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MODELING FOR SEASONAL MARKED POINT PROCESSES:

AN ANALYSIS OF EVOLVING HURRICANE OCCURRENCES1

By Sai Xiao, Athanasios Kottas and Bruno Sansó

University of California, Santa Cruz

Seasonal point processes refer to stochastic models for random
events which are only observed in a given season. We develop non-
parametric Bayesian methodology to study the dynamic evolution
of a seasonal marked point process intensity. We assume the point
process is a nonhomogeneous Poisson process and propose a non-
parametric mixture of beta densities to model dynamically evolving
temporal Poisson process intensities. Dependence structure is built
through a dependent Dirichlet process prior for the seasonally-varying
mixing distributions. We extend the nonparametric model to incor-
porate time-varying marks, resulting in flexible inference for both the
seasonal point process intensity and for the conditional mark distri-
bution. The motivating application involves the analysis of hurricane
landfalls with reported damages along the U.S. Gulf and Atlantic
coasts from 1900 to 2010. We focus on studying the evolution of the
intensity of the process of hurricane landfall occurrences, and the re-
spective maximum wind speed and associated damages. Our results
indicate an increase in the number of hurricane landfall occurrences
and a decrease in the median maximum wind speed at the peak of
the season. Introducing standardized damage as a mark, such that
reported damages are comparable both in time and space, we find
that there is no significant rising trend in hurricane damages over
time.

1. Introduction. There are many examples of phenomena that occur ev-
ery year at random times but are limited to a specific season. Two examples
of natural events with strong scientific and economic relevance are the fol-
lowing: the Atlantic hurricanes and the Pacific typhoons formed by tropical
cyclones that occur between May and November; and the spawning of coho
salmon that takes place from November to January. There are some situ-
ations where the observational window is limited to a given season, such
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as wildlife abundance in regions that are not accessible in the winter. In
addition, there exist applications where interest lies in studying a physical
process during a particular season. One example is the study of extreme
precipitation during the dry season in tropical environments. This can be
important to guarantee water supplies and also to prevent unexpected disas-
ters. On a different note, studying incidence of online purchase of products
during the Christmas season is indispensable for retailers in order to opti-
mize stocking, advertising, logistics, staffing, and website maintenance and
support. In all these examples it is important to understand the underlying
mechanism of the seasonal point process. To this end, we need a flexible sta-
tistical model that can describe the changes of the process intensity during
the season. The model also has to capture the evolution of the intensities
from one year to the next, borrowing strength from the whole data set to
improve the estimation in a given season. Moreover, the model should be
extensible to allow for inference on possible marks associated with the oc-
currence of the events.

In this paper, we focus on the study of landfalling hurricanes recorded
along the U.S. Gulf and Atlantic coasts between 1900 and 2010, and their
associated maximum wind speed and damages. Hurricanes are typical sea-
sonal extreme climate events. In light of potential societal and economic
impacts of climate change, the obvious question regarding hurricanes is
whether there is an intensification of hurricane frequency and an increas-
ing trend of hurricane wind speed and associated damage. A substantial
part of the literature on the variability of hurricane occurrences is based
on annual counts of events. For example, Elsner, Xu and Jagger (2004) and
Robbins et al. (2011) use change point detection methods to find significant
increases in storm frequencies around 1960 and 1995. Limiting the analysis
to the number of hurricanes per year precludes the description of occurrence
variability within each year. Thus, it is not possible to estimate trends in
hurricane occurrence during a particular period within the hurricane sea-
son, say, a given month. An alternative approach is considered in Parisi and
Lund (2000) where the process of hurricane occurrences is modeled with
a continuous time-varying intensity function within one year. However, in
this case, the inter-annual variability is not accounted for. An approach that
models intra-annual as well as inter-annual variability is presented in Solow
(1989). The model is applied to a U.S. hurricane data set (different from the
one considered here) that consists of monthly counts along the mid-Atlantic
coast of the U.S. in 1942–1983. The basic assumption is that the data corre-
spond to a Poisson process with a nonstationary intensity function. This is
decomposed into a secular and a seasonal component, estimated from annual
and monthly counts, respectively. The analysis indicates no trend during the
1950s and a decreasing trend in the 1970s for the secular component, and a
stationary seasonal cycle over time.
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The focus on hurricane occurrence is of great importance in a climatolog-
ical context. However, the frequency of hurricanes provides only a partial
measure of the threat that these phenomena represent. When exploring the
association of hurricane strength with global warming, Emanuel (2005) calls
for research on hurricane potential destructiveness. The disastrous impact to
coastal areas draws the attention of the public, and government officials and
policy makers need reliable inferences on hurricanes’ potential damage for
long-term action on economic development and population growth [Pielke
and Pielke (1997)]. For instance, in about ten years from Hurricane Fay
in 2002 to Hurricane Irene in 2011, hurricane landfalls have caused around
$235 billion damages in 2013 values, and in 2005 Hurricane Katrina alone
caused more than $80 billion in damage. The devastation raises public con-
cern about societal vulnerability to extreme climate [Katz (2010)].

The statistical literature includes some work on exploring possible trends
in landfalling hurricanes’ total damages. Katz (2002) uses a compound Pois-
son process as a stochastic model for total damage. The model consists of
two separate components: one for annual hurricane frequency, and a sec-
ond one for individual hurricane damage. The resulting analysis suggests no
upward trend for hurricane damages recorded between 1925–1995, after nor-
malization due to societal changes. Damages are modeled using a log-normal
distribution and occurrences are assumed to follow a homogeneous Poisson
process, without any time-varying dynamics. Moreover, the literature in-
cludes approaches that study the effect of climate and physical factors on
hurricane activity [Elsner and Jagger (2013)]. Katz (2002) describes the as-
sociation between hurricane damages and El Niño. Jagger and Elsner (2006)
apply extreme value theory to hurricanes with extreme wind speeds. They
assume a homogeneous Poisson process for the occurrences of hurricanes
with wind speeds above a threshold, and a generalized Pareto distribution
for maximum wind speeds. They find that the quantiles of the distribution of
extreme wind speeds vary according to climate factors that affect specific re-
gions differently. Yet another association of hurricane activity with climatic
indexes is found in Jagger, Elsner and Burch (2011), where hurricane dam-
ages are related to the number of sunspots, as well as to the North Atlantic
Oscillation and the Southern Oscillation indexes. Chavas et al. (2012) model
the damage index exceedance over a certain threshold using the generalized
Pareto distribution with several physical covariates, such as maximum wind
speed and continental slope. Murnane and Elsner (2012) use quantile regres-
sion to study the relationship between maximum wind speed and normalized
economic losses. Essentially, all the papers discussed above focus on estimat-
ing trends in hurricane damage and/or its relationship with climate factors.
When the point process of hurricane occurrences is modeled, this is done
under the simplistic setting of a homogeneous Poisson process.
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A fundamental question that remains unanswered by the previously de-
scribed work is whether the trend of hurricane damage over time is due to
the increasing/decreasing frequency or to more/less destructive power of in-
dividual hurricanes. These are challenging questions, as natural variability
is large and we observe only a handful of hurricanes per season. These issues
motivate the presentation of a new statistical method for the analysis of the
hurricane data.

