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Abstract 

Functional Organization in Human Speech Areas and A Systematic Approach 
to the Cocktail Party Problem 

by 

Patrick W. Hullett 

Doctor of Philosophy in Bioengineering 

University of California, San Francisco 

and  

University of California, Berkeley 

Professor Christoph E. Schreiner, Chair 

 

 

 The brain is a physical system that can perform intelligent computations. 

We are interested in nature of those computations to understand how the brain 

does intelligent things. To that end we have focused on two particularly fruitful 

questions that were tractable given the current state of knowledge and resources: 

What is the organization of processing in human speech centers? And, how does 

the brain solve the cocktail party problem? 

 

 To address the first question, we recorded superior temporal gyrus 

activity in awake human subjects passively listening to speech stimuli using 

electrocorticography. The high spatial and temporal resolution of this recording 

technique combined with maximally informative dimension analysis made it 

possible to compute high density spectrotemporal receptive field maps in a 
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region of the brain specialized for speech perception. Based on these maps, we 

found that human superior temporal gyrus has a strong modulotopic 

organization - a higher order analog of tonotopic organization that has not been 

previously identified in any human or non-human auditory area.  

 

To investigate the mechanisms by which neural systems solve the cocktail 

party problem, we created animals that are specialists at extracting vocalization 

information in the face of by noise-rearing rats and testing them behaviorally to 

show specialization. Through single unit recordings from primary auditory 

cortex, we identified a subpopulation of neurons that can extract vocalization 

information in the face of noise. Although the prevalence of these neurons is the 

same in both groups of animals, neurons from specialized animals extract 

information at significantly higher rates. Further receptive field analysis will give 

insight to the underlying mechanism of this ability. This work demonstrates the 

ability to create animals specialized at solving the cocktail party problem and a 

method to identify neurons that contribute to this specialization. This approach 

can be applied to different classes of noise to generate and refine models of 

cocktail party processing.  
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Introduction 

 

 The brain is a remarkable system. Things that seem very intangible and 

are hard to even describe, like the fleeting sensation of happiness or love, have a 

purely physical basis in the brain. For many the idea that consciousness can 

somehow be cast in terms of a population of neurons firing in the brain seems 

almost inconceivable and is what motivates many to study the brain. Today 

more than ever people with widely diverse backgrounds and skill sets are 

focusing their research efforts on the brain and a large government effort, 

analogous to the Human Genome Project, is underway to focus American efforts 

on unraveling brain function (Alivisatos et al., 2012) . If lucky humans will 

understand the inner workings of the brain within our lifetime, and although this 

may remove some of the allure of the brain, akin to a trick being revealed by a 

magician, what we will have gained is knowledge on the essence of intelligence. 

Knowledge that can be used to design intelligent systems that will change how 

humans interact with the world beyond what one can imagine. 

 

Although we are far from understanding the essence of intelligence, we 

can make headway on how the brain performs certain intelligent computations. 

We focus on problems the nervous system seems to solve trivially, due to the 

subconscious nature in which they are solved, but which have been challenging 

to implement in artificial systems. Although we do not claim to solve these  

problems in the course of this work, the intention was to contribute to the 
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understanding of these problems alone.  

 

 

The first problem we studied concerns the nature of speech processing. 

Although the eventual goal will be to understand the underlying computations 

involved in speech perception, there is a sparsity of knowledge detailing the 

basic organization of speech processing in areas specialized for speech 

perception in human auditory cortex. In part 1 of this work, we characterize the 

organization of speech processing in human superior temporal gyrus (STG) from 

the perspective that a description of functional organization gives a broad view 

of the transformation a given area performs on the stimulus. By understanding 

this transformation, and the transformations performed at lower areas we will be 

able to gain insight on the processing that gives rise to our perceptual abilities.  

 

 To characterize the organization of speech processing we use high-

resolution local field potential recordings during passive speech perception in 

awake humans. We find that human superior temporal gyrus has a strong 

modulotopic organization - a higher order analog of tonotopic organization. In 

addition, we find that phonemes are systematically organized in modulation 

space such that vowels cluster at one end of the spectrotemporal modulation axis 

and consonants at the other. The implications of this work are twofold. First, this 

provides support for a unified framework of what seemed to be very disparate 

forms of processing in lower tonotopically organized areas and non-
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tonotopically organized STG.  The system is performing a Fourier-like 

decomposition in an iterative manner as stimuli propagate up the auditory 

hierarchy. Second, this work implies an organization of phonetic tuning across 

human STG which could facilitate a better understanding of phoneme 

representation and perception. 

The second problem we studied concerns the brains ability to extract 

information about signals of interest that are embedded in noise. This is 

commonly referred to as the cocktail party problem. (Cherry, 1953; McDermott, 

2009). In this work we demonstrate a systematic approach to investigate this 

problem by creating animals that are specialized at solving the cocktail party 

problem, and then identifying subpopulations of neurons that can extract 

vocalization information in the face of noise. To create specialized rats, we reared 

them in noise. This serves as a natural training paradigm that occurs 

continuously, has natural behavior-reward contingencies, and starts at infancy 

when the brain is most plastic (Keuroghlian & Knudsen, 2007; Zhang, Bao, & 

Merzenich, 2001; de Villers-Sidani, Chang, Bao, & Merzenich, 2007). We then 

tested animals behaviorally and show noise-rearing facilitates the development 

of superior abilities to extract vocalization information in the presence of noise. 

Using a method to identify neurons with the ability to encode vocalization 

information in the face of noise, we find neurons in primary auditory cortex of 

noise-reared animals with the ability to extract significantly higher rates of 

vocalization information compared to naive animals. Additional receptive field 

analysis will give insight on the underlying mechanism that allows for this 

increased ability. This work demonstrates a systematic approach to studying the 
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cocktail party problem and can be applied to other classes of noise to generate 

and refine models of cocktail party processing.  
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Chapter 1 

Speech Based Modulotopic Organization in Human Superior 
Temporal Gyrus 
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Abstract 

Despite knowing human superior temporal gyrus is critical for speech 

perception, the functional organization for speech processing in this region is poorly 

understood. Here we use high-resolution local field potential recordings during passive 

speech perception to characterize the underlying organization of speech processing in 

human superior temporal gyrus. We find that human superior temporal gyrus has a 

strong modulotopic organization - a higher order analog of tonotopic organization. In 

addition, we find that phonemes are systematically organized in modulation space such 

that vowels cluster at one end of the spectrotemporal modulation axis and consonants at 

the other.  

 

Introduction 

Human superior temporal gyrus (STG) is a tertiary auditory area above primary 

auditory cortex in the human auditory hierarchy. Since the description of Wernicke’s 

area, in which stroke-induced lesions cause language comprehension deficits, STG has 

been considered an important region for speech processing and perception (Wernicke, 

1874). However, despite considerable interest in its role in speech processing, we do not 

know the functional organization of spectrotemporal processing across STG. To answer 

this question, we compute high-density spectrotemporal receptive field (STRF) maps 

based on responses to speech in awake human subjects. Until recently, experimental and 

analytical limitations have prevented this type of analysis. Traditional noninvasive 

methods for recording neural activity in humans are limited in either temporal or spatial 

resolution (George et al., 1995; Kim et al., 1997; Dale and Halgren, 2001). We use 

Electrocortocography (ECoG), an alternative method restricted to rare clinical settings, 
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which can record neural activity with the spatial and temporal resolution necessary to 

generate high-density STRF maps.  

 

In addition to high-resolution neural recordings, stimuli are needed which 

engage the spectrotemporal processing of interest in STG. While simple noise-like 

stimuli are tractable for computing receptive fields, they are often ineffective at driving 

activity in higher order areas like STG (Démonet et al., 1992; Binder et al., 1996, 1997, 

2000). In addition, receptive fields estimated with simple stimuli often fail to 

characterize processing of more natural stimuli due to the nonlinearity of the system and 

the effects of adaptation (Theunissen et al., 2000; Sharpee et al., 2006; Christianson et al., 

2008). We therefore used natural speech stimuli to characterize the functional 

organization of speech processing in human superior temporal gyrus.  

 

Although speech is an ideal stimulus to characterize processing in STG, unbiased 

STRFs cannot be computed using natural signals with traditional techniques 

(Chichilnisky, 2001; Theunissen et al., 2001; Sharpee et al., 2004). To compute STRFs 

using speech stimuli, we used Maximally Informative Dimension (MID) analysis, an 

information based method designed to compute unbiased receptive fields with natural 

signals (Sharpee et al., 2004; Atencio et al, 2008). This method lifts the requirement of 

using statistically tractable noise-like stimuli for the estimation of receptive fields and 

allows the use of more complex natural stimuli for computing STRFs.  

 

By using electrocorticography to record speech driven activity in STG, we were 

able to compute high resolution STRF maps using MID analysis and characterized the 
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organization of speech processing in this higher order region of human auditory cortex. 

Using this approach we find robust modulotopic organization - a higher order analog of 

tonotopic organization. In addition, we find that phonemes are systematically organized 

in modulation space such that vowels cluster at one end of the spectrotemporal 

modulation axis and consonants at the other.  

 

RESULTS 

STRF Maps 

Six patients undergoing a surgical procedure for the treatment of epilepsy were 

implanted with ECoG arrays spanning the temporal and parietal lobe. All patients had 

epileptic foci outside our regions of interest. After placement of ECoG arrays and 

recovery from the surgical procedure, patients passively listened to 15 – 25 minutes of 

natural speech for the purpose of identifying the functional organization of speech 

processing in human STG. The speech stimulus consisted of prerecorded sentences 

drawn randomly from the TIMIT speech corpus with one-second silent intervals 

between each sentence (Garofolo et al., 1993). Speech stimuli were balanced for male and 

female speakers, different speakers produced each sentence, and the lexical content of 

each sentence was unique. 
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Figure 1. Experimental Approach and the STRF.  

 

 

 

 

 

 To investigate functional organization of spectrotemporal processing in 

STG, an STRF was computed for each cortical site to generate an STRF map for each 

patient (Figure 1). STRFs were computed using the high-gamma band of ECoG 



















































  




















     
























 





















      

 





 

 



(A) Experimental approach. A spectrotemporal receptive field (STRF) was 
computed for each ECoG site to generate a STRF map for each patient. The 
measured and predicted responses for the sentence “He sized up the situation 
and shook his head,” are shown.  The computed STRFs are predictive of neural 
responses and therefore characterize spectrotemporal processing at each site and 
how spectrotemporal processing varies across STG. (B) The STRF. An STRF 
describes the spectrotemporal envelope structure in the stimulus that drives 
activity. Predicted responses are obtained by convolving the stimulus with the 
STRF and are proportional to the similarity between the spectrotemporal content 
in the stimulus and the STRF. 
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recordings which correlates with tuning properties based on multi-unit spiking in 

auditory cortex (Crone et al., 2001; Steinschneider et al., 2008). We estimated STRFs with 

two methods specifically designed for use with natural signals: maximally informative 

dimension (MID) analysis, and normalized reverse correlation (Theunissen et al., 2001; 

Sharpee et al., 2004). We found MID analysis consistently gave better predictions and 

therefore use MID based STRFs for the remainder of analysis (supplementary Figure 1). 

MID based STRFs were predictive of neural responses with an average correlation 

coefficient between the predicted and actual response of 0.42 ± 0.12 (mean ± std). STRFs 

that are significantly predictive of the neural response characterize the spectrotemporal 

processing taking place at each site. The cortical location of predictive STRFs for patient 

EC6 is depicted in Figure 2. Given that each STRF characterizes the local 

spectrotemporal processing, a map of STRFs characterizes how spectrotemporal 

processing varies across cortex, which we use to investigate the presence of functional 

organization in STG. 
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Figure 2. Patient EC6 Cortical STRF Map 

 

Modulotopic Organization of Human STG 

 The basilar membrane and early auditory processing perform a Fourier 

decomposition of the acoustic waveform in terms of spectral frequency to 

generate a spectrographic representation of sound. Any spectrogram 

representation of sound can be further decomposed in terms of its Fourier 

components, which are spectrotemporal modulations (Figure 3A, Singh and 

Theunissen, 2003; Woolley et al., 2005). A spectrotemporal modulation is the 
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(A) STRF map for patient EC6. All STRFs included in maps are predictive of neural 
response (mean correlation coefficient between the predicted and actual response: 
0.42 ± 0.12 std).  STRFs near each other tend to be similar, suggesting 
spectrotemporal processing changes gradually across the surface of STG. LS = lateral 
sulcus; STS = superior temporal sulcus; STG = superior temporal gyrus; MTG = 
medial temporal gyrus, CS = central sulcus. 
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two-dimensional analog of spectral frequency and takes the form of a ripple in 

time-frequency space (Figure 3B). Analogous to tonotopic organization, which 

reflects an organized decomposition of sound in terms of spectral frequency, we 

looked for the presence of modulotopic organization, which would reflect the 

organized decomposition of sound in terms of spectrotemporal modulations. If 

present, this would imply the auditory system is performing a stacked Fourier 

decomposition of sound in which an organized spectral decomposition is 

performed by early auditory processing and an organized spectrotemporal 

modulation based decomposition is performed in higher order areas within the 

auditory pathway.   
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Figure 3. Spectrotemporal modulation tuning is a higher-order analog of 
frequency tuning. 

