Lawrence Berkeley National Laboratory
LBL Publications

Title
H5Part: A Portable High Performance Parallel Data Interface for Particle Simulations

Permalink
https://escholarship.org/uc/item/779405pK

Authors

Adelmann, Andreas
Ryne, Robert D.
Siegerist, Cristina

Publication Date
2005

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/77q405pk
https://escholarship.org/uc/item/77q405pk#author
https://escholarship.org
http://www.cdlib.org/

H5Part: A Portable High Performance Parallel Data Interface for Particle
Simulations*

A. Adelmann, PSI, Villigen, Switzerland
R.D. Ryne, LBNL/AFR, Berkeley, California, USA
J.M. Shalf, C.Siegerist, LBNL/NERSC, Berkeley, California, USA

Abstract ing a repository of simulation data. Given files that store

. . . data structures with differently sized elements, one must
The very largest parallel particle simulations, for prob- " :
: . o X know the storage format precisely in order to apply byte-

lems involving six dimensional phase space, generate vas .
- : . Swapping properly. HDF5 does not suffer from these prob-
guantities of data. It is desirable to store such enormous) : .
- eéms because the file format is completely self-describing
datasets efficiently and also to share data effortlessly be-

tween data analysis tools such as Partviepaind exten- and the internal binary structures are all machine indepen-
: y dent. The HDF5 library is able to convert data that is stored
sions to AVS/Express among other groups who are work- . . o o
; : .) . In any native machine represenation in the data file into a
ing on particle-based accelerator simulations. We define a . . g
.) : : native binary representation in memory as part of the read-

very simple file schema built on top of HDF3][(Hierar- ina process with little performance penalt
chical Data Format version 5) as well as an API that simpli- gp P P Y-
fies the reading/writing of the data to the HDF5 file format.

HDF5 offers a self-describing machine-independent binadi@nguage Independence
file format that supports scalable parallel 1/0 performance The three most common languages used for implement-

for MPI codes on computer systems ranging from' Iaptopiﬁg applications in the arena of computational sciences are
to supercomputers. The sample H5Part API is available f?—rortran, C and C++. The file format and associated API

C, C++, and Fortran codes. The common f'k_a form_at W'W‘nust hide differences in the binary file-storage conventions
enable groups that use completely different simulation IMs¢ these languages as well as offering native API bindings
plementations to transparently share datasets and CUSIM oo ch of these programming languages

data analysis tools like PartView. We will show examples '

. For instance, Fortran unformatted binary files contain in-
and benchmark data for various platforms.

teger fields at the beginning and the end of each record that
describe the length of the record. The size of these integer
MOTIVATION tags is usually 32-bits, but some fortran compiler imple-

L . L . mentations will use larger tags in order to represent larger
The motivation for this undertaking is to create a file . . .
. . . ._tecord sizes. C and C++ binary files have no such conven-

format that is suitable for large-scale parallel simulatior). .
tion for record-oriented storage. The language-dependent

g(r)gssr_tie,:. S.;“rtr?i? l;:l;t; rfnoar(r:r;ﬁ\rt1 eTﬁzteS:r\:getrtebifr?!?;/vlrr;%jﬁerences in binary storage layout conventions can cause
resentation that is self-describing, easily extensible, IanJfgg%“:f;ﬁgfg:‘edngté:ih% m;&;%;‘iii c:)a;tz]:I:I(?;ebeo-r

guage independent, efficient (both for serial and parallel%:;j;

' ith visualization tools that are primarily written in C/C++.
and produces files that are seamlessly sharable between fe API bindings and underlying file format provided by
ferent programs. In the following sections we describe tht.?1 ; :

N the H5Part API and the underlying HDF5 file format are
m_ot|vat|on_for these feature_s and how they can be accorgble to hide these differences in order to provide symmet-
plished using the proposed implementation.

ric access via all languages.

Machine Independence Self-Describing

Processor architectures use different binary representa-))
tions for data. While the IEEE 754 standard has decreased! N€ data is accessed by names, for example, one might
the number of differing floating point number represena@Sk for ‘the column of data called,’ — affording a layer of
tions, byte-order still remains a source of incompatibility/ile-layout independence. In other words, self-describing
While it is trivial to byte-swap a file from a programming 9&t@ is not accessed by a position in a file but by name
standpoint, it creates a number of long-term file managé)-f the datasets. Various attributes of the data that may be

ment difficulties for groups that are sharing or maintainN€cessary to using it are available. For example, one can
ask “what are the units of colummn,?’.