In this paper, we propose a flexible joint model for inference on hurricane
frequency, maximum wind speed and hurricane damage. Our initial assump-
tion is that the point process of hurricane landfalls follows a nonhomoge-
neous Poisson process. As such, the process is characterized by nonconstant
intensity functions indexed by the hurricane season. Notice that we refer to
“intensity” using the point process terminology, and not the climate termi-
nology, where it refers to maximum wind speed. We decompose the intensity
functions into normalizing constants, which model annual hurricane frequen-
cies, and density functions, which model normalized intensities within a sea-
son. We use a time series model for the normalizing constants. We then take
advantage of the flexibility of Bayesian nonparametric methods to model
the sequence of nonhomogeneous density functions. The proposed approach
allows for detailed inferences on both the intra-seasonal variations of hur-
ricane occurrences, and the inter-seasonal changes of hurricane frequencies.
The latter can be considered on time frames shorter than the whole season,
for example, monthly. To our knowledge, this is the first statistical analysis
of hurricane behavior that takes such a comprehensive approach. Moreover,
to study hurricane damage, we treat maximum wind speed and hurricane
damage as marks associated with each hurricane occurrence. We extend the
method described above to make inference about marks associated with the
time of occurrence of the point process events. As a result, we obtain a full
probabilistic description of the dynamics of the process intensities and the
distribution of the marks. The application is focused on the hurricane data,
but the methodology is suitable in general for time-varying seasonal marked
Poisson processes.

The article is organized as follows. Section 2 describes the hurricane data
and previous work relevant to this application. We perform an initial analy-
sis of the data, ignoring the year of hurricane occurrence and using a mixture
of Beta densities to model the hurricane intensity. This analysis serves to
motivate the methodological development, as it clearly suggests that a sim-
ple parametric model would not capture the complex shape of the intensity
function of occurrences during the hurricane season. Section 3 develops the
methodology to incorporate dynamic evolution in the analysis, using depen-
dent Dirichlet process mixture models. We explore the problem of data ag-
gregation and study different aggregation strategies. In Section 4 we present
the extension of the model to time-varying marks and apply it to maximum
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Table 1

Saffir–Simpson hurricane scale. TD: tropical depression; TS: tropical storm; HC 1 to HC
5: hurricane of category 1 to 5

Category TD TS HC 1 HC 2 HC 3 HC 4 HC 5

Maximum wind speed (mph) <39 39–73 74–95 96–110 111–130 131–155 >155

wind speed and hurricane damage. Our results indicate that at the peak of
the season, there is an increase in the number of hurricane occurrences, a
decrease in the median maximum wind speed and a slight decreasing trend
in standardized damage associated with a particular hurricane. Section 5
concludes with a general discussion.

2. Hurricane data. We consider data for 239 hurricane landfalls with
reported damages along the U.S. Gulf and Atlantic coasts from 1900 to
2010. The data are available from the ICAT Damage Estimator website
(http://www.icatdamageestimator.com). ICAT provides property insur-
ance to businesses and home owners for hurricane and earthquake damage in
the United States. The ICAT data are consistent with the landfall summary
data of the National Hurricane Center’s North Atlantic hurricane database
(HURDAT). The scope of the data is restricted to landfalling hurricanes,
as we emphasize the analysis of a marked point process where damage is
a mark of key interest. Hurricanes are usually defined as tropical cyclones
with maximum wind speed of at least 74 miles per hour (mph). With some
abuse of terminology, we use “hurricanes” throughout the paper to refer to
all the storms in the ICAT data set. This includes 4 tropical depressions,
63 tropical storms, 54 hurricanes of category 1, 42 hurricanes of category 2,
59 hurricanes of category 3, 14 hurricanes of category 4, and 3 hurricanes of
category 5. The classification follows the Saffir–Simpson hurricane scale in
Table 1. The data set includes information on the landing date, base damage,
normalized damage to current value, category, maximum wind speed and af-
fected states. A detailed description of the data can be found in Pielke et al.
(2008) and the ICAT website. In particular, as discussed in Pielke et al.
(2008), there is an undercount of damaging storms prior to 1940. This is
an important issue that needs to be considered when quantifying possible
trends in the number of hurricane occurrences.

In this application, we consider maximum wind speed and economic dam-
age as marks. Maximum wind speed is defined as the maximum sustained
(over one minute) surface wind speed to occur along the U.S. coast. Eco-
nomic damage is reported as base damage, which is the direct total loss
associated with the hurricane’s impact in the year when the hurricane oc-
curred. In order to make all storm damages comparable, a standardization

http://www.icatdamageestimator.com
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Fig. 1. Left panel: The time series of annual hurricane occurrences. Right panel: His-
togram (with bin width of 10 days) of hurricane occurrences over months after aggregating
all hurricanes into one year. The solid and dashed lines denote the point and 95% interval
estimates of the corresponding NHPP density, using the Dirichlet process mixture model
discussed in Section 2.

method is used to estimate the damages to a baseline year by extending the
normalization method from Pielke et al. (2008); see Section 4.2 for details.

The time series of annual hurricane counts is shown in Figure 1. Evidently,
hurricane occurrence depicts strong inter-annual variability. Moreover, there
are indications of discontinuities, which have been thoroughly considered
in the literature. In fact, significant shifts during the middle of the 1940s,
1960s and in 1995 have been identified in Elsner, Xu and Jagger (2004)
and Robbins et al. (2011). The changes in the underlying data collection
methods, leading to change points in 1935 and 1960, have been explained in
Landsea et al. (1999) and Robbins et al. (2011). To explore the variability
within the hurricane season, Figure 1 also plots a histogram of hurricane
occurrences ignoring the years of the events. The histogram reveals strong
intra-seasonal variability, with the peak of the season around September
and a concentration of hurricanes around June during the early part of
the season. Figure 2 provides further insight on the variability of hurricane
occurrence within the season, where we have now applied aggregation by
decades. The distribution of hurricane occurrences within one season varies
from decade to decade, and the inter-decadal change of hurricane occurrences
varies from month to month. This indicates that the hurricane point process
intensity during a given season varies over the decades. Here, we assume that
such a process corresponds to a nonhomogeneous Poisson process (NHPP).

There is a large body of literature on nonparametric methods to model
temporal (or spatial) NHPP intensities and to tackle the analytically in-
tractable NHPP likelihood. Some are based on the log-Gaussian Cox pro-
cess model [Møller, Syversveen and Waagepetersen (1998), Brix and Diggle
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Fig. 2. The number of hurricanes within one season aggregated by decades. In each
decade, the number of hurricanes is grouped by months.

(2001), Liang, Carlin and Gelfand (2009)], while others use a Gaussian Cox
process model [Adams, Murray and MacKay (2009)]. An approach based on
modeling the intensity function using kernel mixtures of weighted gamma
process priors is developed in Wolpert and Ickstadt (1998) and Ishwaran
and James (2004). The method presented in this paper uses nonparamet-
ric mixtures to model a density that, up to a scaling factor, defines the
NHPP intensity. The approach was originally developed in Kottas (2006)
and Kottas and Sansó (2007), with different applications considered by Ih-
ler and Smyth (2007), Ji et al. (2009), Taddy (2010), Kottas et al. (2012)
and Kottas, Wang and Rodŕıguez (2012).