 

 

 

 

 To investigate presences of modulotopic organization, we characterize 

spectrotemporal modulation tuning at each ECoG site. As with a frequency tuning 

curve, which characterizes spectral frequency tuning, the modulation transfer function 

(MTF) characterizes spectrotemporal modulation tuning and is given by taking the 

magnitude of the two-dimensional Fourier transform of each STRF (Figure 3C). 

Furthermore, like the best frequency of a tuning curve, the peak of the modulation 

transfer function is called the best spectrotemporal modulation (bSTM) and specifies the 

spectrotemporal modulation that drives activity at a given site most strongly (Figure 

3C). 

 

From the modulation transfer functions, we examined the distribution of 

spectrotemporal modulation tuning along STG. Figure 4A shows the distribution of best 

spectrotemporal modulations (bSTMs) across all patients. As seen in other auditory 

areas, bSTMs show a spectral-temporal tradeoff in which they fall along a hyperbolic 

curve that runs from high-spectral modulation frequencies to high-temporal modulation 

(A) Any spectrogram can be decomposed in terms of its spectrotemporal 
modulation content. The spectrotemporal modulation components of the phoneme 
/e/ are shown. Like a weighted sum of sinusoids will reconstruct an acoustic 
waveform, a weighted sum of spectrotemporal modulations will reconstruct the 
envelope of a phoneme exactly. (B) The Fourier components of a spectrogram are 
spectrotemporal modulations or “ripples”.  A bank of ordered spectrotemporal 
modulations are shown. This is the Fourier basis of a spectrogram. Each 
spectrotemporal modulation is specified by its’ spectral and temporal modulation 
frequency which characterize the periodicity with which energy is modulated 
along the spectral and temporal axis. (C) Analogous to a frequency tuning curve, 
the tuning for spectrotemporal modulations is characterized by the modulation 
transfer function (MTF). The MTF is derived as the magnitude of the two-
dimensional Fourier transform of an STRF. Like the best frequency of a frequency 
tuning curve, the peak of the MTF is called the best spectrotemporal modulation 
(bSTM).  
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frequencies (Miller et al., 2002; Schönwiesner and Zatorre, 2009; Rodríguez et al., 2010). 

We fit this relationship with an exponential function, which is converted into a color 

map. Actual bSTM data points were then mapped to the closest point on the curve and 

assigned the corresponding color. This color is plotted for each cortical location to 

generate an undistorted map of spectrotemporal modulation tuning across STG (Figure 

4B).   
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Figure 4. Modulotopic Organization in Human STG. 
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(A) Distribution of best spectrotemporal modulation (bSTM) tuning across patients. 
The distribution of bSTMs shows a spectral-temporal tradeoff. We fit this 
distribution with a curve which is used as a color map. (B) Modulotopic 
organization. Best spectrotemporal modulation values in (A) were projected onto 
the color map, and each cortical site was assigned the corresponding color. Within 
each map there is a significant degree of neighborhood similarity in which sites 
near each other tend to have similar values (p < 0.005, patients EC6, EC28, GP31, 
EC36, EC35; p < 0.05 patient EC2; permutation test). In addition high temporal 
modulation tuned regions (yellow) transition into high spectral modulation tuned 
regions (red) thus forming an organized distribution of modulation tuning along 
the major axis of STG (C) Posterior to anterior gradient. A local gradient was 
computed at each site. The rose plot depicts the distribution of local gradient  
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Within these maps there is a significant amount of structure with strong 

neighborhood similarity in which sites near each other have similar modulation tuning 

(p < 0.005, patients EC6, GP31, EC28, EC35, EC36; p < 0.05 patient EC2; permutation 

test). Regions tuned to high-temporal modulation frequencies (yellow) transition 

smoothly into regions tuned to high-spectral modulation frequencies (red). We 

quantified the spatial organization of modulation tuning by computing the direction of 

the local gradient at each site and then examined the distribution of local gradient 

directions across all patients (Figure 4C). Consistent with the visual appearance of the 

maps, the dominant direction of local gradients is in the posterior to anterior direction 

along the major axis of STG (p < 0.05, permutation test). We further quantified spatial 

organization by computing the modulation tuning map values as function of distance 

along the posterior to anterior axis (Figure 4D).  As can been seen, there is a high-

temporal modulation tuning centrally, just posterior to central sulcus, which transitions 

to high-spectral modulation tuning in the anterior and posterior directions. These data 

reveal the presence of a modulotopic organization in human STG in which tuning varies 

from high temporal modulation tuning in central STG to high-spectral modulation 

tuning in anterior STG, and to some extent posterior STG as well.  

 

 

directions for all sites and shows a dominant gradient direction from the 
posterior to anterior direction along STG (p < 0.05, permutation test). (D) 
Average normalized modulation tuning as a function of posterior to anterior 
distance. Maps were aligned by their map centers (see methods) and average 
modulation tuning as a function of distance from the map center was 
computed. Across patients there is a high temporal modulation tuned region 
which transitions into high spectral modulation tuned regions in the anterior 
and posterior direction.   
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Modulation Content of Phonemes  

In light that this region of the auditory system is functionally organized for 

modulation tuning, we analyzed the spectrotemporal modulation content of phonemes 

to examine the relationship between modulotopic organization and speech sound 

representation. We focused on the informative modulation content in phonemes (see 

methods), which is the spectrotemporal modulation content in each phoneme that is 

different from the average modulation content of all phonemes. This modulation 

information potentially can be used for phoneme discrimination and is computed by 

subtracting the average modulation spectra of all phonemes from each individual 

phoneme. For brevity we will refer to the informative modulation spectrum simply as 

the modulation spectrum.  Figure 5A shows the spectrograms and modulation spectra 

for three phonemes that occupy different regions in spectrotemporal modulation space. 

To assess the distribution of modulation content across phonemes, the peak of each 

modulation spectrum is plotted along the same curve fit to the modulation tuning data 

in figure 4A (Figure 5B). The modulation content across phonemes has a similar 

spectral-temporal tradeoff as the modulation tuning of neural sites in STG. In addition, 

the organization of phonemes along this curve is related to their linguistic classifications 

such that vowels and consonants cluster at opposite ends of the modulation dimension. 

Vowels and semivowels cluster at the high-spectral modulation end of the curve. This 

reflects the general formant structure of vowels in which energy fluctuates over 

frequency (high spectral modulation), but is fairly constant over time (low temporal 

modulation). By contrast, consonants cluster at the high-temporal modulation end. This 

reflects the general structure of many consonants, which are composed of broadband 

energy that fluctuates rapidly over time (high temporal modulation), but is relatively 

constant over frequency (low spectral modulation). These data reveal a non-random 

organization of phonemes in modulation space that correlates with their linguistic 
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groupings. In conjunction with modulotopic organization these results suggest an 

organization of phonetic information on the STG in which vowels are predominantly 

represented in anterior regions and consonants in posterior regions.  

 

 

 

Figure 5 Spectrotemporal Modulation Content of Phonemes 
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(A) Phonemes and their modulation spectra. Phonemes from the words bait, 
bought, and chin with their corresponding modulation spectra are shown. The 
high-energy regions of the modulation spectra occupy different regions in 
modulation space ranging from high-spectral low-temporal modulation for bait to 
high-temporal low-spectral modulation for chin. (B) Phoneme modulation spectra 
peaks show a spectral-temporal tradeoff. The peak of each phoneme’s modulation 
spectrum is plotted along with bSTM values and the color map from figure 4A. The 
modulation spectra peaks show a spectral-temporal tradeoff similar to modulation 
tuning. (C) Phonemes show organization along the modulation frequency axis. 
Phonemes were mapped to the closest point on the color map in (B) and given the 
corresponding color. Vowels and semivowels cluster at the high spectral 
modulation end of the modulation frequency axis, while consonants cluster at the 
high temporal modulation end of modulation frequency axis.  
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Discussion 

We demonstrated here the presence of a modulotopic organization in human 

superior temporal gyrus. These findings are evidence of a stacked Fourier 

decomposition in the human auditory pathway in which modulotopic organization 

reflects a second order Fourier decomposition of the signal, analogous to the frequency 

decomposition performed by the basilar membrane and areas lower in the auditory 

hierarchy. Figure 6 shows a simplified model of this stacked decomposition in which the 

acoustic waveform is initially decomposed into its spectral frequency components to 

generate a spectrogram representation of the signal. This time-frequency representation 

is then decomposed into its spectrotemporal modulation components as reflected by the 

modulotopic organization. This overall stacked decomposition framework has been 

implemented in biologically inspired computational models of auditory processing as 

well as automatic speech recognition algorithms (Yang et al., 1992; Chi et al., 1999; 

Kleinschmidt and Gelbart, 2002; Mesgarani et al., 2006; Meyer and Kollmeier, 2011). In 

these automatic speech recognition algorithms, modulation frequency based 

representation allows for more robust word recognition despite variation in speech due 

to changes in speaker, pitch, or loudness (Meyer and Kollmeier, 2011). In addition, 

modulation frequency based representation increases the robustness of these algorithms 

in the presence of background noise (Kleinschmidt and Gelbart, 2002; Mesgarani et al., 

2006). This robustness arises because speech and non-speech often have different 

modulation content. Even if they overlap spectrally, a modulation based representation 

can separate them due to differences in modulation content. These results suggest 

modulotopic organization and the resulting modulation based representation are 

important for generating invariant representations of speech stimuli and contribute to 
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our ability to understand speech in the face of background noise. 

 

Figure 6. Stimulus Transformations Along the Auditory Hierarchy 

 

 

 

 

Given the role of STG in speech processing, we examined the relationship 

between modulation tuning and the modulation content present in phonemes. The 

modulation content of phonemes exhibits the same spectral-temporal tradeoff present in 

the distribution of modulation tuning, generally spanning a similar range of modulation 

frequencies. In addition, vowels and semi-vowels clustered at the high spectral 

modulation end of the axis while consonants clustered at the high temporal modulation 

end. This characterization further illuminates the relationship between the functional 

organization of human STG and the acoustic properties of speech sounds and suggests 

the presence of a coarse organization in representation of phonetic information across 

human STG in which vowels are represented anteriorly in high spectral modulation 

tuned regions and consonants posteriorly in more temporally tuned regions.  In support 

of this, our data is consistent with previous work showing selective activation of anterior 
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(A) Schematic representation of a stacked frequency decomposition suggested by 
modulotopic organization. Early auditory processing decomposes an acoustic 
waveform into its frequency components to generate a spectrographic time-
frequency representation. Modulotopic areas decompose this time-frequency 
representation in terms of its spectrotemporal modulation content at higher-level 
areas of the auditory system.  

 



 
 

22 

STG by vowel sounds (Obleser et al., 2006). If a more detailed map of phonetic tuning 

across STG exists, modulotopic organization could explain such an organization based 

on the modulation content in different phoneme classes.  

