M5)

)
To see how this process of constructing a Λ2

2 horn works, let H ′ be the map

0 1 2 3

0

OO

1

@@

2

@@

and define G′ = F ′ ◦H ′. Using this information we can construct our Λ2
2 horn.

It is a lift of

1[3]
F ′

!!
0[2]

H′
==

G′ // 2[5]
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B
(
A⊗

τ2
B(M1)⊗B(M2)

)
⊗B(M3)⊗B

(
A⊗

τ2
B(M4)⊗B(M5)

)
H

tt
B(L1)⊗B(L2) B(M1)⊗B(M2)⊗B(M3)⊗B(M4)⊗B(M5)

G
oo

F

OO

Figure 3.5: Example of a Λ2
2 horn

Now, letting G be any lift of G′, we get the diagram:

We don’t have a map H yet, but we know it must be a lift of H ′. As we require

our maps to be simplicial coaction maps when we’ve reduced to just a comodule

over B in the 0 vertex, by picking 2 ∈ [2], for instance, and following the maps

F ′ and G′, we reduce our view to the triangle:

B
(
A⊗

τ2
B(M4)⊗B(M5)

)
h

vv
B(L2) B(M4)⊗B(M5)g

oo

f

OO

Figure 3.6: Example of a reduced Λ2
2 horn

So using this method, we can reduce our work to only the case where there is

an element B(Li) in the 0th vertex.

We are now ready to tackle our Λn
n horn. By proposition 2.4.1.1. in [15], given a

quasi-isomorphism B(M2)→ B(M1), where M2 and M1 are modules, this map

is in fact a homotopy equivalence. Unfortunately, the maps we are lifting are

not so nice so as to let our cocartesian edges act so nicely. We now employ our

lemmas. By what we said above about reducing to a single module in the 0th

vertex, we may use Lemma 3.3. Our cocartesian edge is a quasi-isomorphsism
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by an argument similar to the proof of Proposition 2.3 along with lemma 3.1

which lets us deal with comodules instead of modules. So, when looking at

the Λn
n horn which has been filled in from our map f{n−1,n}, by using Lemma

3.3 we may consider the map f{n−1,n} to be a homotopy equivalence. This

means there exists a simplicial coaction map we will call f{n,n−1} going in the

opposite direction and simplicial coaction maps acting as homotopies which we

call f{n−1,n,n−1} and f{n,n−1,n}, such that

df{n−1,n,n−1} = id + f{n−1,n} ◦ f{n,n−1}, df{n,n−1,n} = id + f{n,n−1} ◦ f{n−1,n}.

For convenience, for each vertex we will write only the number label of that

vertex, not the algebraic object living there. As an example, consider the Λ2
2

horn with all our added information:

1

f{1,2,1}

��

f{0,1}

��

f{2,1}

��
0 2

f{2,1,2}

QQf{0,2}

oo

f{1,2}

WW

f{0,1,2}

]]

Figure 3.7: Generic Λ2
2 horn with new maps added

The small dotted maps, f{1,2,1}, f{2,1}, and f{2,1,2}, come from our homotopy

equivalence and the large dotted maps, f{0,1} and f{0,1,2}, are the ones we are

hoping to find if we want to show we have a p-cocartesian edge. We define

f{0,1} = f{0,2} ◦ f{2,1}. Both of these maps are chain maps, so the differential is

0, as desired. For the homotopy of the entire triangle, we define

f{0,1,2} = f{0,2} ◦ f{2,1,2} + f{0,1} ◦
(
f{1,2} ◦ f{2,1,2} + f{1,2,1} ◦ f{1,2}

)
.

We then get

df{0,1,2} = d
(
f{0,2} ◦ f{2,1,2} + f{0,1} ◦ (f{1,2} ◦ f{2,1,2} + f{1,2,1} ◦ f{1,2})

)
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= f{0,2}+f{0,2}◦f{2,1}◦f{1,2} = f{0,2}+(f{0,2}◦f{2,1})◦f{1,2} = f{0,2}+f{0,1}◦f{1,2},

as desired.

In the general case when considering the lift of the Λn
n horn, we have an explicit

formula for these two maps. First we introduce some notation to ease our

equations. Let

F =
∑

1≤j≤n−2

f{0,...,ĵ,...,n} + f{0,...,j} ◦ f{j,...,n} + f{0,...,n̂−1,n}.

Recall from when we completed an inner horn, even if we do not have f{0,...,n−1}

defined, using equation 3.3 we can define df{0,...,n−1}. We then define

f{0,1,...,n−1} = F ◦ f{n,n−1} + df{0,...,n−1} ◦ f{n−1,n,n−1}

and, using this formula, we define

f{0,1,...,n} = F ◦f{n,n−1,n}+f{0,...,n−1}◦
(
f{n−1,n}◦f{n,n−1,n}+f{n−1,n,n−1}◦f{n−1,n}

)
.