Let λ(t) be the NHPP time-varying intensity, with t in a bounded time
window (0, T ). Inference proceeds by factoring the intensity function as

λ(t) = γf(t), where γ =
∫ T
0 λ(t)dt is the total intensity over (0, T ); note

that γ < ∞ based on the local integrability of the NHPP intensity func-
tion. Hence, the likelihood function induced by the NHPP assumption, us-
ing the observed point pattern {t1, . . . , tn}, is given by p({ti}

n
i=1|γ, f(·)) ∝

exp(−γ)γn
∏n

i=1 f(ti), indicating that f(t) and γ can be modeled indepen-
dently. To develop inference for λ(t), we start by rescaling all the observa-
tions to the unit interval, thus setting T = 1. A convenient choice of dis-
tribution that will result in a conjugate prior for γ is the gamma distribu-
tion. Alternatively, we can use the reference prior p(γ)∝ γ−11{γ>0} [Kottas
(2006)]. We model f(t) using the density estimator given by the Dirichlet
process (DP) mixture model [Ferguson (1973), Antoniak (1974)]. To com-
plete the model we need to specify a mixing kernel. The kernel of choice in
this case is a Beta density, which has the advantages of providing flexible
shapes and, being compatible with the compact support of the intensity,
avoiding edge effect problems. Using the DP stick-breaking representation
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[Sethuraman (1994)], the model can be formulated in the following terms:

ti|G,τ ∼ f(ti|G,τ) =

∫ 1

0
Beta(ti|µτ, (1− µ)τ)dG(µ),

G(µ) =
∞
∑

j=1

wjδµj
(µ),

(1)

zj
i.i.d.
∼ Beta(1, α); w1 = z1,

wj = zj

j−1
∏

r=1

(1− zr), j ≥ 2; µj
i.i.d.
∼ G0,

where G0 is the DP centering distribution and α is the DP precision pa-
rameter. In our case, a convenient choice for G0 is given by the uniform
distribution noting that the Beta mixture kernel is parameterized such that
µ ∈ (0,1) is the mean and τ > 0 is a scale parameter.

We apply this model to the hurricane data ignoring the year index. As
shown in Figure 1, the estimated density is multi-modal, nonsymmetric and
has a nonstandard right tail. From this analysis it is clear that a proper
description of the hurricane data that assumes an underlying Poisson pro-
cess requires a nonhomogeneous intensity. Although the initial DP mixture
model of Beta densities is flexible enough to capture nonstandard shapes of
intensities within a season, it is not capable of describing the evolution of
intensities across seasons. To address this problem, we propose in the next
section a dynamic extension of the Beta DP mixture model.

3. Modeling time-varying intensities. We seek to model a collection of
intensities evolving over years, {λk(t) :k ∈K}, where K= {1,2, . . .} denotes
the discrete-time index set and λk(t) is the intensity for the season in year
k. The model presented in the previous section uses a DP prior to mix over
the mean of a Beta kernel. A temporal extension of such a model will have
those priors depend on k. To describe the correlation between successive
years, the model needs to impose dependence between the priors. As an
extension of the DP prior, MacEachern (1999, 2000) proposed to model
dependency across several random probability measures. The extension is
based on the dependent Dirichlet process (DDP), which provides a natural
way to model data varying smoothly across temporal periods or spatial
regions. The construction of the DDP is based on the DP stick-breaking
definition, where the weights and/or atoms are replaced with appropriate
stochastic processes on K. Here, we utilize the “single-p” DDP prior model,
where the weights are constant over K, while the atoms are realizations of
a stochastic process on K.
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3.1. Nonparametric dynamic model for Poisson process densities. De-
note by ti,k, for i = 1, . . . , nk and k = 1, . . . ,K, the time of the ith event
(hurricane landing date) in the kth season, where K is the observed number
of seasons and nk is the observation count in the kth season. Recall that ti,k
has been converted to the unit interval. Following the modeling approach
discussed in Section 2, the collection of NHPP intensities can be represented
by {λk(t) = γkfk(t) :k ∈ K}. To introduce dependence on K, we assume a
parametric time series model for {γk :k ∈K} and a DDP mixture model for
{fk(t) :k ∈K}. The former is described in Section 3.2. The latter is defined
as follows:

fk(t)≡ f(t|Gk, τ) =

∫ 1

0
Beta(t|µτ, (1− µ)τ)dGk(µ),

Gk(µ) =

∞
∑

j=1

wjδµj,k
(µ),

where the weights {wj}, defined as in (1), are the same across seasons.
Thus, the model assumes that observations ti,k in the kth season arise from
a mixture of Beta distributions with component-specific means µj,k and
variances µj,k(1− µj,k)/(τ + 1). The distribution for the mean of the Beta
mixture kernel is allowed to evolve over K, whereas τ is common to all Gk.

To impose dependence between the collection of random mixing distri-
butions Gk, we replace G0 in (1) with a stochastic process for the atoms
{µj,k :k ∈ K}. We thus need a discrete-time process with marginal distri-
butions supported on (0,1), an appealing choice for which is the positive
correlated autoregressive process with Beta marginals (PBAR) developed
by McKenzie (1985). For the atom µj,k, this is defined through latent ran-
dom variables as follows:

µj,k = vj,kuj,kµj,k−1 + (1− vj,k),(2)

where {vj,k :k ∈ K} and {uj,k :k ∈ K} are mutually independent sequences
of i.i.d. Beta random variables, specifically, vj,k ∼ Beta(b, a− ρ) and uj,k ∼
Beta(ρ, a−ρ), with a > 0, b > 0 and 0< ρ< a. Using properties for products
of independent Beta random variables, it can be shown that (2) defines a
stationary process {µj,k :k ∈ K} with Beta(a, b) marginals. Moreover, the
autocorrelation function of the PBAR process is given by {ρba−1(a + b−
ρ)−1}m, m = 0,1, . . . , and thus ρ controls the correlation structure of the
process.

Although the DDP-PBAR prior for GK = {Gk :k ∈K} is centered around
a stationary process, it generates nonstationary realizations. In particular,
if {θk :k ∈ K} given GK arises from GK, then E(θk|Gk) =

∑∞
j=1wjµj,k and

Cov(θk, θk+1|Gk,Gk+1) = (
∑∞

j=1wjµj,kµj,k+1) − (
∑∞

j=1wjµj,k)(
∑∞

j=1wj ×

µj,k+1).
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The Markov chain Monte Carlo (MCMC) method for inference, discussed
in Section 3.3 and the Appendix, is based on a truncation approximation
to the DDP prior stick-breaking representation. More specifically, Gk ≈
∑N

j=1wjδµj,k
, with w1, . . . ,wN−1 defined as in (1), but wN = 1−

∑N−1
j=1 wj .

Because the weights are constant across seasons, it is straightforward to
choose the truncation level N to any level of accuracy using standard DP
properties. For instance, E(

∑N
j=1wj |α) = 1− {α/(α + 1)}N , which can be

averaged over the prior for α to estimate E(
∑N

j=1wj). Given a tolerance level
for the approximation, this expression can be used to obtain the correspond-
ing value N . The truncated version of Gk is used in all ensuing expressions
involving model properties and inference results.

3.2. Time series model for the total intensities. The Poisson process in-
tegrated intensities {γk} can be viewed as a realization from a time series in
discrete index space, with positive valued states. We adopt the state–space
modeling method with exact marginal likelihood proposed by Gamerman,
Rezende dos Santos and Franco (2013). Unlike other time series models that
build from a log-Gaussian distributional assumption, this approach provides
a conjugate gamma prior, resulting in an efficient MCMC algorithm for pos-
terior simulation. The model is defined by the following evolution equation
for γk:

γk+1 =
1

ω
γkξk+1, ξk+1|γk, n1:k ∼ Beta(ωak, (1− ω)ak),

where ω is a discount factor with 0<ω < 1, ξk+1 is a random multiplicative
shock, and n1:k denotes the information available up to time k.