 

 How does the distribution of modulation tuning across the STG compare to the 

modulation content critical for word recognition? The distribution of best 

spectrotemporal modulations frequencies seen in STG span the range of 0 - 0.7 cyc/oct 

and 0 - 3.5 Hz. Elliot et al. showed the modulation content most critical for word 

recognition are spectral modulations below 1 cyc/oct and temporal modulations below 

7.75 Hz (Elliott and Theunissen, 2009). This shows modulation tuning in STG spans a 

similar spectral modulation range and roughly half the temporal modulation range 

critical for word recognition. Although the distribution of bSTMs identified in STG does 

not span the full spectrotemporal modulation range identified by Elliot et al., there are 

potential reasons for an imperfect match. First, it is possible that the surface of STG only 

represents part of the neural area devoted to processing this critical window of 

modulation frequencies. As noted, some phonemes are not included in figure 5B because 

their temporal modulation content extend beyond the range of best temporal 

modulation tuning seen in STG. Most notably, stop consonant modulation spectral 

peaks have temporal modulation values above 3.5 Hz. It is possible there are areas 

critical for speech perception which have higher temporal modulation tuning, but lay 

outside STG - possibly in the lateral or superior temporal sulcus. An additional caveat to 

comparing modulation tuning in STG and the modulation content critical for word 

recognition is uncertainty in the boarders of this critical modulation content window 

defined by Elliot et al. The boundaries tested to define critical spectrotemporal 

modulation content in speech were coarsely spaced due to the required psychophysical 

testing at each boundary condition. It is possible that the upper boundary of this 
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window is actually lower than 7.75 Hz. Finally, bSTM values only represent peak 

tuning. Sites with bSTM values close to 3.5 Hz have a considerable response for 

temporal modulations above 3.5 Hz due to the fairly broad bandwidth of the 

modulation filters. Overall, the window of critical modulation content defined by Elliot 

et al. is small given the full range of spectrotemporal modulation content present in 

speech (Singh and Theunissen, 2003). The fact that modulation tuning in STG falls 

within this window and spans a considerable range of it suggests STG is matched to the 

statistics of speech stimuli and supports the idea that STG is a specialized structure for 

speech processing.  

 

 The characterization of modulotopic organization was simplified by the spectral-

temporal tradeoff seen in modulation tuning. To what extent is this a general feature of 

auditory processing? This spectral-temporal tradeoff has also been seen in other areas 

within the lemniscal auditory pathway including inferior colliculus, the ventral division 

of the medial geniculate nucleus, and primary auditory cortex of cats and primary 

auditory cortex of humans (Miller et al., 2002; Schönwiesner and Zatorre, 2009; 

Rodríguez et al., 2010). In addition, sparse coding models of speech processing learn 

STRFs with modulation tuning properties that show a similar spectral-temporal tradeoff 

(Carlson et al., 2012). Collectively, this shows that the spectral-temporal tradeoff in 

modulation tuning is a consistent property within ascending areas of the auditory 

pathway and suggests the computational role of this tradeoff as an important property 

of auditory processing. 

 

 As stimulus information propagates up the sensory hierarchy it is successively 

transformed into new representations. These transformations eventually give rise to our 
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perceptual abilities. Our results are consistent with a stimulus transformation that 

decomposes auditory information in terms of spectrotemporal modulations, which 

forms the basis of modulotopic organization. Are the stimulus transformations at 

successive stages of processing drastically different or similar in nature? Given the direct 

relationship between spectral frequency decomposition and modulation frequency 

decomposition, this would suggest that at some level certain stimulus transformations 

are similar in nature at successive levels of the hierarchy. We hope that concise 

descriptions of processing provided by functional organization studies at each level of 

the auditory hierarchy will continue to provide insight to the stimulus transformations 

taking place as information ascends the auditory hierarchy and help illuminate the 

different processing steps which give rise to our perceptual abilities.  

 

METHODS 

Patients and Neural Recordings  

Subdural ECoG arrays (interelectrode distance: 4mm) were placed over the 

temporal and parietal lobes unilaterally in six patients (2 right hemisphere, 4 left 

hemisphere) undergoing a neurosurgical procedure for the treatment of epilepsy. All 

patients were native English speakers with no hearing or communication deficits. All 

experimental protocols were approved by the University of California, San Francisco 

Institutional Review Boards and Committees on Human Research. Array placement was 

determined by clinical criteria. After array placement, patients were allowed to recover 

and the monitoring phase of the procedure started, during which time patients were 

asked to passively listen to 15 – 25 minutes of natural speech while cortical activity was 

recorded. Signals were amplified and sampled at 3052 Hz. After rejection of electrodes 

with excessive noise or artifacts, signals were referenced to a common average and the 
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high gamma band (75 - 150 Hz) was extracted using the Hilbert Transform (Crone et al., 

2001). The resulting signal for each electrode was z-scored based on the mean and 

standard deviation of spontaneous activity. 

Stimuli  

Speech stimuli were delivered binaurally though calibrated ear insets at 70 dB 

average sound pressure level. The frequency power spectrum of stimuli spanned 0 - 

8000 Hz. The stimulus set consisted of prerecorded (2 – 4 second) sentences drawn 

randomly without replacement from the phonetically transcribed TIMIT speech corpus 

with one-second silent intervals between each sentence presentation (Garofolo et al., 

1993). Each patient was presented 484-499 sentences with the exception of patient GP36 

who was presented 246 sentences. The speech corpus was balanced for male and female 

speakers, a different speaker produced each sentence, and the lexical content of each 

sentence was unique.  Spectrogram representations of speech stimuli were based on a 

cochlear model of auditory processing (Yang et al., 1992).  

 

Analysis 

STRFs  

STRFs were computed with two different methods designed specifically for use 

with natural signals- maximally informative dimension analysis (MID) and normalized 

reverse correlation (Theunissen et al., 2001; Sharpee et al., 2004). To compute STRFs 

using MID analysis a gradient ascent procedure was used to search for the receptive 

field that maximizes the KL divergence between STRF-Stimulus projection values and 

STRF-stimulus projection values weighted by the magnitude of the response. STRF 

estimates based on normalized reverse correlation were computed using open source 
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code available at: http://strfpak.berkeley.edu/. STRFs were computed with both 

methods on the same estimation set (90% of the total data) and cross-validated on the 

same test set which was withheld from the estimation process (10% of the data). MID 

based STRFs showed better prediction performance and were therefore used to analyze 

functional organization in STG. To investigate functional organization of 

spectrotemporal processing, we restricted our analysis to STRFs which predicted at least 

five percent of the total variance in the response to prevent clouding our view of 

functional organization with poor STRF models.  

Modulation Tuning  

  

To characterize modulation tuning based organization, the modulation transfer 

function (MTF) for each site was computed by taking the magnitude of the two-

dimensional Fourier transform (ℑ2 ) of each STRF: 

 

 

 

Where (t, f) are the time and frequency and (ωt ,ωs) are the temporal and spectral 

modulation respectively. The best spectrotemporal modulation (bSTM) is defined as the 

peak of the MTF. We take the absolute value of the temporal modulation frequency of 

each bSTM to maximize the number of data points in a single quadrant for analysis of 

the distribution of bSTMs as function of spectral and temporal modulation.  
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To generate modulation tuning maps, we fit the bSTM distribution with an 

exponential function which is converted into a color map. Actual best bSTM data points 

were then mapped to the closest point on the curve and assigned the corresponding 

color which is then plotted at the corresponding cortical location. To fit the data and 

assign data points a color, we first normalized the spectral and temporal modulation 

values to have a range [0-1] so temporal and spectral modulation values are weighted 

equally. An exponential function was then fit to the data by minimizing mean squared 

error and a color map was generated through a linear mapping between color and arc 

length along the fit exponential function. bSTM values were then mapped to the closest 

point (defined by Euclidean distance) on the color map and assigned a color.  

Spatial Analysis 

 A permutation test was used to assess the significance of neighborhood 

similarity. For each site a neighborhood similarity metric is computed by taking absolute 

value of the difference between each sites modulation tuning value and its neighbor and 

averaging over all directly adjacent neighbors. Site neighborhood similarity indices were 

then averaged together to compute the mean neighborhood similarity index for the map. 

The sites in the map are then randomly permuted 10,000 times and the map 

neighborhood similarity index is recomputed on each permutation to generate the 

distribution of possible neighborhood similarity indices for a randomly organized map. 

The true neighborhood similarity index is compared to the random map neighborhood 

similarity index distribution to access the level of significance.  

 

 To analyze spatial organization we characterized the distribution of local 

gradients as well as modulation tuning as a function of distance along the posterior to 

anterior axis of each map. To determine the distribution of local gradients, the numeric 



 
 

28 

gradient at each ECoG site was computed (Cheung et al., 2001). In order to combine 

gradients across patients, gradient vectors in left hemisphere subjects were flipped 

across the ordinate to generate their mirror image. The distribution of gradient 

directions was then computed and displayed in the form of a rose plot. Significance was 

determined by using a two-sample Kolmogorov-Smirnov test between this distribution 

and the null hypothesis distribution which was determined by randomly permuting 

each map prior to gradient calculation and repeating this procedure 10,000 times to 

obtain an accurate estimate.   

 

To quantify modulation tuning as a function of distance, modulation tuning 

values were collapsed along the major axis of each map which runs parallel to the long 

axis of STG. This quantifies modulation tuning as a function of posterior to anterior 

distance. Each modulation tuning distance function displayed a characteristic peak and 

trough defined by the maximum and minimum average modulation tuning values. The 

center of each modulation tuning distance function is defined as the midpoint between 

its peak and trough. To combine data across patients, data from left hemisphere patients 

was flipped across the ordinate. Modulation tuning distance functions were then aligned 

by their centers and averaged to quantify modulation tuning as a function of distance 

across patients.  

Analysis of Phoneme Modulation Content  

The modulation spectrum for each phoneme was estimated by taking the 

squared magnitude of the two-dimensional Fourier transform ( ) of each phoneme 

instance and averaging over instances: 
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Instances of each phoneme were zero meaned prior to calculation of the modulation 

spectra, and analysis of phoneme instances between 100 -150 ms in duration were used 

for modulation spectra estimation. Due to the statistics of speech and natural signals in 

general, power is concentrated at low modulation frequencies and decreases as function 

of frequency according to  where ω is either spectral or temporal modulation 

frequency and α ranges between 0.78 and 2.26 depending on the class of sounds 

analyzed (Field, 1987; Singh and Theunissen, 2003). Due to this, the majority of the 

power in all phonemes is concentrated at very low modulation frequencies making the 

raw modulation spectra of all phonemes very similar and relatively uninformative. A 

more informative characterization of the modulation spectra of each phoneme would 

highlight the modulation content specific to that phoneme. We therefore compute the 

informative modulation spectrum of each phoneme by subtracting the ensemble 

phoneme modulation spectrum from the each individual phoneme modulation 

spectrum to identify modulation content in each phoneme that is different from the 

average modulation content across phonemes. To compute the ensemble phoneme 

modulation spectrum we normalized the modulation spectrum for each phoneme to 

have a total power of 1, and average across phonemes with each phoneme weighted 

equally. The Informative modulation content of each phoneme is then computed by 

subtracting the ensemble phoneme modulation spectrum from the individual phoneme 

modulation spectrum (both normalized to have a total power of 1) to indentify the 

modulation content which differentiates the phoneme of interest from other phonemes. 

This is the modulation content that could potentially be used by the nervous system to 

differentiate phonemes.  
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Chapter 2 

Speech Based Analysis of Tonotopic Organization in Human 
Superior Temporal Gyrus 
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Abstract 

 Tonotopic organization is a prominent form of functional organization 

from the periphery up through the primary auditory cortex. Superior temporal 

gyrus is a tertiary auditory area in human auditory cortex specialized for speech 

processing. Using electrocorticography, we examined the organization of 

spectral processing in superior temporal gyrus during natural speech perception 

in awake humans. No significant tonotopic organization was found suggesting 

that tonotopic organization is not a dominant organizing principle in human 

superior temporal gyrus during speech processing.  

 

Introduction 

 The basilar membrane performs a spectral decomposition on incoming 

acoustic signals that gives rise to frequency tuned inner hair cells. Inner hair cell 

frequency preferences shift from high frequency to low frequency as a function 

of distance along the basilar membrane. This orderly array of frequency tuning is 

called tonotopic organization and is a fundamental organizing principle in the 

auditory system from the sensory epithelia, up through the primary auditory 

cortex (Aitkin and Webster, 1972; Merzenich and Reid, 1974; Merzenich and 

Roth, 1975). Tonotopic organization has also been observed in non-primary belt 

areas, however, organization can be less robust and not all regions show 

tonotopic organization (Reale and Imig, 1980; Bizley et al., 2005a; Petkov et al., 

2006). Within the auditory hierarchy of the humans, tonotopic organization has 

been shown as high as primary auditory cortex (Formisano et al., 2003; Talavage 
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et al., 2004a; Woods et al., 2009; Striem-Amit et al., 2011; Moerel et al., 2012) . 