f *ghis Wodrk was Sfupported by the Direct?]r, ?ﬁ:]ce of Science, Office There are a number of examples of self-describing file
of Advanced Scientific Computing Research, of the U.S. Department ; ; ; _
Energy under Contract No. DE-AC03-76SF00098 and the DOE SciDA&BrmatS' Examples include HDF earlier HDF. |mpIementa
project on “Advanced Computing for 21st Century Accelerator SciencBONS leading up to HDF version 5 and the Unidata NetCDF

and Technology.”. format. Another very popular approach is the Self Describ-

ing Data Sets (SDDS)? although it is only serial in na- Parallel 1/0O
ture. HDF5 is a complete rewrite of the HDF file format

HDF5 also supports parallel /0 capabilities for MPI
that supports parallel I/O and offers a much leaner, morero rams. The naive aporoach to writing data from a par-
flexible interface. Because it is self-describing, the entir 9) pp 9 X

contents of an HDES file can be browsed and even cog—llel program is to write one file per processor. While this

e 10 ASCI et nclucing XML Syt e s s-, 701 2 TPIeent and very efcenton most custer
ing the built-in 'h5Is’ and 'h5dump’ tools without specific y : g

) ' comes the time to analyze the data. One must either recom-
knowledge of the internal file format.) 0 . .
bine these separate files into a single file or create ponder-
: ous user-interfaces that allow a data analysis application to
g ;- read from a directory full of files instead of just one file.

: ; Parallel /0O methods, allow you to write data into a sin-
gle file from all of the tasks of a parallel program. The
performance is typically lower than that of writing one-file-
per-processor, but it makes data management much simpler
after the program has finished. No additional recombining
steps are required to make the file accessible by vis-tools
or for restarting a simulation using a different number of
processors.

Figure 1: color: A common self-describing file format al- Parallel HDF5 uses MPI-I/O for its low-level implemen-
lows different codes to share a common set of visualizatioiation. The mechanics of using MPI-I/O are all hidden
and data analysis tools. PartView and AVS/Express, piérom the user by our H5Part file API (the code looks nearly
tured above, are able to read and display contents of &fentical to reading/writing the data from a serial program).
H5Part/HDFS5 file written on any machine in any languageyVhile the performance is not as good as writing one-file-
regardless of how many processors are used. per-processor, we demonstrate that writing files with Par-
allel HDF5 is consistently faster than writing the data in

The primary advantage of accessing data and its dgw/native binary using the MPI-I/O library. This effi-
tributes is that one can then construct more flexible daiency is made possible through sophisticated HDFS tuning
manipulation tools that are capable of surviving the naturliréctives that control data alignment and caching within

evolution of file formats. Data formats can be extended t§'€ HDF5 layer. Therefore, we argue that it would be diffi-
include additional information without breaking older fileCult to match HDFS performance even using a home-grown

readers. Self-describing data contains all the informatigpinary file format.

that analysis tools need to manipulate various types of data

correctly. Two examples of such tools using the proposedH5PART FILE ORGANIZATION AND API
file format are shown in Figure?? As a result, data ex- ,
change between different simulations tools is much sin%The proposed file storage format uses HDFS for the low-

pler, robust and better defined by using self-describing da vel file storage gnd a simple API to provide a high—level
interface to that file format. A programmer can either use

the H5Part API to access the data files or write directly to
the file format using some simple conventions for organiz-
High Performance ing and naming the objects stored in the file.
The HDF5 format, its benefits, and its file organization
The HDFS5 file format allows data elements to be writteRs decribed at7]. The file format was also adopted by the
to disk in the native binary representation. The file forpog ASCI-VIEWS effort, so the library has been tuned
mat stores a description of the native data representation gig adapted to read and write data efficiently on large-scale
the machine that wrote the data so that it can be automgarallel computing systems. We adopted HDF5 for our file
ically translated to the native binary representation of thetorage needs because it offers all that is needed as stipu-
machine that reading the data (eg. if the byte order differshted in the motivation section.
In contrast to XDR, where the data always gets translated \we describe now the H5Part conventions for storing ob-

to/from an intermediate machine-neutral format, the HDFRxcts in the HDFS file as well as some examples of the API.
data conversion only occurs if the stored data represena-

tion |s.d|fferen.t from t'he natlvg binary repr.esentatlon of thef—|5Part File Organization
machine that is reading the file, so there is no performance
penalty if the machines have the compatible binary data In order to store Particle Data in the HDF5 file format,
formats. [ada: need work] In general, HDF5 offers perforwe have formalized the hierarchical arrangement of the
mance that is very close to what can be achieved by writingatasets and naming conventions for the groups and asso-
an ad-hoc machine-dependent binary for F77 unformattedated datasets. The sample H5Part API formally encodes
data file. these conventions in order to provide a simple and uniform

=

sets.