Denote n0 as the information available initially. Take the initial prior of
γ0|n0 as Gamma(a0, b0). Then, the prior distribution at time k is γk|n1:k ∼
Gamma(ak|k−1, bk|k−1), where ak|k−1 = ωak−1 and bk|k−1 = ωbk−1. Based on
the NHPP assumption, nk|γk ∼ Poisson(γk), and thus the updated distribu-
tion is γk|n1:k ∼Gamma(ak, bk), where ak = ωak−1+nk and bk = ωbk−1+1.
The smoothing updated distribution is

γk − ωγk+1|γk+1, n1:k ∼Gamma((1− ω)ak, bk).(3)

For MCMC posterior inference, we can obtain samples from the full condi-
tionals of the joint vector γ1, . . . , γK by first filtering the observations for-
ward to obtain ak and bk, k = 1, . . . ,K, and then sampling γk backward, for
k =K, . . . ,1, using the distribution in (3). The discount factor ω is estimated
by maximizing the joint log-likelihood function defined by the observed pre-
dictive distribution log

∏K
k=1 p(nk|n1:k−1, ω).
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3.3. Implementation details and posterior inference. Inference for the
scale parameter of the Beta mixture kernel using the fully aggregated data
(see Section 2) presented no problems and was quite robust to the choice of
the gamma prior assigned to τ . As discussed in more detail in Section 3.4,
to estimate evolving hurricane intensities using the DDP mixture model, it
is necessary to apply some aggregation of the data into periods of time that
comprise more than one year. In this respect, aggregating the data in decades
emerges as an appropriate choice. However, the estimation of τ becomes a
challenging problem, since in each decade there are still only a handful of
hurricanes. In fact, a simulation analysis indicates that reliable estimation
of τ requires between 50 to 100 observations per time period. This problem
can be explained by the fact that τ partially controls the bandwidth of the
Beta kernels, with the width of the kernels in inverse relationship with the
size of τ . Thus, when only a few data points are available, τ will tend to
be small, allowing wide kernels to use the information from most of the
few available data. Such kernels cannot capture the multi-modality of the
seasonal hurricane intensity. We thus resort to fixing the value of τ in our
analysis of the data aggregated by decade. We assume that the typical width
of the Beta kernel corresponds to a month, such that (1/12)/4 can be used
as a proxy for the corresponding standard deviation {µ̂(1− µ̂)/(τ + 1)}1/2,
yielding τ = 575 when µ̂ = 0.5. This is the value of τ used in our analysis.
We note that informative priors for τ centered around this value result in
similar inferences.

For the centering PBAR process of the DDP prior, we set a = b = 1,
leading to the default choice of uniform marginal distributions for the µj,k

covering the entire season between May and November. The DDP prior spec-
ification is completed with a uniform hyperprior for the PBAR correlation
parameter ρ, and a gamma(2,1) prior for α. Finally, we set N = 50 for the
truncation level in the DDP approximation; note that under the gamma(2,1)
prior for α, E(

∑50
j=1wj) ≈ 0.9999578, using the results discussed in Sec-

tion 3.1.
We implement the DDP-PBAR model using the blocked Gibbs sam-

pler [Ishwaran and James (2001)] with Metropolis–Hastings steps; see the
Appendix for details. Combining the posterior samples for the parameters
of the DDP-PBAR model for {fk(t)} and the posterior samples for the pa-
rameters of the time series model for {γk}, a variety of inferences about
hurricane intensity functionals can be obtained.

Of particular interest in our application is the average number of hur-
ricanes within a time interval (t1, t2) in the kth season, which is given by

Λk(t1, t2) = γk
∫ t2
t1

fk(t)dt. We can also obtain the probability of having a

certain number x of hurricanes within time interval (t1, t2) in the kth season
as {(Λk(t1, t2))

x/x!} exp(−Λk(t1, t2)). As a consequence, the probability of
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having at least one hurricane within time interval (t1, t2) in the kth sea-
son is given by 1− exp(−Λk(t1, t2)). Under the DDP Beta mixture model,
∫ t2
t1

fk(t)dt=
∑N

j=1wj

∫ t2
t1

Beta(t|µj,kτ, (1− µj,k)τ)dt.
A further inferential objective is the one-step ahead prediction of the in-

tensity function for the next season, γk+1
∑N

j=1wj Beta(t|µ̃j,k+1τ, (1− µ̃j,k+1)τ).

Based on the PBAR construction in (2), the conditional distribution for
µ̃j,k+1 given µj,k and vj,k+1 is a rescaled version of the Beta(ρ,1− ρ) distri-
bution for uj,k+1. Hence, for each j = 1, . . . ,N , posterior predictive samples
for the µ̃j,k+1 can be readily obtained given draws for the µj,k and vj,k+1; the
former are imputed in the course of the MCMC, the latter can be sampled
from their Beta(1,1− ρ) distribution given the MCMC draws for ρ. There-
fore, combining with predictive draws for γk+1, full inference is available for
forecasting any functional of the hurricane intensity.

3.4. Analysis of dynamically evolving hurricane intensities.

3.4.1. Data aggregation. The number of landfalling hurricanes with re-
ported damages during 1900–2010 in the U.S. is 239. On average, there are
merely 2 or 3 hurricanes every year, with no hurricane in some years, for
example, 1922–1925 and 2009. Thus, the first practical problem we face is
that of data scarcity. When modeling the data at the yearly level, the chal-
lenge is that it is difficult to analyze a process with so few realizations per
year. Hence, we consider aggregating the data over periods of five and ten
years, and compare the results under the two different levels of aggregation.

Aggregation over a period of time is based on the assumption that the
NHPP densities for all the years corresponding to the aggregated period are
the same. For the five year aggregation we have 22 different intensities and
for the decadal aggregation we have 11. Data aggregation does not effect the
estimation of normalizing constants {γk}. In fact, we can apply the model
for the {γk} proposed in Section 3.2 to the yearly data, and then aggregate.
Figure 3 provides results to compare the two aggregation strategies in the
context of forecasting the hurricane intensity and one of its functionals in
the next five years 2011–2015. Encouragingly, the results are very similar
under the two levels of data aggregation.

Regarding the analysis of historical data, we focus on the month of Septem-
ber. In fact, for the Atlantic hurricane season, August, September and Octo-
ber (ASO) are very important months, as 95% of Saffir–Simpson category 3,
4 and 5 hurricane activity occurs during August to October [Landsea (1993)].
In particular, September is the most frequently occurring month. Figure 4
shows the estimated average number of hurricanes in September under the
five year data aggregation. We observe a strong variability, in particular, for
the periods 1921–1925, 1966–1970 and 1991–1995. This can be attributed
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Fig. 3. Under the two distinct levels of data aggregation, posterior mean estimates for
the hurricane intensity in 2011–2015 (left panel) and posterior densities for the probability
of at least one hurricane in May for 2011–2015 (right panel).

to the fact that during 1921–1925 there was no hurricane in September.
Moreover, there was only one hurricane in September during 1966–1970,
but there were 7 hurricanes in September during both 1961–1965 and 1971–
1975. Finally, there was no hurricane in September during 1991–1995, but 10
hurricanes occurred in September during 1996–2000. Thus, even though the
prior model is imposing some smoothness, posterior inference results are still
strongly affected by the scarcity of observations, even at the level of a five
year period. Our resulting inference in the five-year aggregation level reflects
the strong variability of hurricane counts in September. More specifically,

Fig. 4. Boxplots of posterior samples for the average number of hurricanes in the month
of September across five-year periods from 1900 to 2010.
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Fig. 5. Posterior mean estimates (solid line) and 95% intervals (gray bands) of the
hurricane intensity during 1971–2010. Points along the horizontal axis correspond to the
observations.

the clear separation of the posterior distributions for the different periods
mentioned above gives a probabilistic assessment of significant breakpoints.
These are in agreement with the change points detected in Elsner, Xu and
Jagger (2004) and Robbins et al. (2011) for the counts over all months. How-
ever, in this work we focus on revealing possible long-term trends rather than
on anomaly detection. Thus, on the basis of these analyses, for the rest of
the paper we focus on data aggregated over decades.