Human superior temporal gyrus (STG) is a higher order auditory area within 

human auditory cortex with projections from A1, and a specialized role in speech 

processing. Recent studies using functional magnetic resonance imaging and 

tonal stimuli have shown evidence of tonotopic organization in human STG, 

however, work using electrocorticography and tonal stimuli showed only a weak 

organization that was present in a subset of subjects (Talavage et al., 2004b; 

Humphries et al., 2010a; Striem-Amit et al., 2011; Moerel et al., 2012; Nourski et 

al., 2012). Due to the specialized role of STG in speech processing, we approach 

the question of tonotopic organization from a unique perspective and ask, within 

the context of natural speech processing, does human STG show tonotopic 

organization? 

 

 This is a difficult question to ask for a number of reasons. Because the 

system is nonlinear, spectral processing characterized using tonal stimuli may 

not generalize to spectral processing of speech stimuli (Theunissen et al., 2000; 

Christianson et al., 2008). Therefore, to determine if spectral processing of speech 

stimuli is organized tonotopically, it is necessary to use natural speech. This is 

difficult to address with traditional noninvasive recording techniques and 

analytical methods. Because the spectral content of speech changes rapidly, it is 

necessary to record responses with high temporal resolution to capture rapid 

changes in neural activity that reflect rapid changes in spectral content. In 

addition, it is necessary to record neural activity with high spatial resolution to 

characterize how spectral tuning changes as a function of position across human 



 
 

39 

STG. Traditional noninvasive recording techniques have either low temporal 

(e.g. fMRI) or low spatial (e.g. MEG) resolution (George et al., 1995; Kim et al., 

1997; Dale and Halgren, 2001). To overcome this limitation, we use 

electrocorticography (ECoG), a method restricted to rare clinical settings that has 

the spatial and temporal resolution necessary to investigate tonotopic 

organization in the context of natural speech perception.  

 

 Although ECoG provides the necessary spatiotemporal resolution to 

investigate tonotopic organization in the context of speech processing, 

computing receptive fields with natural stimuli as opposed to statistically 

tractable noise-like stimuli has only recently been developed. Traditional 

approaches to compute receptive fields will produced biased estimates with 

natural stimuli (Chichilnisky, 2001; Theunissen et al., 2001; Sharpee et al., 2004). 

We therefore use a more computationally intensive approach designed 

specifically for use with natural signals called maximally informative dimension 

(MID) analysis (Sharpee et al., 2004). By using high spatial and temporal 

resolution recordings,  in conjunction with MID analysis, we are able to 

characterize spectral processing across STG and investigate the presence of 

tonotopic organization in the context of natural speech perception in awake 

humans.  

 

RESULTS 

Six patients undergoing a surgical procedure for the treatment of epilepsy 
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were implanted with ECoG arrays spanning the temporal and parietal lobe. All 

patients had epileptic foci outside our regions of interest. After placement of 

ECoG arrays and recovery from the surgical procedure, patients passively 

listened to 15 – 25 minutes of natural speech for the purpose of identifying the 

functional organization in human STG. The speech stimulus consisted of 

prerecorded sentences drawn randomly from the TIMIT speech corpus with one-

second silent intervals between each sentence (Garofolo et al., 1993). Speech 

stimuli were balanced for male and female speakers, different speakers produced 

each sentence, and the lexical content of each sentence was unique.  

 

Tonotopic Organization in Human STG 

 To investigate functional organization of spectral processing in the context 

of natural speech stimuli, a spectrotemporal receptive field (STRF) was 

computed for each cortical site using the MID method (see Methods). STRFs 

were summed along the temporal axis to isolate the purely spectral component 

of processing called the spectral receptive field (SRF) (Figure 1). The peak of each 

spectral receptive field is defined as the best frequency (BF). 
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Figure 7 Identification of best frequency.  

BFs are plotted as a function of cortical position in figure 2. The distribution of 

BFs across STG appears random in nature with no clear form of organization. 

Tonotopically organized areas by nature have a degree of neighborhood 

similarity in which cortical sites near each other have similar best frequencies. 

Non-significant neighborhood similarity is consistent with lack of tonotopic 

organization. To test for significant neighborhood similarity we compute the 

average absolute difference between the BF of a given site and its directly 

adjacent neighbors to give the site neighborhood similarity index. This value is 

then averaged over sites within a map to give the overall map neighborhood 

similarity index. This map neighborhood similarity index is compared to the 

distribution of map neighborhood similarity indices for random permutations of 

the map sites to determine statistical significance. On each permutation, the 

shape of the map is the same, but each BF value is randomly assigned to a new 

site. None of the maps exhibited a statistically significant degree of 
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Figure 1. Identification of best frequency. Spectrotemporal receptive fields were 
summed along the temporal dimension to generate the spectral receptive field 
(SRF). The peak of the spectral receptive field is defined at best frequency (BF). 
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neighborhood similarity consistent with a lack of tonotopic organization in 

human STG (p-values > 0.05, permutation test).  

 

Figure 8. Best frequency distribution along human STG  

 Although STG appears to lack tonotopic organization based on raw BF 

values, a number of spectral receptive fields had multiple spectral peaks of 

approximately the same magnitude. Across patients, the distribution of BFs was 

heavily biased toward frequencies bellow 500 Hz. It is possible there is 

organization of spectral tuning in this low frequency range and the occasional 

high frequency BF value from multi-peaked SRFs could be obscuring 

identification of this organization. To account for the complexity of these multi-

peaked spectral receptive fields and to use the lowest spectral frequency peak 

when more than one prominent peak of similar magnitude is present, we 

generated multi-peak corrected BF maps. To identify true multi-peaked SRFs we 

fit each SRF with a periodic spectral modulation function (Figure 3). Briefly, the 

spectral modulation function is the modulation frequency and corresponding 

phase identified by the peak of the spectral modulation spectrum of each SRF 

(see methods). The total SRF spans 6 octaves. Spectral modulation functions with 
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Figure 2.  Best frequency distribution along human STG. (A) Best frequency is 
plotted as a function of position along human superior temporal gyrus in patients 
EC6, EC28, GP31, and EC2. No apparent tonotopic organization is present and 
tests for neighborhood similarity were nonsignificant (pvalues > 0.05, 
permutation test). 
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Figure 9. Identifying multi-peaked spectral receptive fields. 

a peak spectral modulation frequency above 0.33 cyc/oct identify SRFs with at 

least two cycles over the 6-octave frequency range, and thus have two dominant 

peaks. For true multi-peaked SRFs identified in this way, the lowest spectral 

frequency peak of the fit, which we call BF1, is used for mapping. Of SRFs across 

patients, 18% were multi-peaked. Figure 4 shows multi-peak corrected best 

frequency maps. Again, there does not appear to be organization in spectral 

tuning across STG and none of the maps have a significant degree of 

neighborhood similarity (p-values > 0.05, permutation test). Despite only using 

the low frequency peak to characterize spectral tuning for multi-peaked SRFs 

there still appears to be a lack of tonotopic organization during speech 

processing in human superior temporal gyrus.   
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Figure 3. Identifying multi-peaked spectral receptive fields. Many spectral 
receptive fields were multi-peaked. We fit each spectral receptive field with its 
spectral modulation function (see methods). Spectral modulation functions with 
spectral modulation frequencies greater than 0.33 cycles/octave identify true 
multi-peaked spectral receptive fields, which make up 18% of sites. BF1 is 
defined as the lowest spectral frequency peak in a multi-peaked receptive field 
and is used as best frequency in the multi-peak corrected best frequency maps 
(Figure 4). 
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Figure 10. Multi-peak corrected best frequency maps. 

 In addition to characterizing the spatial organization of spectral 

processing, we compared the distribution of BF values to the spectral content 

present in speech (Figure 4). First, the BF distribution is not spread evenly along 

the range of spectral frequency content in speech. Rather BFs are highly 

concentrated in the low frequency region of the speech power spectrum. This is a 

rather narrow range of BF tuning relative to the spectral frequency content in 

speech.  Second, the BF distribution is concentrated in a region of relatively low 

power relative to power at other frequencies in the speech power spectrum. If an 

organized spectral decomposition is the primary function of STG, one might 

expect a more even distribution of BFs across the range of spectral content 

present in speech.  


























Figure 4. Multi-peak corrected best frequency maps. For true multi-peaked 
spectral receptive fields, BF1 was used as best frequency. For single peaked 
spectral receptive fields raw BFs are used. Values are plotted as a function of 
position along human superior temporal gyrus in patients EC6, BP28, GP31, 
and EC2. No apparent tonotopic organization is present and tests for 
neighborhood similarity were nonsignificant (pvalues > 0.05, permutation 
test). 
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Figure 11. STG best frequency distribution and the spectral content in speech 

 Lastly, we investigated latency organization of speech-driven responses in 

superior temporal gyrus. We were interested in determining if other organizing 

principles found in lower tonotopically areas are present in STG despite the 

apparent lack of tonotopic organization (Mendelson et al., 1997). In addition, 

speech based latency values characterized the timing with which speech 

information reaches STG and can be used to generate hypotheses about the flow 

of information and the structure of the auditory hierarchy.  Latency is defined as 

the first time point after sentence onset in which the response is significantly 

different from baseline activity (p value < 1x10-6, two-sample Kolmogorov-

Smirnov test). Latency maps showed nonrandom organization with the lowest 

latencies concentrated on the superior temporal gyrus posterior to the central 

sulcus and with increasing latencies extending anteriorly. In the case of patient 

GP31, latencies increase posteriorly as well (Figure 7A; functional organization p 
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Figure 5. STG best frequency distribution and the spectral content in speech. 
The distribution for best frequency is shown. BFs are not distributed evenly 
along the range of spectral frequency content in speech, but rather, are 
concentrated in a narrow frequency range of the full speech power spectrum. 
(Note: although we only show the power spectrum extending up to 2 kHz, 
there is significant spectral energy up to 8 kHz). Furthermore, the area of 
concentration is centered on spectral frequencies with the lowest power in 
speech. 
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values < 0.01 for patients EC6 and GP31; p value < 0.05 for patient EC2; 

permutation test). Although we were interested in the latency of responses to 

natural speech stimuli, it is possible organization of responses latencies obtained 

with more traditional stimuli, such as broadband clicks, may be different. We 

investigated this possibility by computing latency values in patient EC2 using 

TORC stimuli, which have a more stereotyped broadband onset (similar to 

broadband clicks). (Klein et al., 2000). Patient EC2 was the only subject in which 

responses to TORC stimuli were recorded.  A similar overall pattern of 

organization was found, as demonstrated by the significant level of correlation 

between latency values across electrodes (Figure 7B, corr. coef. = 0.60, p value < 

0.05). Overall, latency analysis shows a systematic order in the timing of speech 

information reaching the superior temporal gyrus in which central regions 

receive information first followed by more anterior and posterior regions.  

 



 
 

47 

 

Figure 12. Organization of response latency 

 

Discussion 

 In this study we used responses to natural speech stimuli to characterize 

the organization of spectral processing in human STG. In contrats to previous 

studies, we found no clear evidence of a tonotopic organization in this region. 

Furthermore, best frequencies are not distributed across the full range of spectral 

content in speech, but are concentrated in a narrow range of frequencies below 

500 Hz. Together this data is consistent with a lack of tonotopic organization in 

human superior temporal gyrus when processing natural speech. Because 
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Figure 6. Organization of response latency. (A) Latency maps for all patients. In all 
patients the lowest latencies are concentrated on the superior temporal gyrus 
posterior to the central sulcus with increasing latencies more anterior, and in the 
case of patient GP31, more posterior as well. (Patients EC6, GP31: p < 0.005; EC2: p 
< 0.05; permutation test). (B) Speech versus TORC latencies in patient EC2. The 
absolute latency values were significantly correlated between the two stimuli (corr. 
coef. = 0.60, p < 0.05). CS = central sulcus. 
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tonotopically organized areas are generally assumed to carry out an organized 

spectral decomposition of the stimulus, the lack of tonotopic organization 

suggest a somewhat different stimulus transformation may be taking place in 

human superior temporal gyrus.  