way to access these files from C, C++, and Fortran codesomposed according to the new number of processor nodes
The APl makes it easier to write very portable data adapvailable. The resulting HDF5 file will contains a simple
tors for visualization tools in order to expand the number odlirectory structure that can be navigated using the generic
tools available to access the data. Even so, anyone can Usg&s’ utility;
the HDF5h5(s utility to examine the organization of the
H5Part files and even write their own HDF5-based intef-if (parallel);
face for reading and writing the file format. The standards filehandle=OpenFile(filename,mode)
offered by the sample APl are completely independent pglse
the standard for organizing data within the file. filehandle=OpenFile(filename,mode,mpicomm)

The file format supports the storage of multiple timestepSetNumber0fParticles(filehandle);
of datasets that contain multiple fields. The fields cof-+°%P(Step=1,NSteps);

. . . SetStep(filehandle,step);

respond to different properties of the particles at that

icul . f . h . ional WriteData(filehandle,fieldnamel,datal);
particular time step — for instance, the 3-dimensiona write more data

cartesian position of the particlgsX,Y, Z) as well as WriteData(filehandle,fieldname<n>,data<n>);
the 3-dimensional phase of each particleX, PY, PZ). CloseFile(filehandle) ;
These two degrees of freedom are organized such that the

timesteps are groups (time groups) that are added sequen- Figure 2: Usage of H5Part in pseudo-code
tially to the root group (“/"). The fields are datasets that
are nested within the time groups. The convention for PERFORMANCE

naming the time group i®articles < integer > where o L _
< integer > is a monotonically increasing counter for the _Preliminary performance estimations, looking at global
number of timesteps stored in the file. (GD) and local data (LD) rates, suggests that our HDF5

writing has a very good performance even with respect to

The fields contained within a given time group are sim
g grotp faw mpi, as shown in Table?.

ply named for the property of the particle they represen

Eor inst.ance, the phase_ of .the particle stored in a.simuIaMode GD [VB/s] | LD [MB/S]
tion variable called 'px’ is simply nametpz”. The field mpi-io (one file) 241 37
names are user-defined and can be understood automatire file per proc 1288 20
cally by the visualization tools that read the file. The only H5Part/pHDFf5 (one file)| 773 12

other convention is that each time group must contain the
same set of fields — the conten'Fs of the fields will ChangeTabIe 1: 64 IBM SP-3 nodes writingl.e6 particles (6D).
but the set of names for these fields must remain the same
for all tmesteps. .~~~ . CONCLUSIONS AND FUTURE WORK
The fields can be either integer or real data types. Ini-
tially, the file format supports double precision float and The file format will be extended in the near future to in-
64-bit integers in order to simplify the requirements fortegrate fast bitmap indexing technolo@ in order to pro-
file readers, but HDF5 is capable of automatically downvide accelerated queries of data stored in the file. With fast-
converting to 32-bit data types upon request. The API wilbit technolgy, a user can efficiently extract subsets of data
be extended accordingly to support these conversions. using compound query expressions such(@gocity >
Finally, the file, the individual timesteps, and the indi-1e6) AND (0.4 < phase < 1.0).
vidual data arrays can contadttributesthat provide addi- We are also constantly tuning the performance of the par-
tional information about the data. For instance, the datasediel data file format implementation. We will also be port-
can be annotated with attributes containimjtsfor a given ing the H5Part reader to a wider variety of visualization
data field, simulation parameters, or code revision informaeols.
tion. Theattributesare key-value pairs where they is a

string that is associated with the file, group, or dataset, and REFERENCES
thewvalue is either a string, a real value, or an integer asso-
ciated with that key. [1] A. Adelmann, R.D Ryne, C. Siegerist, J. Shalf, "From Visu-

alization to Data Mining With Large Datasets,” PAC, 2005.

[2] HDF5 Home Page, http://hdf.ncsa.uiuc.edu/HDF5.
GENERAL FORM IN PSEUDOCODE [3] Definitions and libraries for SDDS im-

In Figure ?? we show the very simple API for writing ~ Plementation ~ may ~ be found —at the link
data. The API for reading is almost symmetric. It is also NttP//www.aps.anl.gov/asd/oag/oagPackages.shtml.
worth to note that there are minimal differences whethdf] K. Stockinger, J. Shalf, W. Bethel, K. Wu. "DEX: Increas-
one read/write serial or in parallel. The API consists of ing the Capability of Scientific Data Analysis Pipelines by
a small number of C, C++ and Fortran functions and will Using Efficient Bitmap Indices to Accelerate Scientific Vi-
be described elsewhere. In the parallel case the original sualization.” Scientific and Statistical Database Management
domain decomposition can be used or the data can be de- Conference (SDDBM), 2005.