3.4.2. Evolving hurricane intensities across decades. Figure 5 presents
the estimated intensity functions in the most recent four decades. The esti-
mates fit the data very well, correctly capturing the peaks in ASO and tails
in June and November. They show some similarities between the decades,
but they adapt to the characteristic of the distribution of hurricane events
in each decade. An important product of our probabilistic analysis is the
average number of hurricanes in a given time period, which, as discussed
in Section 3.3, requires the posterior distribution for both γk and Gk. In
Figure 6 we present the distributions for the mean number of hurricanes in
the peak month of September and the off-season months of May and June,
along with the associated observed number of hurricanes. Inference based on
our model smooths the data through the decades, especially when a small
number of observations are available. Overall, the distribution of the mean
number of hurricanes in each decade matches the observations quite well.
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Fig. 6. Boxplots of posterior samples of the mean number of hurricanes in early season
(May and June) by decade (left panel) and in September by decade (right panel). In both
panels, the solid dots indicate the corresponding observed numbers of hurricanes.

Both panels depict an increasing trend in the first four decades as well as
during the most recent three decades. The former may be an artifact of the
under-reporting during the beginning of the 20th Century. While the lat-
ter is very subtle for the off-season months, it is very strong for the month
of September. In fact, the last decade depicts an average number of hurri-
canes in the peak of the season, which is substantially higher than any other
decade on record.

4. DDP model for seasonal marked Poisson processes. Here, we extend
the DDP model, developed in the previous section, to a seasonal marked
Poisson process. A marked Poisson process (MPP) refers to a Poisson process
with an associated random variable or vector for each event. In our applica-
tion, {ti,k : i= 1, . . . , nk} is a point pattern on (0, T ) and the marks can be de-
noted as {yi,k : i= 1, . . . , nk} on mark space Y . Thus, the realization from the
marked point process in the kth decade is {(ti,k, yi,k) : ti,k ∈ (0, T ), yi,k ∈ Y }.
A MPP can be defined as a Poisson process on the joint marks-points space
with intensity function ϕ on (0, T ) × Y . In particular, the marking theo-
rem [Møller and Waagepetersen (2004)] states that a MPP is a NHPP with
intensity function given by ϕ(t, y) = λ(t)f(y|t), where λ(t) is the marginal
temporal intensity function, and the conditional mark density f(y|t) depends
only on the current time point t.

4.1. The DDP-AR model. We extend the methodology from Taddy and
Kottas (2012) for MPPs based on joint mixture modeling on the marks-
points space. This modeling approach yields flexible inference for both the
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marginal temporal intensity and for the conditional mark distribution. Here,
it is utilized to develop a model for the collection of hurricane MPPs evolving
over decades. We will refer to the full model as the DDP-AR model, since,
in addition to the PBAR structure, it incorporates autoregressive processes
to model the conditional evolution of marks over time.

The marks are given by the maximum wind speed for each hurricane and
the associated economic damages. Instead of using the total dollar amount
of hurricane damage, we define a standardized damage, which is calculated
as a proportion of total wealth with respect to a reference region and a
baseline year (see Section 4.2). The resulting NHPP is defined in a three-
dimensional space comprising time, maximum wind speed and standardized
damage. Maximum wind speed and standardized damage are transformed by
taking logarithms and subtracting the global average of the log-transformed
values. We denote yi,k and zi,k as, respectively, the transformed maximum
wind speed and the transformed standardized damage of the ith hurricane in
the kth decade. For the three-dimensional intensity function, ϕk(t, y, z), we
use the factorization γkfk(t, y, z), where {γk} follows the time series model
presented in Section 3.2. Regarding the density function, we use a DDP
mixture with a product of univariate kernel densities for time and marks.
Thus, the dependence among time and marks is introduced by the mixing
distribution. We retain the Beta kernel density for time and use Gaussian
kernel densities on the log scale for the two marks, mixing on the mean of
each kernel component. Hence, the DDP mixture model for fk(t, y, z) can
be expressed as

∫

Beta(t|µτ, (1− µ)τ)N(y|ν,σ2)N(z|η, ζ2)dGk(µ, ν, η),(4)

where Gk(µ, ν, η) =
∑N

j=1wjδ(µj,k ,νj,k,ηj,k)(µ, ν, η). The locations ν and η of

the normal kernels are allowed to change across decades. The scales σ2 and
ζ2 are the same across decades, serving as adjusting parameters for the
bandwidth of the kernels. Conditionally conjugate inverse gamma priors are
assumed for σ2 and ζ2.

Dependence across decades for maximum wind speeds and standardized
damages is obtained through AR(1) processes for the respective kernel means
{νj,k :k ∈K} and {ηj,k :k ∈K}:

νj,k|νj,k−1 ∼N(βνj,k−1, σ
2
1), ηj,k|ηj,k−1 ∼N(φηj,k−1, σ

2
2)

with inverse gamma priors assigned to σ2
1 and σ2

2 , and uniform priors on
(−1,1) placed on β and φ. Since the DDP prior structure for GK = {Gk :k ∈
K} in (4) extends the one for the DDP-PBAR model, we retain the re-
sult about nonstationary realizations given GK, extending the argument
in Section 3.1. When the random measures Gk are integrated out, we ob-
tain E(yk) = 0, Var(yk) = E(σ2) + (1 − β2)−1E(σ2

1) and Cov(yk, yk+1) =
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β(1− β2)−1E(σ2
1), with analogous results for the zk. These expressions can

be of help for prior specification.
The MCMC method for the DDP-AR model involves an extension of the

posterior simulation algorithm described in the Appendix.2 As the marks are
associated with normal AR(1) processes and conditionally conjugate priors
are used, all the parameters associated with marks have closed-form full con-
ditionals. Finally, since the normalizing factors (required for the standardiza-
tion of damages) corresponding to the period 2005–2010 are not available,
the MCMC algorithm includes steps to impute the missing standardized
damages for those years.

4.2. Standardization of hurricane damages. The purpose of standardiz-
ing hurricane damages is to isolate societal and spatial factors that affect
the amount of damage and are not considered in the model. There exist sev-
eral methods to adjust the economic damages of past hurricanes to today’s
value [Pielke et al. (2008), Schmidt, Kemfert and Hoeppe (2010), Collins
and Lowe (2001)]. Here, we define standardized damage as an extension to
the method in Pielke et al. (2008).