 

 Although our results are consistent with a lack of tonotopic organization 

in human STG, our methodology for investigating tonotopic organization is 

somewhat different than traditional approaches. Almost all demonstrations of 

tonotopy in auditory cortex have been generated with multi-unit (MU) 

recordings in the middle layers of cortex. Our results are based on the high-

gamma component of the local field potential (LFP) using surface electrodes that 

are likely biased for activity from superficial layers. If STG is tontopically 

organized, could these differences in methodology lead to what appears to be 

lack of tonotopic organization? While this is possible, studies in mice do not 

support this notion. Recently, Guo et. al. showed that tonotopic organization 

characterized using multi-unit recordings in middle layers of mouse cortex, was 

also evident using the high-gamma component of LFP recording in superficial 

layers of the same region of cortex (Guo et al., 2012).  In addition, tonotopy has 

been demonstrated in rat primary auditory cortex using the high-gamma 

responses from ECoG arrays (Bouchard K., personal communication). In light of 

this, our results are consistent with a lack of tonotopically organized spectral 

processing in human STG during natural speech perception. Furthermore, work 

using the high-gamma component of ECoG recordings with pure tone stimuli 

rather than speech stimuli also showed a lack of tonotopic organization in 
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human STG (Nourski et al., 2012). Although, a subset of patients did show some 

nonrandom distribution of spectral tuning consistent with a weak organization 

of spectral tuning.  

 

 These results are at odds with recent work showing the presence of 

tonotopic organization in STG using functional magnetic resonance imaging 

(fMRI) (Humphries, Liebenthal, & Binder, 2010; Moerel, De Martino, & 

Formisano, 2012; Striem-Amit, Hertz, & Amedi, 2011; Talavage et al., 2004). One 

possible reason for the difference is the use of population analysis. fMRI data 

was transformed into a standardized (MNI or Talairach) space so data could be 

combined across subjects. It is possible that a weak tonotopic organization, 

which is too noisy to identify in a single patients, is present once data is averaged 

across patients. Collapsing our data across patients could potentially show 

nonrandom organization of spectral processing. However, functional 

organization that is not evident within a single patient suggests alternative forms 

of functional organization may be present that could potentially be more 

informative descriptors of the processing taking place in human STG (see 

Chapter 1). 

 

 The distribution of latency values along STG was highly organized with 

the lowest latencies posterior to central sulcus and longer latencies more anterior, 

and in the case of GP31, at the most posterior aspect of STG as well. Although, 

natural speech was used to compute latency values rather than more traditional 



 
 

50 

stimuli like clicks or noise bursts, the goal of the analysis was to examine latency 

organization for natural speech stimuli and thus reveal the timing of speech 

information reaching the superior temporal gyrus during the perception of 

natural speech. Our data reflect a pattern in the timing of speech information 

reaching STG in which the central region receives information first and more 

anterior and posterior regions receive information later. This data is consistent 

with previous work showing an anterior and posterior spread of speech induced 

activity from central STG (Dehaene-Lambertz et al., 2006; Brauer et al., 2008; 

Steinschneider et al., 2011). It is unclear if this reflects a hierarchical propagation 

of speech information which reaches central STG first and then spreads more 

anteriorly and posteriorly, or if information reaches these areas in a parallel 

fashion with different latencies. Although STG lacks significant tontopic 

organization in the context speech processing, it displays organization of 

response latencies- an organizing principle present in other tonotopically 

organized cortical areas. In primary auditory cortex response latencies are lowest 

in central, narrowly tuned, regions and increases dorsally and ventrally into 

broadly tuned regions (Schreiner and Mendelson, 1990; Mendelson et al., 1997). 

Further analysis will be needed to determine if latencies are correlated with 

spectral tuning bandwidth, although the complexity of mulit-peaked SRFs in 

STG may require newer metrics for bandwidth quantification.  

 

 Lack of tonotopic organization in human STG – likely a parabelt region of 

the auditory cortex - is consistent with a trend of decreasing tonotopic 

organization at ascending levels of the auditory hierarchy (Reale and Imig, 1980; 
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Bizley et al., 2005b; Petkov et al., 2006). By contrast, strong modulotopic 

organization seems to be present in human superior temporal gyrus (see Chapter 

1). It is intriguing to speculate on a possible tonotopic to modulotopic transition 

in functional organization along the auditory hierarchy. Further characterization 

of modulotopic organization would be needed to support this model, however, 

the result of such a model would be a succinct explanation for what seem to be 

very disparate forms of processing in lower tonotopically organized areas and 

higher modulotopically organized areas. The system is performing a Fourier-like 

decomposition in an iterative manner as stimuli propagate up the auditory 

hierarchy.  

 

METHODS 

Patients and Neural Recordings 

  Subdural ECoG arrays (interelectrode distance: 4mm) were placed over 

the temporal and parietal lobes unilaterally in 4 patients (2 right hemisphere, 2 

left hemisphere) undergoing a neurosurgical procedure for the treatment of 

epilepsy. All patients were native English speakers with no hearing or 

communication deficits. All experimental protocols were approved by the 

University of California, San Francisco Institutional Review Boards and 

Committees on Human Research. Array placement was determined by clinical 

criteria. After array placement, patients were allowed to recover and the 

monitoring phase of the procedure started, during which time patients were 

asked to passively listen to 15 – 25 minutes of natural speech while cortical 
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activity was recorded. Signals were amplified and sampled at 3052 Hz. After 

rejection of electrodes with excessive noise or artifacts, signals were referenced to 

a common average and the high gamma band (75 - 150 Hz) was extracted using 

the Hilbert Transform (Crone et al., 2001). The resulting signal for each electrode 

was z-scored based on the mean and standard deviation of spontaneous activity. 

 

Stimuli 

Speech stimuli were delivered binaurally though calibrated ear insets at 70 

dB average sound pressure level. The frequency power spectrum of stimuli 

spanned 0 - 8000 Hz. The stimulus set consisted of prerecorded (2 – 4 second) 

sentences drawn randomly without replacement from the phonetically 

transcribed TIMIT speech corpus with one-second silent intervals between each 

sentence presentation (Garofolo et al., 1993). Each patient was presented 484-499 

sentences with the exception of patient GP36 who was presented 246 sentences. 

The speech corpus was balanced for male and female speakers, a different 

speaker produced each sentence, and the lexical content of each sentence was 

unique.  Spectrogram representations of speech stimuli were based on a cochlear 

model of auditory processing (Yang et al., 1992).  

 

Analysis 

STRF 

STRFs  were computed using the high-gamma band of ECoG recordings 
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which correlates with tuning properties based on multi-unit spiking in auditory 

cortex (Crone et al., 2001; Steinschneider et al., 2008; Guo et al., 2012). STRFs were 

computed with two different methods designed specifically for use with natural 

signals- maximally informative dimension analysis (MID) and normalized 

reverse correlation (Theunissen et al., 2001; Sharpee et al., 2004). To compute 

STRFs using MID analysis a gradient ascent procedure was used to search for the 

receptive field that maximizes the KL divergence between the distribution of 

STRF-Stimulus projection values and the distribution of STRF-stimulus 

projection values in which contribution of each projection value to the 

distribution is weighted by the magnitude of the response. STRF estimates based 

on normalized reverse correlation were computed using open source code 

available at: http://strfpak.berkeley.edu/. STRFs were computed with both 

methods on the same estimation set (90% of the total data) and cross-validated 

on the same test set which was withheld from the estimation process (10% of the 

data). MID based STRFs showed better prediction performance and were 

therefore used to analyze functional organization in STG. To investigate 

functional organization we restricted our analysis to STRFs which predicted at 

least five percent of the total variance in the response to prevent clouding our 

view of functional organization with poor STRF models.  

 

Functional Organization 

To characterize tonotopic organization, each STRF was summed across its 

temporal axis to obtain the spectral receptive field (SRF). Best frequency is 
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defined as the peak of the receptive field, which was mapped onto the 

corresponding cortical location to investigate tonotopic organization. To obtain 

BF1 frequency we computed the Fourier transform of the each SRF. All values 

except the peak spectral modulation were set to zero and the inverse Fourier 

transform was computed to generate a fit of the SRF based on the peak of its 

spectral modulation function. The lowest spectral frequency peak of this fit is 

defined as BF1 frequency. Each SRF spans 6 octave, therefore, fits with 

modulation frequency above 0.33 cycles/octave define spectral receptive fields 

with two or more dominant peaks.  

 

To investigate latency of speech responses the distribution of response 

values at sentence onset (time zero) for each electrode were collected and 

compared to the distribution of response values at each time point after sentence 

onset. The first time point significantly different from baseline activity was 

defined as the latency (Kolmogorov-Smirnov test, p value < 1x10-6). This 

definition of latency identifies the first time point in which the response is 

significantly different from baseline activity and is agnostic to the sign of the 

response as suppressive responses will be we treated similar to excitatory 

responses.   

 

Permutation tests were used to assess functional organization of spectral 

tuning. Each test determined if the observed structure would be expected if the 

true underlying spatial organization of the parameters was random. For each site 
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a neighborhood similarity metric is computed which quantifies the similarity of a 

site and it's nearest neighbors. The values are averaged across sites to compute 

the mean neighborhood similarity index for the map. The map is then randomly 

permuted 10,000 times and the map neighborhood similarity index is 

recomputed on each permutation to generate a distribution of random 

neighborhood similarity indices. The true neighborhood similarity index is 

compared to the random neighborhood similarity index distribution to access the 

level of significance. For the STRF map, the site neighborhood similarity metric 

was computed as the average of the correlation coefficients between an STRF and 

its nearest neighbors no more than one site away. For F1 frequency and latency 

maps, the site neighborhood similarity index was quantified as the absolute 

value of the difference between a site and its neighbors rather than the 

correlation coefficient. 
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Chapter3 

A Systematic Approach to Investigating Neural Solutions 
to the Cocktail Party Problem 
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Abstract 

 The brains ability to solve the cocktail party problem is not well 

understood and current engineering solutions are suboptimal. Knowledge of the 

brains solution could be used to generate noise-robust automatic speech 

recognition algorithms and hearing aids. Here we demonstrate a systematic 

approach to identify those neural solutions. We create animals that are 

specialized at solving the cocktail party problem by rearing them in noise. We 

describe a method to identify neurons that can encode vocalization information 

in the face of noise and find that neurons in specialized animals encode 

significantly higher rates of vocalization information in the presence of noise.  

Further analysis of their receptive field properties will give insight on the 

underlying mechanism of this increased ability.  

 

Introduction 

 The challenge to extract and process signals of interest embedded in a 

mixture of sound is commonly referred to as the cocktail party problem. (Cherry, 

1953; McDermott, 2009). Understanding how the brain perceives signals of 

interest in the face of noise is an important problem with many real world 

applications including better automatic speech recognition software, more 

advanced hearing aides, and more broadly, any application which requires the 

extraction of a signals from noise. To understand how the brain solves a 

computational task of interest, it is useful to work with organisms specialized for 

solving that task because differences in neural processing between specialized 
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and non-specialized animals can give insight on the neural mechanisms that 

underlie that specialization. To investigate mechanisms by which the auditory 

system recognizes behaviorally relevant signals in the face of noise, we created 

rats that are specialized at solving cocktail party problem and compare them to 

non-specialized controls. 

  

 To create specialized animals we reared rats in naturalistic noise 

throughout the course of development and into adulthood. This serves as a 

natural training paradigm in which rats are forced to continuously perceive 

signals of interest in the face of noise during a time when the brain is most plastic 

and can robustly adapt to the acoustic environment (Insanally, Köver, Kim, & 

Bao, 2009; Nakahara, Zhang, & Merzenich, 2004; Zhang, Bao, & Merzenich, 

2001a; Xiaoming Zhou & Merzenich, 2008a; de Villers-Sidani, Chang, Bao, & 

Merzenich, 2007; de Villers-Sidani, Simpson, Lu, Lin, & Merzenich, 2008). We 

determined if noise-rearing facilitates the development of specialized abilities to 

solve the cocktail party problem, by testing animals using a vocalization 

recognition task and show noise-reared animals are significantly better at 

recognizing vocalizations in the face of noise. To identify neural correlates of this 

increased ability, we describe a method that allows for identification of neurons 

that can extract vocalization information in the presence of noise. Using this 

method we identify populations of these neurons in noise-reared and naïve 

animals. Although the prevalence of these neurons is the same in both groups, 

neurons in noise-reared animals extract vocalization information in the face of 

noise at significantly higher rates. Further receptive field analysis of these 
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neurons will give insight to the underlying mechanism of this ability. This 

process demonstrates a systematic approach that can be iteratively performed 

using different types of noise to refine models of processing and unravel the 

process by which neural systems solve the cocktail party problem. 