These definitions agree with the definitions given above in the Λ2
2 example. To

see why this works, recall from the proof of the inner horn that dF+df{0,...,n−1}◦

f{n−1,n} = 0. Therefore, using our definition above,

df{0,1,...,n−1} = dF ◦ f{n,n−1} + df{0,...,n−1} ◦ df{n−1,n,n−1}

= df{0,...,n−1} +
(
dF + df{0,...,n−1} ◦ f{n−1,n}

)
◦ f{n,n−1},

as desired.

Now checking that our definition of f{0,1,...,n} is correct,

df{0,1,...,n} = dF ◦ f{n,n−1,n} + F + F ◦ f{n,n−1} ◦ f{n−1,n}

+df{0,...,n−1} ◦ f{n−1,n} ◦ f{n,n−1,n} + f{0,...,n−1} ◦ f{n−1,n}

+f{0,...,n−1} ◦ f{n−1,n} ◦ f{n,n−1} ◦ f{n−1,n} + df{0,...,n−1} ◦ f{n−1,n,n−1} ◦ f{n−1,n}

+f{0,...,n−1} ◦ f{n−1,n} + f{0,...,n−1} ◦ f{n−1,n} ◦ f{n,n−1} ◦ f{n−1,n}

= F +
(
F ◦ f{n,n−1} + df{0,...,n−1} ◦ f{n−1,n,n−1}

)
◦ f{n−1,n}
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+
(
dF + df{0,...,n−1} ◦ f{n−1,n}

)
◦ f{n,n−1,n}.

Using that dF +df{0,...,n−1}◦f{n−1,n} = 0, our definition of f{0,...,n−1} from above,

and that we want df{0,...,n} = F + f{0,...,n−1} ◦ f{n−1,n}, we see our goal has been

reached.

3. Lastly, we must show that for each n ≥ 0, the associated functors C⊗[n] → C
⊗
{i,i+1}

determine an equivalence of ∞-categories, basically saying is an equivalence of

simplicial sets

C⊗[n] → C
⊗
{0,1} × · · · × C

⊗
{n−1,n}

∼= (C⊗[1])
n.

Giving a lift of [n] corresponds to all simplices such that at every vertex is a

sequence (M1, . . . ,Mn). Note at different vertices are different modules. The

maps lifted from N(∆op) are all identity maps f(x) = x, meaning that our

maps in C⊗ can all be filtered for each i between 1 and n. For example an edge

is the n-fold tensor product of maps B(Mi) → B(M ′
i) for i = 1, . . . , n. By our

definition of our monoidal dg-nerve, looking only at the maps corresponding

to a particular i, these maps all are simplicial coaction maps. Thus we have

map of simplicial sets C⊗[n] → C
⊗
{i,i+1}. As our maps and vertices are just tensor

products of each of these particular i restrictions, we have, better than just an

equivalence, a true bijection

C⊗[n] → C
⊗
{0,1} × · · · × C

⊗
{n−1,n}

∼= (C⊗[1])
n,

proving our theorem.
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Chapter 4

Conclusions

In this dissertation, we generalized monoidal structure on the category of modules

over an algebra. In our case, we restricted ourselves by looking at associative Hirsch

algebras and our monoidal structure holding only up to homotopy and used Lurie’s

construction of monoidal ∞-categories to accomplish this.

A Homotopy Gerstenhaber-algebra, or hG-algebra, is an algebra with multiplica-

tion defined via µE given above subject to the further constraints that all Ep,q = 0

except for E0,1, E1,0, and E1,k, k = 1, 2, . . . . If we began with algebras such as the

cochain complex of a topological space, the Hochschild cohomology of an associa-

tive algebra, and a bialgebra, the bar construction of these can be exhibited as an

hG-algebra. Our result then applies to these particular cases.

For future work, consider if we have multiple monoidal structures on a single

triangulated category. Then we have a family of products on its periodic cyclic

homology. For instance, we may have two varieties that share a derived category, but

have different monoidal structures. Ballmer in [1] showed that given the triangulated

category of a variety plus the monoidal structure on that variety, we can retrieve

the variety, as a sort of generalization of spectrum. The two varieties would have

isomorphic cohomologies as vector spaces, but not as rings. This isn’t automatic as

there is a gap from an algebra to a category. However, given a category of a geometric

nature, it is usually the case that there is an associated algebra for which our result

could then be applied.
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Another possibility of future work is for some derived categories there exists a

sheaf A which is called a generator such that this category is equivalent to modules

over C = Ext(A,A), via a sort of Morita equivalence. Unfortunately, the standard

monoidal structure of Db(X) gets lost in this construction, so there may be a way to

recover it by looking at the bar construction of C.
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