The hurricane data set includes base damage and normalized damage.
Base damage is calculated as the total landfall year dollar value of the dam-
age caused by a hurricane. Such amount is converted to the dollar value
corresponding to the latest year in the record by normalizing for inflation,
wealth and population over time. Denote inflation, wealth per capita and
affected county population in year t as It, Wt and Pt, respectively. Equation
(5) shows the normalization of the damage due to a hurricane landing in
year t to values in year s:

normalized.damages = base.damaget ×
Is
It

×
Ws

Wt
×

Ps

Pt
.(5)

This normalization method yields the estimated damages of all hurricanes
in today’s value but in the same region, for example, the damages caused by
Katrina 2005 if it occurred under societal conditions in Louisiana affected
counties in 2013.

To make hurricane damages comparable, we have to adjust for inflation
and account for the fact that much more damage will be caused if the hur-
ricane lands in densely populated and wealthier counties than in scarcely
populated and poor regions. Thus, we have to remove both a spatial and
societal factor from the damage, so that the model can explore the pure

2The code to implement the DDP-AR model (as well as the
DDP-PBAR model) is available from the first author’s website at
http://users.soe.ucsc.edu/~sxiao/research.html#software.

http://users.soe.ucsc.edu/~sxiao/research.html#software


18 S. XIAO, A. KOTTAS AND B. SANSÓ

association between damages and climate variability. Hence, we define stan-
dardized damage as

standardized.damage =
base.damaget
It ·Wt · Pt

.

Such a quantity can be interpreted as a base damage normalized to a refer-
ence year’s value in a reference region; in the reference year and region, the
inflation factor, wealth per capita and population are all equal to 1. This
method removes the difference in hurricane damages due to the landing years
and locations. Neumayer and Barthel (2011) and Chavas et al. (2012) de-
veloped similar ideas normalizing damages by using base.damaget/wealtht,
where wealtht is the total wealth of the affected regions. They interpret the
standardized damage as a relative damage, termed actual-to-potential-loss
ratio. Note that the denominator we use, It ·Wt ·Pt, is an approximation of
wealtht. All inferences presented in Section 4.4 that involve hurricane dam-
age refer to standardized damage. Note that, if the normalizing factors are
provided, actual hurricane damages for a given affected region and year can
be obtained from standardized damages. It is important to notice that the
normalizing factors prior to 1925 have larger uncertainties compared to those
for later periods [Pielke et al. (2008)]. This problem is compounded with the
already mentioned issue of underreporting of hurricanes in the early part of
the 20th Century. The reader should keep this in mind when interpreting
the results in the following sections.

To visualize the effect of the conversion on damage values, Figure 7
shows three different calculations for hurricane damage and their change
over decades. The base damage depicts an increasing trend over decades,
which disappears after normalization and standardization.

4.3. Inference. For a marked point process the typical inference of in-
terest is for the distribution of the marks, conditional on time. To obtain
inference about different functionals of the conditional mark distribution, we
use the available posterior samples of the joint density fk(t, y, z). Specifically,
conditional inference for maximum wind speed is obtained from

fk(y|t,Gk) =
fk(y, t|Gk)

fk(t|Gk)

=

∑N
j=1wj Beta(t|µj,kτ, (1− µj,k)τ)N(y|νj,k, σ

2)
∑N

j=1wj Beta(t|µj,kτ, (1− µj,k)τ)
(6)

=
N
∑

j=1

w∗
j,k(t)N(y|νj,k, σ

2),
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Fig. 7. Data box plots across decades for log-transformed base damages (left panel),
damages normalized to current values (middle panel) and standardized damages (right
panel).

where w∗
j,k(t) =

wj Beta(t|µj,kτ,(1−µj,k)τ)∑N
j=1wj Beta(t|µj,kτ,(1−µj,k)τ)

. Of particular importance is the

distribution of maximum wind speed conditional on a specific time period,
for example, the peak season ASO or a particular month. Suppose that
the time period of interest corresponds to the interval (t1, t2). The density
conditional on (t1, t2) can be developed as

fk(y0|t ∈ (t1, t2),Gk)

=
lim∆y0→0(1/∆y0)Pr(y ∈ (y0, y0 +∆y0], t ∈ (t1, t2)|Gk)

Pr(t ∈ (t1, t2)|Gk)
(7)

=

N
∑

j=1

h∗j,kN(y0|νj,k, σ
2),

where h∗j,k ≡ h∗j,k(t1, t2) =
wj

∫ t2
t1

Beta(t|µj,kτ,(1−µj,k)τ)dt
∑N

j=1wj

∫ t2
t1

Beta(t|µj,kτ,(1−µj,k)τ)dt
.

In equations (6) and (7), both the weights, w∗
j,k(t), h

∗
j,k, and the mixing

components, νj,k, change with the decade index k; importantly, the former
are time dependent, thus allowing local learning under the implied location
normal mixtures. Hence, the model has the flexibility to capture general
shapes for the conditional mark distribution which are allowed to change
across decades in a nonstandard fashion. Analogous expressions hold for the
conditional distribution of standardized damage. Moreover, since equation
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(4) provides the joint density of time, maximum wind speed and standard-
ized damage, we can obtain inference for a mark conditional on an interval
of the other mark and an interval of time. For instance, we can explore the
distribution of damage conditional on the hurricane category as defined by
different intervals of maximum wind speed; see Table 1.

The time evolution of hurricane occurrences and the marks are controlled
by autoregressive processes. One-step ahead prediction of joint time-mark
distributions can be obtained by extending the method described in Sec-
tion 3.3 with additional sampling for the {νj,k+1} and {ηj,k+1} from the
AR(1) processes that form the building blocks of the DDP prior.

4.4. Results. We applied the DDP-AR model to the full data set in-
volving hurricane occurrences across decades and the associated maximum
wind speeds and standardized damages. The hyperpriors for the time com-
ponent of the DDP mixture model were similar to the ones discussed in
Section 3.3 for the DDP-PBAR model; τ was again fixed. For the variances
of the Gaussian mixture kernels and the variances of the corresponding
AR(1) processes for the DDP prior, we used σ2 ∼ IG(3,2), ζ2 ∼ IG(3,10)
and σ2

1 ∼ IG(3,2), σ2
2 ∼ IG(3,10). Here, the shape parameter of each inverse

gamma prior is set to 3, which is the smallest (integer) value that ensures fi-
nite prior variance. The prior means were specified using the expressions for
the marginal variances of maximum wind speed and standardized damage
(see Section 4.1) with β and φ replaced by their prior mean at 0. In par-
ticular, we set E(σ2) = E(σ2

1) = 0.5(Ry/4)
2 and E(ζ2) = E(σ2

2) = 0.5(Rz/4)
2,

where Ry and Rz denotes the range of the yi,k and zi,k, respectively.
The posterior distribution for the number of distinct mixing components

is supported by values that range from 10 to 16. The 95% posterior cred-
ible interval for ρ is given by (0.73,0.87), resulting in a (0.59,0.79) 95%
credible interval for the PBAR correlation. On the other hand, the 95%
posterior credible intervals for β and φ are, respectively, (−0.14,0.79) and
(−0.24,0.81), indicating more variability in the estimated correlation of the
AR(1) centering processes for the DDP prior. Retaining the uniform priors
for ρ, β and φ, we performed a prior sensitivity analysis for the variance hy-
perparameters. The parameters σ2 and σ2

1 associated with maximum wind
speed are relatively sensitive to the prior choice, while the parameters ζ2

and σ2
2 for standardized damage are quite stable. Overall, posterior infer-

ence results are robust to moderate changes in the prior hyperparameters.
For inference, we focus on the densities of maximum wind speed and log-

arithmic standardized damage conditional on events occurring in the early
season and the peak season. Figure 8 shows the comparison between the
maximum wind speed densities conditional on June and September in each
decade. We observe that maximum wind speeds in September are higher
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Fig. 8. Top panel: maximum wind speed densities conditional on June and September
for all decades. Bottom panel: posterior expectation and 95% interval (dark gray band for
September; light gray for June) for the median maximum wind speed in June and September
versus decade.

than in June for all decades. In the 1960s the density has a very long left-
hand tail, even showing evidence of two modes. Noteworthy in the last four
decades is the increasing accumulation of density on lower values of max-
imum wind speed. The fact that maximum wind speeds in September are
decreasing is confirmed by the plot in the lower panel of Figure 8, where
both point and interval estimates support a decreasing trend for the me-
dian maximum wind speed in September. In particular, after peaking at
more than 110 mph in the 1920s, the posterior point estimate has settled at
around 85 mph in the last decade.