 

Results 

Synthesis of Naturalistic Noise 

 Although some definitions of the cocktail party problem specify noise as 

competing vocalizations, we use a broader definition which defines noise as any 

competing environmental sound. To identify noise sources in a lab rat’s natural 

environment, we recorded the acoustic scene of 6 female rat siblings starting 

post-natal day 30 and ending post-natal day 40. Visual inspection of these 

recordings identified vocalizations in the 20-30 kHz range and less prevalent 

vocalizations in the 50-80 kHz range. A typical rat vocalization consisted of a 

bout of narrowband whistles in which each whistle could be modulated up or 

down in frequency to generate up-sweeps, down-sweeps, U-shaped whistles, or 

even more complex vocalizations. This diversity of spectrotemporal structure in 

individual whistles and the frequency ranges in which they were identified are 

consistent with previous characterizations of rat vocalization repertoire (S M 

Brudzynski, Bihari, Ociepa, & Fu, 1993; S M Brudzynski, Kehoe, & Callahan, 

1999; Stefan M Brudzynski, 2005; Kaltwasser, 1990; Portfors, 2007).  In addition to 

vocalizations, the other dominant sound found in the recordings was associated 

with quick movement in the sawdust bedding during play or any movement 
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related behavior and contained broadband frequency content coherently 

modulated in time (Figure 1A). We estimated the statistics of this sound and 

generated a synthetic version that was characteristically similar by modulating 

the sound pressure level of broadband white noise to give a similar amplitude 

distribution and temporal modulation spectrum, which we refer to as 

“naturalistic noise” (Figure 1B).  

 

Figure 13. Movement related noise in the lab rat acoustic environment and a synthetic “naturalistic” 
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Figure 1. Natural and synthesized “naturalistic” noise. (A) Rat vocalizations in natural 
noise (top) and rat vocalization in the synthetic  “naturalistic” noise. (B) Statistics 
between the movement related noise and the synthetic version. Compared to the 
natural version, the synthetic noise has a flatter frequency spectrum to increase noise 
power in the 20-30 kHz vocalization range. The frequency spectrum of synthetic noise 
also extends to higher frequencies to prevent animals from shifting their vocalization 
frequency range to compensate for background noise.  
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version of the noise. 

Noise-rearing 

 To create animals, which are specialists at solving the cocktail party 

problem, we exposed rats to naturalistic noise throughout the course of their life, 

starting at p6, prior to the opening of the ear canal. During the exposure rats 

were housed in acoustic attenuation chambers to restrict their auditory 

environment to self-generated sound and naturalistic noise. The average sound 

pressure level the natural movement related noise was 51.1 dB. To avoid 

pathologic sound pressure levels (SPLs), but still create a challenging listening 

conditions, we exposed animals to naturalistic noise with an average SPL of 60 

dB (Cappaert, Klis, & Muijser, 2000; Ward, Cushing, & Burns, 2000). Although 

the mean SPL was not significantly louder than natural conditions, noise was 

played continuously without interruption for the life of the animal. Noise rearing 

lasted for a minimum of 39 days but extended up to 99 days for a subgroup of 

animals that went through two rounds of behavioral testing. Animals were 

checked daily to ensure no interruptions in the noise exposure and no noticeable 

differences were observed in the overall behavior or temperament of the exposed 

animals compared to naïve animals raised in normal laboratory conditions.  

  

Behavioral Testing 

 To determine if noise-rearing increases an animal’s ability to solve the 

cocktail party problem, we trained noise-reared (n = 3) and naïve animals (n  = 4) 

on a vocalization recognition task. After reaching peak performance under quiet 
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conditions, naturalistic noise was added to the task during a short testing phase 

and the performance of each group’s ability to recognize vocalizations in the face 

of noise was quantified. Outside of training and testing sessions, noise-reared 

animals were placed back into the noise exposure. The vocalization recognition 

task consisted of a go/no-go paradigm in which animals were trained to respond 

to a target vocalization (breaking a sensor beam in a circular port with their nose) 

for a food reward and withhold a response if a non-target vocalization was 

played. The vocalization stimuli consisted of one target vocalization 

(vocalization-1) and three non-target vocalizations plus (Figure 2).  

 

Figure 14 Behavioral testing vocalization stimuli. 

 

The target vocalization remained the same throughout the training and testing 

phase. Vocalizations for the task were taken from rat acoustic recordings. The 
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Figure2. Vocalization stimuli used for behavioral training. All vocalizations are within the 
20-30 kHz range and have similar duration. Although there are many differences between 
the vocalizations, the most apparent are the number of whistles and duration of individual 
whistles within a single vocalization bout. Vocalization 1 served as the target for the first 
experiment.   
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vocalizations used had frequency content in the 20-30 kHz range and were 

similar in total duration, but differed in number of whistles and the temporal  

 

Figure 15. Vocalization recognition performance in naturalistic noise 

duration of individual whistles within the vocalization. Rats began training at 

p45 and trained on the task twice daily (1.5 hours each session) for 28 to 39 
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Figure 3. Vocalization recognition performance in naturalistic noise. Both groups were 
trained to recognize vocalizations in the absence of noise and then tested on their ability to 
recognize vocalizations in naturalistic noise during a short two-day testing phase. (A) 
Vocalization recognition performance using vocalization 1 as the target. Both groups have 
similar performance in zero noise conditions (+ 55 dB SNR), but noise-reared animals 
significantly outperform naïve animals at SNRs of 0 dB, -10 dB, and -15 dB ( pvalue < 0.05, 
Wilcoxon rank sum test; -5 dB SNR pvalue = 0.08, Wilcoxon rank sum test). (B) Vocalization 
recognition performance using vocalization 2 as the target. Both groups have the same 
performance level in zero noise conditions (+ 55 dB SNR), but noise-reared animals 
significantly outperform naïve animals at SNRs of 0 dB, and -5 dB (pvalue < 0.05, Wilcoxon 
rank sum test). In B, an additional zero-noise block at the end of the low SNR-blocks was 
added to determine if performance in zero-noise conditions remained the same before and 
after the SNR blocks. 
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consecutive days until each rat reached a plateau in performance. After reaching 

peak performance, each rat was tested for the ability to perform vocalization 

recognition in the face of naturalistic noise during a two day testing phase. Each 

testing day consisted of 30 warm-up trials (without background noise) followed 

by 6 testing blocks of 45 trials per block. Each block had a different signal to 

noise ratio ranging from +55 dB (zero noise) to -20 dB SNR.  Figure 3A shows 

vocalization recognition performance at various SNRs for rats trained using 

vocalization 1 as the target.  Both groups of rats had similar performance levels 

in zero noise conditions (+55 dB SNR). As naturalistic noise was added the 

performance in both groups decreased. However, noise-reared animals exhibited 

a less dramatic decrease and had significantly higher performance scores at three 

of four signal-to-noise ratios in which performance was above chance. To ensure 

this trend was not specific to the particular target vocalization chosen, we 

switched the target to vocalization 2 and re-trained the same animals 

(vocalization-1 became a non-target). Again, the noise-reared animals 

significantly outperformed the naïve animals in conditions with naturalistic 

noise added to the background (Figure 3B). This data suggests that noise rearing 

facilitates the development of animals that are able to better recognize 

vocalizations in the face of noise compared to naïve animals.  

 

 Although increased performance levels demonstrate noise-reared animals 

are better at recognizing vocalization in the face of noise, this effect in behavioral 

performance could be due to non-auditory specific factors. For example, the 

addition of noise could distract or startle the naïve animals, which have not been 
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reared in the noise environment. This could cause a decrease in performance 

relative to noise-reared animals due to decreased attention to the behavioral task. 

To rule out non-auditory specific differences that could account for increased 

performance by noise-reared animals we trained a new group of animals on a 

visual stimulus recognition task and tested their performance on this task in the  

 

Figure 16. Visual stimulus recognition performance in acoustic noise. 

presence of the acoustic noise (noise-reared, n = 3; naïve, n = 3). If the difference 

leading to increased performance in noise-reared rats is not auditory specific (i.e. 

they are habituated to the noise and therefore less distracted by it) the noise 

reared animals should again outperform naïve animals when naturalistic noise is 

added. The visual recognition task is identical to the vocalization recognition 

task, with the exception of visual stimuli rather than vocalization stimuli. Visual 
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Figure 4. Visual stimulus recognition performance in naturalistic noise. (A) Visual stimuli 
used for the visual recognition. (B) Visual recognition performance in the presence of 
naturalistic acoustic noise used for rearing. Noise conditions have the same noise SPLs as 
the low SNR blocks of the previous vocalization recognition task. Noise sound pressure 
level is plotted in reverse order for easy comparison with figure 3. There is no significant 
difference between groups at any noise SPL, and no decrement in performance as noise SPL 
is increased. This indicates the difference in vocalization recognition performance (Figure 3) 
is not due to non-auditory specific differences between groups such decreased attention to 
the task by naïve animals who are not familiar with the noise. 
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stimuli were generated by pulsing the light within the nose-poke response port 

at different rates to generate four 2-second visual stimuli (Figure 4A). After 

reaching peak performance, the ability to recognize visual stimuli in acoustic 

noise was measured at the same noise sound pressure levels used to create low 

SNR conditions in the previous experiment. Figure 4b shows that there is no 

difference between the groups at any noise SPL level indicating that the results 

from the vocalization recognition task cannot be explained by nonspecific effects 

such as habituation to the noise environment. This suggest increased 

performance by noise-reared animals at solving the cocktail party problem is due 

to an auditory specific adaptation that allows for better recognition of 

behaviorally relevant signals in the face of noise. Differences in auditory 

processing between these specialized animals and naïve animals can be used to 

identify mechanisms by which neural systems recognizes signals of interest in 

the face of noise.  

 

Identification of Cocktail Party Neurons 

 To identify neural correlates of noise-reared animal’s increased 

performance on the cocktail party task, we recorded neural responses in primary 

auditory cortex of anesthetized animals to various vocalization stimuli, and 

vocalization stimuli embedded in noise. To specifically look at the effects of noise 

rearing, we recorded single unit activity from untrained noise-reared animals 

and age matched animals raised in normal laboratory conditions (noise-reared: n 

= 4, 1055 units; naïve: n = 4, 756 units). Recordings were localized to the 20-30 
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kHz region of A1 based on a tonotopic map that was determined for each animal. 

To identify neural correlates of the increased behavioral performance we played 

two sets of stimuli.  

 

Figure 17. Identification of neurons of cocktail party neurons 
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Figure 5. Identification of cocktail party neurons (cp-neurons). (A) One hundred trials of 
a 5 second rat vocalization bout used to identify neurons sensitive to vocalizations in the 
20-30 kHz range. (B) One hundred trials of the vocalization bout with a different instance 
of naturalistic noise on each trial (0 SNR). (C) Example response rasters from a 
vocalization sensitive neuron (Neuron 1, blue) and a cocktail party neuron (cp-neuron, 
Neuron 2, red). The vocalization sensitive neuron (blue) has structure in the vocalization 
response raster, corresponding to significant information, but no structure when noise is 
added. The cp-neuron (red) has structure in the vocalization response raster and retains 
structure despite the addition a unique instance of naturalistic noise on each trial. 
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The first stimulus set consisted of a 5 second bout of vocalizations in the 20-30 

kHz range repeated 100 times and was used to identify neurons that were 

responsive to 20-30 kHz vocalizations (Figure 5A). The second stimulus set  was 

meant to identify neurons that can extract vocalization information in the face of 

noise and consisted of the same bout of vocalizations, but with naturalistic noise 

in the background at 0-dB SNR (Figure 5B). A 0-dB SNR has resulted in 

significant performance differences between naive and noise-rear animals in the 

behavioral task (see Fig. 3). A key feature of the second stimulus set is that the 

specific instance of background noise on each trial is different, thus, any 

consistent response across trials, reflects encoded information about the 

vocalization and not the noise. This makes it possible to identify neurons that 

encode vocalization information in the face of noise by identifying response 

rasters that have consistent responses across trials. To identify these rasters, we 

compute information values in each raster to determine if each raster contains a 

significant amount of stimulus information. Neurons with significant 

information values for the vocalization-in-noise stimulus, encode a significant 

amount of vocalization specific information in the face of noise and are classified 

as cocktail party neurons (cp-neurons).  We use this method to identify cp-

neurons in both groups of animals, and look for differences that could underlie 

the increased behavioral performance in the noise-reared group.  
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 With this method to identify cp-neurons we asked two questions which 

could underlie noise-reared animals increased ability to solve the cocktail party 

problem. Do noise reared animals have more cp-neurons? And, are cp-neurons 

in noise-reared animals better at encoding vocalization information in the face of 

noise? To address the first question we classified neurons based on which stimuli 

they encoded significant information for by computing information values from 

the vocalization and vocalization-in-noise response rasters (Figure 6A). Based on 

the two stimuli, neurons could encode significant information for both stimuli,  

 