Figure 9 (top left panel) shows the density of standardized damages (on
the log scale) conditional on the early season and the peak season. The
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Fig. 9. Top left panel: the density of logarithmic standardized damage conditional on
MJJ (May–June–July) and ASO (August–September–October). Top right panel: the den-
sity of logarithmic standardized damage in ASO given the seven maximum wind speed
categories defined in Table 1. Bottom left panel: Posterior expectation and 95% interval
(dark gray band for ASO; light gray band for MJJ) for the median standardized damage of
one hurricane in MJJ and ASO. Bottom right panel: Posterior expectation for the median
standardized damage in ASO for the seven maximum wind speed categories.

densities of standardized damages in MJJ (May–June–July) are quite sim-
ilar throughout all decades, while the densities in ASO show a moderate
decreasing trend across decades. Figure 9 (bottom left panel) plots point
and interval estimates for the median standardized damage in the original
scale. From 1900 to 1940, the estimated median standardized damage of one
hurricane in ASO is around twice as large as that in MJJ. However, from
1941 to 2010, the median standardized damage in ASO depicts significant
variability, with some indication of a slight decreasing trend across decades.
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These results are similar to the ones reported in Katz (2002) and Pielke
et al. (2008), based on essentially the same data set, albeit under different
damage normalization methods. In particular, Katz (2002) normalizes the
damage during 1925–1995 to 1995 values and uses a log-normal distribution
to fit the damage of individual storms, finding only weak evidence of a trend
in the median of log-transformed damage. Likewise, in Pielke et al. (2008)
hurricane damage is normalized to 2005 values. In this case, the conclusion
is that there is no long-term increasing trend in hurricane damage during
the 20th century, once societal factors are removed. We also note here that
Neumayer and Barthel (2011) detected a significant negative trend in hurri-
cane damage. Their results are based on the same damage standardization
method as the one we use, but for a different data set comprising hurricane
damages from 1980–2009 in the U.S. and Canada.

The right-hand side panels of Figure 9 focus on the analysis of damage,
conditional on the seven different types of hurricanes that occurred during
ASO. The top panel reports the densities for logarithmic standardized dam-
age conditional on the different hurricane categories. The bottom right panel
reports the posterior expectations for the corresponding median standard-
ized damage. Overall, we observe that the higher the category, the larger the
standardized damages tend to be. Standardized damages were very similar
for the hurricanes recorded in ASO of decade 1971–1980, which is reflected
in both types of inference shown in Figure 9. Standardized damages for TDs
and TSs have indistinguishable distributions. Likewise, at the opposite end
of the scale, damages due to HC4 and HC5 hurricanes are very similar. This
is also due to the data sparseness of TDs and HC5 hurricanes (only 4 TDs
and 3 HC5 hurricanes).

Figure 10 presents the bivariate densities of maximum wind speed and log-
arithmic standardized damage given the ASO period, for each decade. The
last panel corresponds to the forecast density for 2011–2020. We note that
only a handful of observations correspond to ASO in each particular decade.
Thus, the results in Figure 10 are possible owing to our model’s ability to
borrow strength from all the available data. Noteworthy are the positive as-
sociation between maximum wind speed and damage after the third decade,
and the changes in the density shapes across the decades, especially 1961–
1970 and 1991–2000. We also note the decrease in maximum wind speeds,
starting in 1961–1970. Overall, from 1961, both the maximum wind speed
and standardized damage have a general decreasing trend. This is a reflec-
tion of the fact that fewer hurricanes with extremely high maximum wind
speed have occurred in recent decades. Regarding previous related work,
Murnane and Elsner (2012) modeled the relationship between wind speed
and normalized economic loss as exponential through quantile regression
methods, using all hurricanes in the 20th century. Our methodology allows
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Fig. 10. Bivariate densities of maximum wind speed (mph) (x-axis) and logarithmic standardized damage (y-axis) in ASO across
decades. The dots correspond to observations in ASO.
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for a more comprehensive investigation of the relationship between hurri-
cane damage and maximum wind speed, in particular, it enables study of
its dynamic evolution across decades, without the need to rely on specific
parametric regression forms.

4.5. Model assessment. The modeling approach is based on the assump-
tion of a NHPP over the joint marks-points space. To check the
NHPP assumption, we use the Time-Rescaling theorem [Daley and
Vere-Jones (2003)], according to which, in each decade, the cumulative inten-

sities between successive (ordered) observations, {γk
∫ ti,k
ti−1,k

fk(t)dt}, are in-

dependent exponential random variables with mean one. Thus, {1 −
exp(−γk

∫ ti,k
ti−1,k

fk(t)dt)} are independent uniform(0,1) random variables.

Likewise, the Poisson process assumption for the marks implies that the sets
of random variables defined by the c.d.f. values of the conditional mark dis-
tributions, {Fk(yi,k|ti,k)} and {Fk(zi,k|ti,k)}, are independent uniform(0,1)
random variables. Hence, the NHPP assumption over both time and marks
can be checked by using the MCMC output to obtain posterior samples for
each of the three sets of random variables above, in each decade. Figure 11
shows the Q–Q plots of estimated quantiles for time, maximum wind speed
and standardized damage versus the theoretical uniform distribution, for the
last five decades. The results seem acceptable, especially in consideration of
the limited sample sizes in each decade.

As discussed earlier, Figures 5 and 6 provide visual goodness-of-fit evi-
dence for the model on hurricane occurrences, by comparing different types
of model-based inferences to the corresponding observations. Similar evi-
dence is provided in Figure 10 for the maximum wind speed and log-damage
relationship. We also explored other functionals of the model, obtaining sim-
ilar results. In addition, we performed posterior predictive checks to study
the model’s ability to predict the marks in the 11th decade, based on the
data of the previous 10 decades. In particular, we implemented the model
using only the 204 hurricanes from 1900–2000, and obtained the posterior
predictive density of maximum wind speed and logarithmic standardized
damage in ASO of the 11th decade (2001–2010). Figure 12 shows the pos-
terior predictive densities superimposed on the histograms of corresponding
observations in ASO of 2001–2010. The histogram in the left panel corre-
sponds to 28 hurricanes, whereas the one in the right panel corresponds to
only 16 hurricanes, since the damages of the other 12 hurricanes are missing.
We notice that the predictions are fairly compatible with the cross-validation
data.