Figure 18. Cp-neuron prevalence and information transmission rates 
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Figure 6. Cp-neuron prevalence and information transmission rates. (A) Distribution of neurons 
types. Neurons were classified according to the presence of significant information in their 
vocalization and vocalization in noise response rasters. Four neuron classes are possible based 
on their responsiveness to two stimuli. cp-neurons have significant vocalization information for 
vocalization and vocalization in noise stimuli and make up ~ 5 -10% of the recorded neural 
population. There were no significant differences in the proportion of cp-neurons or any other 
neuron class between naïve and noise-reared animals. (B) Cp-neuron vocalization specific 
information. Because the noise on each trial of the vocalization in noise stimulus is different, 
information values reflect the magnitude of vocalization specific information present in the 
response. Cp-neurons in noise reared-animals represent significantly higher amounts of 
vocalization specific information in the presence of noise compared to naïve animals (9.0 ±  1.0 
bits/sec vs 5.7  ± 0.4 bits/sec, mean±s.e.m, pvalue < 0.005 Wilcoxon rank sum test). 
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vocalization-in-noise stimulus only would be classified as cp-neurons. However, 

we observed no “stochastic resonant” neurons that encoded significant 

information for the vocalization-in-noise only. Approximately 5-10% of recorded 

neurons encoded significant information for both vocalization and vocalization-

in-noise stimuli and make up the cp-neuron population. As shown, there is no 

statistically significant difference in the proportion of cp-neurons between naïve 

and noise-reared animals. Furthermore there is no significant difference in the 

proportion of any neuron type between the two groups. These data suggest that 

an increased proportion of cp-neurons in the noise-reared animals is not 

responsible for increased performance in recognizing vocalizations in the face of 

noise. In addition, the overall distribution of neuron types in A1, as classified by 

this method, does not change with noise-rearing.  

 

 To determine if individual cp-neurons from noise-reared animals are 

better at encoding vocalization information in the face of noise we compared the 

distribution of information values between noise-reared and naïve animals for 

the vocalization-in-noise response rasters (Figure 6B). Cp-neurons from noise-

reared animals encode significantly more vocalization specific information per 

second in the face of naturalistic noise at 0-dB SNR  (9.0 ± 1.0 bits/sec vs 5.7 ± 0.4 

bits/sec, mean±s.e.m, p-value < 0.005, Wilcoxon rank sum test). This finding 

shows that although there is no difference in the overall proportion of cp-

neurons between the two groups, individual cp-neurons in noise-reared animals 

encode more vocalization information in the face of noise compared to naïve 

animals. This increased encoding ability by cp-neurons in noise reared animals 
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could underlie their increased behavioral performance on the cocktail part task 

and further analysis of the receptive field properties of these neurons will give 

insight to the mechanisms by which neurons encode vocalization information in 

the presence of noise. 

 

Discussion 

 The aim of this study was to create animals that are specialists at solving 

the cocktail party problem, and then identify auditory processing differences 

between specialized and non-specialized animals to investigate the mechanisms 

neural systems use to process signals of interest in the presence of background 

noise. To create specialized rats we reared animals in synthetic noise with 

characteristics of natural noise from a lab rat’s acoustic environment. Through 

behavioral testing we have shown noise-rearing increases behavioral 

performance on a cocktail party problem task, and this increased performance is 

due to an auditory specific adaptation rather than non-auditory specific effects 

like familiarity with noise. Using a method designed to identify cocktail party 

neurons, we found a subpopulation of cp-neurons in both naïve and noise-reared 

animals with the ability to extract vocalization information in the presence of 

noise. Although there was no difference in the relative proportion of cocktail 

party neurons between groups, noise-reared cocktail party neurons encoded 

vocalization information at significantly higher rates. This increased ability to 

extract vocalization information in the presence of noise could translate to larger 

amounts of encoded vocalization information in the awake behaving animal and 
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could account for the increased behavioral performance shown by noise-reared 

rats.  

 To create specialized rats we reared animals in naturalistic noise, 

however, any type of noise could be used, and mechanisms by which neural 

systems deal with noise may be different depending on the particular type of 

noise. In addition, within a particular class of noise, models of the neural 

mechanisms which facilitate signal perception can be iteratively refined by 

varying the characteristics of noise used for rearing. For example, it is possible 

that shifts in temporal tuning are important for cp-neuron function in our 

naturalistic noise rearing conditions. This hypothesis could be tested by rearing 

animals in different versions of naturalistic noise with varying temporal 

modulation content.   

 

 An alternative strategy to create specialized animals is to directly train 

them to perform an auditory task in the face of noise and characterize changes in 

processing that correlate with increased performance (Whitton, Hancock, Polley, 

2012). This is potentially a more direct approach, however, it is possible the 

adaptive changes induced by training may be very specific to the signal and 

noise used, and may be dominated by highly specific shifts in tuning for the 

particular signal stimulus rather than general adaptive changes that would allow 

the system to better process any potential signal in the face of noise.  By contrast, 

because animals in a noise-rearing environment have many signals of interest 

that are only defined by what is behaviorally relevant at the moment, adaptive 
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changes are likely to highlight general mechanisms a neural system uses to 

process any signal of interest in the particular class of noise used for rearing. In 

fact, one can think of noise rearing as a “natural” training paradigm in which the 

training occurs continuously, the behavior-reward contingencies are natural (i.e. 

a pup may be the last to start feeding if it doesn’t hear the mother’s vocalization), 

and the training begins at infancy and lasts through development- a time in 

which the brain is most plastic and can adapt to challenges most efficiently 

(Zhang, Bao, & Merzenich, 2001b; Xiaoming Zhou & Merzenich, 2008b; de 

Villers-Sidani et al., 2007).  

 

 Although we have demonstrated a useful approach to studying the 

cocktail party problem in which we create specialized animals and then identify 

the neural correlates of that specialization, there is still considerable work to be 

done to understand the processes by which neural systems extract information 

about signals of interest in the presence of noise. One limitation as well as benefit 

of the study is the use of anesthetized animals for neural recordings. In general, 

recordings of single units in anesthetized animals are more stable than 

recordings in awake, behaving animals, which allows for longer recording times. 

Information estimates, which were essential to our method of identifying cp-

neurons and the study as a whole, are data intensive (Panzeri, Senatore, 

Montemurro, & Petersen, 2007a; Strong, Koberle, de Ruyter van Steveninck, & 

Bialek, 1998). Therefore, we used an anesthetized preparation to increase the 

likelihood of obtaining enough data from single units to obtain the necessary 

information estimates. However, it is unclear how well characterizations of 
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processing in the anesthetized state reflect processing in awake animals that are 

performing the task of interest. Future recordings in awake, behaving animals 

are likely to be necessary for a complete understanding of the problem. A second 

limitation of the study is the restricted region in which we made recordings. The 

auditory system, and brain in general, is a highly integrated system with many 

levels of processing. We recorded neural activity in a single level of this system- 

the primary auditory cortex. It is possible that synchronous measurements at 

each level of the system will be necessary to formulate a deep understanding of 

how the brain solves the cocktail party problem. Lastly, we identified a 

population of neurons in noise-reared animals that extracts higher amounts of 

vocalization information in the face of noise, but we gave no account of a 

mechanism to explain this. It should be possible to gain insight on this 

mechanism by characterizing the spectrotemporal receptive field properties of 

these neurons. Recently several methods have been developed to specifically 

characterize neural receptive fields using natural signals (David, Mesgarani, & 

Shamma, 2007; Paninski, 2004; Sharpee, Rust, & Bialek, 2004; Theunissen et al., 

2001). These methods will undoubtedly be useful in characterizing receptive field 

properties and identifying potential mechanisms of cp-neuron function. 

 

 Since the description of a critical period in the primary auditory cortex of 

rats, there have been many studies characterizing the effects of rearing animals in 

different exposure stimuli (Chang & Merzenich, 2003a; Insanally et al., 2009; 

Nakahara et al., 2004; Zhang et al., 2001b; X Zhou, Nagarajan, Mossop, & 

Merzenich, 2008; Xiaoming Zhou & Merzenich, 2008b; de Villers-Sidani et al., 
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2008). Rearing animals in the presence of pulsed, pure-tone stimuli causes 

tonotopic map expansion at the exposure frequency (Zhang et al., 2001b). 

Because training adult animals on a frequency discrimination task also induces 

tonotopic map expansion it is possible that tone-reared animals would show 

better frequency discrimination abilities near the exposure frequency (Polley, 

Steinberg, & Merzenich, 2006; Recanzone, Schreiner, & Merzenich, 1993). 

However, tone-reared animals show decreased discrimination performance near 

the exposure frequency contrary to training induced map expansion (Han, 

Köver, Insanally, Semerdjian, & Bao, 2007). This example shows the necessity of 

testing animals behaviorally to determine the perceptual effects of stimulus-

rearing induced changes in processing. A particularly relevant study reared 

animals in continuous unmodulated white noise and showed abnormal 

development of frequency selectivity and degraded tonotopic organization 

(Chang & Merzenich, 2003). This was interpreted as an overall degradation in 

auditory processing and white noise was implicated as a potential risk factor for 

abnormal child development. However, in the absence of perceptual testing to 

quantify the effects of unmodulated white noise exposure it is unclear exactly 

what the perceptual effects were. Although some perceptual tasks, like pure tone 

frequency discrimination, may be degraded, other tasks, like vocalization 

recognition in the face of unmodulated white noise, may be improved. It is likely 

that the combined effects of changes in processing induced by stimulus-rearing 

experiments impart a net benefit to the animal which allows the organism to 

better survive in the environment it was raised in. Through carefully chosen 

rearing conditions, we can look for correlations between adaptive changes in 

processing and increased perceptual performance to gain insight on mechanisms 
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the brain uses to extract information from the environment to maximize an 

organisms chances of survival.  

 

Methods 

Acoustic Recordings and Noise Synthesis 

 Acoustic recording of 6 female siblings housed in a sound attenuation 

chamber were made continuously over a ten day period (p30 – p40). The sound 

attenuation chamber restricted the acoustic environment to self generated sound. 

All acoustic recordings and noise rearing were performed in sound attenuation 

chambers to maintain control and consistency over the acoustic environment. 

Recordings were made using a microphone suspended 10 cm above the cage. 

Recordings were collected sampled at 192 kHz, in 10 minute increments, and 

saved to disk. A two second 4 kHz tone of known SPL was played at the 

beginning of each recording for calibration purposes. Daily checks were 

performed to ensure no interruption in the recording process. Spectrogram 

representations of acoustic recordings were generated with a short-time Fourier 

transform and visually inspected to extract rat vocalizations and non-

vocalization sound. The dominant non-vocalization sound, which we classify as 

noise, was associated with quick movement related behavior and was 

characterized by broadband frequency content coherently modulated in time. 

The synthetic version consists of broadband white noise who’s sound pressure 

level is modulated in time by a modulation envelope [mdB(t)] to give the desired 

variation in SPL. To generate the modulation envelope, a Gaussian white signal 
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was filtered in the frequency domain to give a modulation envelope with the 

desired temporal modulation content.  After filtering, the modulation envelope 

was normalized to have zero mean and unit variance. To generate the linear 

modulation envolope, mdb(t) was exponentiated according to : 

 

  (1) 

 

Broadband white noise was then multiplied by the linear modulation envelope 

(mlin(t)) to give the desired synthetic noise signal with sound pressure level as a 

function of time given by 

 

  (2) 

 

Where the mean (µ) and standard deviation (σ) were 60 dB and 8 dB 

respectively. The mean noise SPL was chosen to create a challenging listening 

conditions, but avoid pathologic sound pressure levels (Cappaert, Klis, & 

Muijser, 2000; Ward, Cushing, & Burns, 2000).  

 

Noise Rearing 

€ 

mlin (t) =1e−5 ×10 µ +σ ×mdB ( t )[ ] / 20

€ 

SPLdB (t) = µ +σ × mdb (t)



 
 

84 

 Sprague Dawely female rats were housed in groups of 6 in sound 

attenuation chambers. A speaker was suspended 30 centimeters above the cage. 

A 1-hour instance of naturalistic noise was played continuously at an average 

SPL of 60 dB starting at p6, prior to ear canal opening. Noise-reared animals 

were kept in the noise exposure until the day of electrophysiology recordings 

(average age p60). For behavioral testing, noised-reared animals were returned to 

the noise exposure outside of training and testing sessions. The average age of 

animals at the end of testing was p84 for the first vocalization recognition in 

noise experiment and the visual stimulus recognition in noise experiment. 

Animals from the first vocalization recognition in noise experiment were then 

trained and tested on a second target. The average age at the end of testing was 

p104.  Animals were checked daily to ensure that the noise exposure was not 

interrupted and the average SPL remained at the desired level. No noticeable 

differences were observed in the behavior or temperament of noise-reared 

animals compared to naïve animals raised in normal laboratory conditions.  

 

Behavioral Training and Testing 

 To determine if noise rearing confers an increased ability to recognize rat 

vocalizations embedded in noise, three Sprague Dawely rats raised in normal 

laboratory conditions (without noise exposure and outside sound attenuation 

chambers) and four noise reared rats were trained to discriminate rat 

vocalizations using an operant Go / No-Go training paradigm. All rats started 

training at p45. Rats were placed on food restriction to provide motivation 
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during training sessions. Both groups of rats were trained on the task in the 

absence of noise. After reaching peak performance, noise was added to the task 

during a short two session testing phase in which their ability to perform the task 

at various SNRs was quantified. For the vocalization recognition task, rats were 

trained in quiet conditions to respond with a nose-poke (“Go”) within 4 seconds 

of the onset of a target vocalization or withhold a response (“No-Go”) when 

presented with one of four non-targets (three vocalizations and one silent catch 

trail).  A Correct “Go” response to the target was scored as a hit and was 

rewarded with a food pellet (45 mg; BioServe, Frenchtown, NJ). Failure to 

perform a “Go” response to the target was scored as miss and punished with an 

10 second timeout period in which the house light was turned off. A correct “No-

Go” response to a non-target was scored as a withhold and neither rewarded nor 

punished. An incorrect “Go” response to a non-target was scored as a false 

positive and punished with a 30 s timeout. The long timeout period for a false 

positive served to discourage a strong bias for this group of rats to respond to all 

stimuli and accrue high false positive rates. A single trial was defined as the 

length of time between the start of the stimulus and the end of the 4 second 

response window plus any time out period resulting from an incorrect response. 

Intertrial intervals were randomly selected between 1 – 4 seconds long and nose-

poke responses during this time prevented stimulus presentation, were scored as 

a false alarm, and resulted in a 30 second time out. Following the timeout, the 

intertrial interval was reset and the next trial allowed to proceed.  
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 Exposed and naïve rats were trained to discriminate vocalizations the 

absence of background noise. After reaching satisfactory vocalization 

discrimination performance, the synthetic background noise was added and their 

ability to discriminated vocalizations in the face of noise was tested at various 

SNR levels. Outside the training sessions exposed rats were placed back in the 

noise exposure. Training rats to discriminate vocalization consisted of three 

phases. In phase one, rats were trained to nose-poke for a food reward. In phase 

two, rats were trained to nose-poke within 4 seconds of the onset of any 

vocalization and withhold a response on silent catch trials. Once, responses were 

clearly under stimulus control and false positive rates were below 15% on silent 

catch trails, rats were advanced to phase three and trained to respond to a single 

target vocalization and withhold responses to all non-targets and silent catch 

trials. To keep the rats motivated despite long trial durations the probability of a 

target was 0.6 (Schnupp, Hall, Kokelaar, & Ahmed, 2006). The probability of the 

three non-targets and silent catch trials were 0.1. Once animals reached a plateau 

in performance defined by a standard deviation in percentage correct below 5% 

over a four day window, they were advanced to the testing stage in which 

discrimination ability in the face of noise was tested. Testing consisted of two 

sessions that took place on a consecutive two-day period. Prior to the beginning 

of a test session, 30 warm-up trials were given without noise.  Within a test 

session there were 6 SNR blocks of 45 trials per block in which the blocks had the 

following order:  55 dB vocalization (zero noise), 0 dB SNR, -5 dB SNR, -10 dB 

SNR, -15 dB SNR, -20 dB SNR. This ordering was randomized during the testing 

phase of the second target. During each block the background noise was 

continuously played rather than starting and stopping at the beginning and end 
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of each trial to mimic the conditions of the actual noise exposure.  After the 

testing phase for the first target, both groups were trained an tested on a second 

target. For the testing phase of the second target the order of low SNR blocks was 

randomized but was still preceded and followed by 55 dB (zero noise) SNR 

blocks. In addition a second 55 dB (zero noise) SNR block was added at the end 

to quantify performance in zero noise after progression through the noise blocks. 

Behavioral training and testing of visual stimuli recognition in acoustic noise was 

identical with the exception of visual rather than auditory target and non-target 

stimuli. In addition the dependence of house light illumination was reversed. 

During trials the house light was turned off the increase visibility of the visual 

stimulus. During time out periods the house light was turned on.  

 

Stimuli 

 Three sets of stimuli were used to characterize auditory processing of rat 

vocalizations embedded in naturalistic noise. The first stimulus consists of a 5 

second bout of rat vocalizations repeated 100 times. The vocalizations span the 

20 – 30 kHz frequency range and were generated by concatenating 4 isolated 

vocalizations from the acoustic recordings. This stimulus is used to identify 

neurons sensitive to vocalizations in the 20-30 kHz frequency range in the 

absence of noise. The second stimulus consists of the same vocalization repeats 

with naturalistic noise added to each trial at 0 SNR, however, on each trial a 

different instance of naturalistic noise is used. This stimulus is used to quantify 

the amount of vocalization specific information present in responses to 
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vocalizations embedded in naturalistic noise. The third stimulus consist of 12 

minutes of rat vocalizations in the 20 – 30 kHz range taken from the acoustic 

recordings and embedded in naturalistic noise at 0 SNR. This stimulus will be 

used to thoroughly probe the 20 – 30 kHz vocalization in noise stimulus space for 

the purpose of characterizing receptive field properties 

 

 

Electrophysiology 

 Naïve (n = 4, average age = p60.8± 9.8) and noise-reared animals (n = 4, 

average age = p60.5 ± 9.1) were anesthetized with pentobarbital and a 

craniotomy was performed unilaterally over auditory cortex. Stimuli were 

delivered in the contralateral ear via a closed speaker system. Responses to pure 

tone stimuli were recorded with Tungsten electrodes (1-2 MΩ) to measure 

multiunit frequency-intensity response areas and generate a map of characteristic 

frequency. Primary auditory cortex was functionally identified as having short 

latency onset responses to tones (8-20 ms) and located as the most dorsal 

tonotopically organized region with a gradient running in the posterior to 

anterior direction ~ 10° relative to the transverse plane. After identification of 

primary auditory cortex, responses to the set of vocalization and vocalization in 

noise stimuli were recorded from the 20-30 kHz regions of the map. Recordings 

were made with two NeuroNexus A series 16 channel probes (2-3 MΩ 

impedance) in which each probe had 4 shanks oriented in a plane (125 um 

between shanks), and 4 channels oriented along the length of each shank (100 um 
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spacing).  Neural traces were band-pass filtered between 600 and 6000 Hz and 

recorded to disk using a Nueralynx-Cheetah A/D system. Spikes were then 

sorted offline using a Bayesian spike sorting algorithm (M. Lewicki, 1998; M. S. 

Lewicki, 1994). 

 

Data Analysis 

 Information values for the vocalization repeats and vocalization in noise 

repeats were computed using the direct method (Strong et al., 1998). Spike train 

data was binned at 4 ms resolution. Bias due to finite data set size was corrected 

using quadratic extrapolation, in which estimates of total and noise entropy were 

computed using subsets of the data (90%, 80%, 70%, 60%) and then extrapolated 

for infinite data set size (Panzeri, Senatore, Montemurro, & Petersen, 2007b; 

Strong et al., 1998). Each data fraction estimate was bootstrapped using different 

data fraction segments. After extrapolation for infinite data set size, total an noise 

entropy estimates were computed for word durations of 4, 8,16, 32, 64, and 128, 

ms and extrapolated for infinite word length to obtain information estimates for 

vocalizations and vocalizations in noise at 0 SNR. Because the noise on each trail 

is different for the vocalization in noise stimulus, components of the response 

related to the noise are different on each trial, and as such, are quantified as noise 

(noise entropy) in the information estimates thus allowing for the isolation of 

vocalization specific information. For all information estimates, the first 750 ms 

of each trail was discarded to remove information related to the onset of each 

trial. This is particularly important for vocalization in noise information 
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estimates to isolate vocalization specific information. The onset of noise preceded 

the onset of vocalizations on each trail. Although the noise on each trial is 

different, its onset still generated a consistent response across trials, which would 

contaminate vocalization specific information estimates if not removed.   

 

 Significance values were used to classify neurons according to which 

stimuli they encode significant information for. Permutation tests were used to 

determine if responses contained significant information for each stimulus. To 

determine significance, each trial of a given raster was circularly permuted a 

random amount, leaving the statistics of the spike train unchanged but removing 

its dependence on the stimulus. Information estimates were computed for 1000 

instances of the permuted raster to generate a distribution of information values 

for responses with the same spike train statistics but no information stimulus 

information. This distribution was compared to the information estimate for the 

actual unpermutated raster to determine significance. Information estimates 

using the direct method are time-intensive due bootstrapping, and extrapolations 

for infinite data set size and word length. To make permutation testing feasible, 

we used a less time intensive estimate of information, Ispike, which is correlated 

with total information and quantifies the information given by the arrival time of 

a single spike (Brenner, Strong, Koberle, Bialek, & de Ruyter van Steveninck, 

2000).  
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Concluding Remarks 

 

This work was motivated by a broad interest to understand how the brain 

processes information to give rise to intelligence. This is a very broad question so 

we restrict our efforts on understanding neural processing of sensory inputs to 

the system and focus on two important questions pertaining to auditory 

processing: (1) What is the function organization of speech processing in human 

superior temporal gyrus (STG), and (2) how does the brain extract information 

about signals of interest from noise. In superior temporal gyrus we show, for the 

first time, a robust form of organization called modulotopy. Modulotopic 

organization is a higher order analog of tontopic organization based on tuning 

for the Fourier components of the time-frequency (spectrogram) representation 

of sound. This form of functional organization provides evidence for a succinct 

model of auditory processing: the auditory system initially decomposes sound 

into its Fourier components (frequency) to generate a time-frequency 

spectrogram representation of the sound. This time-frequency representation of 

sound is then decomposed in terms of the Fourier components of a spectrogram 

known as spectrotemporal modulations. This can be conceptualized as a stacked 

Fourier decomposition of the signal (Chapter 1, Figure 6) in terms of frequency 

then in terms of spectrotemporal modulations.  

 

With regard to understanding how neural systems solve the cocktail party 

problem, we have established a systematic approach in rats to study how neural 
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systems extract information about signals of interest embedded in noise. In this 

work we demonstrated a method to create rats that are specialized at solving the 

cocktail party problem based on rearing them in naturalistic noise. We tested 

animals behaviorally on a cocktail party problem task and show that noise-

rearing facilitates the development of an increased ability to recognize 

vocalizations in the presence of the naturalistic noise.  In addition, we 

demonstrated a method to identify individual that have the ability to extract 

vocalization information in the face of noise. Examination of the response 

properties of these neurons will illuminate neural mechanisms which allow the 

brain to extract signals of interest from noise. We believe this will be a powerful 

tool to probe the system with different signal and noise classes to investigate 

how the system solves the cocktail party problem in the range of different signal 

and noise conditions that organisms are confronted with during everyday life.  

 

In the course of this work we have identified a highly informative description 

of the organization of speech processing in humans and demonstrated a 

systematic framework for studying the cocktail party problem in rats. Although 

we have not explicitly shown the computations the brain performs to give rise to 

our speech perceptual abilities or to extract signal from noise we believe the 

work presented here constitutes a significant contribution to understanding these 

computations and can be built upon to eventually understand the nature of 

intelligent processing in the auditory system.  
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