5. Conclusion. We have developed a Bayesian nonparametric modeling
method for seasonal marked point processes and applied it to the analy-
sis of hurricane landfalls with reported damages along the U.S. Gulf and
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Fig. 11. Posterior Q–Q plots (mean and 95% interval) of estimated quantiles against the
theoretical uniform(0,1) for: time (left panel), maximum wind speed given time (middle
panel), and standardized damage given time (right panel). Results are shown for the last
five decades.
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Fig. 12. Cross-validated posterior predictive densities in ASO of decade 2001–2010: the
left panel corresponds to maximum wind speed, and the right panel to logarithmic stan-
dardized damage. The histograms plot the associated observations in ASO of 2001–2010.

Atlantic coasts from 1900 to 2010. Our basic assumption is that hurricane
occurrences follow a nonhomogeneous Poisson process, with the focus on
flexible modeling for dynamically evolving Poisson process intensities. The
proposed DDP-PBAR model builds from a DDP mixture prior for the nor-
malized intensity functions based on a PBAR process for the time-varying
atoms, and a parametric time-varying model for the total intensities. Infer-
ence for different Poisson process functionals can be obtained by MCMC
posterior simulation. To incorporate time-varying marks into the inferential
framework for our motivating application, we have extended the DDP-PBAR
mixture model by adding DDP-AR components for maximum wind speed
and economic damages associated with each hurricane occurrence.

In the analysis of the hurricane data, we have used aggregation to study
the dynamic evolution of hurricane intensity over decades. The model uncov-
ers different shapes across decades which, however, share common features
with respect to the off-season in May and June and the peak month of
September. The results indicate an increase in the number of landfalling
hurricanes and a decrease in the median maximum wind speed at the peak
of the season across decades. In the off season, both the number of hurricanes
and the maximum wind speed show little variation across decades. To study
economic loss as a mark, we have introduced standardized damage to adjust
hurricane damages such that they are comparable both in time and space.
We found a slight decreasing trend in standardized damage of hurricanes in
the peak season, which is also present conditional on the distinct hurricane
categories.

With respect to the scientific context of the motivating application, our
work provides a general framework to tackle different practically relevant
problems. The key distinguishing feature of our approach relative to existing
work involves the scope of the stochastic modeling framework under which
the various inferences are obtained. As discussed in the Introduction, current
work is limited to either estimating trends in hurricane occurrences at the
annual level or estimating the hurricane intensity based on the fully aggre-
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gated data, thus ignoring dynamics across years. Moreover, when incorporat-
ing information on marks, existing approaches oversimplify the underlying
point process structure by imposing homogeneity for the hurricane intensity.
These assumptions are suspect, as demonstrated with the exploratory data
analysis of Section 2. The proposed Bayesian nonparametric methodology
enables flexible estimation of dynamically evolving, time-varying hurricane
intensities within each season, and therefore has the capacity to capture
trends during particular periods within the hurricane season. The full in-
ferential power of the modeling framework is realized with the extension
to incorporate marks, which are included as random variables in the joint
model rather than as fixed covariates as in some of the previous work. From
a practical point of view, the key feature of the model for the point process
over the joint marks-points space is its ability to provide different types of
general conditional inference, including full inference for dynamically evolv-
ing conditional mark densities given a time point, a particular time period
and even a subset of marks.

In summary, the focus of this paper has been in developing a model that
can quantify probabilistically the inter-seasonal and intra-seasonal variabil-
ity of occurrence of a random process and its marks, jointly and without
restrictive parametric assumptions. The model is particularly well suited for
the description of irregular long-term trends, which may be present in the
observations or in subsets of the records. To enhance the forecasting ability
of the model, future work will consider extensions to incorporate external
covariates (such as pre-season climate factors) in a similar fashion to Katz
(2002), Jagger, Elsner and Burch (2011), and Elsner and Jagger (2013), al-
beit under the more general statistical modeling framework developed here.

APPENDIX: MCMC ALGORITHM FOR THE DDP-PBAR MODEL

The DDP-PBAR model for the data {ti,k} can be expressed as follows:

ti,k|Gk, τ ∼

∫

Beta(µτ, (1− µ)τ)dGk(µ), i= 1, . . . , nk;k = 1, . . . ,K,

Gk(µ) =

N
∑

j=1

wjδµj,k
(µ),

zj ∼ Beta(1, α), w1 = z1;

wj = zj

j−1
∏

r=1

(1− zr), j = 1, . . . ,N − 1;

wN = 1−
N−1
∑

j=1

wj,
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µj,k = vj,kuj,kµj,k−1 + (1− vj,k),

vj,k ∼ Beta(1,1− ρ), uj,k ∼ Beta(ρ,1− ρ).

We use an MCMC algorithm to draw posterior samples of ({µj,k},{vj,k},
{wj}, ρ,α), including blocked Gibbs sampling steps for the DDP prior pa-
rameters [Ishwaran and James (2001)]. Configuration variables {Li,k} are
introduced to indicate the mixture component to which each observation is
allocated. We use n∗ to denote the number of distinct values in the {Li,k},
and L∗ = {L∗

j : j = 1, . . . , n∗} for the set of distinct values.
The first step is to update the atoms {µj,k}, which depends on whether j

corresponds to an active component or not. When j /∈ L∗, µj,1 ∼Unif(0,1),
and for k = 2, . . . ,K, µj,k is drawn from p(µj,k|µj,k−1, vj,k, ρ), which is a
scaled Beta distribution arising from the PBAR process,

p(µj,k|µj,k−1, vj,k, ρ) =
1

vj,kµj,k−1
Beta

(

µj,k + vj,k − 1

vj,kµj,k−1

∣

∣

∣
ρ,1− ρ

)

,

where µj,k ∈ (1− vj,k,min{1,1− vj,k + vj,kµj,k−1}). When j ∈L∗, the poste-

rior full conditional for µj,1 is proportional to
∏N1

i=1,{Li,1=j}Beta(ti,1|µj,1τ, (1−

µj,1)τ)p(µj,2|µj,1, vj,2, ρ)p(µj,1). For k = 2, . . . ,K − 1, the full conditional for

µj,k is proportional to
∏Nk

i=1,{Li,k=j}
Beta(ti,k|µj,kτ, (1− µj,k)τ)p(µj,k+1|µj,k,

vj,k+1, ρ)p(µj,k|µj,k−1, vj,k, ρ). Finally, the full conditional for µj,K is propor-

tional to
∏NK

i=1,{Li,K=j}Beta(ti,K |µj,Kτ, (1−µj,K)τ)p(µj,K |µj,K−1, vj,K , ρ). We

use Metropolis–Hastings steps to update the µj,k, with the proposal distri-
bution taken to be p(µj,k|µj,k−1, vj,k, ρ).

The sampling of weights {wj}, configuration variables {Li,k} and α can
be implemented using standard updates under the blocked Gibbs sampler.
Updating the latent variables {vj,k} involves only the PBAR process. The
full conditionals are given by

p(vj,k|µj,k, µj,k−1, ρ)

∝
1

vj,k
Beta

(

µj,k + vj,k − 1

vj,kµj,k−1

∣

∣

∣
ρ,1− ρ

)

Beta(vj,k|1,1− ρ),

where vj,k ∈ (1 − µj,k,min{1,
1−µj,k

1−µj,k−1
}), and sampling from each of them

was implemented with a Metropolis–Hastings step based on Beta(1,1− ρ)
as the proposal distribution. Finally, the PBAR correlation parameter ρ is
also sampled using a Metropolis–Hastings step.
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